1
|
Bredenbruch S, Müller C, Nvenankeng HA, Schröder L, Zeisel AC, Medina RC, Tiso T, Blank LM, Grundler FMW, Schleker ASS. The biological activity of bacterial rhamnolipids on Arabidopsis thaliana and the cyst nematode Heterodera schachtii is linked to their molecular structure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106103. [PMID: 39277425 DOI: 10.1016/j.pestbp.2024.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/18/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
Rhamnolipids (RLs) are amphiphilic compounds of bacterial origin that offer a broad range of potential applications as biosurfactants in industry and agriculture. They are reported to be active against different plant pests and pathogens and thus are considered promising candidates for nature-derived plant protection agents. However, as these glycolipids are structurally diverse, little is known about their exact mode of action and, in particular, the relation between molecular structure and biological activity against plant pests and pathogens. Engineering the synthesis pathway in recombinant Pseudomonas putida strains in combination with advanced HPLC techniques allowed us to separately analyze the activities of mixtures of pure mono-RLs (mRLs) and of pure di-RL (dRLs), as well as the activity of single congeners. In a model system with the plant Arabidopsis thaliana and the plant-parasitic nematode (PPN) Heterodera schachtii we demonstrate that RLs can significantly reduce infection, whereas their impact on the host plant varied depending on their molecular structure. While mRLs reduced plant growth even at a low concentration, dRLs showed a neutral to beneficial impact on plant development. Treating plants with dRLs triggered an increased reactive oxygen species (ROS) production, indicating the activation of stress-response signaling and possibly plant defense. Pretreatment of plants with mRLs or dRLs prior to application of flagellin (flg22), a known ROS inducer, further increased the ROS response to flg22. While dRLs stimulated an elevated flg22-induced ROS peak, a pretreatment with mRLs resulted in a prolonged synthesis of ROS indicating a generally elevated stress level. Neither mRLs nor dRLs induced the expression of plant defense marker genes of salicylic acid, jasmonic acid, and ethylene pathways. Detailed studies on dRLs revealed that even high concentrations up to 755 ppm of these molecules have no lethal impact on H. schachtii infective juveniles. Infection assays with individual dRL congeners showed that the C10-C8 acyl chained dRL was the only congener without effect, while dRLs with C10-C12 and C10-C12:1 acyl chains were most efficient in reducing nematode infection even at concentrations below 2 ppm. As determined by phenotyping and ROS measurements, A. thaliana reacted more sensitive to long-chained dRLs in a concentration-dependent manner. Our experiments show a clear structure-activity relation for the effect of RLs on plants. In conclusion, functional assessment and analysis of the mode of action of RLs in plants and other organisms require careful consideration of their molecular structure and composition.
Collapse
Affiliation(s)
- Sandra Bredenbruch
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany
| | - Conrad Müller
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Germany
| | - Henry A Nvenankeng
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany
| | - Lukas Schröder
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany
| | - Antonia C Zeisel
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany
| | - Rainier C Medina
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany
| | - Till Tiso
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Germany
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Germany.
| | - Florian M W Grundler
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany.
| | - A Sylvia S Schleker
- Department of Molecular Phytomedicine - MPM, Institute of Crop Science and Resource Conservation - INRES, University of Bonn, Germany.
| |
Collapse
|
2
|
Alonso S, Gautam K, Iglesias-Moya J, Martínez C, Jamilena M. Crosstalk between Ethylene, Jasmonate and ABA in Response to Salt Stress during Germination and Early Plant Growth in Cucurbita pepo. Int J Mol Sci 2024; 25:8728. [PMID: 39201415 PMCID: PMC11354493 DOI: 10.3390/ijms25168728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The crosstalk of phytohormones in the regulation of growth and development and the response of plants to environmental stresses is a cutting-edge research topic, especially in crop species. In this paper, we study the role and crosstalk between abscisic acid (ABA), ethylene (ET), and jasmonate (JA) in the control of germination and seedling growth in water or in standard nutrient solution and under salt stress (supplemented with 100-200 mM NaCl). The roles of ET and JA were studied using squash ET- and JA-deficient mutants aco1a and lox3a, respectively, while the crosstalk between ET, JA, and ABA was determined by comparing the expression of the key ABA, JA, and ET genes in wild-type (WT) and mutant genotypes under standard conditions and salt stress. Data showed that ET and JA are positive regulators of squash germination, a function that was found to be mediated by downregulating the ABA biosynthesis and signaling pathways. Under salt stress, aco1a germinated earlier than WT, while lox3a showed the same germination rate as WT, indicating that ET, but not JA, restricts squash germination under unfavorable salinity conditions, a function that was also mediated by upregulation of ABA. ET and JA were found to be negative regulators of plant growth during seedling establishment, although ET inhibits both the aerial part and the root, while JA inhibits only the root. Both aco1a and lox3a mutant roots showed increased tolerance to salt stress, a phenotype that was found to be mainly mediated by JA, although we cannot exclude that it is also mediated by ABA.
Collapse
Affiliation(s)
| | | | | | - Cecilia Martínez
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120 Almería, Spain; (S.A.); (K.G.); (J.I.-M.)
| | - Manuel Jamilena
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120 Almería, Spain; (S.A.); (K.G.); (J.I.-M.)
| |
Collapse
|
3
|
Lin L, Lin J, Zhou M, Yuan Y, Li Z. Lipid remodelling and the conversion of lipids into sugars associated with tolerance to cadmium toxicity during white clover seed germination. PHYSIOLOGIA PLANTARUM 2024; 176:e14433. [PMID: 38994561 DOI: 10.1111/ppl.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Cadmium (Cd) is a leading environmental issue worldwide. The current study was conducted to investigate Cd tolerance of 10 commercial white clover (Trifolium repens) cultivars during seed germination and to further explore differences in lipid remodelling, glycometabolism, and the conversion of lipids into sugars contributing to Cd tolerance in the early phase of seedling establishment as well as the accumulation of Cd in seedlings and mature plants. The results show that Cd stress significantly reduced seed germination of 10 cultivars. Compared to Cd-sensitive Sulky, Cd-tolerant Pixie accelerated amylolysis to produce more glucose, fructose, and sucrose by maintaining higher amylase and sucrase activities under Cd stress. Pixie maintained higher contents of various lipids, higher DGDG/MGDG ratio, and lower unsaturation levels of lipids, which could be beneficial to membrane stability and integrity as well as signal transduction in cells after being subjected to Cd stress. In addition, Pixie upregulated expression levels of key genes (TrACX1, TrACX4, TrSDP6, and TrPCK1) involved in the conversion of lipids into sugars for early seedling establishment under Cd stress. These findings indicate that lipid remodelling, enhanced glycometabolism, and accelerated conversion of lipids into sugars are important adaptive strategies for white clover seed germination and subsequent seedling establishment under Cd stress. In addition, Pixie not only accumulated more Cd in seedlings and mature plants than Sulky but also had significantly better growth and phytoremediation efficiency under Cd stress. Pixie could be used as a suitable and critical germplasm for the rehabilitation and re-establishment of Cd-contaminated areas.
Collapse
Affiliation(s)
- Long Lin
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junnan Lin
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Min Zhou
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Yuan
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhou Li
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Cannon AE, Horn PJ. The Molecular Frequency, Conservation and Role of Reactive Cysteines in Plant Lipid Metabolism. PLANT & CELL PHYSIOLOGY 2024; 65:826-844. [PMID: 38113384 DOI: 10.1093/pcp/pcad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Cysteines (Cys) are chemically reactive amino acids containing sulfur that play diverse roles in plant biology. Recent proteomics investigations in Arabidopsis thaliana have revealed the presence of thiol post-translational modifications (PTMs) in several Cys residues. These PTMs are presumed to impact protein structure and function, yet mechanistic data regarding the specific Cys susceptible to modification and their biochemical relevance remain limited. To help address these limitations, we have conducted a wide-ranging analysis by integrating published datasets encompassing PTM proteomics (comparing S-sulfenylation, persulfidation, S-nitrosylation and S-acylation), genomics and protein structures, with a specific focus on proteins involved in plant lipid metabolism. The prevalence and distribution of modified Cys residues across all analyzed proteins is diverse and multifaceted. Nevertheless, by combining an evaluation of sequence conservation across 100+ plant genomes with AlphaFold-generated protein structures and physicochemical predictions, we have unveiled structural propensities associated with Cys modifications. Furthermore, we have identified discernible patterns in lipid biochemical pathways enriched with Cys PTMs, notably involving beta-oxidation, jasmonic acid biosynthesis, fatty acid biosynthesis and wax biosynthesis. These collective findings provide valuable insights for future investigations targeting the mechanistic foundations of Cys modifications and the regulation of modified proteins in lipid metabolism and other metabolic pathways.
Collapse
Affiliation(s)
- Ashley E Cannon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| |
Collapse
|
5
|
Tao B, Ma Y, Wang L, He C, Chen J, Ge X, Zhao L, Wen J, Yi B, Tu J, Fu T, Shen J. Developmental pleiotropy of SDP1 from seedling to mature stages in B. napus. PLANT MOLECULAR BIOLOGY 2024; 114:49. [PMID: 38642182 DOI: 10.1007/s11103-024-01447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Rapeseed, an important oil crop, relies on robust seedling emergence for optimal yields. Seedling emergence in the field is vulnerable to various factors, among which inadequate self-supply of energy is crucial to limiting seedling growth in early stage. SUGAR-DEPENDENT1 (SDP1) initiates triacylglycerol (TAG) degradation, yet its detailed function has not been determined in B. napus. Here, we focused on the effects of plant growth during whole growth stages and energy mobilization during seedling establishment by mutation in BnSDP1. Protein sequence alignment and haplotypic analysis revealed the conservation of SDP1 among species, with a favorable haplotype enhancing oil content. Investigation of agronomic traits indicated bnsdp1 had a minor impact on vegetative growth and no obvious developmental defects when compared with wild type (WT) across growth stages. The seed oil content was improved by 2.0-2.37% in bnsdp1 lines, with slight reductions in silique length and seed number per silique. Furthermore, bnsdp1 resulted in lower seedling emergence, characterized by a shrunken hypocotyl and poor photosynthetic capacity in the early stages. Additionally, impaired seedling growth, especially in yellow seedlings, was not fully rescued in medium supplemented with exogenous sucrose. The limited lipid turnover in bnsdp1 was accompanied by induced amino acid degradation and PPDK-dependent gluconeogenesis pathway. Analysis of the metabolites in cotyledons revealed active amino acid metabolism and suppressed lipid degradation, consistent with the RNA-seq results. Finally, we proposed strategies for applying BnSDP1 in molecular breeding. Our study provides theoretical guidance for understanding trade-off between oil accumulation and seedling energy mobilization in B. napus.
Collapse
Affiliation(s)
- Baolong Tao
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Yina Ma
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Liqin Wang
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Chao He
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Junlin Chen
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Xiaoyu Ge
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Lun Zhao
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Jing Wen
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Bin Yi
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Jinxing Tu
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Tingdong Fu
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Jinxiong Shen
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China.
| |
Collapse
|
6
|
Li L, Liu Z, Pan X, Yao K, Wang Y, Yang T, Huang G, Liao W, Wang C. Genome-Wide Identification and Characterization of Tomato Fatty Acid β-Oxidase Family Genes KAT and MFP. Int J Mol Sci 2024; 25:2273. [PMID: 38396949 PMCID: PMC10889323 DOI: 10.3390/ijms25042273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Fatty acids and their derivatives play a variety of roles in living organisms. Fatty acids not only store energy but also comprise membrane lipids and act as signaling molecules. There are three main proteins involved in the fatty acid β-oxidation pathway in plant peroxisomes, including acyl-CoA oxidase (ACX), multifunctional protein (MFP), and 3-ketolipoyl-CoA thiolase (KAT). However, genome-scale analysis of KAT and MFP has not been systemically investigated in tomatoes. Here, we conducted a bioinformatics analysis of KAT and MFP genes in tomatoes. Their physicochemical properties, protein secondary structure, subcellular localization, gene structure, phylogeny, and collinearity were also analyzed. In addition, a conserved motif analysis, an evolutionary pressure selection analysis, a cis-acting element analysis, tissue expression profiling, and a qRT-PCR analysis were conducted within tomato KAT and MFP family members. There are five KAT and four MFP family members in tomatoes, which are randomly distributed on four chromosomes. By analyzing the conserved motifs of tomato KAT and MFP family members, we found that both KAT and MFP members are highly conserved. In addition, the results of the evolutionary pressure selection analysis indicate that the KAT and MFP family members have evolved mainly from purifying selection, which makes them more structurally stable. The results of the cis-acting element analysis show that SlKAT and SlMFP with respect may respond to light, hormones, and adversity stresses. The tissue expression analysis showed that KAT and MFP family members have important roles in regulating the development of floral organs as well as fruit ripening. The qRT-PCR analysis revealed that the expressions of SlKAT and SlMFP genes can be regulated by ABA, MeJA, darkness, NaCl, PEG, UV, cold, heat, and H2O2 treatments. These results provide a basis for the involvement of the SlKAT and SlMFP genes in tomato floral organ development and abiotic stress response, which lay a foundation for future functional study of SlKAT and SlMFP in tomatoes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Yinmen Village, Anning District, Lanzhou 730070, China; (L.L.); (Z.L.); (X.P.); (K.Y.); (Y.W.); (T.Y.); (G.H.); (W.L.)
| |
Collapse
|
7
|
Monti MM, Mancini I, Gualtieri L, Domingo G, Beccaccioli M, Bossa R, Bracale M, Loreto F, Ruocco M. Volatilome and proteome responses to Colletotrichum lindemuthianum infection in a moderately resistant and a susceptible bean genotype. PHYSIOLOGIA PLANTARUM 2023; 175:e14044. [PMID: 37882283 DOI: 10.1111/ppl.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
We analyzed the changes in the volatilome, proteome, stomatal conductance, salicylic and jasmonic acid contents of a susceptible and a moderately resistant genotype of common bean, Phaseoulus vulgaris L., challenged with Colletotrichum lindemuthianum, the causal agent of fungal anthracnose. Our results indicate differences at both proteome and volatilome levels between the two genotypes, before and after the infection, and different defense strategies. The moderately resistant genotype hindered pathogen infection, invasion, and replication mainly by maintaining epidermal and cell wall structure. The susceptible genotype was not able to limit the early stages of pathogen infection. Rather, stomatal conductance increased in the infected susceptible genotype, and enhanced synthesis of Green Leaf Volatiles and salicylic acid was observed, together with a strong hypersensitive response. Proteomic investigation provided a general framework for physiological changes, whereas observed variations in the volatilome suggested that volatile organic compounds may principally represent stress markers rather than defensive compounds per se.
Collapse
Affiliation(s)
- Maurilia M Monti
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
| | - Ilaria Mancini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Liberata Gualtieri
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
| | - Guido Domingo
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Marzia Beccaccioli
- Dipartimento di Biologia Ambientale, Università Sapienza Roma, Roma, Italy
| | - Rosanna Bossa
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Marcella Bracale
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Francesco Loreto
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Michelina Ruocco
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
| |
Collapse
|
8
|
Rehmani MS, Xian B, Wei S, He J, Feng Z, Huang H, Shu K. Seedling establishment: The neglected trait in the seed longevity field. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107765. [PMID: 37209453 DOI: 10.1016/j.plaphy.2023.107765] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Seed longevity is a central actor in plant germplasm resource conservation, species reproduction, geographical distribution, crop yield and quality and food processing and safety. Seed longevity and vigor decrease gradually during storage, which directly influences seed germination and post-germination seedling establishment. It is noted that seedling establishment is a key shift from heterotropism to autotropism and is fueled by the energy reserved in the seeds per se. Numerous studies have demonstrated that expedited catabolism of triacylglycerols, fatty acid and sugars during seed storage is closely related to seed longevity. Storage of farm-saved seeds of elite cultivars for use in subsequent years is a common practice and it is recognized that aged seed (especially those stored under less-than-ideal conditions) can lead to poor seed germination, but the significance of poor seedling establishment as a separate factor capable of influencing crop yield has been overlooked. This review article summarizes the relationship between seed germination and seedling establishment and the effect of different seed reserves on seed longevity. Based on this, we emphasize the importance of simultaneous scoring of seedling establishment and germination percentage from aged seeds and discuss the reasons.
Collapse
Affiliation(s)
- Muhammad Saad Rehmani
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - BaoShan Xian
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Shaowei Wei
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Juan He
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zhenxin Feng
- School of Astronautics, Northwestern Polytechnical University, Xi'an, 710129, China
| | - He Huang
- School of Astronautics, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Kai Shu
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
9
|
Zheng L, Otani M, Kanno Y, Seo M, Yoshitake Y, Yoshimoto K, Sugimoto K, Kawakami N. Seed dormancy 4 like1 of Arabidopsis is a key regulator of phase transition from embryo to vegetative development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:460-475. [PMID: 36036886 DOI: 10.1111/tpj.15959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Seed dormancy is an adaptive trait that enables plants to survive adverse conditions and restart growth in a season and location suitable for vegetative and reproductive growth. Control of seed dormancy is also important for crop production and food quality because it can help induce uniform germination and prevent preharvest sprouting. Rice preharvest sprouting quantitative trait locus analysis has identified Seed dormancy 4 (Sdr4) as a positive regulator of dormancy development. Here, we analyzed the loss-of-function mutant of the Arabidopsis ortholog, Sdr4 Like1 (SFL1), and found that the sfl1-1 seeds showed precocious germination at the mid- to late-maturation stage similar to rice sdr4 mutant, but converted to become more dormant than the wild type during maturation drying. Coordinated with the dormancy levels, expression levels of the seed maturation and dormancy master regulator genes, ABI3, FUS3, and DOG1 in sfl1-1 seeds were lower than in wild type at early- and mid-maturation stages, but higher at the late-maturation stage. In addition to the seed dormancy phenotype, sfl1-1 seedlings showed a growth arrest phenotype and heterochronic expression of LAFL (LEC1, ABI3, FUS3, LEC2) and DOG1 in the seedlings. These data suggest that SFL1 is a positive regulator of initiation and termination of the seed dormancy program. We also found genetic interaction between SFL1 and the SFL2, SFL3, and SFL4 paralogs of SFL1, which impacts on the timing of the phase transition from embryo maturation to seedling growth.
Collapse
Affiliation(s)
- Lipeng Zheng
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Masahiko Otani
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yushi Yoshitake
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kohki Yoshimoto
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kazuhiko Sugimoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
10
|
Wei H, Movahedi A, Zhang Y, Aghaei-Dargiri S, Liu G, Zhu S, Yu C, Chen Y, Zhong F, Zhang J. Long-Chain Acyl-CoA Synthetases Promote Poplar Resistance to Abiotic Stress by Regulating Long-Chain Fatty Acid Biosynthesis. Int J Mol Sci 2022; 23:ijms23158401. [PMID: 35955540 PMCID: PMC9369374 DOI: 10.3390/ijms23158401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Long-chain acyl-CoA synthetases (LACSs) catalyze fatty acids (FAs) to form fatty acyl-CoA thioesters, which play essential roles in FA and lipid metabolisms and cuticle wax biosynthesis. Although LACSs from Arabidopsis have been intensively studied, the characterization and function of LACSs from poplar are unexplored. Here, 10 poplar PtLACS genes were identified from the poplar genome and distributed to eight chromosomes. A phylogenetic tree indicated that PtLACSs are sorted into six clades. Collinearity analysis and duplication events demonstrated that PtLACSs expand through segmental replication events and experience purifying selective pressure during the evolutionary process. Expression patterns revealed that PtLACSs have divergent expression changes in response to abiotic stress. Interaction proteins and GO analysis could enhance the understanding of putative interactions among protein and gene regulatory networks related to FA and lipid metabolisms. Cluster networks and long-chain FA (LCFA) and very long-chain FA (VLCFA) content analysis revealed the possible regulatory mechanism in response to drought and salt stresses in poplar. The present study provides valuable information for the functional identification of PtLACSs in response to abiotic stress metabolism in poplar.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226019, China; (H.W.); (G.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (S.Z.)
- College of Arts and Sciences, Arlington International University, Wilmington, DE 19804, USA
- Correspondence: (A.M.); (J.Z.)
| | - Yanyan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (S.Z.)
| | - Soheila Aghaei-Dargiri
- Department of Horticulture, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas 47916193145, Iran;
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226019, China; (H.W.); (G.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Sheng Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.); (S.Z.)
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226019, China; (H.W.); (G.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226019, China; (H.W.); (G.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226019, China; (H.W.); (G.L.); (C.Y.); (Y.C.); (F.Z.)
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226019, China; (H.W.); (G.L.); (C.Y.); (Y.C.); (F.Z.)
- Correspondence: (A.M.); (J.Z.)
| |
Collapse
|
11
|
MISF2 Encodes an Essential Mitochondrial Splicing Cofactor Required for nad2 mRNA Processing and Embryo Development in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23052670. [PMID: 35269810 PMCID: PMC8910670 DOI: 10.3390/ijms23052670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondria play key roles in cellular energy metabolism in eukaryotes. Mitochondria of most organisms contain their own genome and specific transcription and translation machineries. The expression of angiosperm mtDNA involves extensive RNA-processing steps, such as RNA trimming, editing, and the splicing of numerous group II-type introns. Pentatricopeptide repeat (PPR) proteins are key players in plant organelle gene expression and RNA metabolism. In the present analysis, we reveal the function of the MITOCHONDRIAL SPLICING FACTOR 2 gene (MISF2, AT3G22670) and show that it encodes a mitochondria-localized PPR protein that is crucial for early embryo development in Arabidopsis. Molecular characterization of embryo-rescued misf2 plantlets indicates that the splicing of nad2 intron 1, and thus respiratory complex I biogenesis, are strongly compromised. Moreover, the molecular function seems conserved between MISF2 protein in Arabidopsis and its orthologous gene (EMP10) in maize, suggesting that the ancestor of MISF2/EMP10 was recruited to function in nad2 processing before the monocot-dicot divergence ~200 million years ago. These data provide new insights into the function of nuclear-encoded factors in mitochondrial gene expression and respiratory chain biogenesis during plant embryo development.
Collapse
|
12
|
Huang T, Suen D. Iron insufficiency in floral buds impairs pollen development by disrupting tapetum function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:244-267. [PMID: 34310779 PMCID: PMC9292431 DOI: 10.1111/tpj.15438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Reduction of crop yield due to iron (Fe) deficiency has always been a concern in agriculture. How Fe insufficiency in floral buds affects pollen development remains unexplored. Here, plants transferred to Fe-deficient medium at the reproductive stage had reduced floral Fe content and viable pollen and showed a defective pollen outer wall, all restored by supplying floral buds with Fe. A comparison of differentially expressed genes (DEGs) in Fe-deficient leaves, roots, and anthers suggested that changes in several cellular processes were unique to anthers, including increased lipid degradation. Co-expression analysis revealed that ABORTED MICROSPORES (AMS), DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION1, and BASIC HELIX-LOOP-HELIX 089/091/010 encode key upstream transcription factors of Fe deficiency-responsive DEGs involved in tapetum function and development, including tapetal ROS homeostasis, programmed cell death, and pollen outer wall formation-related lipid metabolism. Analysis of RESPIRATORY-BURST OXIDASE HOMOLOG E (RBOHE) gain- and loss-of-function under Fe deficiency indicated that RBOHE- and Fe-dependent regulation cooperatively control anther reactive oxygen species levels and pollen development. Since DEGs in Fe-deficient anthers were not significantly enriched in genes related to mitochondrial function, the changes in mitochondrial status under Fe deficiency, including respiration activity, density, and morphology, were probably because the Fe amount was insufficient to maintain proper mitochondrial protein function in anthers. To sum up, Fe deficiency in anthers may affect Fe-dependent protein function and impact upstream transcription factors and their downstream genes, resulting in extensively impaired tapetum function and pollen development.
Collapse
Affiliation(s)
- Tzu‐Hsiang Huang
- Agricultural Biotechnology Research CenterAcademia SinicaTaipei11529Taiwan
- Molecular and Biological Agricultural Sciences ProgramTaiwan International Graduate ProgramAcademia Sinica and National Chung‐Hsing UniversityTaipei11529Taiwan
- Graduate Institute of BiotechnologyNational Chung‐Hsing UniversityTaichung40227Taiwan
| | - Der‐Fen Suen
- Agricultural Biotechnology Research CenterAcademia SinicaTaipei11529Taiwan
- Molecular and Biological Agricultural Sciences ProgramTaiwan International Graduate ProgramAcademia Sinica and National Chung‐Hsing UniversityTaipei11529Taiwan
- Biotechnology CenterNational Chung‐Hsing UniversityTaichung40227Taiwan
| |
Collapse
|
13
|
Dorion S, Ouellet JC, Rivoal J. Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification. Metabolites 2021; 11:metabo11090641. [PMID: 34564457 PMCID: PMC8464934 DOI: 10.3390/metabo11090641] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation.
Collapse
|
14
|
Li M, Yu G, Cao C, Liu P. Metabolism, signaling, and transport of jasmonates. PLANT COMMUNICATIONS 2021; 2:100231. [PMID: 34746762 PMCID: PMC8555440 DOI: 10.1016/j.xplc.2021.100231] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 05/16/2023]
Abstract
Biosynthesis/metabolism, perception/signaling, and transport are three essential aspects of the actions of phytohormones. Jasmonates (JAs), including jasmonic acid (JA) and related oxylipins, are implicated in the regulation of a range of ecological interactions, as well as developmental programs to integrate these interactions. Jasmonoyl-isoleucine (JA-Ile) is the most bioactive JAs, and perception of JA-Ile by its coreceptor, the Skp1-Cullin1-F-box-type (SCF) protein ubiquitin ligase complex SCFCOI1-JAZ, in the nucleus derepresses the transcriptional repression of target genes. The biosynthesis and metabolism of JAs occur in the plastid, peroxisome, cytosol, endoplasmic reticulum, and vacuole, whereas sensing of JA-Ile levels occurs in the nucleus. It is increasingly apparent that a number of transporters, particularly members of the jasmonates transporter (JAT) family, located at endomembranes as well as the plasma membrane, constitute a network for modulating and coordinating the metabolic flux and signaling of JAs. In this review, we discuss recent advances in the metabolism, signaling, and especially the transport of JAs, focusing on intracellular compartmentation of these processes. The roles of transporter-mediated cell-cell transport in driving long-distance transport and signaling of JAs are also discussed.
Collapse
Affiliation(s)
- Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Guanghui Yu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Congli Cao
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
- Corresponding author
| |
Collapse
|
15
|
Liu Z, Lu T, Feng C, Zhang H, Xu Z, Correll JC, Qian W. Fine mapping and molecular marker development of the Fs gene controlling fruit spines in spinach (Spinacia oleracea L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1319-1328. [PMID: 33515081 DOI: 10.1007/s00122-021-03772-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
The Fs gene, which controls spinach fruit spines, was fine mapped to a 0.27 Mb interval encompassing four genes on chromosome 3. There are two types of fruit of spinach (Spinacia oleracea L.), spiny and spineless, which are visually distinguishable by the spines of fruit coat. In spinach breeding, the fruit characteristic is an important agronomic trait that have impacts on "seed" treatment and mechanized sowing. However, the gene(s) controlling the fruit spiny trait have not been characterized and the genetic mechanism of this trait remained unclear. The objectives of the study were to fine map the gene controlling fruit spines and develop molecular markers for marker-assisted selection purpose. Genetic analysis of the spiny trait in segregating populations indicated that fruit spines were controlled by a single dominant gene, designated as Fs. Using a super-BSA method and recombinants analysis in a BC1 population, Fs was mapped to a 1.9-Mb interval on chromosome 3. The Fs gene was further mapped to a 0.27-Mb interval using a recombinant inbred line (RIL) population with 120 lines. From this 0.27 Mb region, four candidate genes were identified in the reference genome. The structure and expression of the four genes were compared between the spiny and spineless parents. A co-dominant marker YC-15 was found to be co-segregating with the fruit spines trait, which produced a 129-bp fragment specific to spiny trait and a 108-bp fragment for spineless fruit. This marker can predict spiny trait with a 94.8% accuracy rate when tested with 100 diverse germplasm, suggesting that this marker would be valuable for marker-assisted selection in spinach breeding.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tiantian Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunda Feng
- University of Arkansas, Fayetteville, AR, USA
| | - Helong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaosheng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Wei Qian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
16
|
Shevtsov-Tal S, Best C, Matan R, Chandran SA, Brown GG, Ostersetzer-Biran O. nMAT3 is an essential maturase splicing factor required for holo-complex I biogenesis and embryo development in Arabidopsis thaliana plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1128-1147. [PMID: 33683754 DOI: 10.1111/tpj.15225] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 05/21/2023]
Abstract
Group-II introns are self-splicing mobile genetic elements consisting of catalytic intron-RNA and its related intron-encoded splicing maturase protein cofactor. Group-II sequences are particularly plentiful within the mitochondria of land plants, where they reside within many critical gene loci. During evolution, the plant organellar introns have degenerated, such as they lack regions that are are required for splicing, and also lost their evolutionary related maturase proteins. Instead, for their splicing the organellar introns in plants rely on different host-acting protein cofactors, which may also provide a means to link cellular signals with respiratory functions. The nuclear genome of Arabidopsis thaliana encodes four maturase-related factors. Previously, we showed that three of the maturases, nMAT1, nMAT2 and nMAT4, function in the excision of different group-II introns in Arabidopsis mitochondria. The function of nMAT3 (encoded by the At5g04050 gene locus) was found to be essential during early embryogenesis. Using a modified embryo-rescue method, we show that nMAT3-knockout plants are strongly affected in the splicing of nad1 introns 1, 3 and 4 in Arabidopsis mitochondria, resulting in complex-I biogenesis defects and altered respiratory activities. Functional complementation of nMAT3 restored the organellar defects and embryo-arrested phenotypes associated with the nmat3 mutant line. Notably, nMAT3 and nMA4 were found to act on the same RNA targets but have no redundant functions in the splicing of nad1 transcripts. The two maturases, nMAT3 and nMAT4 are likely to cooperate together in the maturation of nad1 pre-RNAs. Our results provide important insights into the roles of maturases in mitochondria gene expression and the biogenesis of the respiratory system during early plant life.
Collapse
Affiliation(s)
- Sofia Shevtsov-Tal
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | - Corinne Best
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | - Roei Matan
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | - Sam A Chandran
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, India
| | - Gregory G Brown
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| |
Collapse
|
17
|
Uhrig RG, Echevarría‐Zomeño S, Schlapfer P, Grossmann J, Roschitzki B, Koerber N, Fiorani F, Gruissem W. Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. PLANT, CELL & ENVIRONMENT 2021; 44:821-841. [PMID: 33278033 PMCID: PMC7986931 DOI: 10.1111/pce.13969] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 05/11/2023]
Abstract
Plant growth depends on the diurnal regulation of cellular processes, but it is not well understood if and how transcriptional regulation controls diurnal fluctuations at the protein level. Here, we report a high-resolution Arabidopsis thaliana (Arabidopsis) leaf rosette proteome acquired over a 12 hr light:12 hr dark diurnal cycle and the phosphoproteome immediately before and after the light-to-dark and dark-to-light transitions. We quantified nearly 5,000 proteins and 800 phosphoproteins, of which 288 fluctuated in their abundance and 226 fluctuated in their phosphorylation status. Of the phosphoproteins, 60% were quantified for changes in protein abundance. This revealed six proteins involved in nitrogen and hormone metabolism that had concurrent changes in both protein abundance and phosphorylation status. The diurnal proteome and phosphoproteome changes involve proteins in key cellular processes, including protein translation, light perception, photosynthesis, metabolism and transport. The phosphoproteome at the light-dark transitions revealed the dynamics at phosphorylation sites in either anticipation of or response to a change in light regime. Phosphorylation site motif analyses implicate casein kinase II and calcium/calmodulin-dependent kinases among the primary light-dark transition kinases. The comparative analysis of the diurnal proteome and diurnal and circadian transcriptome established how mRNA and protein accumulation intersect in leaves during the diurnal cycle of the plant.
Collapse
Affiliation(s)
- R. Glen Uhrig
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Pascal Schlapfer
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
| | - Jonas Grossmann
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Bernd Roschitzki
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Niklas Koerber
- Institute of Bio‐ and GeosciencesIBG‐2: Plant Sciences, Forschungszentrum Jülich GmbHJülichGermany
| | - Fabio Fiorani
- Institute of Bio‐ and GeosciencesIBG‐2: Plant Sciences, Forschungszentrum Jülich GmbHJülichGermany
| | - Wilhelm Gruissem
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
- Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
18
|
Ruraż K, Piwowarczyk R, Gajdoš P, Krasylenko Y, Čertík M. Fatty acid composition in seeds of holoparasitic Orobanchaceae from the Caucasus region: Relation to species, climatic conditions and nutritional value. PHYTOCHEMISTRY 2020; 179:112510. [PMID: 33002658 DOI: 10.1016/j.phytochem.2020.112510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The specialization of parasitic plants from the Orobanchaceae family to the heterotrophic lifestyle caused several morphological, physiological and molecular changes. One of the adaptations to the parasitic lifestyle is the production of a large number of the smallest seeds in world flora, also called "dust-seeds". Seeds of 34 holoparasitic species from the Cistanche, Orobanche, Phelipanche, and Phelypaea genera were collected in the Caucasus region (54 samples) and their fatty acid content and compositions analysed. Of these seeds, 28 were investigated for the first time, and 12 are endemic to the Caucasus (one of the most important biodiversity hotspots in the world). The influence of different hosts, populations, habitats, and climatic conditions on the fatty acid content and composition, as well as some connections of taxonomic classification are discussed. The fatty acid content in the species varied between 0.9 and 42.5%, and showed quantitative differences at generic and infrageneric levels, while displaying uniform fatty acid composition. Thirteen fatty acids were identified, of which nine were undescribed for Orobanchaceae. The fatty acid composition of the Orobanchaceae seeds represented a mixture of saturated fatty acids (SFAs) (average 7.8%) and unsaturated fatty acids (UFAs) (average 92.2%). The fatty acid content in the Orobanchaceae seeds was directly unrelated to taxonomy, while the n-6/n-3 fatty acid ratio supported the clear separation of the Orobanche and Phelipanche genera. Orobanchaceae seeds contained mainly linoleic and oleic acids, thus they could be a potential nutritional source of the unsaturated fatty acids. Additionally, the studies confirmed the hypothesis that the degree of seed oil fatty acid unsaturation increased in colder climatic conditions, especially for the Orobanche genus.
Collapse
Affiliation(s)
- Karolina Ruraż
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, PL-25-406, Kielce, Poland.
| | - Renata Piwowarczyk
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, PL-25-406, Kielce, Poland
| | - Peter Gajdoš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Yuliya Krasylenko
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, CZ-83 71, Olomouc, Czech Republic
| | - Milan Čertík
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| |
Collapse
|
19
|
Latzel V, Münzbergová Z, Skuhrovec J, Novák O, Strnad M. Effect of experimental DNA demethylation on phytohormones production and palatability of a clonal plant after induction via jasmonic acid. OIKOS 2020. [DOI: 10.1111/oik.07302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vít Latzel
- Inst. of Botany, Czech Academy of Sciences, Dept of Population Ecology Zámek 1 CZ‐252 43 Průhonice Czech Republic
| | - Zuzana Münzbergová
- Inst. of Botany, Czech Academy of Sciences, Dept of Population Ecology Zámek 1 CZ‐252 43 Průhonice Czech Republic
- Dept of Botany, Faculty of Science, Charles Univ. Prague Czech Republic
| | | | - Ondřej Novák
- Laboratory of Growth Regulators, Czech Academy of Sciences, Inst. of Experimental Botany and Palacký Univ. Olomouc Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Czech Academy of Sciences, Inst. of Experimental Botany and Palacký Univ. Olomouc Czech Republic
| |
Collapse
|
20
|
Yan H, Jia S, Mao P. Melatonin Priming Alleviates Aging-Induced Germination Inhibition by Regulating β-oxidation, Protein Translation, and Antioxidant Metabolism in Oat ( Avena sativa L.) Seeds. Int J Mol Sci 2020; 21:ijms21051898. [PMID: 32164355 PMCID: PMC7084597 DOI: 10.3390/ijms21051898] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/20/2022] Open
Abstract
Although melatonin has been reported to play an important role in regulating metabolic events under adverse stresses, its underlying mechanisms on germination in aged seeds remain unclear. This study was conducted to investigate the effect of melatonin priming (MP) on embryos of aged oat seeds in relation to germination, ultrastructural changes, antioxidant responses, and protein profiles. Proteomic analysis revealed, in total, 402 differentially expressed proteins (DEPs) in normal, aged, and aged + MP embryos. The downregulated DEPs in aged embryos were enriched in sucrose metabolism, glycolysis, β-oxidation of lipid, and protein synthesis. MP (200 μM) turned four downregulated DEPs into upregulated DEPs, among which, especially 3-ketoacyl-CoA thiolase-like protein (KATLP) involved in the β-oxidation pathway played a key role in maintaining TCA cycle stability and providing more energy for protein translation. Furthermore, it was found that MP enhanced antioxidant capacity in the ascorbate-glutathione (AsA-GSH) system, declined reactive oxygen species (ROS), and improved cell ultrastructure. These results indicated that the impaired germination and seedling growth of aged seeds could be rescued to a certain level by melatonin, predominantly depending on β-oxidation, protein translation, and antioxidant protection of AsA-GSH. This work reveals new insights into melatonin-mediated mechanisms from protein profiles that occur in embryos of oat seeds processed by both aging and priming.
Collapse
Affiliation(s)
- Huifang Yan
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China; (H.Y.); (S.J.)
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Shangang Jia
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China; (H.Y.); (S.J.)
- Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Peisheng Mao
- Forage Seed Laboratory, China Agricultural University, Beijing 100193, China; (H.Y.); (S.J.)
- Key Laboratory of Pratacultural Science, Beijing Municipality, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-62733311
| |
Collapse
|
21
|
Li Y, Xu J, Li G, Wan S, Batistič O, Sun M, Zhang Y, Scott R, Qi B. Protein S-acyl transferase 15 is involved in seed triacylglycerol catabolism during early seedling growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5205-5216. [PMID: 31199467 DOI: 10.1093/jxb/erz282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Seeds of Arabidopsis contain ~40% oil, which is primarily in the form of triacylglycerol and it is converted to sugar to support post-germination growth. We identified an Arabidopsis T-DNA knockout mutant that is sugar-dependent during early seedling establishment and determined that the β-oxidation process involved in catabolising the free fatty acids released from the seed triacylglycerol is impaired. The mutant was confirmed to be transcriptional null for Protein Acyl Transferase 15, AtPAT15 (At5g04270), one of the 24 protein acyl transferases in Arabidopsis. Although it is the shortest, AtPAT15 contains the signature 'Asp-His-His-Cys cysteine-rich domain' that is essential for the enzyme activity of this family of proteins. The function of AtPAT15 was validated by the fact that it rescued the growth defect of the yeast protein acyl transferase mutant akr1 and it was also auto-acylated in vitro. Transient expression in Arabidopsis and tobacco localised AtPAT15 in the Golgi apparatus. Taken together, our data demonstrate that AtPAT15 is involved in β-oxidation of triacylglycerol, revealing the importance of protein S-acylation in the breakdown of seed-storage lipids during early seedling growth of Arabidopsis.
Collapse
Affiliation(s)
- Yaxiao Li
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianfeng Xu
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Gang Li
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Si Wan
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Oliver Batistič
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Muenster, Germany
| | - Meihong Sun
- College of Horticulture, Shandong Agricultural University, Tai'an, China
| | - Yuxing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Rod Scott
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Baoxiu Qi
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Pharmacy and Biomolecular Sciences, James Parsons Building, Byrom Street, Liverpool, UK
| |
Collapse
|
22
|
Rojas M, Jimenez-Bremont F, Villicaña C, Carreón-Palau L, Arredondo-Vega BO, Gómez-Anduro G. Involvement of OpsLTP1 from Opuntia streptacantha in abiotic stress adaptation and lipid metabolism. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:816-829. [PMID: 31138396 DOI: 10.1071/fp18280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Plant lipid transfer proteins (LTPs) exhibit the ability to transfer lipids between membranes in vitro, and have been implicated in diverse physiological processes associated to plant growth, reproduction, development, biotic and abiotic stress responses. However, their mode of action is not yet fully understood. To explore the functions of the OpsLTP1 gene encoding a LTP from cactus pear Opuntia streptacantha Lem., we generated transgenic Arabidopsis thaliana (L.) Heynh. plants to overexpress OpsLTP1 and contrasted our results with the loss-of-function mutant ltp3 from A. thaliana under abiotic stress conditions. The ltp3 mutant seeds showed impaired germination under salt and osmotic treatments, in contrast to OpsLTP1 overexpressing lines that displayed significant increases in germination rate. Moreover, stress recovery assays showed that ltp3 mutant seedlings were more sensitive to salt and osmotic treatments than wild-type plants suggesting that AtLTP3 is required for stress-induced responses, while the OpsLTP1 overexpressing line showed no significant differences. In addition, OpsLTP1 overexpressing and ltp3 mutant seeds stored lower amount of total lipids compared with wild-type seeds, showing changes primarily on 16C and 18C fatty acids. However, ltp3 mutant also lead changes in lipid profile and no over concrete lipids which may suggest a compensatory activation of other LTPs. Interestingly, linoleic acid (18:2ω6) was consistently increased in neutral, galactoglycerolipids and phosphoglycerolipids of OpsLTP1 overexpressing line indicating a role of OpsLTP1 in the modulation of lipid composition in A. thaliana.
Collapse
Affiliation(s)
- Mario Rojas
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México
| | - Francisco Jimenez-Bremont
- Instituto Potosino de Investigación Científica y Tecnológica. Camino a la Presa San José 2055, Col. Lomas 4 sección CP. 78216, San Luis Potosí, S.L.P., México
| | - Claudia Villicaña
- CONACYT-Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km. 5.5, Apartado Postal 32-A. C. P. 80110, Culiacán, Sinaloa, México
| | - Laura Carreón-Palau
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México
| | - Bertha Olivia Arredondo-Vega
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México
| | - Gracia Gómez-Anduro
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México; and Corresponding author.
| |
Collapse
|
23
|
Burkhart SE, Llinas RJ, Bartel B. PEX16 contributions to peroxisome import and metabolism revealed by viable Arabidopsis pex16 mutants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:853-870. [PMID: 30761735 PMCID: PMC6613983 DOI: 10.1111/jipb.12789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Peroxisomes rely on peroxins (PEX proteins) for biogenesis, importing membrane and matrix proteins, and fission. PEX16, which is implicated in peroxisomal membrane protein targeting and forming nascent peroxisomes from the endoplasmic reticulum (ER), is unusual among peroxins because it is inserted co-translationally into the ER and localizes to both ER and peroxisomal membranes. PEX16 mutations in humans, yeast, and plants confer some common peroxisomal defects; however, apparent functional differences have impeded the development of a unified model for PEX16 action. The only reported pex16 mutant in plants, the Arabidopsis shrunken seed1 mutant, is inviable, complicating analysis of PEX16 function after embryogenesis. Here, we characterized two viable Arabidopsis pex16 alleles that accumulate negligible PEX16 protein levels. Both mutants displayed impaired peroxisome function - slowed consumption of stored oil bodies, decreased import of matrix proteins, and increased peroxisome size. Moreover, one pex16 allele exhibited reduced growth that could be alleviated by an external fixed carbon source, decreased responsiveness to peroxisomally processed hormone precursors, and worsened or improved peroxisome function in combination with other pex mutants. Because the mutations impact different regions of the PEX16 gene, these viable pex16 alleles allow assessment of the importance of Arabidopsis PEX16 and its functional domains.
Collapse
|
24
|
Pan R, Liu J, Hu J. Peroxisomes in plant reproduction and seed-related development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:784-802. [PMID: 30578613 DOI: 10.1111/jipb.12765] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 05/21/2023]
Abstract
Peroxisomes are small multi-functional organelles essential for plant development and growth. Plant peroxisomes play various physiological roles, including phytohormone biosynthesis, lipid catabolism, reactive oxygen species metabolism and many others. Mutant analysis demonstrated key roles for peroxisomes in plant reproduction, seed development and germination and post-germinative seedling establishment; however, the underlying mechanisms remain to be fully elucidated. This review summarizes findings that reveal the importance and complexity of the role of peroxisomes in the pertinent processes. The β-oxidation pathway plays a central role, whereas other peroxisomal pathways are also involved. Understanding the biochemical and molecular mechanisms of these peroxisomal functions will be instrumental to the improvement of crop plants.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
25
|
Cheng H, Liang Q, Chen X, Zhang Y, Qiao F, Guo D. Hydrogen peroxide facilitates Arabidopsis seedling establishment by interacting with light signalling pathway in the dark. PLANT, CELL & ENVIRONMENT 2019; 42:1302-1317. [PMID: 30474863 DOI: 10.1111/pce.13482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Light is essential for the plant establishment. Arabidopsis seedlings germinated in the dark cannot grow leaf and only have closed cotyledons. However, exogenous application of H2 O2 can induce leaves (establishment) in the dark. Comparative transcriptomic analysis revealed that light-responsive genes were activated by H2 O2 treatment. These genes are functionally correlated with photosynthesis, photorespiration, and components of photosystem, such as antenna proteins and light-harvesting chlorophyll proteins. We further found that application of H2 O2 facilitates cell cycle by accelerating G2 -M checkpoint transition in shoot apical meristem. Phytochrome-mediated light signalling pathway was also involved in the H2 O2 -facilitated establishment process. The constitutive photomorphogenesis 1 and phytochrome interacting factor 3 proteins were shown to be down-regulated by H2 O2 treatment and accordingly removed their inhibitory effects on photomorphogenesis in the dark. The crosstalk between oxidation and light signal pathways explains the mechanism that H2 O2 regulates plant dark establishment. The endogenous photorespiratory H2 O2 production was mimicked by overexpression of glycolate oxidase genes and supplement of substrate glycolate. As expected, seedling establishment was also induced by the endogenously produced H2 O2 under dark condition. These findings also suggest that photorespiratory H2 O2 production is at least partially involved in postgermination establishment.
Collapse
Affiliation(s)
- Han Cheng
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, Hainan, China
- School of Life Science and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Qun Liang
- School of Agricultural Science, Hainan University, Haikou, Hainan, China
| | - Xiang Chen
- School of Agricultural Science, Hainan University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, Hainan, China
| | - Fei Qiao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, Hainan, China
| | - Dianjing Guo
- School of Life Science and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| |
Collapse
|
26
|
Ding LN, Guo XJ, Li M, Fu ZL, Yan SZ, Zhu KM, Wang Z, Tan XL. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus. PLANT CELL REPORTS 2019; 38:243-253. [PMID: 30535511 DOI: 10.1007/s00299-018-2365-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/05/2018] [Indexed: 05/19/2023]
Abstract
Seed germination rate and oil content can be regulated at theGDSL transcriptional level by eitherAtGDSL1 orBnGDSL1 inB. napus. Gly-Asp-Ser-Leu (GDSL)-motif lipases represent an important subfamily of lipolytic enzymes, which play important roles in lipid metabolism, seed development, abiotic stress, and pathogen defense. In the present study, two closely related GDSL-motif lipases, Brassica napus GDSL1 and Arabidopsis thaliana GDSL1, were characterized as functioning in regulating germination rate and seed oil content in B. napus. AtGDSL1 and BnGDSL1 overexpression lines showed an increased seed germination rate and improved seedling establishment compared with wild type. Meanwhile, the constitutive overexpression of AtGDSL1 and BnGDSL1 promoted lipid catabolism and decreased the seed oil content. While RNAi-mediated suppression of BnGDSL1 (Bngdsl1) in B. napus improved the seed oil content and decreased seed germination rate. Moreover, the Bngdsl1 transgenic seeds showed changes in the fatty acid (FA) composition, featuring an increase in C18:1 and a decrease in C18:2 and C18:3. The transcriptional levels of six related core enzymes involved in FA mobilization were all elevated in the AtGDSL1 and BnGDSL1 overexpression lines, but strongly suppressed in the Bngdsl1 transgenic line. These results suggest that improving the seed germination and seed oil content in B. napus could be achieved by regulating the GDSL transcriptional level.
Collapse
Affiliation(s)
- Li-Na Ding
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Juan Guo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zheng-Li Fu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Su-Zhen Yan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
27
|
Yoshitake Y, Ohta H, Shimojima M. Autophagy-Mediated Regulation of Lipid Metabolism and Its Impact on the Growth in Algae and Seed Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:709. [PMID: 31214225 PMCID: PMC6558177 DOI: 10.3389/fpls.2019.00709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/13/2019] [Indexed: 05/08/2023]
Abstract
Under nutrient starvation conditions, algae and seed-plant cells accumulate carbon metabolites such as storage lipids, triacylglycerols (TAGs), and starches. Recent research has suggested the involvement of autophagy in the regulation of carbon metabolites under nutrient starvation. When algae are grown under carbon starvation conditions, such as growth in darkness or in the presence of a photosynthesis inhibitor, lipid droplets are surrounded by phagophores. Indeed, the amount of TAGs in an autophagy-deficient mutant has been found to be greater than that in wild type under nitrogen starvation, and cerulenin, which is one of the inhibitors of fatty acid synthesis, induces autophagy. In land plants, TAGs accumulate predominantly in seeds and etiolated seedlings. These TAGs are degraded in peroxisomes via β-oxidation during germination as a source of carbon for growth without photosynthesis. A global analysis of the role of autophagy in Arabidopsis seedlings under carbon starvation revealed that a lack of autophagy enhances the accumulation of TAGs and fatty acids. In Oryza sativa, autophagy-mediated degradation of TAGs and diacylglycerols has been suggested to be important for pollen development. In this review, we introduce and summarize research findings demonstrating that autophagy affects lipid metabolism and discuss the role of autophagy in membrane and storage-lipid homeostasis, each of which affects the growth and development of seed plants and algae.
Collapse
Affiliation(s)
- Yushi Yoshitake
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA), Japan Science and Technology Agency, Chiyoda, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Mie Shimojima,
| |
Collapse
|
28
|
Maraschin FDS, Kulcheski FR, Segatto ALA, Trenz TS, Barrientos-Diaz O, Margis-Pinheiro M, Margis R, Turchetto-Zolet AC. Enzymes of glycerol-3-phosphate pathway in triacylglycerol synthesis in plants: Function, biotechnological application and evolution. Prog Lipid Res 2019; 73:46-64. [DOI: 10.1016/j.plipres.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Accepted: 12/01/2018] [Indexed: 01/30/2023]
|
29
|
Biology in Bloom: A Primer on the Arabidopsis thaliana Model System. Genetics 2018; 208:1337-1349. [PMID: 29618591 DOI: 10.1534/genetics.118.300755] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Arabidopsis thaliana could have easily escaped human scrutiny. Instead, Arabidopsis has become the most widely studied plant in modern biology despite its absence from the dinner table. Pairing diminutive stature and genome with prodigious resources and tools, Arabidopsis offers a window into the molecular, cellular, and developmental mechanisms underlying life as a multicellular photoautotroph. Many basic discoveries made using this plant have spawned new research areas, even beyond the verdant fields of plant biology. With a suite of resources and tools unmatched among plants and rivaling other model systems, Arabidopsis research continues to offer novel insights and deepen our understanding of fundamental biological processes.
Collapse
|
30
|
Lunn D, Smith GA, Wallis JG, Browse J. Development Defects of Hydroxy-Fatty Acid-Accumulating Seeds Are Reduced by Castor Acyltransferases. PLANT PHYSIOLOGY 2018; 177:553-564. [PMID: 29678860 PMCID: PMC6001331 DOI: 10.1104/pp.17.01805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/02/2018] [Indexed: 05/05/2023]
Abstract
Researchers have long endeavored to produce modified fatty acids in easily managed crop plants where they are not natively found. An important step toward this goal has been the biosynthesis of these valuable products in model oilseeds. The successful production of such fatty acids has revealed barriers to the broad application of this technology, including low seed oil and low proportion of the introduced fatty acid and reduced seed vigor. Here, we analyze the impact of producing hydroxy-fatty acids on seedling development. We show that germinating seeds of a hydroxy-fatty acid-accumulating Arabidopsis (Arabidopsis thaliana) line produce chlorotic cotyledons and suffer reduced photosynthetic capacity. These seedlings retain hydroxy-fatty acids in polar lipids, including chloroplast lipids, and exhibit decreased fatty acid synthesis. Triacylglycerol mobilization in seedling development also is reduced, especially for lipids that include hydroxy-fatty acid moieties. These developmental defects are ameliorated by increased flux of hydroxy-fatty acids into seed triacylglycerol created through the expression of either castor (Ricinus communis) acyltransferase enzyme ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE2 or PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1A. Such expression increases both the level of total stored triacylglycerol and the rate at which it is mobilized, fueling fatty acid synthesis and restoring photosynthetic capacity. Our results suggest that further improvements in seedling development may require the specific mobilization of triacylglycerol-containing hydroxy-fatty acids. Understanding the defects in early development caused by the accumulation of modified fatty acids and providing mechanisms to circumvent these defects are vital steps in the development of tailored oil crops.
Collapse
Affiliation(s)
- Daniel Lunn
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Gracen A Smith
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - James G Wallis
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
31
|
Guo Y, Huang Y, Gao J, Pu Y, Wang N, Shen W, Wen J, Yi B, Ma C, Tu J, Fu T, Zou J, Shen J. CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:124. [PMID: 29743952 PMCID: PMC5930439 DOI: 10.1186/s13068-018-1122-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/19/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Accumulation of storage compounds during seed development plays an important role in the life cycle of oilseed plants; these compounds provide carbon and energy resources to support the establishment of seedlings. RESULTS In this study, we show that BnCIPK9 has a broad expression pattern in Brassica napus L. tissues and that wounding stress strongly induces its expression. The overexpression of BnCIPK9 during seed development reduced oil synthesis in transgenic B. napus compared to that observed in wild-type (WT) plants. Functional analysis revealed that seed oil content (OC) of complementation lines was similar to that of WT plants, whereas OC in Arabidopsis thaliana (L.) Heynh. Atcipk9 knockout mutants (cipk9) was higher than that of WT plants. Seedling of cipk9 mutants failed to establish roots on a sugar-free medium, but root establishment could be rescued by supplementation of sucrose or glucose. The phenotype of complementation transgenic lines was similar to that of WT plants when grown on sugar-free medium. Mutants, cipk9, cbl2, and cbl3 presented similar phenotypes, suggesting that CIPK9, CBL2, and CBL3 might work together and play similar roles in root establishment under sugar-free condition. CONCLUSION This study showed that BnCIPK9 and AtCIPK9 encode a protein kinase that is involved in sugar-related response and plays important roles in the regulation of energy reserves. Our results suggest that AtCIPK9 negatively regulates lipid accumulation and has a significant effect on early seedling establishment in A. thaliana. The functional characterization of CIPK9 provides insights into the regulation of OC, and might be used for improving OC in B. napus. We believe that our study makes a significant contribution to the literature because it provides information on how CIPKs coordinate stress regulation and energy signaling.
Collapse
Affiliation(s)
- Yanli Guo
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
- Crop Research Institute of TIANJIN Academy of Agricultural Sciences, Tianjin, 300384 China
| | - Yi Huang
- National Research Council Canada, Saskatoon, SK S7N0 W9 Canada
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuanyuan Pu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Nan Wang
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wenyun Shen
- National Research Council Canada, Saskatoon, SK S7N0 W9 Canada
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jitao Zou
- National Research Council Canada, Saskatoon, SK S7N0 W9 Canada
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
32
|
Yang Y, Benning C. Functions of triacylglycerols during plant development and stress. Curr Opin Biotechnol 2018; 49:191-198. [DOI: 10.1016/j.copbio.2017.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/16/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
|
33
|
Zhao M, Zhang H, Yan H, Qiu L, Baskin CC. Mobilization and Role of Starch, Protein, and Fat Reserves during Seed Germination of Six Wild Grassland Species. FRONTIERS IN PLANT SCIENCE 2018; 9:234. [PMID: 29535748 PMCID: PMC5835038 DOI: 10.3389/fpls.2018.00234] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/09/2018] [Indexed: 05/22/2023]
Abstract
Since seed reserves can influence seed germination, the quantitative and qualitative differences in seed reserves may relate to the germination characteristics of species. The purpose of our study was to evaluate the correlation between germination and seed reserves, as well as their mobilization during germination of six grassland species (Chloris virgata, Kochia scoparia, Lespedeza hedysaroides, Astragalus adsurgens, Leonurus artemisia, and Dracocephalum moldavica) and compare the results with domesticated species. We measured starch, protein, and fat content in dry seeds and the initial absorption of water during imbibition. Starch, soluble protein, fat, and soluble sugar content also were determined at five stages during germination. Starch, protein, and fat reserves in dry seeds were not significantly correlated with germination percentage and rate (speed), but soluble sugar and soluble protein contents at different germination stages were positively significantly correlated with germination rate for the six species. Starch was mainly used during seed imbibition, and soluble protein was used from the imbibition stage to the highest germination stage. Fat content for all species remained relatively constant throughout germination for six species, regardless of the proportion of other seed reserves in the seeds. Our results for fat utilization differ from those obtained for cultivated grasses and legumes. These results provide new insight on the role of seed reserves as energy resources in germination for wild species.
Collapse
Affiliation(s)
- Ming Zhao
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Life Sciences, Northeast Normal University, Changchun, China
| | - Hongxiang Zhang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Hongxiang Zhang, Hong Yan,
| | - Hong Yan
- College of Life Sciences, Northeast Normal University, Changchun, China
- *Correspondence: Hongxiang Zhang, Hong Yan,
| | - Lu Qiu
- College of Life Sciences, Northeast Normal University, Changchun, China
| | - Carol C. Baskin
- Department of Biology, University of Kentucky, Lexington, KY, United States
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
34
|
Liu WC, Han TT, Yuan HM, Yu ZD, Zhang LY, Zhang BL, Zhai S, Zheng SQ, Lu YT. CATALASE2 functions for seedling postgerminative growth by scavenging H 2 O 2 and stimulating ACX2/3 activity in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:2720-2728. [PMID: 28722222 DOI: 10.1111/pce.13031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 05/24/2023]
Abstract
Increased fatty acid β-oxidation is essential for early postgerminative growth in seedlings, but high levels of H2 O2 produced by β-oxidation can induce oxidative stress. Whether and how catalase (CAT) functions in fine-tuning H2 O2 homeostasis during seedling growth remain unclear. Here, we report that CAT2 functions in early seedling growth. Compared to the wild type, the cat2-1 mutant, with elevated H2 O2 levels, exhibited reduced root elongation on sucrose (Suc)-free medium, mimicking soils without exogenous sugar supply. Treatment with the H2 O2 scavenger potassium iodide rescued the mutant phenotype of cat2-1. In contrast to the wild type, the cat2-1 mutant was insensitive to the CAT inhibitor 3-amino-1,2,4-triazole in terms of root elongation when grown on Suc-free medium, suggesting that CAT2 modulates early seedling growth by altering H2 O2 accumulation. Furthermore, like cat2-1, the acyl-CoA oxidase (ACX) double mutant acx2-1 acx3-6 showed repressed root elongation, suggesting that CAT2 functions in early seedling growth by regulating ACX activity, as this activity was inhibited in cat2-1. Indeed, decreased ACX activity and short root of cat2-1 seedlings grown on Suc-free medium were rescued by overexpressing ACX3. Together, these findings suggest that CAT2 functions in early seedling growth by scavenging H2 O2 and stimulating ACX2/3 activity.
Collapse
Affiliation(s)
- Wen-Cheng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Tong-Tong Han
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong-Mei Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, 570228, China
| | - Zhen-Dong Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lin-Yu Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bing-Lei Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuang Zhai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Si-Qiu Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
35
|
Kong F, Liang Y, Légeret B, Beyly-Adriano A, Blangy S, Haslam RP, Napier JA, Beisson F, Peltier G, Li-Beisson Y. Chlamydomonas carries out fatty acid β-oxidation in ancestral peroxisomes using a bona fide acyl-CoA oxidase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:358-371. [PMID: 28142200 DOI: 10.1111/tpj.13498] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 05/03/2023]
Abstract
Peroxisomes are thought to have played a key role in the evolution of metabolic networks of photosynthetic organisms by connecting oxidative and biosynthetic routes operating in different compartments. While the various oxidative pathways operating in the peroxisomes of higher plants are fairly well characterized, the reactions present in the primitive peroxisomes (microbodies) of algae are poorly understood. Screening of a Chlamydomonas insertional mutant library identified a strain strongly impaired in oil remobilization and defective in Cre05.g232002 (CrACX2), a gene encoding a member of the acyl-CoA oxidase/dehydrogenase superfamily. The purified recombinant CrACX2 expressed in Escherichia coli catalyzed the oxidation of fatty acyl-CoAs into trans-2-enoyl-CoA and produced H2 O2 . This result demonstrated that CrACX2 is a genuine acyl-CoA oxidase, which is responsible for the first step of the peroxisomal fatty acid (FA) β-oxidation spiral. A fluorescent protein-tagging study pointed to a peroxisomal location of CrACX2. The importance of peroxisomal FA β-oxidation in algal physiology was shown by the impact of the mutation on FA turnover during day/night cycles. Moreover, under nitrogen depletion the mutant accumulated 20% more oil than the wild type, illustrating the potential of β-oxidation mutants for algal biotechnology. This study provides experimental evidence that a plant-type FA β-oxidation involving H2 O2 -producing acyl-CoA oxidation activity has already evolved in the microbodies of the unicellular green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Fantao Kong
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Yuanxue Liang
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Bertrand Légeret
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Audrey Beyly-Adriano
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Stéphanie Blangy
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Richard P Haslam
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Johnathan A Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Fred Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Gilles Peltier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| |
Collapse
|
36
|
Bellieny-Rabelo D, Alves Gamosa de Oliveira E, da Silva Ribeiro E, Pessoa Costa E, Elenir Amâncio Oliveira A, Motta Venancio T. Transcriptome analysis uncovers key regulatory and metabolic aspects of soybean embryonic axes during germination. Sci Rep 2016; 6:36009. [PMID: 27824062 PMCID: PMC5099898 DOI: 10.1038/srep36009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/10/2016] [Indexed: 11/09/2022] Open
Abstract
Soybean (Glycine max) is a major legume crop worldwide, providing a critical source of protein and oil. The release of the soybean genome fuelled several transcriptome projects comprising multiple developmental stages and environmental conditions. Nevertheless, the global transcriptional patterns of embryonic axes during germination remain unknown. Here we report the analysis of ~1.58 billion RNA-Seq reads from soybean embryonic axes at five germination stages. Our results support the early activation of processes that are critical for germination, such as glycolysis, Krebs cycle and cell wall remodelling. Strikingly, only 3 hours after imbibition there is a preferential up-regulation of protein kinases and transcription factors, particularly from the LOB domain family, implying that transcriptional and post-transcriptional regulation play major roles early after imbibition. Lipid mobilization and glyoxylate pathways are also transcriptionally active in the embryonic axes, indicating that the local catabolism of oil reserves in the embryonic axes contributes to energy production during germination. We also present evidence supporting abscisic acid inactivation and the up-regulation of gibberellin, ethylene and brassinosteroid pathways. Further, there is a remarkable differential activation of paralogous genes in these hormone signalling pathways. Taken together, our results provide insights on the regulation and biochemistry of soybean germination.
Collapse
Affiliation(s)
- Daniel Bellieny-Rabelo
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Eduardo Alves Gamosa de Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Elane da Silva Ribeiro
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
- Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Campus UFRJ Macaé, Macaé, Brazil
| | - Evenilton Pessoa Costa
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
- Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Antônia Elenir Amâncio Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
37
|
The Roles of β-Oxidation and Cofactor Homeostasis in Peroxisome Distribution and Function in Arabidopsis thaliana. Genetics 2016; 204:1089-1115. [PMID: 27605050 DOI: 10.1534/genetics.116.193169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
Key steps of essential metabolic pathways are housed in plant peroxisomes. We conducted a microscopy-based screen for anomalous distribution of peroxisomally targeted fluorescence in Arabidopsis thaliana This screen uncovered 34 novel alleles in 15 genes affecting oil body mobilization, fatty acid β-oxidation, the glyoxylate cycle, peroxisome fission, and pexophagy. Partial loss-of-function of lipid-mobilization enzymes conferred peroxisomes clustered around retained oil bodies without other notable defects, suggesting that this microscopy-based approach was sensitive to minor perturbations, and that fatty acid β-oxidation rates in wild type are higher than required for normal growth. We recovered three mutants defective in PECTIN METHYLESTERASE31, revealing an unanticipated role in lipid mobilization for this cytosolic enzyme. Whereas mutations reducing fatty acid import had peroxisomes of wild-type size, mutations impairing fatty acid β-oxidation displayed enlarged peroxisomes, possibly caused by excess fatty acid β-oxidation intermediates in the peroxisome. Several fatty acid β-oxidation mutants also displayed defects in peroxisomal matrix protein import. Impairing fatty acid import reduced the large size of peroxisomes in a mutant defective in the PEROXISOMAL NAD+ TRANSPORTER (PXN), supporting the hypothesis that fatty acid accumulation causes pxn peroxisome enlargement. The diverse mutants isolated in this screen will aid future investigations of the roles of β-oxidation and peroxisomal cofactor homeostasis in plant development.
Collapse
|
38
|
Kelly AA, Feussner I. Oil is on the agenda: Lipid turnover in higher plants. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1253-1268. [PMID: 27155216 DOI: 10.1016/j.bbalip.2016.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Lipases hydrolyze ester bonds within lipids. This process is called lipolysis. They are key players in lipid turnover and involved in numerous metabolic pathways, many of which are shared between organisms like the mobilization of neutral or storage lipids or lipase-mediated membrane lipid homeostasis. Some reactions though are predominantly present in certain organisms, such as the production of signaling molecules (endocannabinoids) by diacylglycerol (DAG) and monoacylglycerol (MAG) lipases in mammals and plants or the jasmonate production in flowering plants. This review aims at giving an overview of the different functional classes of lipases and respective well-known activities, with a focus on the most recent findings in plant biology for selected classes. Here we will put an emphasis on the physiological role and contribution of lipases to the turnover of neutral lipids found in seed oil and other vegetative tissue as candidates for increasing the economical values of crop plants. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Amélie A Kelly
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ivo Feussner
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, International Center for Advanced Studies of Energy Conversion (ICASEC), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
39
|
Gu J, Chao H, Gan L, Guo L, Zhang K, Li Y, Wang H, Raboanatahiry N, Li M. Proteomic Dissection of Seed Germination and Seedling Establishment in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1482. [PMID: 27822216 PMCID: PMC5075573 DOI: 10.3389/fpls.2016.01482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/20/2016] [Indexed: 05/22/2023]
Abstract
The success of seed germination and establishment of a normal seedling are key determinants of plant species propagation. At present, only a few studies have focused on the genetic control of seed germination by using a proteomic approach in Brassica napus. In the present study, the protein expression pattern of seed germination was investigated using differential fluorescence two-dimensional gel electrophoresis in B. napus. One hundred and thirteen differentially expressed proteins (DEPs) that were mainly involved in storage (23.4%), energy metabolism (18.9%), protein metabolism (16.2%), defense/disease (12.6%), seed maturation (11.7%), carbohydrate metabolism (4.5%), lipid metabolism (4.5%), amino acids metabolism (3.6%), cell growth/division (3.6%), and some unclear functions (2.7%) were observed by proteomic analysis. Seventeen genes corresponding to 11 DEPs were identified within or near the associated linkage disequilibrium regions related to seed germination and vigor quantitative traits reported in B. napus in previous studies. The expression pattern of proteins showed that heterotrophic metabolism could be activated in the process of seed germination and that the onset of defense mechanisms might start during seed germination. These findings will help generate a more in-depth understanding of the mobilization of seed storage reserves and regulation mechanisms of the germination process in B. napus.
Collapse
Affiliation(s)
- Jianwei Gu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Lu Gan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Liangxing Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yonghong Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic ImprovementYangling, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic ImprovementYangling, China
| | - Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
- *Correspondence: Maoteng Li
| |
Collapse
|
40
|
Ribeiro PR, Willems LAJ, Mutimawurugo MC, Fernandez LG, de Castro RD, Ligterink W, Hilhorst HWM. Metabolite profiling of Ricinus communis germination at different temperatures provides new insights into thermo-mediated requirements for successful seedling establishment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:180-191. [PMID: 26398802 DOI: 10.1016/j.plantsci.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/03/2015] [Indexed: 06/05/2023]
Abstract
Ricinus communis seeds germinate to a high percentage and faster at 35 °C than at lower temperatures, but with compromised seedling establishment. However, seedlings are able to cope with high temperatures at later stages of seedling establishment if germination occurred at lower temperatures. Our objective was to assess the biochemical and molecular requirements of R. communis germination for successful seedling establishment at varying temperatures. For that, we performed metabolite profiling (GC-TOF-MS) and measured transcript levels of key genes involved in several energy-generating pathways, such as storage oil mobilization, β-oxidation and gluconeogenesis of seeds germinated at three different temperatures. We identified a thermo-sensitive window during seed germination in which high temperatures compromise seedling development, most likely by down-regulating some energy-generating pathways. Overexpression of malate synthase (MLS) and glycerol kinase (GK) genes resulted in higher starch levels in Nicotiana benthamiana leaves, which highlights the importance of these genes in energy-generating pathways for seedling establishment. Additionally, we showed that GABA, which is a stress-responsive metabolite, accumulated in response to the water content of the seeds during the initial phase of imbibition. Herewith, we provide new insights into the molecular requirements for vigorous seedling growth of R. communis under different environmental conditions.
Collapse
Affiliation(s)
- Paulo R Ribeiro
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departmento de Biofunção, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100 Salvador, Brazil.
| | - Leo A J Willems
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marie-Chantal Mutimawurugo
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Luzimar G Fernandez
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departmento de Biofunção, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100 Salvador, Brazil
| | - Renato D de Castro
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departmento de Biofunção, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100 Salvador, Brazil
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Henk W M Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
41
|
Scalschi L, Sanmartín M, Camañes G, Troncho P, Sánchez-Serrano JJ, García-Agustín P, Vicedo B. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:304-15. [PMID: 25407262 DOI: 10.1111/tpj.12728] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 11/06/2014] [Accepted: 11/13/2014] [Indexed: 05/21/2023]
Abstract
Cis-(+)-12-oxo-phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12-oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3-1 and SiOPR3-2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA-Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen-induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3-1 and SiOPR3-2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.
Collapse
Affiliation(s)
- Loredana Scalschi
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departament de Ciències Agràries i del Medi Natural, ESTCE, Universitat Jaume I, Castellón, 12071, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Li Q, Zheng Q, Shen W, Cram D, Fowler DB, Wei Y, Zou J. Understanding the biochemical basis of temperature-induced lipid pathway adjustments in plants. THE PLANT CELL 2015; 27:86-103. [PMID: 25564555 PMCID: PMC4330585 DOI: 10.1105/tpc.114.134338] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 05/20/2023]
Abstract
Glycerolipid biosynthesis in plants proceeds through two major pathways compartmentalized in the chloroplast and the endoplasmic reticulum (ER). The involvement of glycerolipid pathway interactions in modulating membrane desaturation under temperature stress has been suggested but not fully explored. We profiled glycerolipid changes as well as transcript dynamics under suboptimal temperature conditions in three plant species that are distinctively different in the mode of lipid pathway interactions. In Arabidopsis thaliana, a 16:3 plant, the chloroplast pathway is upregulated in response to low temperature, whereas high temperature promotes the eukaryotic pathway. Operating under a similar mechanistic framework, Atriplex lentiformis at high temperature drastically increases the contribution of the eukaryotic pathway and correspondingly suppresses the prokaryotic pathway, resulting in the switch of lipid profile from 16:3 to 18:3. In wheat (Triticum aestivum), an 18:3 plant, low temperature also influences the channeling of glycerolipids from the ER to chloroplast. Evidence of differential trafficking of diacylglycerol moieties from the ER to chloroplast was uncovered in three plant species as another layer of metabolic adaptation under temperature stress. We propose a model that highlights the predominance and prevalence of lipid pathway interactions in temperature-induced lipid compositional changes.
Collapse
Affiliation(s)
- Qiang Li
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Qian Zheng
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Wenyun Shen
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Dustin Cram
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - D Brian Fowler
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Jitao Zou
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| |
Collapse
|
43
|
Wiszniewski AAG, Bussell JD, Long RL, Smith SM. Knockout of the two evolutionarily conserved peroxisomal 3-ketoacyl-CoA thiolases in Arabidopsis recapitulates the abnormal inflorescence meristem 1 phenotype. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6723-33. [PMID: 25297549 PMCID: PMC4246196 DOI: 10.1093/jxb/eru397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A specific function for peroxisomal β-oxidation in inflorescence development in Arabidopsis thaliana is suggested by the mutation of the abnormal inflorescence meristem 1 gene, which encodes one of two peroxisomal multifunctional proteins. Therefore, it should be possible to identify other β-oxidation mutants that recapitulate the aim1 phenotype. Three genes encode peroxisomal 3-ketoacyl-CoA thiolase (KAT) in Arabidopsis. KAT2 and KAT5 are present throughout angiosperms whereas KAT1 is a Brassicaceae-specific duplication of KAT2 expressed at low levels in Arabidopsis. KAT2 plays a dominant role in all known aspects of peroxisomal β-oxidation, including that of fatty acids, pro-auxins, jasmonate precursor oxophytodienoic acid, and trans-cinnamic acid. The functions of KAT1 and KAT5 are unknown. Since KAT5 is conserved throughout vascular plants and expressed strongly in flowers, kat2 kat5 double mutants were generated. These were slow growing, had abnormally branched inflorescences, and ectopic organ growth. They made viable pollen, but produced no seed indicating that infertility was due to defective gynaecium function. These phenotypes are strikingly similar to those of aim1. KAT5 in the Brassicaceae encodes both cytosolic and peroxisomal proteins and kat2 kat5 defects could be complemented by the re-introduction of peroxisomal (but not cytosolic) KAT5. It is concluded that peroxisomal KAT2 and KAT5 have partially redundant functions and operate downstream of AIM1 to provide β-oxidation functions essential for inflorescence development and fertility.
Collapse
Affiliation(s)
- Andrew A G Wiszniewski
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia Max-Planck Institute for Molecular Plant Physiology, Wissenschaftpark Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - John D Bussell
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Rowena L Long
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Steven M Smith
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
44
|
Hsiao AS, Haslam RP, Michaelson LV, Liao P, Napier JA, Chye ML. Gene expression in plant lipid metabolism in Arabidopsis seedlings. PLoS One 2014; 9:e107372. [PMID: 25264899 PMCID: PMC4180049 DOI: 10.1371/journal.pone.0107372] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/09/2014] [Indexed: 11/18/2022] Open
Abstract
Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG) synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3), DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS) was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6) in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX) lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis.
Collapse
Affiliation(s)
- An-Shan Hsiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Richard P. Haslam
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Louise V. Michaelson
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Johnathan A. Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- * E-mail:
| |
Collapse
|
45
|
Geigenberger P, Fernie AR. Metabolic control of redox and redox control of metabolism in plants. Antioxid Redox Signal 2014; 21:1389-421. [PMID: 24960279 PMCID: PMC4158967 DOI: 10.1089/ars.2014.6018] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. RECENT ADVANCES The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. CRITICAL ISSUES It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. FUTURE DIRECTIONS Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and characterizing signaling features thereof. We propose that such information will enable us to dissect the regulatory hierarchies that mediate the strict coupling of metabolism and redox status which, ultimately, determine plant growth and development.
Collapse
Affiliation(s)
- Peter Geigenberger
- 1 Department of Biology I, Ludwig Maximilian University Munich , Planegg-Martinsried, Germany
| | | |
Collapse
|
46
|
Mendiondo GM, Medhurst A, van Roermund CW, Zhang X, Devonshire J, Scholefield D, Fernández J, Axcell B, Ramsay L, Waterham HR, Waugh R, Theodoulou FL, Holdsworth MJ. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4833-47. [PMID: 24913629 PMCID: PMC4144768 DOI: 10.1093/jxb/eru243] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ.
Collapse
Affiliation(s)
- Guillermina M Mendiondo
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Anne Medhurst
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Carlo W van Roermund
- Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Xuebin Zhang
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Jean Devonshire
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Duncan Scholefield
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - José Fernández
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Barry Axcell
- SABMiller plc., SABMiller House, Church Street, West Woking, Surrey GU21 6HS, UK
| | - Luke Ramsay
- Division of Plant Sciences, College of life Sciences, University of Dundee and The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Hans R Waterham
- Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Robbie Waugh
- Division of Plant Sciences, College of life Sciences, University of Dundee and The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Frederica L Theodoulou
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Michael J Holdsworth
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
47
|
Liu F, Zhao X, Zhang L, Tang T, Lu C, Chen G, Wang X, Bu C, Zhao X. RNA-seq profiling the transcriptome of secondary seed dormancy in canola (Brassica napus L.). CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0371-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
Gauthier A, Trouvelot S, Kelloniemi J, Frettinger P, Wendehenne D, Daire X, Joubert JM, Ferrarini A, Delledonne M, Flors V, Poinssot B. The sulfated laminarin triggers a stress transcriptome before priming the SA- and ROS-dependent defenses during grapevine's induced resistance against Plasmopara viticola. PLoS One 2014; 9:e88145. [PMID: 24516597 PMCID: PMC3916396 DOI: 10.1371/journal.pone.0088145] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/03/2014] [Indexed: 12/18/2022] Open
Abstract
Grapevine (Vitis vinifera) is susceptible to many pathogens which cause significant losses to viticulture worldwide. Chemical control is available, but agro-ecological concerns have raised interest in alternative methods, especially in triggering plant immunity by elicitor treatments. The β-glucan laminarin (Lam) and its sulfated derivative (PS3) have been previously demonstrated to induce resistance in grapevine against downy mildew (Plasmopara viticola). However, if Lam elicits classical grapevine defenses such as oxidative burst, pathogenesis-related (PR)-proteins and phytoalexin production, PS3 triggered grapevine resistance via a poorly understood priming phenomenon. The aim of this study was to identify the molecular mechanisms of the PS3-induced resistance. For this purpose we studied i) the signaling events and transcriptome reprogramming triggered by PS3 treatment on uninfected grapevine, ii) grapevine immune responses primed by PS3 during P. viticola infection. Our results showed that i) PS3 was unable to elicit reactive oxygen species (ROS) production, cytosolic Ca(2+) concentration variations, mitogen-activated protein kinase (MAPK) activation but triggered a long lasting plasma membrane depolarization in grapevine cells, ii) PS3 and Lam shared a common stress-responsive transcriptome profile that partly overlapped the salicylate- (SA) and jasmonate-(JA)-dependent ones. After P. viticola inoculation, PS3 specifically primed the SA- and ROS-dependent defense pathways leading to grapevine induced resistance against this biotroph. Interestingly pharmacological approaches suggested that the plasma membrane depolarization and the downstream ROS production are key events of the PS3-induced resistance.
Collapse
Affiliation(s)
- Adrien Gauthier
- UMR 1347 Agroécologie, Université de Bourgogne, Dijon, France
| | | | - Jani Kelloniemi
- UMR 1347 Agroécologie, Université de Bourgogne, Dijon, France
| | | | | | | | | | - Alberto Ferrarini
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Massimo Delledonne
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Victor Flors
- Plant Physiology Section, University of Jaume I, Castellón, Spain
| | - Benoit Poinssot
- UMR 1347 Agroécologie, Université de Bourgogne, Dijon, France
- * E-mail:
| |
Collapse
|
49
|
Quan S, Yang P, Cassin-Ross G, Kaur N, Switzenberg R, Aung K, Li J, Hu J. Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in β-oxidation and development. PLANT PHYSIOLOGY 2013; 163:1518-38. [PMID: 24130194 PMCID: PMC3850190 DOI: 10.1104/pp.113.223453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant peroxisomes are highly dynamic organelles that mediate a suite of metabolic processes crucial to development. Peroxisomes in seeds/dark-grown seedlings and in photosynthetic tissues constitute two major subtypes of plant peroxisomes, which had been postulated to contain distinct primary biochemical properties. Multiple in-depth proteomic analyses had been performed on leaf peroxisomes, yet the major makeup of peroxisomes in seeds or dark-grown seedlings remained unclear. To compare the metabolic pathways of the two dominant plant peroxisomal subtypes and discover new peroxisomal proteins that function specifically during seed germination, we performed proteomic analysis of peroxisomes from etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The detection of 77 peroxisomal proteins allowed us to perform comparative analysis with the peroxisomal proteome of green leaves, which revealed a large overlap between these two primary peroxisomal variants. Subcellular targeting analysis by fluorescence microscopy validated around 10 new peroxisomal proteins in Arabidopsis. Mutant analysis suggested the role of the cysteine protease RESPONSE TO DROUGHT21A-LIKE1 in β-oxidation, seed germination, and growth. This work provides a much-needed road map of a major type of plant peroxisome and has established a basis for future investigations of peroxisomal proteolytic processes to understand their roles in development and in plant interaction with the environment.
Collapse
|
50
|
Brown LA, Larson TR, Graham IA, Hawes C, Paudyal R, Warriner SL, Baker A. An inhibitor of oil body mobilization in Arabidopsis. THE NEW PHYTOLOGIST 2013; 200:641-649. [PMID: 24033128 DOI: 10.1111/nph.12467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/25/2013] [Indexed: 05/12/2023]
Abstract
Fatty acid β-oxidation is an essential process in many aspects of plant development, and storage oil in the form of triacylglycerol (TAG) is an important food source for humans and animals, for biofuel and for industrial feedstocks. In this study we characterize the effects of a small molecule, diphenyl methylphosphonate, on oil mobilization in Arabidopsis thaliana. Confocal laser scanning microscopy, transmission electron microscopy and quantitative lipid profiling were used to examine the effects of diphenyl methylphosphonate treatment on seedlings. Diphenyl methylphosphonate causes peroxisome clustering around oil bodies but does not affect morphology of other cellular organelles. We show that this molecule blocks the breakdown of pre-existing oil bodies resulting in retention of TAG and accumulation of acyl CoAs. The biochemical and phenotypic effects are consistent with a block in the early part of the β-oxidation pathway. Diphenyl methylphosphonate appears to be a fairly specific inhibitor of TAG mobilization in plants and whilst further work is required to identify the molecular target of the compound it should prove a useful tool to interrogate and manipulate these pathways in a controlled and reproducible manner.
Collapse
Affiliation(s)
- Laura-Anne Brown
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Tony R Larson
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Ian A Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Rupesh Paudyal
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Stuart L Warriner
- School of Chemistry, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Alison Baker
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|