1
|
Girija A, Han J, Corke F, Brook J, Doonan J, Yadav R, Jifar H, Mur LAJ. Elucidating drought responsive networks in tef (Eragrostis tef) using phenomic and metabolomic approaches. PHYSIOLOGIA PLANTARUM 2022; 174:e13597. [PMID: 34792806 DOI: 10.1111/ppl.13597] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Drought is a major abiotic stress that limits crop productivity and is driving the need to introduce new tolerant crops with better economic yield. Tef (Eragrostis tef) is a neglected (orphan) Ethiopian warm-season annual gluten-free cereal with high nutritional and health benefits. Further, tef is resilient to environmental challenges such as drought, but the adaptive mechanisms remain poorly understood. In this study, metabolic changes associated with drought response in 11 tef accessions were identified using phenomic and metabolomic approaches under controlled conditions. Computerized image analysis of droughted plants indicated reductions in leaf area and green pigments compared with controls. Metabolite profiling based on flow-infusion electrospray-high-resolution mass spectroscopy (FIE-HRMS) showed drought associated changes in flavonoid, phenylpropanoid biosynthesis, sugar metabolism, valine, leucine and isoleucine biosynthesis, and pentose phosphate pathways. Flavonoid associated metabolites and TCA intermediates were lower in the drought group, whereas most of the stress-responsive amino acids and sugars were elevated. Interestingly, after drought treatment, one accession Enatite (Ent) exhibited a significantly higher plant area than the others, and greater accumulation of flavonoids, amino acids (serine and glycine), sugars (ribose, myo-inositol), and fatty acids. The increased accumulation of these metabolites could explain the increased tolerance to drought in Ent compared with other accessions. This is the first time a non-targeted metabolomics approach has been applied in tef, and our results provide a framework for a better understanding of the tef metabolome during drought stress that will help to identify traits to improve this understudied potential crop.
Collapse
Affiliation(s)
- Aiswarya Girija
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth, Wales, UK
| | - Jiwan Han
- Software College, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Fiona Corke
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth, Wales, UK
- The National Plant Phenomics Centre, Aberystwyth University, Aberystwyth, Wales, UK
| | - Jason Brook
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth, Wales, UK
- The National Plant Phenomics Centre, Aberystwyth University, Aberystwyth, Wales, UK
| | - John Doonan
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth, Wales, UK
- The National Plant Phenomics Centre, Aberystwyth University, Aberystwyth, Wales, UK
| | - Rattan Yadav
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth, Wales, UK
- The National Plant Phenomics Centre, Aberystwyth University, Aberystwyth, Wales, UK
| | - Habte Jifar
- National Tef Improvement Program, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth, Wales, UK
- Software College, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
2
|
Non-Targeted Metabolite Profiling Reveals Host Metabolomic Reprogramming during the Interaction of Black Pepper with Phytophthora capsici. Int J Mol Sci 2021; 22:ijms222111433. [PMID: 34768864 PMCID: PMC8583951 DOI: 10.3390/ijms222111433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Phytophthora capsici is one of the most destructive pathogens causing quick wilt (foot rot) disease in black pepper (Piper nigrum L.) to which no effective resistance has been defined. To better understand the P. nigrum-P. capsici pathosystem, we employed metabolomic approaches based on flow-infusion electrospray-high-resolution mass spectrometry. Changes in the leaf metabolome were assessed in infected and systemic tissues at 24 and 48 hpi. Principal Component Analysis of the derived data indicated that the infected leaves showed a rapid metabolic response by 24 hpi whereas the systemic leaves took 48 hpi to respond to the infection. The major sources of variations between infected leaf and systemic leaf were identified, and enrichment pathway analysis indicated, major shifts in amino acid, tricarboxylic acid cycle, nucleotide and vitamin B6 metabolism upon infection. Moreover, the individual metabolites involved in defensive phytohormone signalling were identified. RT-qPCR analysis of key salicylate and jasmonate biosynthetic genes indicated a transient reduction of expression at 24 hpi but this increased subsequently. Exogenous application of jasmonate and salicylate reduced P. capsici disease symptoms, but this effect was suppressed with the co-application of abscisic acid. The results are consistent with abscisic acid reprogramming, salicylate and jasmonate defences in infected leaves to facilitate the formation of disease. The augmentation of salicylate and jasmonate defences could represent an approach through which quick wilt disease could be controlled in black pepper.
Collapse
|
3
|
Allwood JW, Williams A, Uthe H, van Dam NM, Mur LAJ, Grant MR, Pétriacq P. Unravelling Plant Responses to Stress-The Importance of Targeted and Untargeted Metabolomics. Metabolites 2021; 11:558. [PMID: 34436499 PMCID: PMC8398504 DOI: 10.3390/metabo11080558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Climate change and an increasing population, present a massive global challenge with respect to environmentally sustainable nutritious food production. Crop yield enhancements, through breeding, are decreasing, whilst agricultural intensification is constrained by emerging, re-emerging, and endemic pests and pathogens, accounting for ~30% of global crop losses, as well as mounting abiotic stress pressures, due to climate change. Metabolomics approaches have previously contributed to our knowledge within the fields of molecular plant pathology and plant-insect interactions. However, these remain incredibly challenging targets, due to the vast diversity in metabolite volatility and polarity, heterogeneous mixtures of pathogen and plant cells, as well as rapid rates of metabolite turn-over. Unravelling the systematic biochemical responses of plants to various individual and combined stresses, involves monitoring signaling compounds, secondary messengers, phytohormones, and defensive and protective chemicals. This demands both targeted and untargeted metabolomics approaches, as well as a range of enzymatic assays, protein assays, and proteomic and transcriptomic technologies. In this review, we focus upon the technical and biological challenges of measuring the metabolome associated with plant stress. We illustrate the challenges, with relevant examples from bacterial and fungal molecular pathologies, plant-insect interactions, and abiotic and combined stress in the environment. We also discuss future prospects from both the perspective of key innovative metabolomic technologies and their deployment in breeding for stress resistance.
Collapse
Affiliation(s)
- James William Allwood
- Environmental and Biochemical Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Alex Williams
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK;
- Department of Animal and Plant Sciences, Biosciences, The University of Sheffield Western Bank, Sheffield S10 2TN, UK
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Molecular Interaction Ecology Group, Friedrich-Schiller University Jena, Puschstr. 4, 04103 Leipzig, Germany; (H.U.); (N.M.v.D.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Molecular Interaction Ecology Group, Friedrich-Schiller University Jena, Puschstr. 4, 04103 Leipzig, Germany; (H.U.); (N.M.v.D.)
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, UK;
| | - Murray R. Grant
- Gibbet Hill Campus, School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK;
| | - Pierre Pétriacq
- UMR 1332 Fruit Biology and Pathology, Centre INRAE de Nouvelle Aquitaine Bordeaux, University of Bordeaux, 33140 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine-Bordeaux, 33140 Villenave d’Ornon, France
| |
Collapse
|
4
|
Metabolomic Variation Aligns with Two Geographically Distinct Subpopulations of Brachypodium Distachyon before and after Drought Stress. Cells 2021; 10:cells10030683. [PMID: 33808796 PMCID: PMC8003576 DOI: 10.3390/cells10030683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Brachypodium distachyon (Brachypodium) is a non-domesticated model grass that has been used to assess population level genomic variation. We have previously established a collection of 55 Brachypodium accessions that were sampled to reflect five different climatic regions of Turkey; designated 1a, 1c, 2, 3 and 4. Genomic and methylomic variation differentiated the collection into two subpopulations designated as coastal and central (respectively from regions 1a, 1c and the other from 2, 3 and 4) which were linked to environmental variables such as relative precipitation. Here, we assessed how far genomic variation would be reflected in the metabolomes and if this could be linked to an adaptive trait. Metabolites were extracted from eight-week-old seedlings from each accession and assessed using flow infusion high-resolution mass spectrometry (FIE-HRMS). Principal Component Analysis (PCA) of the derived metabolomes differentiated between samples from coastal and central subpopulations. The major sources of variation between seedling from the coastal and central subpopulations were identified. The central subpopulation was typified by significant increases in alanine, aspartate and glutamate metabolism and the tricarboxylic acid (TCA) cycle. Coastal subpopulation exhibited elevated levels of the auxin, indolacetic acid and rhamnose. The metabolomes of the seedling were also determined following the imposition of drought stress for seven days. The central subpopulation exhibited a metabolomic shift in response to drought, but no significant changes were seen in the coastal one. The drought responses in the central subpopulation were typified by changes in amino acids, increasing the glutamine that could be functioning as a stress signal. There were also changes in sugars that were likely to be an osmotic counter to drought, and changes in bioenergetic metabolism. These data indicate that genomic variation in our Turkish Brachypodium collection is largely reflected as distinctive metabolomes (“metabolotypes”) through which drought tolerance might be mediated.
Collapse
|
5
|
Christensen SA, Santana EA, Alborn HT, Block AK, Chamberlain CA. Metabolomics by UHPLC-HRMS reveals the impact of heat stress on pathogen-elicited immunity in maize. Metabolomics 2021; 17:6. [PMID: 33400019 DOI: 10.1007/s11306-020-01739-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Studies investigating crop resistance to abiotic and biotic stress have largely focused on plant responses to singular forms of stress and individual biochemical pathways that only partially represent stress responses. Thus, combined abiotic and biotic stress treatments and the global assessment of their elicited metabolic expression remains largely unexplored. In this study, we employed targeted and untargeted metabolomics to investigate the molecular responses of maize (Zea mays) to abiotic, biotic, and combinatorial stress. OBJECTIVE We compared the inducible metabolomes of heat-stressed (abiotic) and C. heterostrophus-infected (biotic) maize and examined the effects of heat stress on the ability of maize to defend itself against C. heterostrophus. METHODS Ultra-high-performance liquid chromatography-high-resolution mass spectrometry was performed on plants grown under control conditions (28 °C), heat stress (38 °C), Cochliobolus heterostrophus infection, or combinatorial stress [heat (38 °C) + C. heterostrophus infection]. RESULTS Multivariate analyses revealed differential metabolite expression between heat stress, C. heterostrophus infection, and their respective controls. In combinatorial experiments, treatment with heat stress prior to fungal inoculation negatively impacted maize disease resistance against C. heterostrophus, and distinct metabolome separation between combinatorial stressed plants and the non-heat-stressed infected controls was observed. Targeted analysis revealed inducible primary and secondary metabolite responses to abiotic/biotic stress, and combinatorial experiments indicated that deficiency in the hydroxycinnamic acid, p-coumaric acid, may contribute to the heat-induced susceptibility of maize to C. heterostrophus. CONCLUSION These findings demonstrate that abiotic stress can predispose crops to more severe disease symptoms, underlining the increasing need to investigate defense chemistry in plants under combinatorial stress.
Collapse
Affiliation(s)
- Shawn A Christensen
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA.
| | - E'lysse A Santana
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
| | - Hans T Alborn
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
| | - Anna K Block
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
| | - Casey A Chamberlain
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
6
|
Li J, Zeng L, Liao Y, Tang J, Yang Z. Evaluation of the contribution of trichomes to metabolite compositions of tea (Camellia sinensis) leaves and their products. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Alseekh S, Fernie AR. Metabolomics 20 years on: what have we learned and what hurdles remain? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:933-942. [PMID: 29734513 DOI: 10.1111/tpj.13950] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 05/11/2023]
Abstract
The term metabolome was coined in 1998, by analogy to genome, transcriptome and proteome. The first research papers using the terms metabolomics, metabonomics, metabolic profiling or metabolite profiling were published shortly thereafter. In this short review we reflect on the major achievements brought about by the use of these approaches, and document the knowledge and technology gaps that are currently constraining its further development. Finally, we detail why we think that the time is ripe to refocus our efforts on the understanding of metabolic function.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Centre of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Centre of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| |
Collapse
|
8
|
Integrated proteomics, genomics, metabolomics approaches reveal oxalic acid as pathogenicity factor in Tilletia indica inciting Karnal bunt disease of wheat. Sci Rep 2018; 8:7826. [PMID: 29777151 PMCID: PMC5959904 DOI: 10.1038/s41598-018-26257-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/03/2018] [Indexed: 01/21/2023] Open
Abstract
Tilletia indica incites Karnal bunt (KB) disease in wheat. To date, no KB resistant wheat cultivar could be developed due to non-availability of potential biomarkers related to pathogenicity/virulence for screening of resistant wheat genotypes. The present study was carried out to compare the proteomes of T. indica highly (TiK) and low (TiP) virulent isolates. Twenty one protein spots consistently observed as up-regulated/differential in the TiK proteome were selected for identification by MALDI-TOF/TOF. Identified sequences showed homology with fungal proteins playing essential role in plant infection and pathogen survival, including stress response, adhesion, fungal penetration, invasion, colonization, degradation of host cell wall, signal transduction pathway. These results were integrated with T. indica genome sequence for identification of homologs of candidate pathogenicity/virulence related proteins. Protein identified in TiK isolate as malate dehydrogenase that converts malate to oxaloacetate which is precursor of oxalic acid. Oxalic acid is key pathogenicity factor in phytopathogenic fungi. These results were validated by GC-MS based metabolic profiling of T. indica isolates indicating that oxalic acid was exclusively identified in TiK isolate. Thus, integrated omics approaches leads to identification of pathogenicity/virulence factor(s) that would provide insights into pathogenic mechanisms of fungi and aid in devising effective disease management strategies.
Collapse
|
9
|
Kang W, Zhu X, Wang Y, Chen L, Duan Y. Transcriptomic and metabolomic analyses reveal that bacteria promote plant defense during infection of soybean cyst nematode in soybean. BMC PLANT BIOLOGY 2018; 18:86. [PMID: 29751738 PMCID: PMC5948838 DOI: 10.1186/s12870-018-1302-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/30/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Soybean cyst nematode (SCN) is the most devastating pathogen of soybean. Our previous study showed that the plant growth-promoting rhizobacterium Bacillus simplex strain Sneb545 promotes soybean resistance to SCN. Here, we conducted a combined metabolomic and transcriptomic analysis to gain information regarding the biological mechanism of defence enhancement against SCN in Sneb545-treated soybean. To this end, we compared the transcriptome and metabolome of Sneb545-treated and non-treated soybeans under SCN infection. RESULTS Transcriptomic analysis showed that 6792 gene transcripts were common in Sneb545-treated and non-treated soybeans. However, Sneb545-treated soybeans showed a higher concentration of various nematicidal metabolites, including 4-vinylphenol, methionine, piperine, and palmitic acid, than non-treated soybeans under SCN infection. CONCLUSIONS Overall, our results validated and expanded the existing models regarding the co-regulation of gene expression and metabolites in plants, indicating the advantage of integrated system-oriented analysis.
Collapse
Affiliation(s)
- Wenshu Kang
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Yuanyuan Wang
- Institute of Biotechnology, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110866 China
| |
Collapse
|
10
|
Abstract
Drug metabolites have been monitored with various types of newly developed techniques and/or combination of common analytical methods, which could provide a great deal of information on metabolite profiling. Because it is not easy to analyze whole drug metabolites qualitatively and quantitatively, a single solution of analytical techniques is combined in a multilateral manner to cover the widest range of drug metabolites. Mass-based spectroscopic analysis of drug metabolites has been expanded with the help of other parameter-based methods. The current development of metabolism studies through contemporary pharmaceutical research are reviewed with an overview on conventionally used spectroscopic methods. Several technical approaches for conducting drug metabolic profiling through spectroscopic methods are discussed in depth.
Collapse
Affiliation(s)
- Jong-Jae Yi
- Department of Pharmacy, College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon-Si, Gyeonggi-do, 11160, Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodong-daero, Anseong-Si, Gyeonggi-do, 17546, Republic of Korea
| | - Won-Je Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin-Kyu Rhee
- Department of Food Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Woo Sung Son
- Department of Pharmacy, College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon-Si, Gyeonggi-do, 11160, Republic of Korea.
| |
Collapse
|
11
|
López-Álvarez D, Zubair H, Beckmann M, Draper J, Catalán P. Diversity and association of phenotypic and metabolomic traits in the close model grasses Brachypodium distachyon, B. stacei and B. hybridum. ANNALS OF BOTANY 2017; 119:545-561. [PMID: 28040672 PMCID: PMC5458712 DOI: 10.1093/aob/mcw239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/25/2016] [Accepted: 10/12/2016] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS Morphological traits in combination with metabolite fingerprinting were used to investigate inter- and intraspecies diversity within the model annual grasses Brachypodium distachyon, Brachypodium stacei and Brachypodium hybridum . METHODS Phenotypic variation of 15 morphological characters and 2219 nominal mass ( m / z ) signals generated using flow infusion electrospray ionization-mass spectrometry (FIE-MS) were evaluated in individuals from a total of 174 wild populations and six inbred lines, and 12 lines, of the three species, respectively. Basic statistics and multivariate principal component analysis and discriminant analysis were used to differentiate inter- and intraspecific variability of the two types of variable, and their association was assayed with the rcorr function. KEY RESULTS Basic statistics and analysis of variance detected eight phenotypic characters [(stomata) leaf guard cell length, pollen grain length, (plant) height, second leaf width, inflorescence length, number of spikelets per inflorescence, lemma length, awn length] and 434 tentatively annotated metabolite signals that significantly discriminated the three species. Three phenotypic traits (pollen grain length, spikelet length, number of flowers per inflorescence) might be genetically fixed. The three species showed different metabolomic profiles. Discriminant analysis significantly discriminated the three taxa with both morphometric and metabolome traits and the intraspecific phenotypic diversity within B. distachyon and B. stacei . The populations of B. hybridum were considerably less differentiated. CONCLUSIONS Highly explanatory metabolite signals together with morphological characters revealed concordant patterns of differentiation of the three taxa. Intraspecific phenotypic diversity was observed between northern and southern Iberian populations of B. distachyon and between eastern Mediterranean/south-western Asian and western Mediterranean populations of B. stacei . Significant association was found for pollen grain length and lemma length and ten and six metabolomic signals, respectively. These results would guide the selection of new germplasm lines of the three model grasses in ongoing genome-wide association studies.
Collapse
Affiliation(s)
- Diana López-Álvarez
- Department of Agriculture and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Ctra. Cuarte Km 1, 22071 Huesca, Spain
| | - Hassan Zubair
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EB, UK
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EB, UK
| | - John Draper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EB, UK
| | - Pilar Catalán
- Department of Agriculture and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Ctra. Cuarte Km 1, 22071 Huesca, Spain
- Department of Botany, Institute of Biology, Tomsk State University, Lenin Av. 36, Tomsk 634050, Russia
| |
Collapse
|
12
|
Chen F, Liu C, Zhang J, Lei H, Li HP, Liao YC, Tang H. Combined Metabonomic and Quantitative RT-PCR Analyses Revealed Metabolic Reprogramming Associated with Fusarium graminearum Resistance in Transgenic Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:2177. [PMID: 29354139 PMCID: PMC5758590 DOI: 10.3389/fpls.2017.02177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/12/2017] [Indexed: 05/05/2023]
Abstract
Fusarium head blight disease resulting from Fusarium graminearum (FG) infection causes huge losses in global production of cereals and development of FG-resistant plants is urgently needed. To understand biochemistry mechanisms for FG resistance, here, we have systematically investigated the plant metabolomic phenotypes associated with FG resistance for transgenic Arabidopsis thaliana expressing a class-I chitinase (Chi), a Fusarium-specific recombinant antibody gene (CWP2) and fused Chi-CWP2. Plant disease indices, mycotoxin levels, metabonomic characteristics, and expression levels of several key genes were measured together with their correlations. We found that A. thaliana expressing Chi-CWP2 showed higher FG resistance with much lower disease indices and mycotoxin levels than the wild-type and the plants expressing Chi or CWP2 alone. The combined metabonomic and quantitative RT-PCR analyses revealed that such FG-resistance was closely associated with the promoted biosynthesis of secondary metabolites (phenylpropanoids, alkanoids) and organic osmolytes (proline, betaine, glucose, myo-inositol) together with enhanced TCA cycle and GABA shunt. These suggest that the concurrently enhanced biosyntheses of the shikimate-mediated secondary metabolites and organic osmolytes be an important strategy for A. thaliana to develop and improve FG resistance. These findings provide essential biochemical information related to FG resistance which is important for developing FG-resistant cereals.
Collapse
Affiliation(s)
- Fangfang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Plant Science and Technology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Jingtao Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - He-Ping Li
- College of Plant Science and Technology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu-Cai Liao
- College of Plant Science and Technology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Yu-Cai Liao
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Collaborative Innovation Centre for Genetics and Development, Shanghai International Centre for Molecular Phenomics, Metabonomics and Systems Biology Laboratory, Fudan University, Shanghai, China
- Huiru Tang
| |
Collapse
|
13
|
Fisher LHC, Han J, Corke FMK, Akinyemi A, Didion T, Nielsen KK, Doonan JH, Mur LAJ, Bosch M. Linking Dynamic Phenotyping with Metabolite Analysis to Study Natural Variation in Drought Responses of Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2016; 7:1751. [PMID: 27965679 PMCID: PMC5126067 DOI: 10.3389/fpls.2016.01751] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/07/2016] [Indexed: 05/23/2023]
Abstract
Drought is an important environmental stress limiting the productivity of major crops worldwide. Understanding drought tolerance and possible mechanisms for improving drought resistance is therefore a prerequisite to develop drought-tolerant crops that produce significant yields with reduced amounts of water. Brachypodium distachyon (Brachypodium) is a key model species for cereals, forage grasses, and energy grasses. In this study, initial screening of a Brachypodium germplasm collection consisting of 138 different ecotypes exposed to progressive drought, highlighted the natural variation in morphology, biomass accumulation, and responses to drought stress. A core set of ten ecotypes, classified as being either tolerant, susceptible or intermediate, in response to drought stress, were exposed to mild or severe (respectively, 15 and 0% soil water content) drought stress and phenomic parameters linked to growth and color changes were assessed. When exposed to severe drought stress, phenotypic data and metabolite profiling combined with multivariate analysis revealed a remarkable consistency in separating the selected ecotypes into their different pre-defined drought tolerance groups. Increases in several metabolites, including for the phytohormones jasmonic acid and salicylic acid, and TCA-cycle intermediates, were positively correlated with biomass yield and with reduced yellow pixel counts; suggestive of delayed senescence, both key target traits for crop improvement to drought stress. While metabolite analysis also separated ecotypes into the distinct tolerance groupings after exposure to mild drought stress, similar analysis of the phenotypic data failed to do so, confirming the value of metabolomics to investigate early responses to drought stress. The results highlight the potential of combining the analyses of phenotypic and metabolic responses to identify key mechanisms and markers associated with drought tolerance in both the Brachypodium model plant as well as agronomically important crops.
Collapse
Affiliation(s)
- Lorraine H. C. Fisher
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Jiwan Han
- The National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Fiona M. K. Corke
- The National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Aderemi Akinyemi
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | | | | | - John H. Doonan
- The National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| |
Collapse
|
14
|
Wang XY, Li DZ, Li Q, Ma YQ, Yao JW, Huang X, Xu ZQ. Metabolomic analysis reveals the relationship between AZI1 and sugar signaling in systemic acquired resistance of Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:273-287. [PMID: 27337039 DOI: 10.1016/j.plaphy.2016.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 05/20/2023]
Abstract
The function of AZI1 in systemic acquired resistance of Arabidopsis was confirmed by investigation of the phenotypic features of wild-type Col-0, AZI1 T-DNA knockout and AZI1 overexpressing plants after infection with virulent and avirulent Pseudomonas syringae. Real-time quantitative PCR and Northern blotting analyses showed that the transcript abundances of PR genes increased significantly in local and systemic leaves of wild-type Col-0 and AZI1 overexpressing plants challenged with avirulent P. syringae, whereas the mRNA accumulation of PR genes was obviously attenuated in local and systemic leaves of AZI1 T-DNA knockout plants after localized infiltration with avirulent Psm avrRpm1. The changes of metabolomic profiles in distal leaves of three types of materials infected with avirulent P. syringae were determined by (1)H NMR spectrometry and data mining showed that the soluble carbonhydrates might function as signal substances in the systemic immunity of Arabidopsis. At the same time, the expression of the sugar signaling genes in local and distal leaves after infection of avirulent P. syringae was compared. As a result, it was found that the transcript abundances of sugar signaling genes, including SUS1, SUS2, SUS3, SUS6, SUT1, HXK1, HXK2, SNRK1.2, ERD6, TPS1, TOR, SNRK1.1, SNRK1.3 and bZIP11, were obviously changed in distal leaves of different materials with the modulated AZI1 activities, indicating sugar-related genes are involved in regulation of the systemic immunity mediated by AZI1. These results also illustrated that the immune system associated with sugar molecules probably was an important part of the systemic acquired resistance in Arabidopsis.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Dian-Zhen Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Qi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Yan-Qin Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Jing-Wen Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Xuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China.
| |
Collapse
|
15
|
Gargallo-Garriga A, Sardans J, Pérez-Trujillo M, Guenther A, Llusià J, Rico L, Terradas J, Farré-Armengol G, Filella I, Parella T, Peñuelas J. Shifts in plant foliar and floral metabolomes in response to the suppression of the associated microbiota. BMC PLANT BIOLOGY 2016; 16:78. [PMID: 27048394 PMCID: PMC4822282 DOI: 10.1186/s12870-016-0767-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/31/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND The phyllospheric microbiota is assumed to play a key role in the metabolism of host plants. Its role in determining the epiphytic and internal plant metabolome, however, remains to be investigated. We analyzed the Liquid Chromatography-Mass Spectrometry (LC-MS) profiles of the epiphytic and internal metabolomes of the leaves and flowers of Sambucus nigra with and without external antibiotic treatment application. RESULTS The epiphytic metabolism showed a degree of complexity similar to that of the plant organs. The suppression of microbial communities by topical applications of antibiotics had a greater impact on the epiphytic metabolome than on the internal metabolomes of the plant organs, although even the latter changed significantly both in leaves and flowers. The application of antibiotics decreased the concentration of lactate in both epiphytic and organ metabolomes, and the concentrations of citraconic acid, acetyl-CoA, isoleucine, and several secondary compounds such as terpenes and phenols in the epiphytic extracts. The metabolite pyrogallol appeared in the floral epiphytic community only after the treatment. The concentrations of the amino acid precursors of the ketoglutarate-synthesis pathway tended to decrease in the leaves and to increase in the foliar epiphytic extracts. CONCLUSIONS These results suggest that anaerobic and/or facultative anaerobic bacteria were present in high numbers in the phyllosphere and in the apoplasts of S. nigra. The results also show that microbial communities play a significant role in the metabolomes of plant organs and could have more complex and frequent mutualistic, saprophytic, and/or parasitic relationships with internal plant metabolism than currently assumed.
Collapse
Affiliation(s)
- Albert Gargallo-Garriga
- />CSIC, Global Ecology Unit CREAF- CSIC-UAB, Cerdanyola del Vallès, Catalonia 08193 Spain
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
- />Service of Nuclear Magnetic Resonance, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia 08913 Spain
| | - Jordi Sardans
- />CSIC, Global Ecology Unit CREAF- CSIC-UAB, Cerdanyola del Vallès, Catalonia 08193 Spain
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
| | - Míriam Pérez-Trujillo
- />Service of Nuclear Magnetic Resonance, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia 08913 Spain
| | - Alex Guenther
- />Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Joan Llusià
- />CSIC, Global Ecology Unit CREAF- CSIC-UAB, Cerdanyola del Vallès, Catalonia 08193 Spain
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
| | - Laura Rico
- />CSIC, Global Ecology Unit CREAF- CSIC-UAB, Cerdanyola del Vallès, Catalonia 08193 Spain
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
| | - Jaume Terradas
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
- />Department BABVE, Universitat Autònoma de Barcelona, Barcelona, Catalonia 08913 Spain
| | - Gerard Farré-Armengol
- />CSIC, Global Ecology Unit CREAF- CSIC-UAB, Cerdanyola del Vallès, Catalonia 08193 Spain
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
| | - Iolanda Filella
- />CSIC, Global Ecology Unit CREAF- CSIC-UAB, Cerdanyola del Vallès, Catalonia 08193 Spain
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
| | - Teodor Parella
- />Service of Nuclear Magnetic Resonance, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia 08913 Spain
| | - Josep Peñuelas
- />CSIC, Global Ecology Unit CREAF- CSIC-UAB, Cerdanyola del Vallès, Catalonia 08193 Spain
- />CREAF, Cerdanyola del Vallès, Catalonia 08193 Spain
| |
Collapse
|
16
|
Bajhaiya AK, Dean AP, Driver T, Trivedi DK, Rattray NJW, Allwood JW, Goodacre R, Pittman JK. High-throughput metabolic screening of microalgae genetic variation in response to nutrient limitation. Metabolomics 2016; 12:9. [PMID: 26594136 PMCID: PMC4644200 DOI: 10.1007/s11306-015-0878-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/29/2015] [Indexed: 11/26/2022]
Abstract
Microalgae produce metabolites that could be useful for applications in food, biofuel or fine chemical production. The identification and development of suitable strains require analytical methods that are accurate and allow rapid screening of strains or cultivation conditions. We demonstrate the use of Fourier transform infrared (FT-IR) spectroscopy to screen mutant strains of Chlamydomonas reinhardtii. These mutants have knockdowns for one or more nutrient starvation response genes, namely PSR1, SNRK2.1 and SNRK2.2. Limitation of nutrients including nitrogen and phosphorus can induce metabolic changes in microalgae, including the accumulation of glycerolipids and starch. By performing multivariate statistical analysis of FT-IR spectra, metabolic variation between different nutrient limitation and non-stressed conditions could be differentiated. A number of mutant strains with similar genetic backgrounds could be distinguished from wild type when grown under specific nutrient limited and replete conditions, demonstrating the sensitivity of FT-IR spectroscopy to detect specific genetic traits. Changes in lipid and carbohydrate between strains and specific nutrient stress treatments were validated by other analytical methods, including liquid chromatography-mass spectrometry for lipidomics. These results demonstrate that the PSR1 gene is an important determinant of lipid and starch accumulation in response to phosphorus starvation but not nitrogen starvation. However, the SNRK2.1 and SNRK2.2 genes are not as important for determining the metabolic response to either nutrient stress. We conclude that FT-IR spectroscopy and chemometric approaches provide a robust method for microalgae screening.
Collapse
Affiliation(s)
- Amit K. Bajhaiya
- />Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT UK
| | - Andrew P. Dean
- />Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT UK
- />Department of Geography, University of Sheffield, Sheffield, S10 2TN UK
| | - Thomas Driver
- />Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT UK
| | - Drupad K. Trivedi
- />School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Nicholas J. W. Rattray
- />School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - J. William Allwood
- />School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
- />Environmental & Biochemical Sciences Group, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA Scotland, UK
| | - Royston Goodacre
- />School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Jon K. Pittman
- />Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT UK
| |
Collapse
|
17
|
Allwood JW, Chandra S, Xu Y, Dunn WB, Correa E, Hopkins L, Goodacre R, Tobin AK, Bowsher CG. Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions. PHYTOCHEMISTRY 2015; 115:99-111. [PMID: 25680480 PMCID: PMC4518043 DOI: 10.1016/j.phytochem.2015.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/10/2015] [Accepted: 01/15/2015] [Indexed: 05/06/2023]
Abstract
The control and interaction between nitrogen and carbon assimilatory pathways is essential in both photosynthetic and non-photosynthetic tissue in order to support metabolic processes without compromising growth. Physiological differences between the basal and mature region of wheat (Triticum aestivum) primary leaves confirmed that there was a change from heterotrophic to autotrophic metabolism. Fourier Transform Infrared (FT-IR) spectroscopy confirmed the suitability and phenotypic reproducibility of the leaf growth conditions. Principal Component-Discriminant Function Analysis (PC-DFA) revealed distinct clustering between base, and tip sections of the developing wheat leaf, and from plants grown in the presence or absence of nitrate. Gas Chromatography-Time of Flight/Mass Spectrometry (GC-TOF/MS) combined with multivariate and univariate analyses, and Bayesian network (BN) analysis, distinguished different tissues and confirmed the physiological switch from high rates of respiration to photosynthesis along the leaf. The operation of nitrogen metabolism impacted on the levels and distribution of amino acids, organic acids and carbohydrates within the wheat leaf. In plants grown in the presence of nitrate there was reduced levels of a number of sugar metabolites in the leaf base and an increase in maltose levels, possibly reflecting an increase in starch turnover. The value of using this combined metabolomics analysis for further functional investigations in the future are discussed.
Collapse
Affiliation(s)
- J William Allwood
- School of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Surya Chandra
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, UK
| | - Yun Xu
- School of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Warwick B Dunn
- School of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK; Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, York Place, Oxford Road, Manchester M13 9WL, UK; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Elon Correa
- School of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Laura Hopkins
- School of Biology, Biomolecular Sciences Building, University of St Andrews, St Andrews, Fife, KY16 9ST Scotland, UK
| | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK; Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Alyson K Tobin
- Vice Chancellor's Office, York St John University, Lord Mayor's Walk, York YO31 7EX, UK
| | - Caroline G Bowsher
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
18
|
Sánchez-Martín J, Heald J, Kingston-Smith A, Winters A, Rubiales D, Sanz M, Mur LAJ, Prats E. A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. PLANT, CELL & ENVIRONMENT 2015; 38:1434-52. [PMID: 25533379 DOI: 10.1111/pce.12501] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 05/02/2023]
Abstract
Although a wealth of information is available on the induction of one or several drought-related responses in different species, little is known of how their timing, modulation and crucially integration influence drought tolerance. Based upon metabolomic changes in oat (Avena sativa L.), we have defined key processes involved in drought tolerance. During a time course of increasing water deficit, metabolites from leaf samples were profiled using direct infusion-electrospray mass spectroscopy (DI-ESI-MS) and high-performance liquid chromatography (HPLC) ESI-MS/MS and analysed using principal component analysis (PCA) and discriminant function analysis (DFA). The involvement of metabolite pathways was confirmed through targeted assays of key metabolites and physiological experiments. We demonstrate an early accumulation of salicylic acid (SA) influencing stomatal opening, photorespiration and antioxidant defences before any change in the relative water content. These changes are likely to maintain plant water status, with any photoinhibitory effect being counteracted by an efficient antioxidant capacity, thereby representing an integrated mechanism of drought tolerance in oats. We also discuss these changes in relation to those engaged at later points, consequence of the different water status in susceptible and resistant genotypes.
Collapse
Affiliation(s)
| | - Jim Heald
- Institute of Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, SY23 3DA, UK
| | - Alison Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, SY23 3DA, UK
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, SY23 3DA, UK
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Apdo. 4084, Córdoba, 14080, Spain
| | - Mariluz Sanz
- Institute of General Organic Chemistry, CSIC, Juan de la Cierva 3, Madrid, 28006, Spain
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, SY23 3DA, UK
| | - Elena Prats
- Institute for Sustainable Agriculture, CSIC, Apdo. 4084, Córdoba, 14080, Spain
| |
Collapse
|
19
|
Dyson BC, Allwood JW, Feil R, Xu Y, Miller M, Bowsher CG, Goodacre R, Lunn JE, Johnson GN. Acclimation of metabolism to light in Arabidopsis thaliana: the glucose 6-phosphate/phosphate translocator GPT2 directs metabolic acclimation. PLANT, CELL & ENVIRONMENT 2015; 38:1404-17. [PMID: 25474495 PMCID: PMC4949648 DOI: 10.1111/pce.12495] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 05/18/2023]
Abstract
Mature leaves of plants transferred from low to high light typically increase their photosynthetic capacity. In Arabidopsis thaliana, this dynamic acclimation requires expression of GPT2, a glucose 6-phosphate/phosphate translocator. Here, we examine the impact of GPT2 on leaf metabolism and photosynthesis. Plants of wild type and of a GPT2 knockout (gpt2.2) grown under low light achieved the same photosynthetic rate despite having different metabolic and transcriptomic strategies. Immediately upon transfer to high light, gpt2.2 plants showed a higher rate of photosynthesis than wild-type plants (35%); however, over subsequent days, wild-type plants acclimated photosynthetic capacity, increasing the photosynthesis rate by 100% after 7 d. Wild-type plants accumulated more starch than gpt2.2 plants throughout acclimation. We suggest that GPT2 activity results in the net import of glucose 6-phosphate from cytosol to chloroplast, increasing starch synthesis. There was clear acclimation of metabolism, with short-term changes typically being reversed as plants acclimated. Distinct responses to light were observed in wild-type and gpt2.2 leaves. Significantly higher levels of sugar phosphates were observed in gpt2.2. We suggest that GPT2 alters the distribution of metabolites between compartments and that this plays an essential role in allowing the cell to interpret environmental signals.
Collapse
Affiliation(s)
- Beth C Dyson
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - J William Allwood
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Yun Xu
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Matthew Miller
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Caroline G Bowsher
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Royston Goodacre
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Giles N Johnson
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
20
|
Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, Turner ML, Goodacre R. A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding. Anal Chim Acta 2015; 879:10-23. [DOI: 10.1016/j.aca.2015.02.012] [Citation(s) in RCA: 509] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 01/14/2023]
|
21
|
Fitzgerald TL, Powell JJ, Schneebeli K, Hsia MM, Gardiner DM, Bragg JN, McIntyre CL, Manners JM, Ayliffe M, Watt M, Vogel JP, Henry RJ, Kazan K. Brachypodium as an emerging model for cereal-pathogen interactions. ANNALS OF BOTANY 2015; 115:717-31. [PMID: 25808446 PMCID: PMC4373291 DOI: 10.1093/aob/mcv010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/03/2014] [Accepted: 12/22/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND Cereal diseases cause tens of billions of dollars of losses annually and have devastating humanitarian consequences in the developing world. Increased understanding of the molecular basis of cereal host-pathogen interactions should facilitate development of novel resistance strategies. However, achieving this in most cereals can be challenging due to large and complex genomes, long generation times and large plant size, as well as quarantine and intellectual property issues that may constrain the development and use of community resources. Brachypodium distachyon (brachypodium) with its small, diploid and sequenced genome, short generation time, high transformability and rapidly expanding community resources is emerging as a tractable cereal model. SCOPE Recent research reviewed here has demonstrated that brachypodium is either susceptible or partially susceptible to many of the major cereal pathogens. Thus, the study of brachypodium-pathogen interactions appears to hold great potential to improve understanding of cereal disease resistance, and to guide approaches to enhance this resistance. This paper reviews brachypodium experimental pathosystems for the study of fungal, bacterial and viral cereal pathogens; the current status of the use of brachypodium for functional analysis of cereal disease resistance; and comparative genomic approaches undertaken using brachypodium to assist characterization of cereal resistance genes. Additionally, it explores future prospects for brachypodium as a model to study cereal-pathogen interactions. CONCLUSIONS The study of brachypodium-pathogen interactions appears to be a productive strategy for understanding mechanisms of disease resistance in cereal species. Knowledge obtained from this model interaction has strong potential to be exploited for crop improvement.
Collapse
Affiliation(s)
- Timothy L Fitzgerald
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jonathan J Powell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Katharina Schneebeli
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - M Mandy Hsia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jennifer N Bragg
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - C Lynne McIntyre
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - John M Manners
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Mick Ayliffe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Michelle Watt
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - John P Vogel
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Robert J Henry
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| |
Collapse
|
22
|
Davies LJ, Brown CR, Elling AA. Calcium is involved in the R Mc1 (blb)-mediated hypersensitive response against Meloidogyne chitwoodi in potato. PLANT CELL REPORTS 2015; 34:167-77. [PMID: 25315813 DOI: 10.1007/s00299-014-1697-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 05/08/2023]
Abstract
Functional characterization of the Columbia root-knot nematode resistance gene R Mc1 ( blb ) in potato revealed the R gene-mediated resistance is dependent on a hypersensitive response and involves calcium. The resistance (R) gene R Mc1(blb) confers resistance against the plant-parasitic nematode, Meloidogyne chitwoodi. Avirulent and virulent nematodes were used to functionally characterize the R Mc1(blb)-mediated resistance mechanism in potato (Solanum tuberosum). Histological observations indicated a hypersensitive response (HR) occurred during avirulent nematode infection. This was confirmed by quantifying reactive oxygen species activity in response to avirulent and virulent M. chitwoodi. To gain an insight into the signal transduction pathways mediating the R Mc1(blb)-induced HR, chemical inhibitors were utilized. Inhibiting Ca(2+) channels caused a significant reduction in electrolyte leakage, an indicator of cell death. Labeling with a Ca(2+)-sensitive dye revealed high Ca(2+) levels in the root cells surrounding avirulent nematodes. Furthermore, the calcium-dependent protein kinase (CDPK), StCDPK4 had a higher transcript level in R Mc1(blb) potato roots infected with avirulent nematodes in comparison to roots infected with virulent M. chitwoodi. The results of this study indicate Ca(2+) plays a role in the R Mc1(blb)-mediated resistance against M. chitwoodi in potato.
Collapse
Affiliation(s)
- Laura J Davies
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | | | | |
Collapse
|
23
|
|
24
|
Ogbaga CC, Stepien P, Johnson GN. Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought. PHYSIOLOGIA PLANTARUM 2014; 152:389-401. [PMID: 24666264 DOI: 10.1111/ppl.12196] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 05/20/2023]
Abstract
Sorghum is one of the most drought tolerant crops but surprisingly, little is known about the mechanisms achieving this. We have compared physiological and biochemical responses to drought in two sorghum cultivars with contrasting drought tolerance. These closely related cultivars have starkly contrasting responses to water deficit. In the less tolerant Samsorg 40, drought induced progressive loss of photosynthesis. The more drought tolerant Samsorg 17 maintained photosynthesis, transpiration and chlorophyll content until the most extreme conditions. In Samsorg 40, there was a highly specific down-regulation of selected proteins, with loss of PSII and Rubisco but maintenance of PSI and cytochrome b6 f, allowing plants to maintain ATP synthesis. The nitrogen released allows for accumulation of glycine betaine and proline. To the best of our knowledge, this is the first example of specific reengineering of the photosynthetic apparatus in response to drought. In contrast, in Samsorg 17 we detected no substantial change in the photosynthetic apparatus. Rather, plants showed constitutively high soluble sugar concentration, enabling them to maintain transpiration and photosynthesis, even in extremely dry conditions. The implications for these strikingly contrasted strategies are discussed in relation to agricultural and natural systems.
Collapse
Affiliation(s)
- Chukwuma C Ogbaga
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | | | | |
Collapse
|
25
|
Osundeko O, Dean AP, Davies H, Pittman JK. Acclimation of Microalgae to Wastewater Environments Involves Increased Oxidative Stress Tolerance Activity. ACTA ACUST UNITED AC 2014; 55:1848-57. [DOI: 10.1093/pcp/pcu113] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Differential gene expression and metabolomic analyses of Brachypodium distachyon infected by deoxynivalenol producing and non-producing strains of Fusarium graminearum. BMC Genomics 2014; 15:629. [PMID: 25063396 PMCID: PMC4124148 DOI: 10.1186/1471-2164-15-629] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/18/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Fusarium Head Blight (FHB) caused primarily by Fusarium graminearum (Fg) is one of the major diseases of small-grain cereals including bread wheat. This disease both reduces yields and causes quality losses due to the production of deoxynivalenol (DON), the major type B trichothecene mycotoxin. DON has been described as a virulence factor enabling efficient colonization of spikes by the fungus in wheat, but its precise role during the infection process is still elusive. Brachypodium distachyon (Bd) is a model cereal species which has been shown to be susceptible to FHB. Here, a functional genomics approach was performed in order to characterize the responses of Bd to Fg infection using a global transcriptional and metabolomic profiling of B. distachyon plants infected by two strains of F. graminearum: a wild-type strain producing DON (Fgdon+) and a mutant strain impaired in the production of the mycotoxin (Fgdon-). RESULTS Histological analysis of the interaction of the Bd21 ecotype with both Fg strains showed extensive fungal tissue colonization with the Fgdon+ strain while the florets infected with the Fgdon- strain exhibited a reduced hyphal extension and cell death on palea and lemma tissues. Fungal biomass was reduced in spikes inoculated with the Fgdon- strain as compared with the wild-type strain. The transcriptional analysis showed that jasmonate and ethylene-signalling pathways are induced upon infection, together with genes encoding putative detoxification and transport proteins, antioxidant functions as well as secondary metabolite pathways. In particular, our metabolite profiling analysis showed that tryptophan-derived metabolites, tryptamine, serotonin, coumaroyl-serotonin and feruloyl-serotonin, are more induced upon infection by the Fgdon+ strain than by the Fgdon- strain. Serotonin was shown to exhibit a slight direct antimicrobial effect against Fg. CONCLUSION Our results show that Bd exhibits defense hallmarks similar to those already identified in cereal crops. While the fungus uses DON as a virulence factor, the host plant preferentially induces detoxification and the phenylpropanoid and phenolamide pathways as resistance mechanisms. Together with its amenability in laboratory conditions, this makes Bd a very good model to study cereal resistance mechanisms towards the major disease FHB.
Collapse
|
27
|
Sheth BP, Thaker VS. Plant systems biology: insights, advances and challenges. PLANTA 2014; 240:33-54. [PMID: 24671625 DOI: 10.1007/s00425-014-2059-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/06/2014] [Indexed: 05/20/2023]
Abstract
Plants dwelling at the base of biological food chain are of fundamental significance in providing solutions to some of the most daunting ecological and environmental problems faced by our planet. The reductionist views of molecular biology provide only a partial understanding to the phenotypic knowledge of plants. Systems biology offers a comprehensive view of plant systems, by employing a holistic approach integrating the molecular data at various hierarchical levels. In this review, we discuss the basics of systems biology including the various 'omics' approaches and their integration, the modeling aspects and the tools needed for the plant systems research. A particular emphasis is given to the recent analytical advances, updated published examples of plant systems biology studies and the future trends.
Collapse
Affiliation(s)
- Bhavisha P Sheth
- Department of Biosciences, Centre for Advanced Studies in Plant Biotechnology and Genetic Engineering, Saurashtra University, Rajkot, 360005, Gujarat, India,
| | | |
Collapse
|
28
|
Durkovič J, Kačík F, Olčák D, Kučerová V, Krajňáková J. Host responses and metabolic profiles of wood components in Dutch elm hybrids with a contrasting tolerance to Dutch elm disease. ANNALS OF BOTANY 2014; 114:47-59. [PMID: 24854167 PMCID: PMC4071097 DOI: 10.1093/aob/mcu076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/24/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Changes occurring in the macromolecular traits of cell wall components in elm wood following attack by Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), are poorly understood. The purpose of this study was to compare host responses and the metabolic profiles of wood components for two Dutch elm (Ulmus) hybrids, 'Groeneveld' (a susceptible clone) and 'Dodoens' (a tolerant clone), that have contrasting survival strategies upon infection with the current prevalent strain of DED. METHODS Ten-year-old plants of the hybrid elms were inoculated with O. novo-ulmi ssp. americana × novo-ulmi. Measurements were made of the content of main cell wall components and extractives, lignin monomer composition, macromolecular traits of cellulose and neutral saccharide composition. KEY RESULTS Upon infection, medium molecular weight macromolecules of cellulose were degraded in both the susceptible and tolerant elm hybrids, resulting in the occurrence of secondary cell wall ruptures and cracks in the vessels, but rarely in the fibres. The (13)C nuclear magnetic resonance spectra revealed that loss of crystalline and non-crystalline cellulose regions occurred in parallel. The rate of cellulose degradation was influenced by the syringyl:guaiacyl ratio in lignin. Both hybrids commonly responded to the medium molecular weight cellulose degradation with the biosynthesis of high molecular weight macromolecules of cellulose, resulting in a significant increase in values for the degree of polymerization and polydispersity. Other responses of the hybrids included an increase in lignin content, a decrease in relative proportions of d-glucose, and an increase in proportions of d-xylose. Differential responses between the hybrids were found in the syringyl:guaiacyl ratio in lignin. CONCLUSIONS In susceptible 'Groeneveld' plants, syringyl-rich lignin provided a far greater degree of protection from cellulose degradation than in 'Dodoens', but only guaiacyl-rich lignin in 'Dodoens' plants was involved in successful defence against the fungus. This finding was confirmed by the associations of vanillin and vanillic acid with the DED-tolerant 'Dodoens' plants in a multivariate analysis of wood traits.
Collapse
Affiliation(s)
- Jaroslav Durkovič
- Department of Phytology, Technical University, 96053 Zvolen, Slovakia
| | - František Kačík
- Department of Chemistry and Chemical Technologies, Technical University, 96053 Zvolen, Slovakia
| | - Dušan Olčák
- Department of Physics, Technical University of Košice, 04200 Košice, Slovakia
| | - Veronika Kučerová
- Department of Forest Protection and Game Management, Technical University, 96053 Zvolen, Slovakia
| | - Jana Krajňáková
- Department of Agricultural and Environmental Science, University of Udine, 33100 Udine, Italy Department of Biology, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
29
|
Lee DK, Lim DK, Um JA, Lim CJ, Hong JY, Yoon YA, Ryu Y, Kim HJ, Cho HJ, Park JH, Seo YB, Kim K, Lim J, Kwon SW, Lee J. Evaluation of four different analytical tools to determine the regional origin of Gastrodia elata and Rehmannia glutinosa on the basis of metabolomics study. Molecules 2014; 19:6294-308. [PMID: 24840900 PMCID: PMC6271526 DOI: 10.3390/molecules19056294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/02/2014] [Accepted: 05/13/2014] [Indexed: 01/19/2023] Open
Abstract
Chemical profiles of medicinal plants could be dissimilar depending on the cultivation environments, which may influence their therapeutic efficacy. Accordingly, the regional origin of the medicinal plants should be authenticated for correct evaluation of their medicinal and market values. Metabolomics has been found very useful for discriminating the origin of many plants. Choosing the adequate analytical tool can be an essential procedure because different chemical profiles with different detection ranges will be produced according to the choice. In this study, four analytical tools, Fourier transform near‑infrared spectroscopy (FT-NIR), 1H-nuclear magnetic resonance spectroscopy (1H‑NMR), liquid chromatography-mass spectrometry (LC-MS), and gas chromatography-mass spectroscopy (GC-MS) were applied in parallel to the same samples of two popular medicinal plants (Gastrodia elata and Rehmannia glutinosa) cultivated either in Korea or China. The classification abilities of four discriminant models for each plant were evaluated based on the misclassification rate and Q2 obtained from principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS‑DA), respectively. 1H-NMR and LC-MS, which were the best techniques for G. elata and R. glutinosa, respectively, were generally preferable for origin discrimination over the others. Reasoned by integrating all the results, 1H-NMR is the most prominent technique for discriminating the origins of two plants. Nonetheless, this study suggests that preliminary screening is essential to determine the most suitable analytical tool and statistical method, which will ensure the dependability of metabolomics-based discrimination.
Collapse
Affiliation(s)
- Dong-Kyu Lee
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| | - Dong Kyu Lim
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| | - Jung A Um
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| | - Chang Ju Lim
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| | - Ji Yeon Hong
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| | - Young A Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Yeonsuk Ryu
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Hyo Jin Kim
- College of Pharmacy, Dongduk Women's University, Seoul 136-714, Korea.
| | - Hi Jae Cho
- Korea Promotion Institute for Traditional Medicine Industry, Gyeongsan 712-260, Korea.
| | - Jeong Hill Park
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| | - Young Bae Seo
- Department of Herbology, College of Oriental Medicine, Daejeon University, Daejeon 300-716, Korea.
| | - Kyunga Kim
- Department of Statistics, Sookmyung Women's University, Seoul 140-742, Korea.
| | - Johan Lim
- Department of Statistics, Seoul National University, Seoul 151-742, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.
| |
Collapse
|
30
|
Allwood JW, Cheung W, Xu Y, Mumm R, De Vos RCH, Deborde C, Biais B, Maucourt M, Berger Y, Schaffer AA, Rolin D, Moing A, Hall RD, Goodacre R. Metabolomics in melon: a new opportunity for aroma analysis. PHYTOCHEMISTRY 2014; 99:61-72. [PMID: 24417788 PMCID: PMC4180013 DOI: 10.1016/j.phytochem.2013.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 05/02/2023]
Abstract
Cucumis melo fruit is highly valued for its sweet and refreshing flesh, however the flavour and value are also highly influenced by aroma as dictated by volatile organic compounds (VOCs). A simple and robust method of sampling VOCs on polydimethylsiloxane (PDMS) has been developed. Contrasting cultivars of C. melo subspecies melo were investigated at commercial maturity: three cultivars of var. Cantalupensis group Charentais (cv. Cézanne, Escrito, and Dalton) known to exhibit differences in ripening behaviour and shelf-life, as well as one cultivar of var. Cantalupensis group Ha'Ogan (cv. Noy Yisre'el) and one non-climacteric cultivar of var. Inodorus (cv. Tam Dew). The melon cultivar selection was based upon fruits exhibiting clear differences (cv. Noy Yisre'el and Tam Dew) and similarities (cv. Cézanne, Escrito, and Dalton) in flavour. In total, 58 VOCs were detected by thermal desorption (TD)-GC-MS which permitted the discrimination of each cultivar via Principal component analysis (PCA). PCA indicated a reduction in VOCs in the non-climacteric cv. Tam Dew compared to the four Cantalupensis cultivars. Within the group Charentais melons, the differences between the short, mid and long shelf-life cultivars were considerable. ¹H NMR analysis led to the quantification of 12 core amino acids, their levels were 3-10-fold greater in the Charentais melons, although they were reduced in the highly fragrant cv. Cézanne, indicating their role as VOC precursors. This study along with comparisons to more traditional labour intensive solid phase micro-extraction (SPME) GC-MS VOC profiling data has indicated that the high-throughput PDMS method is of great potential for the assessment of melon aroma and quality.
Collapse
Affiliation(s)
- J William Allwood
- School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - William Cheung
- School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Yun Xu
- School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Roland Mumm
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, Netherlands; Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Ric C H De Vos
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, Netherlands; Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, Netherlands; Centre for BioSystems Genomics, P.O. Box 98, 6700AB Wageningen, Netherlands
| | - Catherine Deborde
- INRA, UMR1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, Centre INRA de Bordeaux, IBVM, CS20032, F-33140 Villenave d'Ornon, France; Metabolome Facility of Bordeaux Functional Genomics Centre, Centre INRA de Bordeaux, IBVM, F-33140 Villenave d'Ornon, France
| | - Benoit Biais
- INRA, UMR1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, Centre INRA de Bordeaux, IBVM, CS20032, F-33140 Villenave d'Ornon, France
| | - Mickael Maucourt
- Metabolome Facility of Bordeaux Functional Genomics Centre, Centre INRA de Bordeaux, IBVM, F-33140 Villenave d'Ornon, France; Université de Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, Centre INRA de Bordeaux, IBVM, CS20032, F-33140 Villenave d'Ornon, France
| | - Yosef Berger
- Agricultural Research Organisation (ARO), The Volcani Center, Bet Dagan 50250, Israel
| | - Arthur A Schaffer
- Agricultural Research Organisation (ARO), The Volcani Center, Bet Dagan 50250, Israel
| | - Dominique Rolin
- Metabolome Facility of Bordeaux Functional Genomics Centre, Centre INRA de Bordeaux, IBVM, F-33140 Villenave d'Ornon, France; Université de Bordeaux, UMR1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, Centre INRA de Bordeaux, IBVM, CS20032, F-33140 Villenave d'Ornon, France
| | - Annick Moing
- INRA, UMR1332 Biologie du Fruit et Pathologie, INRA - Université de Bordeaux, Centre INRA de Bordeaux, IBVM, CS20032, F-33140 Villenave d'Ornon, France; Metabolome Facility of Bordeaux Functional Genomics Centre, Centre INRA de Bordeaux, IBVM, F-33140 Villenave d'Ornon, France
| | - Robert D Hall
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, Netherlands; Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, Netherlands; Centre for BioSystems Genomics, P.O. Box 98, 6700AB Wageningen, Netherlands
| | - Royston Goodacre
- School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
31
|
Heuberger AL, Robison FM, Lyons SMA, Broeckling CD, Prenni JE. Evaluating plant immunity using mass spectrometry-based metabolomics workflows. FRONTIERS IN PLANT SCIENCE 2014; 5:291. [PMID: 25009545 PMCID: PMC4068199 DOI: 10.3389/fpls.2014.00291] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/04/2014] [Indexed: 05/02/2023]
Abstract
Metabolic processes in plants are key components of physiological and biochemical disease resistance. Metabolomics, the analysis of a broad range of small molecule compounds in a biological system, has been used to provide a systems-wide overview of plant metabolism associated with defense responses. Plant immunity has been examined using multiple metabolomics workflows that vary in methods of detection, annotation, and interpretation, and the choice of workflow can significantly impact the conclusions inferred from a metabolomics investigation. The broad range of metabolites involved in plant defense often requires multiple chemical detection platforms and implementation of a non-targeted approach. A review of the current literature reveals a wide range of workflows that are currently used in plant metabolomics, and new methods for analyzing and reporting mass spectrometry (MS) data can improve the ability to translate investigative findings among different plant-pathogen systems.
Collapse
Affiliation(s)
- Adam L. Heuberger
- Proteomics and Metabolomics Facility, Colorado State UniversityFort Collins, CO, USA
- Department of Soil and Crop Sciences, Colorado State UniversityFort Collins, CO, USA
- *Correspondence: Adam L. Heuberger, Proteomics and Metabolomics Facility, Colorado State University, 2021 Campus Delivery, Fort Collins, CO 80525, USA e-mail:
| | - Faith M. Robison
- Proteomics and Metabolomics Facility, Colorado State UniversityFort Collins, CO, USA
- Department of Soil and Crop Sciences, Colorado State UniversityFort Collins, CO, USA
| | - Sarah Marie A. Lyons
- Proteomics and Metabolomics Facility, Colorado State UniversityFort Collins, CO, USA
| | - Corey D. Broeckling
- Proteomics and Metabolomics Facility, Colorado State UniversityFort Collins, CO, USA
- Department of Horticulture and Landscape Architecture, Colorado State UniversityFort Collins, CO, USA
| | - Jessica E. Prenni
- Proteomics and Metabolomics Facility, Colorado State UniversityFort Collins, CO, USA
- Department of Biochemistry and Molecular Biology, Colorado State UniversityFort Collins, CO, USA
| |
Collapse
|
32
|
Ings J, Mur LAJ, Robson PRH, Bosch M. Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus. FRONTIERS IN PLANT SCIENCE 2013; 4:468. [PMID: 24324474 PMCID: PMC3839294 DOI: 10.3389/fpls.2013.00468] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/30/2013] [Indexed: 05/18/2023]
Abstract
High yielding perennial biomass crops of the species Miscanthus are widely recognized as one of the most promising lignocellulosic feedstocks for the production of bioenergy and bioproducts. Miscanthus is a C4 grass and thus has relatively high water use efficiency. Cultivated Miscanthus comprises primarily of a single clone, Miscanthus x giganteus, a sterile hybrid between M. sacchariflorus and M. sinensis. M. x giganteus is high yielding and expresses desirable combinations of many traits present in the two parental species types; however, it responds poorly to low water availability. To identify the physiological basis of the response to water stress in M. x giganteus and to identify potential targets for breeding improvements we characterized the physiological responses to water-deficit stress in a pot experiment. The experiment has provided valuable insights into the temporal aspects of drought-induced responses of M. x giganteus. Withholding water resulted in marked changes in plant physiology with growth-associated traits among the first affected, the most rapid response being a decline in the rate of stem elongation. A reduction in photosynthetic performance was among the second set of changes observed; indicated by a decrease in stomatal conductance followed by decreases in chlorophyll fluorescence and chlorophyll content. Measures reflecting the plant water status were among the last affected by the drought treatment. Metabolite analysis indicated that proline was a drought stress marker in M. x giganteus, metabolites in the proline synthesis pathway were more abundant when stomatal conductance decreased and dry weight accumulation ceased. The outcomes of this study in terms of drought-induced physiological changes, accompanied by a proof-of-concept metabolomics investigation, provide a platform for identifying targets for improved drought-tolerance of the Miscanthus bioenergy crop.
Collapse
Affiliation(s)
| | | | - Paul R. H. Robson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | | |
Collapse
|
33
|
Madala NE, Steenkamp PA, Piater LA, Dubery IA. Metabolomic analysis of isonitrosoacetophenone-induced perturbations in phenolic metabolism of Nicotiana tabacum cells. PHYTOCHEMISTRY 2013; 94:82-90. [PMID: 23790642 DOI: 10.1016/j.phytochem.2013.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 05/08/2023]
Abstract
Plants have developed biochemical and molecular responses to adapt to different stress environments. One of the characteristics of the multi-component defence response is the production of defence-related metabolites. Plant defences can be triggered by various stimuli, including synthetic or naturally occurring molecules, especially those derived from pathogens. In the current study, Nicotiana tabacum cell suspensions were treated with isonitrosoacetophenone (INAP), a subcomponent of a plant-derived stress metabolite with anti-fungal and anti-oxidant properties, in order to investigate the effect thereof on cellular metabolism. Subsequent metabolomic-based analyses were employed to evaluate changes in the metabolome. UPLC-MS in conjunction with multivariate data analyses was found to be an appropriate approach to study the effect of chemical inducers like INAP on plant metabolism in this model system. Principal component analysis (PCA) indicated that INAP is capable of inducing time-dependent metabolic perturbations in the cultured cells. Orthogonal projection to latent structures discriminant analysis (OPLS-DA) revealed metabolites of which the levels are affected by INAP, and eight of these were tentatively annotated from the mass spectral data and online databases. These metabolites are known in the context of plant stress- and defence responses and include benzoic- or cinnamic acid derivatives that are either glycosylated or quinilated as well as flavonoid derivatives. The results indicate that INAP affects the shikimate-, phenylpropanoid- and flavonoid pathways, the products of which may subsequently lead to an anti-oxidant environment in vivo.
Collapse
Affiliation(s)
- Ntakadzeni E Madala
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | | | | | | |
Collapse
|
34
|
Kokubun T, D'Costa L. Direct and unbiased information recovery from liquid chromatography-mass spectrometry raw data for phenotype-differentiating metabolites based on screening window coefficient of ion currents. Anal Chem 2013; 85:8684-91. [PMID: 24004415 DOI: 10.1021/ac401545b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A reworking of a data mining strategy, in which statistical treatment of raw data from liquid chromatography-mass spectrometry (LC-MS) precedes recognition of chromatographic peaks, is presented. In this algorithm the tR-m/z plane of LC-MS data is divided into equal-sized segments of twelve seconds by one m/z unit each, and the total ion currents in corresponding segments as specified by the tR-m/z pair from multiple LC-MS runs are evaluated to generate mean ion currents (μ) and standard deviations (σ). The μ's and σ's of the segments, derived from contrasting classes of LC-MS data set (e.g., resistant-susceptible, case-control, etc.), are used to calculate the Z-factor (screening window coefficient) which is in turn used to rank the segments. Chromatographic peaks are recognized only where the ion currents are shown to differentiate the classes. The result-reporting format enables detection of positive as well as negative correlations between ion intensities and biological traits under study and thus points to the presence of potentially phenotype-discriminating metabolites. Examples of data analyses are presented, in which ions that may distinguish resistant and susceptible species of Aesculus to the leaf-miner Cameraria ohridella were detected.
Collapse
Affiliation(s)
- Tetsuo Kokubun
- Jodrell Laboratory, Royal Botanic Gardens, Kew , Richmond, Surrey TW9 3DS, United Kingdom
| | | |
Collapse
|
35
|
CASMI-The Small Molecule Identification Process from a Birmingham Perspective. Metabolites 2013; 3:397-411. [PMID: 24957998 PMCID: PMC3901277 DOI: 10.3390/metabo3020397] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 12/13/2022] Open
Abstract
The Critical Assessment of Small Molecule Identification (CASMI) contest was developed to provide a systematic comparative evaluation of strategies applied for the annotation and identification of small molecules. The authors participated in eleven challenges in both category 1 (to deduce a molecular formula) and category 2 (to deduce a molecular structure) related to high resolution LC-MS data. For category 1 challenges, the PUTMEDID_LCMS workflows provided the correct molecular formula in nine challenges; the two incorrect submissions were related to a larger mass error in experimental data than expected or the absence of the correct molecular formula in a reference file applied in the PUTMEDID_LCMS workflows. For category 2 challenges, MetFrag was applied to construct in silico fragmentation data and compare with experimentally-derived MS/MS data. The submissions for three challenges were correct, and for eight challenges, the submissions were not correct; some submissions showed similarity to the correct structures, while others showed no similarity. The low number of correct submissions for category 2 was a result of applying the assumption that all chemicals were derived from biological samples and highlights the importance of knowing the origin of biological or chemical samples studied and the metabolites expected to be present to define the correct chemical space to search in annotation processes.
Collapse
|
36
|
Aliferis KA, Jabaji S. FT-ICR/MS and GC-EI/MS metabolomics networking unravels global potato sprout's responses to Rhizoctonia solani infection. PLoS One 2012; 7:e42576. [PMID: 22880040 PMCID: PMC3411821 DOI: 10.1371/journal.pone.0042576] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/09/2012] [Indexed: 01/15/2023] Open
Abstract
The complexity of plant-pathogen interactions makes their dissection a challenging task for metabolomics studies. Here we are reporting on an integrated metabolomics networking approach combining gas chromatography/mass spectrometry (GC/MS) with Fourier transform ion cyclotron resonance/mass spectrometry (FT-ICR/MS) and bioinformatics analyses for the study of interactions in the potato sprout-Rhizoctonia solani pathosystem and the fluctuations in the global metabolome of sprouts. The developed bioanalytical and bioinformatics protocols provided a snapshot of the sprout's global metabolic network and its perturbations as a result of pathogen invasion. Mevalonic acid and deoxy-xylulose pathways were substantially up-regulated leading to the biosynthesis of sesquiterpene alkaloids such as the phytoalexins phytuberin, rishitin, and solavetivone, and steroidal alkaloids having solasodine and solanidine as their common aglycons. Additionally, the perturbation of the sprout's metabolism was depicted in fluctuations of the content of their amino acids pool and that of carboxylic and fatty acids. Components of the systemic acquired resistance (SAR) and hypersensitive reaction (HR) such as azelaic and oxalic acids were detected in increased levels in infected sprouts and strategies of the pathogen to overcome plant defense were proposed. Our metabolic approach has not only greatly expanded the multitude of metabolites previously reported in potato in response to pathogen invasion, but also enabled the identification of bioactive plant-derived metabolites providing valuable information that could be exploited in biotechnology, biomarker-assisted plant breeding, and crop protection for the development of new crop protection agents.
Collapse
Affiliation(s)
| | - Suha Jabaji
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
37
|
Mur LAJ, Sivakumaran A, Mandon J, Cristescu SM, Harren FJM, Hebelstrup KH. Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4375-87. [PMID: 22641422 PMCID: PMC3421983 DOI: 10.1093/jxb/ers116] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 05/19/2023]
Abstract
Nitric oxide (NO) plays a role in defence against hemibiotrophic pathogens mediated by salicylate (SA) and also necrotrophic pathogens influenced by jasmonate/ethylene (JA/Et). This study examined how NO-oxidizing haemoglobins (Hb) encoded by GLB1, GLB2, and GLB3 in Arabidopsis could influence both defence pathways. The impact of Hb on responses to the hemibiotrophic Pseudomonas syringae pathovar tomato (Pst) AvrRpm1 and the necrotrophic Botrytis cinerea were investigated using glb1, glb2, and glb3 mutant lines and also CaMV 35S GLB1 and GLB2 overexpression lines. In glb1, but not glb2 and glb3, increased resistance was observed to both pathogens but was compromised in the 35S-GLB1. A quantum cascade laser-based sensor measured elevated NO production in glb1 infected with Pst AvrRpm1 and B. cinerea, which was reduced in 35S-GLB1 compared to Col-0. SA accumulation was increased in glb1 and reduced in 35S-GLB1 compared to controls following attack by Pst AvrRpm1. Similarly, JA and Et levels were increased in glb1 but decreased in 35S-GLB1 in response to attack by B. cinerea. Quantitative PCR assays indicated reduced GLB1 expression during challenge with either pathogen, thus this may elevate NO concentration and promote a wide-ranging defence against pathogens.
Collapse
Affiliation(s)
- Luis A J Mur
- Aberystwyth University, Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales, SY23 3DA, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Takamizawa A, Mishina K, Hiraoka K. Observation of dimethylaminoethyl methacrylate-myoglobin binding reaction using laser spray mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:221-225. [PMID: 22359332 DOI: 10.1002/jms.2040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Covalent bonds are often created by a reaction between chemicals and protein before causing various adverse effects in a cell. Dimethylaminoethyl methacrylate (DMAEMA), which has moderate toxicity, causes skin inflammation and throat irritation. For this study, we investigated a reaction mechanism between myoglobin and (DMAEMA) using a new analytical tool developed at our laboratory: laser spray mass spectrometry technique. It was found that initially DMAEMA was added to the amino group of protein by the Michael addition mechanism; the added DMAEMA was hydrolyzed to methacrylic acid using an autocatalytic system. The results of this study indicate the feasibility of the laser spray technique in analyses of reaction dynamics.
Collapse
Affiliation(s)
- Atsushi Takamizawa
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
| | | | | |
Collapse
|
39
|
Deflorio G, Horgan G, Jaspars M, Woodward S. Defence response of Sitka spruce before and after inoculation with Heterobasidion annosum: 1H NMR fingerprinting of bark and sapwood metabolites. Anal Bioanal Chem 2012; 402:3333-44. [DOI: 10.1007/s00216-011-5666-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 11/27/2022]
|
40
|
Allwood JW, Parker D, Beckmann M, Draper J, Goodacre R. Fourier Transform Ion Cyclotron Resonance mass spectrometry for plant metabolite profiling and metabolite identification. Methods Mol Biol 2012; 860:157-176. [PMID: 22351177 DOI: 10.1007/978-1-61779-594-7_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mass spectrometry (MS) is usually the technique of choice for metabolomic studies where the volume of sample material is too limited for applications employing nuclear magnetic resonance (NMR) spectroscopy. With the advent of ultra-high accuracy mass spectrometers such as the Orbitrap (resolution ∼ 10(5)) and the Fourier Transform Ion Cyclotron Resonance (FT-ICR) analysers (resolution potentially in excess of 10(6)) there is the opportunity to generate an accurate mass fingerprint (often referred to as a profile since the variables are considered as effectively discrete) of an infused sample extract. In such data representations mass "peaks" are detected in the raw data and the centroid mass intensity calculated. The resolving power and sensitivity of these ultra-high accuracy mass analysers is such that metabolite signals from molecules containing naturally abundant elemental isotopes (e.g. (13)C, (41)K, (15)N, (17)O, (34)S, and (37)Cl) are visible in the data. Such is the instruments precision that it allows for the calculation of highly accurate elemental compositions for the unknown signals, thus aiding greatly in the selection of potential metabolite candidates for the annotation of unknowns prior to their confirmation by comparisons to analytical standards. The application of FT-ICR-MS to plant metabolomics has thus far been limited to a few studies and clear step-by-step methodologies are as yet unavailable. This chapter presents a rigorous method for the extraction and FT-ICR-MS analysis of plant leaf tissues as well as downstream data processing.
Collapse
Affiliation(s)
- J William Allwood
- IBERS - Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK.
| | | | | | | | | |
Collapse
|
41
|
Barbieri M, Marcel TC, Niks RE. Host Status of False Brome Grass to the Leaf Rust Fungus Puccinia brachypodii and the Stripe Rust Fungus P. striiformis. PLANT DISEASE 2011; 95:1339-1345. [PMID: 30731784 DOI: 10.1094/pdis-11-10-0825] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Purple false brome grass (Brachypodium distachyon) has recently emerged as a model system for temperate grasses and is also a potential model plant to investigate plant interactions with economically important pathogens such as rust fungi. We determined the host status of five Brachypodium species to three isolates of Puccinia brachypodii, the prevalent rust species on Brachypodium sylvaticum in nature, and to one isolate each of three formae speciales of the stripe rust fungus P. striiformis. Two P. striiformis isolates produced sporulating lesions, both in only one of the tested interactions, suggesting a marginal host status of B. distachyon. P. brachypodii formed sporulating uredinia on the five Brachypodium species tested, and a range of reactions was observed. Surprisingly, the B. sylvaticum-derived rust isolates were more frequently pathogenic to B. distachyon than to their original host species. The B. distachyon diploid inbred lines, developed and distributed as reference material to the Brachypodium research community, include susceptible and resistant genotypes to at least three of the four P. brachypodii isolates tested. This creates the opportunity to use B. distachyon/P. brachypodii as a model pathosystem. In one B. distachyon accession, heavy infection by the loose smut fungus Ustilago bromivora occurred. That pathogen could also serve as a model pathogen of Brachypodium.
Collapse
Affiliation(s)
- Mirko Barbieri
- Dipartimento di Scienze Agrarie e degli Alimenti, Università degli studi di Modena e Reggio Emilia, Via Amendola 2, Pad. Besta, 42100 Reggio Emilia, Italy
| | - Thierry C Marcel
- Laboratory of Plant Breeding, Graduate school for Experimental Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; INRA-AgroParisTech, UMR1290 BIOGER-CPP, Avenue Lucien Brétignières BP01, 78850 Thiverval-Grignon, France
| | - Rients E Niks
- Laboratory of Plant Breeding, Graduate school for Experimental Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
42
|
Lloyd AJ, William Allwood J, Winder CL, Dunn WB, Heald JK, Cristescu SM, Sivakumaran A, Harren FJM, Mulema J, Denby K, Goodacre R, Smith AR, Mur LAJ. Metabolomic approaches reveal that cell wall modifications play a major role in ethylene-mediated resistance against Botrytis cinerea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:852-68. [PMID: 21575089 DOI: 10.1111/j.1365-313x.2011.04639.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In Arabidopsis, resistance to the necrotrophic fungus Botrytis cinerea is conferred by ethylene via poorly understood mechanisms. Metabolomic approaches compared the responses of the wild-type, the ethylene-insensitive mutant etr1-1, which showed increased susceptibility, and the constitutively active ethylene mutants ctr1-1 and eto2 both exhibited decreased susceptibility to B. cinerea. Fourier transform-infrared (FT-IR) spectroscopy demonstrated reproducible biochemical differences between treatments and genotypes. To identify discriminatory mass-to-charge ratios (m/z) associated with resistance, discriminant function analysis was employed on spectra derived from direct injection electrospray ionisation-mass spectrometry on the derived principal components of these data. Ethylene-modulated m/z were mapped onto Arabidopsis biochemical pathways and many were associated with hydroxycinnamate and monolignol biosynthesis, both linked to cell wall modification. A high-resolution linear triple quadrupole-Orbitrap hybrid system confirmed the identity of key metabolites in these pathways. The contribution of these pathways to defence against B. cinerea was validated through the use of multiple Arabidopsis mutants. The FT-IR microspectroscopy indicated that spatial accumulation of hydroxycinnamates and monolignols at the cell wall to confine disease was linked ot ethylene. These data demonstrate the power of metabolomic approaches in elucidating novel biological phenomena, especially when coupled to validation steps exploiting relevant mutant genotypes.
Collapse
Affiliation(s)
- Amanda J Lloyd
- Aberystwyth University, Institute of Biological, Environmental and Rural Sciences, Aberystwyth SY233DA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mur LAJ, Allainguillaume J, Catalán P, Hasterok R, Jenkins G, Lesniewska K, Thomas I, Vogel J. Exploiting the Brachypodium Tool Box in cereal and grass research. THE NEW PHYTOLOGIST 2011; 191:334-347. [PMID: 21623796 DOI: 10.1111/j.1469-8137.2011.03748.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
It is now a decade since Brachypodium distachyon (Brachypodium) was suggested as a model species for temperate grasses and cereals. Since then transformation protocols, large expressed sequence tag (EST) databases, tools for forward and reverse genetic screens, highly refined cytogenetic probes, germplasm collections and, recently, a complete genome sequence have been generated. In this review, we will describe the current status of the Brachypodium Tool Box and how it is beginning to be applied to study a range of biological traits. Further, as genomic analysis of larger cereals and forage grasses genomes are becoming easier, we will re-evaluate Brachypodium as a model species. We suggest that there remains an urgent need to employ reverse genetic and functional genomic approaches to identify the functionality of key genetic elements, which could be employed subsequently in plant breeding programmes; and a requirement for a Pooideae reference genome to aid assembling large pooid genomes. Brachypodium is an ideal system for functional genomic studies, because of its easy growth requirements, small physical stature, and rapid life cycle, coupled with the resources offered by the Brachypodium Tool Box.
Collapse
Affiliation(s)
- Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales SY23 3DA, UK
| | - Joel Allainguillaume
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales SY23 3DA, UK
| | - Pilar Catalán
- Department of Agriculture, University of Zaragoza, High Polytechnic School of Huesca, Ctra. Cuarte km 1, ES-22071 Huesca, Spain
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia, PL-40-032 Katowice, Poland
| | - Glyn Jenkins
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales SY23 3DA, UK
| | - Karolina Lesniewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia, PL-40-032 Katowice, Poland
| | - Ianto Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales SY23 3DA, UK
| | - John Vogel
- USDA ARS Western Regional Research Center, Albany, CA 94710 USA
| |
Collapse
|
44
|
|
45
|
|
46
|
Cheng J, Yuan C, Graham TL. Potential defense-related prenylated isoflavones in lactofen-induced soybean. PHYTOCHEMISTRY 2011; 72:875-81. [PMID: 21477824 DOI: 10.1016/j.phytochem.2011.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 01/24/2011] [Accepted: 03/10/2011] [Indexed: 05/03/2023]
Abstract
An integrated LC-MS and NMR metabolomic study was conducted to investigate metabolites whose formation was induced by lactofen (1), a soybean (Glycine max L.) disease resistance-inducing herbicide. First, LC-MS analyses of control and lactofen (1)-induced soybean extracts were performed. The LC-MS raw data were then processed by a custom designed bioinformatics program to detect the induced metabolites so formed. Finally, structures of unknown induced metabolites were determined on the basis of their 1D and 2D NMR spectroscopic data. Structure of two previously unreported compounds, 7,8-dihydroxy-4'-methoxy-3'-prenylisoflavone (2) and 7-hydroxy-4',8-dimethoxy-3'-prenylisoflavone (3) were elucidated together with four known prenylated compounds, 3'-prenyldaidzein (4), 8-prenyldaidzein (5), 3'-prenylgenistein (6), and 4-prenylcoumestrol (7). Compounds (2-6) are reported for the first time in soybean, as are the (13)C chemical shift assignments for compound (7). Formation of these six prenylated compounds was also induced by the primary defense glucan elicitor from the cell wall of the pathogen Phytophthora sojae (Kauf. and Gerde.), further suggesting a potential role in soybean defense. These results highlight the metabolic flexibility within soybean secondary product pathways and suggest that prenylation may be associated with defense responses. Moreover, this study demonstrates a promising future approach using metabolomics on elicitor-induced plants for discovery of unknown compounds even in relatively well studied plants.
Collapse
Affiliation(s)
- Jiye Cheng
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, United States
| | - Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, United States
| | - Terrence L Graham
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
47
|
Research Spotlight: Biospectroscopy at the Manchester Interdisciplinary Biocentre. Bioanalysis 2011; 3:1189-94. [DOI: 10.4155/bio.11.95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Manchester Interdisciplinary Biocentre (MIB) at The University of Manchester (UK), is a large research facility located in central Manchester. The research undertaken in the MIB is said to address a number of grand challenges, including industrial biotechnology, energy and biofuels, and biomedical healthcare. These are realized via four main research themes: biomolecular mechanism and catalysis; synthetic and chemical biology; systems biology; and enabling technologies. This research spotlight focuses on biospectroscopy in the MIB, namely vibrational spectroscopies. This is just one area of research across just three of the many research groups in the MIB, which could be said to exemplify the fundamental and applied aspects of this field, its interdisciplinary nature and also the way it realizes several of the research themes and grand challenges already mentioned, with cutting edge and innovative research.
Collapse
|
48
|
Allwood JW, De Vos RC, Moing A, Deborde C, Erban A, Kopka J, Goodacre R, Hall RD. Plant Metabolomics and Its Potential for Systems Biology Research. Methods Enzymol 2011; 500:299-336. [DOI: 10.1016/b978-0-12-385118-5.00016-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Abstract
Plant-microbe interactions-whether pathogenic or symbiotic-exert major influences on plant physiology and productivity. Analysis of such interactions represents a particular challenge to metabolomic approaches due to the intimate association between the interacting partners coupled with a general commonality of metabolites. We here describe an approach based on co-cultivation of Arabidopsis cell cultures and bacterial plant pathogens to assess the metabolomes of both interacting partners, which we refer to as dual metabolomics.
Collapse
|
50
|
Lowe RGT, Allwood JW, Galster AM, Urban M, Daudi A, Canning G, Ward JL, Beale MH, Hammond-Kosack KE. A combined ¹H nuclear magnetic resonance and electrospray ionization-mass spectrometry analysis to understand the basal metabolism of plant-pathogenic Fusarium spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1605-18. [PMID: 20718668 DOI: 10.1094/mpmi-04-10-0092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Many ascomycete Fusarium spp. are plant pathogens that cause disease on both cereal and noncereal hosts. Infection of wheat ears by Fusarium graminearum and F. culmorum typically results in bleaching and a subsequent reduction in grain yield. Also, a large proportion of the harvested grain can be spoiled when the colonizing Fusarium mycelia produce trichothecene mycotoxins, such as deoxynivalenol (DON). In this study, we have explored the intracellular polar metabolome of Fusarium spp. in both toxin-producing and nonproducing conditions in vitro. Four Fusarium spp., including nine well-characterized wild-type field isolates now used routinely in laboratory experimentation, were explored. A metabolic "triple-fingerprint" was recorded using (1)H nuclear magnetic resonance and direct-injection electrospray ionization-mass spectroscopy in both positive- and negative-ionization modes. These combined metabolomic analyses revealed that this technique is sufficient to resolve different wild-type isolates and different growth conditions. Principal components analysis was able to resolve the four species explored-F. graminearum, F. culmorum, F. pseudograminearum, and F. venenatum-as well as individual isolate differences from the same species. The external nutritional environment was found to have a far greater influence on the metabolome than the genotype of the organism. Conserved responses to DON-inducing medium were evident and included increased abundance of key compatible solutes, such as glycerol and mannitol. In addition, the concentration of γ-aminobutyric acid was elevated, indicating that the cellular nitrogen status may be affected by growth on DON-inducing medium.
Collapse
Affiliation(s)
- Rohan G T Lowe
- Centre for Sustainable Pest and Disease Management, Department of Plant Pathology and Microbiology, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|