1
|
Białoskórska M, Rucińska A, Boczkowska M. Molecular Mechanisms Underlying Freezing Tolerance in Plants: Implications for Cryopreservation. Int J Mol Sci 2024; 25:10110. [PMID: 39337593 PMCID: PMC11432106 DOI: 10.3390/ijms251810110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cryopreservation is a crucial technique for the long-term ex situ conservation of plant genetic resources, particularly in the context of global biodiversity decline. This process entails freezing biological material at ultra-low temperatures using liquid nitrogen, which effectively halts metabolic activities and preserves plant tissues over extended periods. Over the past seven decades, a plethora of techniques for cryopreserving plant materials have been developed. These include slow freezing, vitrification, encapsulation dehydration, encapsulation-vitrification, droplet vitrification, cryo-plates, and cryo-mesh techniques. A key challenge in the advancement of cryopreservation lies in our ability to understand the molecular processes underlying plant freezing tolerance. These mechanisms include cold acclimatization, the activation of cold-responsive genes through pathways such as the ICE-CBF-COR cascade, and the protective roles of transcription factors, non-coding RNAs, and epigenetic modifications. Furthermore, specialized proteins, such as antifreeze proteins (AFPs) and late embryogenesis abundant (LEA) proteins, play crucial roles in protecting plant cells during freezing and thawing. Despite its potential, cryopreservation faces significant challenges, particularly in standardizing protocols for a wide range of plant species, especially those from tropical and subtropical regions. This review highlights the importance of ongoing research and the integration of omics technologies to improve cryopreservation techniques, ensuring their effectiveness across diverse plant species and contributing to global efforts regarding biodiversity conservation.
Collapse
Affiliation(s)
- Magdalena Białoskórska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| | - Anna Rucińska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
- Botanical Garden, Center for Biological Diversity Conservation in Powsin, Polish Academy of Science, Prawdziwka 2, 02-976 Warszawa, Poland
| | - Maja Boczkowska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| |
Collapse
|
2
|
Jiang X, Yu S, Huang Y, Huang J, Liu S, Yang D, Fu J, He H, Fu H. Identification of the RRM1 gene family in rice ( Oryza sativa) and its response to rice blast. PeerJ 2024; 12:e17668. [PMID: 39076776 PMCID: PMC11285362 DOI: 10.7717/peerj.17668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/11/2024] [Indexed: 07/31/2024] Open
Abstract
To better understand RNA-binding proteins in rice, a comprehensive investigation was conducted on the RRM1 gene family of rice. It encompassed genome-wide identification and exploration of its role in rice blast resistance. The physicochemical properties of the rice OsRRM1 gene family were analyzed. There genes were also analyzed for their conserved domains, motifs, location information, gene structure, phylogenetic trees, collinearity, and cis-acting elements. Furthermore, alterations in the expression patterns of selected OsRRM1 genes were assessed using quantitative real-time PCR (qRT-PCR). A total of 212 members of the OsRRM1 gene family were identified, which were dispersed across 12 chromosomes. These genes all exhibit multiple exons and introns, all of which encompass the conserved RRM1 domain and share analogous motifs. This observation suggests a high degree of conservation within the encoded sequence domain of these genes. Phylogenetic analysis revealed the existence of five subfamilies within the OsRRM1 gene family. Furthermore, investigation of the promoter region identified cis-regulatory elements that are involved in nucleic acid binding and interaction with multiple transcription factors. By employing GO and KEGG analyses, four RRM1 genes were tentatively identified as crucial contributors to plant immunity, while the RRM1 gene family was also found to have a significant involvement in the complex of alternative splicing. The qRT-PCR results revealed distinct temporal changes in the expression patterns of OsRRM1 genes following rice blast infection. Additionally, gene expression analysis indicates that the majority of OsRRM1 genes exhibited constitutive expressions. These findings enrich our understanding of the OsRRM1 gene family. They also provide a foundation for further research on immune mechanisms rice and the management of rice blast.
Collapse
Affiliation(s)
- Xinlei Jiang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Shangwei Yu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Yuhan Huang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Junying Huang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Shaochun Liu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Dewei Yang
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou, Fu Jian, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| | - Haihui Fu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China
| |
Collapse
|
3
|
Nishanth MJ. Transcriptome meta-analysis-based identification of hub transcription factors and RNA-binding proteins potentially orchestrating gene regulatory cascades and crosstalk in response to abiotic stresses in Arabidopsis thaliana. J Appl Genet 2024; 65:255-269. [PMID: 38337133 DOI: 10.1007/s13353-024-00837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Deteriorating climatic conditions and increasing human population necessitate the development of robust plant varieties resistant to harsh environments. Manipulation of regulatory proteins such as transcription factors (TFs) and RNA-binding proteins (RBPs) would be a beneficial strategy in this regard. Further, understanding the complex interconnections between different classes of regulatory molecules would be essential for the identification of candidate genes/proteins for trait improvement. Most studies to date have analysed the roles of TFs or RBPs individually, in conferring stress resilience. However, it would be important to identify dominant/upstream TFs and RBPs inducing widespread transcriptomic alterations through other regulators (i.e., other TFs/RBPs targeted by the upstream regulators). To this end, the present study employed a transcriptome meta-analysis and computational approaches to obtain a comprehensive overview of regulatory interactions. This work identified dominant TFs and RBPs potentially influencing stress-mediated differential expression of other regulators, which could in turn influence gene expression, and consequently, physiological responses. Twenty transcriptomic studies [related to (i) UV radiation, (ii) wounding, (iii) salinity, (iv) cold, and (v) drought stresses in Arabidopsis thaliana] were analysed for differential gene expression, followed by the identification of differentially expressed TFs and RBPs. Subsequently, other TFs and RBPs which could be influencing these regulators were identified, and their interaction networks and hub nodes were analysed. As a result, an interacting module of Basic Leucine Zipper (bZIP) family TFs as well as Heterogeneous nuclear ribonucleoproteins (hnRNP) and Glycine-rich protein (GRP) family RBPs (among other TFs and RBPs) were shown to potentially influence the stress-induced differential expression of other TFs and RBPs under all the considered stress conditions. Some of the identified hub TFs and RBPs are known to be of major importance in orchestrating stress-induced transcriptomic changes influencing a variety of physiological processes from seed germination to senescence. This study highlighted the gene/protein candidates that could be considered for multiplexed genetic manipulation - a promising approach to develop robust, multi-stress-resilient plant varieties.
Collapse
Affiliation(s)
- M J Nishanth
- Deptartment of Biotechnology, School of Life Sciences, St Joseph's University, Bengaluru, India, 560027.
| |
Collapse
|
4
|
Li J, Zhao R, Liu J, Yao J, Ma S, Yin K, Zhang Y, Liu Z, Yan C, Zhao N, Zhou X, Chen S. Populus euphratica GRP2 Interacts with Target mRNAs to Negatively Regulate Salt Tolerance by Interfering with Photosynthesis, Na +, and ROS Homeostasis. Int J Mol Sci 2024; 25:2046. [PMID: 38396725 PMCID: PMC10888501 DOI: 10.3390/ijms25042046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The transcription of glycine-rich RNA-binding protein 2 (PeGRP2) transiently increased in the roots and shoots of Populus euphratica (a salt-resistant poplar) upon initial salt exposure and tended to decrease after long-term NaCl stress (100 mM, 12 days). PeGRP2 overexpression in the hybrid Populus tremula × P. alba '717-1B4' (P. × canescens) increased its salt sensitivity, which was reflected in the plant's growth and photosynthesis. PeGRP2 contains a conserved RNA recognition motif domain at the N-terminus, and RNA affinity purification (RAP) sequencing was developed to enrich the target mRNAs that physically interacted with PeGRP2 in P. × canescens. RAP sequencing combined with RT-qPCR revealed that NaCl decreased the transcripts of PeGRP2-interacting mRNAs encoding photosynthetic proteins, antioxidative enzymes, ATPases, and Na+/H+ antiporters in this transgenic poplar. Specifically, PeGRP2 negatively affected the stability of the target mRNAs encoding the photosynthetic proteins PETC and RBCMT; antioxidant enzymes SOD[Mn], CDSP32, and CYB1-2; ATPases AHA11, ACA8, and ACA9; and the Na+/H+ antiporter NHA1. This resulted in (i) a greater reduction in Fv/Fm, YII, ETR, and Pn; (ii) less pronounced activation of antioxidative enzymes; and (iii) a reduced ability to maintain Na+ homeostasis in the transgenic poplars during long-term salt stress, leading to their lowered ability to tolerate salinity stress.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Rui Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Jian Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Jun Yao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China;
| | - Siyuan Ma
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Kexin Yin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Ying Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Zhe Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Caixia Yan
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Nan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Xiaoyang Zhou
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| | - Shaoliang Chen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (J.L.); (R.Z.); (J.L.); (S.M.); (K.Y.); (Y.Z.); (Z.L.); (C.Y.); (N.Z.); (X.Z.)
| |
Collapse
|
5
|
Duan M, Zong M, Guo N, Han S, Wang G, Miao L, Liu F. Comprehensive Genome-Wide Identification of the RNA-Binding Glycine-Rich Gene Family and Expression Profiling under Abiotic Stress in Brassica oleracea. PLANTS (BASEL, SWITZERLAND) 2023; 12:3706. [PMID: 37960062 PMCID: PMC10649936 DOI: 10.3390/plants12213706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
The RNA-binding glycine-rich proteins (RBGs) of the glycine-rich protein family play vital roles in regulating gene expression both at the transcriptional and post-transcriptional levels. However, the members and functions in response to abiotic stresses of the RBG gene family remain unclear in Brassica oleracea. In this study, a total of 19 BoiRBG genes were identified through genome-wide analysis in broccoli. The characteristics of BoiRBG sequences and their evolution were examined. An analysis of synteny indicated that the expansion of the BoiRBG gene family was primarily driven by whole-genome duplication and tandem duplication events. The BoiRBG expression patterns revealed that these genes are involved in reaction to diverse abiotic stress conditions (i.e., simulated drought, salinity, heat, cold, and abscisic acid) and different organs. In the present research, the up-regulation of BoiRBGA13 expression was observed when subjected to both NaCl-induced and cold stress conditions in broccoli. Moreover, the overexpression of BoiRBGA13 resulted in a noteworthy reduction in taproot lengths under NaCl stress, as well as the inhibition of seed germination under cold stress in broccoli, indicating that RBGs play different roles under various stresses. This study provides insights into the evolution and functions of BoiRBG genes in Brassica oleracea and other Brassicaceae family plants.
Collapse
Affiliation(s)
- Mengmeng Duan
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; (M.D.); (M.Z.); (N.G.); (S.H.); (G.W.)
| | - Mei Zong
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; (M.D.); (M.Z.); (N.G.); (S.H.); (G.W.)
| | - Ning Guo
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; (M.D.); (M.Z.); (N.G.); (S.H.); (G.W.)
| | - Shuo Han
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; (M.D.); (M.Z.); (N.G.); (S.H.); (G.W.)
| | - Guixiang Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; (M.D.); (M.Z.); (N.G.); (S.H.); (G.W.)
| | - Liming Miao
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Fan Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; (M.D.); (M.Z.); (N.G.); (S.H.); (G.W.)
| |
Collapse
|
6
|
Le Provost G, Lalanne C, Lesur I, Louvet JM, Delzon S, Kremer A, Labadie K, Aury JM, Da Silva C, Moritz T, Plomion C. Oak stands along an elevation gradient have different molecular strategies for regulating bud phenology. BMC PLANT BIOLOGY 2023; 23:108. [PMID: 36814198 PMCID: PMC9948485 DOI: 10.1186/s12870-023-04069-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Global warming raises serious concerns about the persistence of species and populations locally adapted to their environment, simply because of the shift it produces in their adaptive landscape. For instance, the phenological cycle of tree species may be strongly affected by higher winter temperatures and late frost in spring. Given the variety of ecosystem services they provide, the question of forest tree adaptation has received increasing attention in the scientific community and catalyzed research efforts in ecology, evolutionary biology and functional genomics to study their adaptive capacity to respond to such perturbations. RESULTS In the present study, we used an elevation gradient in the Pyrenees Mountains to explore the gene expression network underlying dormancy regulation in natural populations of sessile oak stands sampled along an elevation cline and potentially adapted to different climatic conditions mainly driven by temperature. By performing analyses of gene expression in terminal buds we identified genes displaying significant dormancy, elevation or dormancy-by-elevation interaction effects. Our Results highlighted that low- and high-altitude populations have evolved different molecular strategies for minimizing late frost damage and maximizing the growth period, thereby increasing potentially their respective fitness in these contrasting environmental conditions. More particularly, population from high elevation overexpressed genes involved in the inhibition of cell elongation and delaying flowering time while genes involved in cell division and flowering, enabling buds to flush earlier were identified in population from low elevation. CONCLUSION Our study made it possible to identify key dormancy-by-elevation responsive genes revealing that the stands analyzed in this study have evolved distinct molecular strategies to adapt their bud phenology in response to temperature.
Collapse
Affiliation(s)
| | | | - Isabelle Lesur
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France
- Helix Venture, F-33700, Mérignac, France
| | | | | | | | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 87, Umeå, Sweden
| | | |
Collapse
|
7
|
Lu X, Yang Z, Song W, Miao J, Zhao H, Ji P, Li T, Si J, Yin Z, Jing M, Shen D, Dou D. The Phytophthora sojae effector PsFYVE1 modulates immunity-related gene expression by targeting host RZ-1A protein. PLANT PHYSIOLOGY 2023; 191:925-945. [PMID: 36461945 PMCID: PMC9922423 DOI: 10.1093/plphys/kiac552] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Oomycete pathogens secrete numerous effectors to manipulate plant immunity and promote infection. However, relatively few effector types have been well characterized. In this study, members of an FYVE domain-containing protein family that are highly expanded in oomycetes were systematically identified, and one secreted protein, PsFYVE1, was selected for further study. PsFYVE1 enhanced Phytophthora capsici infection in Nicotiana benthamiana and was necessary for Phytophthora sojae virulence. The FYVE domain of PsFYVE1 had PI3P-binding activity that depended on four conserved amino acid residues. Furthermore, PsFYVE1 targeted RNA-binding proteins RZ-1A/1B/1C in N. benthamiana and soybean (Glycine max), and silencing of NbRZ-1A/1B/1C genes attenuated plant immunity. NbRZ-1A was associated with the spliceosome complex that included three important components, glycine-rich RNA-binding protein 7 (NbGRP7), glycine-rich RNA-binding protein 8 (NbGRP8), and a specific component of the U1 small nuclear ribonucleoprotein complex (NbU1-70K). Notably, PsFYVE1 disrupted NbRZ-1A-NbGRP7 interaction. RNA-seq and subsequent experimental analysis demonstrated that PsFYVE1 and NbRZ-1A not only modulated pre-mRNA alternative splicing (AS) of the necrotic spotted lesions 1 (NbNSL1) gene, but also co-regulated transcription of hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (NbHCT), ethylene insensitive 2 (NbEIN2), and sucrose synthase 4 (NbSUS4) genes, which participate in plant immunity. Collectively, these findings indicate that the FYVE domain-containing protein family includes potential uncharacterized effector types and also highlight that plant pathogen effectors can regulate plant immunity-related genes at both AS and transcription levels to promote disease.
Collapse
Affiliation(s)
- Xinyu Lu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Zitong Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinlu Miao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hanqing Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiyun Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianli Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jierui Si
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Yin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
He D, Cai M, Liu M, Yang P. TMT-based quantitative proteomic and physiological analyses on lotus plumule of artificially aged seed in long-living sacred lotus Nelumbo nucifera. J Proteomics 2023; 270:104736. [PMID: 36174953 DOI: 10.1016/j.jprot.2022.104736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 02/01/2023]
Abstract
Seed longevity is important for the maintenance of seed nutritional quality, vigor, and germination potential during storage. Sacred lotus is known as one of the longest living seeds in the world and their ability to maintain longevity has been widely investigated. In this study, a suitable controlled deterioration treatment (CDT) method was first established to evaluate the vigor loss of lotus plumule (LP), and then the Tandem Mass Tags (TMT)-based proteomic analysis was performed on LP from the CDT-treated seed to quantitatively and qualitatively analyze the protein profile dynamic. In total, 4002 proteins were successfully quantified, of them, 558 differently accumulated proteins (DAPs) were identified. Protein processing and RNA-related proteins were found more easily to be affected by CDT, which may directly result in seed vigor loss. Meanwhile, CDT resulted in remarkable up-regulation of numerous proteins related to antioxidation, photosynthesis, RNA and DNA stability, starch and sucrose mobilization, and cell membrane and wall stability, which potentially played key roles in maintaining the lotus seed vigor under CDT. Histological and physiological analyses were also performed to verify some proteome results. This study provided both fundamental data and new insights to further uncover the secret of lotus seed longevity. SIGNIFICANCE: Seed aging affects the seed quality and can result in direct economic losses. The exceptional longevity of sacred lotus seed has attracted extensive attention. In this study, an optimized CDT method was used to mimic the natural aging process of sacred lotus seed, and based on TMT-based quantitative proteomic analysis on the LP profile of CDT-treated seeds, a series of differentially accumulation of specific proteins (DEPs) were revealed related to CDT resistance. Correspondingly, the physiological state and histological structure of the LP along with the CDT were detected to verify the proteome data. This study provided comprehensive information for the molecular basis of lotus seed aging analysis and facilitate to screen seed longevity related proteins for other plant species.
Collapse
Affiliation(s)
- Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Mengmeng Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Meihui Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
9
|
Bertini L, Proietti S, Fongaro B, Holfeld A, Picotti P, Falconieri GS, Bizzarri E, Capaldi G, Polverino de Laureto P, Caruso C. Environmental Signals Act as a Driving Force for Metabolic and Defense Responses in the Antarctic Plant Colobanthus quitensis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3176. [PMID: 36432905 PMCID: PMC9695728 DOI: 10.3390/plants11223176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
During evolution, plants have faced countless stresses of both biotic and abiotic nature developing very effective mechanisms able to perceive and counteract adverse signals. The biggest challenge is the ability to fine-tune the trade-off between plant growth and stress resistance. The Antarctic plant Colobanthus quitensis has managed to survive the adverse environmental conditions of the white continent and can be considered a wonderful example of adaptation to prohibitive conditions for millions of other plant species. Due to the progressive environmental change that the Antarctic Peninsula has undergone over time, a more comprehensive overview of the metabolic features of C. quitensis becomes particularly interesting to assess its ability to respond to environmental stresses. To this end, a differential proteomic approach was used to study the response of C. quitensis to different environmental cues. Many differentially expressed proteins were identified highlighting the rewiring of metabolic pathways as well as defense responses. Finally, a different modulation of oxidative stress response between different environmental sites was observed. The data collected in this paper add knowledge on the impact of environmental stimuli on plant metabolism and stress response by providing useful information on the trade-off between plant growth and defense mechanisms.
Collapse
Affiliation(s)
- Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy
| | - Aleš Holfeld
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Gloria Capaldi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | | | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
10
|
Cerca J, Petersen B, Lazaro-Guevara JM, Rivera-Colón A, Birkeland S, Vizueta J, Li S, Li Q, Loureiro J, Kosawang C, Díaz PJ, Rivas-Torres G, Fernández-Mazuecos M, Vargas P, McCauley RA, Petersen G, Santos-Bay L, Wales N, Catchen JM, Machado D, Nowak MD, Suh A, Sinha NR, Nielsen LR, Seberg O, Gilbert MTP, Leebens-Mack JH, Rieseberg LH, Martin MD. The genomic basis of the plant island syndrome in Darwin's giant daisies. Nat Commun 2022; 13:3729. [PMID: 35764640 PMCID: PMC9240058 DOI: 10.1038/s41467-022-31280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The repeated, rapid and often pronounced patterns of evolutionary divergence observed in insular plants, or the ‘plant island syndrome’, include changes in leaf phenotypes, growth, as well as the acquisition of a perennial lifestyle. Here, we sequence and describe the genome of the critically endangered, Galápagos-endemic species Scalesia atractyloides Arnot., obtaining a chromosome-resolved, 3.2-Gbp assembly containing 43,093 candidate gene models. Using a combination of fossil transposable elements, k-mer spectra analyses and orthologue assignment, we identify the two ancestral genomes, and date their divergence and the polyploidization event, concluding that the ancestor of all extant Scalesia species was an allotetraploid. There are a comparable number of genes and transposable elements across the two subgenomes, and while their synteny has been mostly conserved, we find multiple inversions that may have facilitated adaptation. We identify clear signatures of selection across genes associated with vascular development, growth, adaptation to salinity and flowering time, thus finding compelling evidence for a genomic basis of the island syndrome in one of Darwin’s giant daisies. Many island plant species share a syndrome of characteristic phenotype and life history. Cerca et al. find the genomic basis of the plant island syndrome in one of Darwin’s giant daisies, while separating ancestral genomes in a chromosome-resolved polyploid assembly.
Collapse
Affiliation(s)
- José Cerca
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Bent Petersen
- Centre for Evolutionary Hologenomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen, Denmark.,Centre of Excellence for Omics-Driven Computational Biodiscovery, Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - José Miguel Lazaro-Guevara
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Angel Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Siri Birkeland
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Joel Vizueta
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Siyu Li
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Qionghou Li
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-095, Coimbra, Portugal
| | - Chatchai Kosawang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark
| | - Patricia Jaramillo Díaz
- Estación Científica Charles Darwin, Fundación Charles Darwin, Santa Cruz, Galápagos, Ecuador.,Department of Botany and Plant Physiology, University of Malaga, Malaga, Spain
| | - Gonzalo Rivas-Torres
- Colegio de Ciencias Biológicas y Ambientales COCIBA & Extensión Galápagos, Universidad San Francisco de Quito USFQ, Quito, 170901, Ecuador.,Galapagos Science Center, USFQ, UNC Chapel Hill, San Cristobal, Galapagos, Ecuador.,Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Courtesy Faculty, Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL, 32611, USA
| | | | - Pablo Vargas
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - Ross A McCauley
- Department of Biology, Fort Lewis College, Durango, CO, 81301, USA
| | - Gitte Petersen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Luisa Santos-Bay
- Centre for Evolutionary Hologenomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen, Denmark
| | - Nathan Wales
- Department of Archaeology, University of York, York, UK
| | - Julian M Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Daniel Machado
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | | | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, NR4 7TU, Norwich, UK.,Department of Organismal Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, 75236, Uppsala, Sweden
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Lene R Nielsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark
| | - Ole Seberg
- The Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Evolutionary Hologenomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen, Denmark
| | | | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
11
|
Hwarari D, Guan Y, Ahmad B, Movahedi A, Min T, Hao Z, Lu Y, Chen J, Yang L. ICE-CBF-COR Signaling Cascade and Its Regulation in Plants Responding to Cold Stress. Int J Mol Sci 2022; 23:ijms23031549. [PMID: 35163471 PMCID: PMC8835792 DOI: 10.3390/ijms23031549] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022] Open
Abstract
Cold stress limits plant geographical distribution and influences plant growth, development, and yields. Plants as sessile organisms have evolved complex biochemical and physiological mechanisms to adapt to cold stress. These mechanisms are regulated by a series of transcription factors and proteins for efficient cold stress acclimation. It has been established that the ICE-CBF-COR signaling pathway in plants regulates how plants acclimatize to cold stress. Cold stress is perceived by receptor proteins, triggering signal transduction, and Inducer of CBF Expression (ICE) genes are activated and regulated, consequently upregulating the transcription and expression of the C-repeat Binding Factor (CBF) genes. The CBF protein binds to the C-repeat/Dehydration Responsive Element (CRT/DRE), a homeopathic element of the Cold Regulated genes (COR gene) promoter, activating their transcription. Transcriptional regulations and post-translational modifications regulate and modify these entities at different response levels by altering their expression or activities in the signaling cascade. These activities then lead to efficient cold stress tolerance. This paper contains a concise summary of the ICE-CBF-COR pathway elucidating on the cross interconnections with other repressors, inhibitors, and activators to induce cold stress acclimation in plants.
Collapse
Affiliation(s)
- Delight Hwarari
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Yuanlin Guan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Baseer Ahmad
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Tian Min
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Zhaodong Hao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Z.H.); (Y.L.)
| | - Ye Lu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Z.H.); (Y.L.)
| | - Jinhui Chen
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Z.H.); (Y.L.)
- Correspondence: (J.C.); (L.Y.)
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
- Correspondence: (J.C.); (L.Y.)
| |
Collapse
|
12
|
Di Silvestre D, Passignani G, Rossi R, Ciuffo M, Turina M, Vigani G, Mauri PL. Presence of a Mitovirus Is Associated with Alteration of the Mitochondrial Proteome, as Revealed by Protein–Protein Interaction (PPI) and Co-Expression Network Models in Chenopodium quinoa Plants. BIOLOGY 2022; 11:biology11010095. [PMID: 35053093 PMCID: PMC8773257 DOI: 10.3390/biology11010095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Plants often harbor persistent plant virus infection transmitted only vertically through seeds, resulting in no obvious symptoms (cryptic infections). Several studies have shown that such cryptic infections provide resilience against abiotic (and biotic) stress. We have recently discovered a new group of cryptic plant viruses infecting mitochondria (plant mitovirus). Mitochondria are cellular organelles displaying a pivotal role in protecting cells from the stress of nature . Here, we look at the proteomic alterations caused by the mitovirus cryptic infection of Chenopodium quinoa by Systems Biology approaches allowing one to evaluate data at holistic level. Quinoa is a domesticated plant species with many exciting features of abiotic stress resistance, and it is distinguished by its exceptional nutritional characteristics, such as the content and quality of proteins, minerals, lipids, and tocopherols. These features determined the growing interest for the quinoa crop by the scientific community and international organizations since they provide opportunities to produce high-value grains in arid, high-salt and high-UV agroecological environments. We discovered that quinoa lines hosting mitovirus activate some metabolic processes that might help them face drought. These findings present a new perspective for breeding crop plants through the augmented genome provided by accessory cryptic viruses to be investigated in the future. Abstract Plant mitoviruses belong to Mitoviridae family and consist of positive single-stranded RNA genomes replicating exclusively in host mitochondria. We previously reported the biological characterization of a replicating plant mitovirus, designated Chenopodium quinoa mitovirus 1 (CqMV1), in some Chenopodium quinoa accessions. In this study, we analyzed the mitochondrial proteome from leaves of quinoa, infected and not infected by CqMV1. Furthermore, by protein–protein interaction and co-expression network models, we provided a system perspective of how CqMV1 affects mitochondrial functionality. We found that CqMV1 is associated with changes in mitochondrial protein expression in a mild but well-defined way. In quinoa-infected plants, we observed up-regulation of functional modules involved in amino acid catabolism, mitochondrial respiratory chain, proteolysis, folding/stress response and redox homeostasis. In this context, some proteins, including BCE2 (lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex), DELTA-OAT (ornithine aminotransferase) and GR-RBP2 (glycine-rich RNA-binding protein 2) were interesting because all up-regulated and network hubs in infected plants; together with other hubs, including CAT (catalase) and APX3 (L-ascorbate peroxidase 3), they play a role in stress response and redox homeostasis. These proteins could be related to the higher tolerance degree to drought we observed in CqMV1-infected plants. Although a specific causative link could not be established by our experimental approach at this stage, the results suggest a new mechanistic hypothesis that demands further in-depth functional studies.
Collapse
Affiliation(s)
- Dario Di Silvestre
- Laboratory of Proteomics and Metabolomics, Institute for Biomedical Technologies (ITB), Department of Biomedical Sciences, National Research Council (CNR), 20054 Milan, Italy; (G.P.); (R.R.); (P.L.M.)
- Correspondence: (D.D.S.); (G.V.)
| | - Giulia Passignani
- Laboratory of Proteomics and Metabolomics, Institute for Biomedical Technologies (ITB), Department of Biomedical Sciences, National Research Council (CNR), 20054 Milan, Italy; (G.P.); (R.R.); (P.L.M.)
| | - Rossana Rossi
- Laboratory of Proteomics and Metabolomics, Institute for Biomedical Technologies (ITB), Department of Biomedical Sciences, National Research Council (CNR), 20054 Milan, Italy; (G.P.); (R.R.); (P.L.M.)
| | - Marina Ciuffo
- Institute for Sustainable Plant Protection, Department of Bio-Food Sciences, National Research Council (CNR), 10135 Turin, Italy; (M.C.); (M.T.)
| | - Massimo Turina
- Institute for Sustainable Plant Protection, Department of Bio-Food Sciences, National Research Council (CNR), 10135 Turin, Italy; (M.C.); (M.T.)
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, 10135 Turin, Italy
- Correspondence: (D.D.S.); (G.V.)
| | - Pier Luigi Mauri
- Laboratory of Proteomics and Metabolomics, Institute for Biomedical Technologies (ITB), Department of Biomedical Sciences, National Research Council (CNR), 20054 Milan, Italy; (G.P.); (R.R.); (P.L.M.)
| |
Collapse
|
13
|
Yan Y, Gan J, Tao Y, Okita TW, Tian L. RNA-Binding Proteins: The Key Modulator in Stress Granule Formation and Abiotic Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:882596. [PMID: 35783947 PMCID: PMC9240754 DOI: 10.3389/fpls.2022.882596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
To cope with abiotic environmental stress, plants rapidly change their gene expression transcriptionally and post-transcriptionally, the latter by translational suppression of selected proteins and the assembly of cytoplasmic stress granules (SGs) that sequester mRNA transcripts. RNA-binding proteins (RBPs) are the major players in these post-transcriptional processes, which control RNA processing in the nucleus, their export from the nucleus, and overall RNA metabolism in the cytoplasm. Because of their diverse modular domain structures, various RBP types dynamically co-assemble with their targeted RNAs and interacting proteins to form SGs, a process that finely regulates stress-responsive gene expression. This review summarizes recent findings on the involvement of RBPs in adapting plants to various abiotic stresses via modulation of specific gene expression events and SG formation. The relationship of these processes with the stress hormone abscisic acid (ABA) is discussed.
Collapse
Affiliation(s)
- Yanyan Yan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Jianghuang Gan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Yilin Tao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- *Correspondence: Thomas W. Okita,
| | - Li Tian
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- Li Tian,
| |
Collapse
|
14
|
Elnaggar A, Mosa KA, Ramamoorthy K, El-Keblawy A, Navarro T, Soliman SSM. De novo transcriptome sequencing, assembly, and gene expression profiling of a salt-stressed halophyte (Salsola drummondii) from a saline habitat. PHYSIOLOGIA PLANTARUM 2021; 173:1695-1714. [PMID: 34741316 DOI: 10.1111/ppl.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/30/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Salsola drummondii is a perennial habitat-indifferent halophyte growing in saline and nonsaline habitats of the Arabian hyperarid deserts. It offers an invaluable opportunity to examine the molecular mechanisms of salt tolerance. The present study was conducted to elucidate these mechanisms through transcriptome profiling of seedlings grown from seeds collected in a saline habitat. The Illumina Hiseq 2500 platform was employed to sequence cDNA libraries prepared from shoots and roots of nonsaline-treated plants (controls) and plants treated with 1200 mM NaCl. Transcriptomic comparison between salt-treated and control samples resulted in 17,363 differentially expressed genes (DEGs), including 12,000 upregulated genes (7870 in roots, 4130 in shoots) and 5363 downregulated genes (4258 in roots and 1105 in shoots). The majority of identified DEGs are known to be involved in transcription regulation (79), signal transduction (82), defense metabolism (101), transportation (410), cell wall metabolism (27), regulatory processes (392), respiration (85), chaperoning (9), and ubiquitination (98) during salt tolerance. This study identified potential genes associated with the salt tolerance of S. drummondii and demonstrated that this tolerance may depend on the induction of certain genes in shoot and root tissues. These gene expressions were validated using reverse-transcription quantitative PCR, the results of which were consistent with transcriptomics results. To the best of our knowledge, this is the first study providing genetic information on salt tolerance mechanisms in S. drummondii.
Collapse
Affiliation(s)
- Attiat Elnaggar
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
- Departmento de Botanica y Fisiologia Vegetal, Universidad de Málaga, Málaga, Spain
| | - Kareem A Mosa
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Kalidoss Ramamoorthy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Department of Biology, Faculty of Science, Al-Arish University, Egypt
| | - Teresa Navarro
- Departmento de Botanica y Fisiologia Vegetal, Universidad de Málaga, Málaga, Spain
| | - Sameh S M Soliman
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, UAE
| |
Collapse
|
15
|
Tang Y, Huang C, Li Y, Wang Y, Zhang C. Genome-wide identification, phylogenetic analysis, and expression profiling of glycine-rich RNA-binding protein (GRPs) genes in seeded and seedless grapes ( Vitis vinifera). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2231-2243. [PMID: 34744363 PMCID: PMC8526680 DOI: 10.1007/s12298-021-01082-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Glycine-rich RNA-binding proteins (GRPs) are essential for many physiological and biochemical processes in plants, especially the response to environmental stresses. GRPs exist widely in angiosperms and gymnosperms plant species; however, their roles in Vitis vinifera are still poorly understood. To characterize VviGRP gene family, we performed a genomic survey, bioinformatics and expression analysis of VviGRPs in grape. We identified nineteen VviGRPs gene family members. The result of bioinformatics analysis showed their motif distribution, gene structure characteristics and chromosomal locations. Then we carried out synteny and phylogenetic analysis to study the origin and evolutionary relationship of GRPs. Tissue-specific expression analysis showed that VviGRPs have different expression patterns. Meanwhile, we studied expression profiles of seventeen ovule-expressed genes during seed development of stenospermocarpic seedless and seeded grapes, and the result showed that most of them have much higher relative expression levels in stenospermocarpic seedless grapes than that of seeded one before 25 days after full bloom (DAFB). It is suggested that VviGRPs may involve in the seed development process. Taken together, our research indicated that VviGRPs are related to seed development and will be beneficial for further investigations into the seed abortion mechanism under stenospermocarpic grapes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01082-3.
Collapse
Affiliation(s)
- Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| | - Congbo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, People’s Republic of China, Yangling, 712100 Shaanxi China
| |
Collapse
|
16
|
Searching for G-Quadruplex-Binding Proteins in Plants: New Insight into Possible G-Quadruplex Regulation. BIOTECH 2021; 10:biotech10040020. [PMID: 35822794 PMCID: PMC9245464 DOI: 10.3390/biotech10040020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
G-quadruplexes are four-stranded nucleic acid structures occurring in the genomes of all living organisms and viruses. It is increasingly evident that these structures play important molecular roles; generally, by modulating gene expression and overall genome integrity. For a long period, G-quadruplexes have been studied specifically in the context of human promoters, telomeres, and associated diseases (cancers, neurological disorders). Several of the proteins for binding G-quadruplexes are known, providing promising targets for influencing G-quadruplex-related processes in organisms. Nonetheless, in plants, only a small number of G-quadruplex binding proteins have been described to date. Thus, we aimed to bioinformatically inspect the available protein sequences to find the best protein candidates with the potential to bind G-quadruplexes. Two similar glycine and arginine-rich G-quadruplex-binding motifs were described in humans. The first is the so-called “RGG motif”-RRGDGRRRGGGGRGQGGRGRGGGFKG, and the second (which has been recently described) is known as the “NIQI motif”-RGRGRGRGGGSGGSGGRGRG. Using this general knowledge, we searched for plant proteins containing the above mentioned motifs, using two independent approaches (BLASTp and FIMO scanning), and revealed many proteins containing the G4-binding motif(s). Our research also revealed the core proteins involved in G4 folding and resolving in green plants, algae, and the key plant model organism, Arabidopsis thaliana. The discovered protein candidates were annotated using STRINGdb and sorted by their molecular and physiological roles in simple schemes. Our results point to the significant role of G4-binding proteins in the regulation of gene expression in plants.
Collapse
|
17
|
Li M, Zhang C, Hou L, Yang W, Liu S, Pang X, Li Y. Multiple responses contribute to the enhanced drought tolerance of the autotetraploid Ziziphus jujuba Mill. var. spinosa. Cell Biosci 2021; 11:119. [PMID: 34193297 PMCID: PMC8243571 DOI: 10.1186/s13578-021-00633-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Polyploid plants often exhibit enhanced stress tolerance. The underlying physiological and molecular bases of such mechanisms remain elusive. Here, we characterized the drought tolerance of autotetraploid sour jujube at phenotypic, physiological and molecular levels. Results The study findings showed that the autotetraploid sour jujube exhibited a superior drought tolerance and enhanced regrowth potential after dehydration in comparison with the diploid counterpart. Under drought stress, more differentially expressed genes (DEGs) were detected in autotetraploid sour jujube and the physiological responses gradually triggered important functions. Through GO enrichment analysis, many DEGs between the diploid and autotetraploid sour jujube after drought-stress exposure were annotated to the oxidation–reduction process, photosystem, DNA binding transcription factor activity and oxidoreductase activity. Six reactive oxygen species scavenging-related genes were specifically differentially expressed and the larger positive fold-changes of the DEGs involved in glutathione metabolism were detected in autotetraploid. Consistently, the lower O2− level and malonaldehyde (MDA) content and higher antioxidant enzymes activity were detected in the autotetraploid under drought-stress conditions. In addition, DEGs in the autotetraploid after stress exposure were significantly enriched in anthocyanin biosynthesis, DNA replication, photosynthesis and plant hormone, including auxin, abscisic acid and gibberellin signal-transduction pathways. Under osmotic stress conditions, genes associated with the synthesis and transport of osmotic regulators including anthocyanin biosynthesis genes were differentially expressed, and the soluble sugar, soluble protein and proline contents were significantly higher in the autotetraploid. The higher chlorophyll content and DEGs enriched in photosynthesis suggest that the photosynthetic system in the autotetraploid was enhanced compared with diploid during drought stress. Moreover, several genes encoding transcription factors (TFs) including GRAS, Bhlh, MYB, WRKY and NAC were induced specifically or to higher levels in the autotetraploid under drought-stress conditions, and hub genes, LOC107403632, LOC107422279, LOC107434947, LOC107412673 and LOC107432609, related to 18 up-regulated transcription factors in the autotetraploid compared with the diploid were identified. Conclusion Taken together, multiple responses contribute to the enhanced drought tolerance of autotetraploid sour jujube. This study could provide an important basis for elucidating the mechanism of tolerance variation after the polyploidization of trees. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00633-1.
Collapse
Affiliation(s)
- Meng Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chenxing Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lu Hou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weicong Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Songshan Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoming Pang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yingyue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China. .,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China. .,College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
18
|
Ma L, Cheng K, Li J, Deng Z, Zhang C, Zhu H. Roles of Plant Glycine-Rich RNA-Binding Proteins in Development and Stress Responses. Int J Mol Sci 2021; 22:ijms22115849. [PMID: 34072567 PMCID: PMC8198583 DOI: 10.3390/ijms22115849] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023] Open
Abstract
In recent years, much progress has been made in elucidating the functional roles of plant glycine-rich RNA-binding proteins (GR-RBPs) during development and stress responses. Canonical GR-RBPs contain an RNA recognition motif (RRM) or a cold-shock domain (CSD) at the N-terminus and a glycine-rich domain at the C-terminus, which have been associated with several different RNA processes, such as alternative splicing, mRNA export and RNA editing. However, many aspects of GR-RBP function, the targeting of their RNAs, interacting proteins and the consequences of the RNA target process are not well understood. Here, we discuss recent findings in the field, newly defined roles for GR-RBPs and the actions of GR-RBPs on target RNA metabolism.
Collapse
Affiliation(s)
- Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Zhiqi Deng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, China;
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.M.); (K.C.); (J.L.); (Z.D.)
- Correspondence:
| |
Collapse
|
19
|
Kondhare KR, Patil NS, Banerjee AK. A historical overview of long-distance signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4218-4236. [PMID: 33682884 DOI: 10.1093/jxb/erab048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Be it a small herb or a large tree, intra- and intercellular communication and long-distance signalling between distant organs are crucial for every aspect of plant development. The vascular system, comprising xylem and phloem, acts as a major conduit for the transmission of long-distance signals in plants. In addition to expanding our knowledge of vascular development, numerous reports in the past two decades revealed that selective populations of RNAs, proteins, and phytohormones function as mobile signals. Many of these signals were shown to regulate diverse physiological processes, such as flowering, leaf and root development, nutrient acquisition, crop yield, and biotic/abiotic stress responses. In this review, we summarize the significant discoveries made in the past 25 years, with emphasis on key mobile signalling molecules (mRNAs, proteins including RNA-binding proteins, and small RNAs) that have revolutionized our understanding of how plants integrate various intrinsic and external cues in orchestrating growth and development. Additionally, we provide detailed insights on the emerging molecular mechanisms that might control the selective trafficking and delivery of phloem-mobile RNAs to target tissues. We also highlight the cross-kingdom movement of mobile signals during plant-parasite relationships. Considering the dynamic functions of these signals, their implications in crop improvement are also discussed.
Collapse
Affiliation(s)
- Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL) Pune, Maharashtra, India
| | - Nikita S Patil
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| | - Anjan K Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Maharashtra, India
| |
Collapse
|
20
|
Shim JS, Park SH, Lee DK, Kim YS, Park SC, Redillas MCFR, Seo JS, Kim JK. The Rice GLYCINE-RICH PROTEIN 3 Confers Drought Tolerance by Regulating mRNA Stability of ROS Scavenging-Related Genes. RICE (NEW YORK, N.Y.) 2021; 14:31. [PMID: 33742286 PMCID: PMC7979854 DOI: 10.1186/s12284-021-00473-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/10/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plant glycine-rich proteins are categorized into several classes based on their protein structures. The glycine-rich RNA binding proteins (GRPs) are members of class IV subfamily possessing N-terminus RNA-recognition motifs (RRMs) and proposed to be involved in post-transcriptional regulation of its target transcripts. GRPs are involved in developmental process and cellular stress responses, but the molecular mechanisms underlying these regulations are still elusive. RESULTS Here, we report the functional characterization of rice GLYCINE-RICH PROTEIN 3 (OsGRP3) and its physiological roles in drought stress response. Both drought stress and ABA induce the expression of OsGRP3. Transgenic plants overexpressing OsGRP3 (OsGRP3OE) exhibited tolerance while knock-down plants (OsGRP3KD) were susceptible to drought compared to the non-transgenic control. In vivo, subcellular localization analysis revealed that OsGRP3-GFP was transported from cytoplasm/nucleus into cytoplasmic foci following exposure to ABA and mannitol treatments. Comparative transcriptomic analysis between OsGRP3OE and OsGRP3KD plants suggests that OsGRP3 is involved in the regulation of the ROS related genes. RNA-immunoprecipitation analysis revealed the associations of OsGRP3 with PATHOGENESIS RELATED GENE 5 (PR5), METALLOTHIONEIN 1d (MT1d), 4,5-DOPA-DIOXYGENASE (DOPA), and LIPOXYGENASE (LOX) transcripts. The half-life analysis showed that PR5 transcripts decayed slower in OsGRP3OE but faster in OsGRP3KD, while MT1d and LOX transcripts decayed faster in OsGRP3OE but slower in OsGRP3KD plants. H2O2 accumulation was reduced in OsGRP3OE and increased in OsGRP3KD plants compared to non-transgenic plants (NT) under drought stress. CONCLUSION OsGRP3 plays a positive regulator in rice drought tolerance and modulates the transcript level and mRNA stability of stress-responsive genes, including ROS-related genes. Moreover, OsGRP3 contributes to the reduction of ROS accumulation during drought stress. Our results suggested that OsGRP3 alleviates ROS accumulation by regulating ROS-related genes' mRNA stability under drought stress, which confers drought tolerance.
Collapse
Affiliation(s)
- Jae Sung Shim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Su-Hyun Park
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Dong-Keun Lee
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- E GREEN GLOBAL, Gunpo, 15843, South Korea
| | - Youn Shic Kim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, 24341, South Korea
| | - Soo-Chul Park
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, South Korea
| | | | - Jun Sung Seo
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
| | - Ju-Kon Kim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
| |
Collapse
|
21
|
Lou L, Ding L, Wang T, Xiang Y. Emerging Roles of RNA-Binding Proteins in Seed Development and Performance. Int J Mol Sci 2020; 21:ijms21186822. [PMID: 32957608 PMCID: PMC7555721 DOI: 10.3390/ijms21186822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 02/01/2023] Open
Abstract
Seed development, dormancy, and germination are key physiological events that are not only important for seed generation, survival, and dispersal, but also contribute to agricultural production. RNA-binding proteins (RBPs) directly interact with target mRNAs and fine-tune mRNA metabolism by governing post-transcriptional regulation, including RNA processing, intron splicing, nuclear export, trafficking, stability/decay, and translational control. Recent studies have functionally characterized increasing numbers of diverse RBPs and shown that they participate in seed development and performance, providing significant insight into the role of RBP-mRNA interactions in seed processes. In this review, we discuss recent research progress on newly defined RBPs that have crucial roles in RNA metabolism and affect seed development, dormancy, and germination.
Collapse
|
22
|
Lu X, Cheng Y, Gao M, Li M, Xu X. Molecular Characterization, Expression Pattern and Function Analysis of Glycine-Rich Protein Genes Under Stresses in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). Front Genet 2020; 11:774. [PMID: 32849790 PMCID: PMC7396569 DOI: 10.3389/fgene.2020.00774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/30/2020] [Indexed: 11/15/2022] Open
Abstract
Plant Glycine-rich proteins (GRP), a superfamily with a glycine-rich domain, play an important role in various stresses such as high or low temperature stress and drought stress. GRP genes have been studied in many plants, but seldom in Chinese cabbage (Brassica rapa L. ssp. pekinensis). In this study, a total of 64 GRP genes were identified in Chinese cabbage by homology comparative analysis. The physical and chemical characteristics predicted by ProtParam tool revealed that 62.5% of BrGRPs were alkaline, 53.1% were stable, and 79.7% were hydrophilic. Conserved domain analysis by MEME and TBtools showed that 64 BrGRPs contained 20 of the same conserved motifs, based on which BrGRPs were classified into five main classes and four subclasses in class IV to clarify their evolutionary relationship. Our results demonstrated that The BrGRP genes were located on ten chromosomes and in three different subgenomes of Chinese cabbage, and 43 pairs of orthologous GRP genes were found between Chinese cabbage and Arabidopsis. According to the transcriptome data, 64 BrGRP genes showed abnormal expression under high temperature stress, 52 under low temperature stress, 39 under drought stress, and 23 responses to soft rot. A large number of stress-related cis-acting elements, such as DRE, MYC, MYB, and ABRE were found in their promoter regions by PlantCare, which corresponded with differential expressions. Two BrGRP genes-w546 (Bra030284) and w1409 (Bra014000), both belonging to the subfamily Subclass IVa RBP-GRP (RNA binding protein-glycine rich protein), were up-regulated under 150 mmol⋅L-1 NaCl stress in Chinese cabbage. However, the overexpressed w546 gene could significantly inhibit seed germination, while w1409 significantly accelerated seed germination under 100 mmol⋅L-1 NaCl or 300 mmol⋅L-1 mannitol stresses. In short, most BrGRP genes showed abnormal expression under adversity stress, and some were involved in multiple stress responses, suggesting a potential capacity to resist multiple biotic and abiotic stresses, which is worthy of further study. Our study provides a systematic investigation of the molecular characteristics and expression patterns of BrGRP genes and promotes for further work on improving stress resistance of Chinese cabbage.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoyong Xu
- College of Horticulture, Shanxi Agricultural University; and Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, Taigu, China
| |
Collapse
|
23
|
Li J, Cui J, Cheng D, Dai C, Liu T, Wang C, Luo C. iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots. BMC PLANT BIOLOGY 2020; 20:347. [PMID: 32698773 PMCID: PMC7376716 DOI: 10.1186/s12870-020-02552-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/15/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Salinity is one of the most serious threats to world agriculture. An important sugar-yielding crop sugar beet, which shows some tolerance to salt via a mechanism that is poorly understood. Proteomics data can provide important clues that can contribute to finally understand this mechanism. RESULTS Differentially abundant proteins (DAPs) in sugar beet under salt stress treatment were identified in leaves (70 DAPs) and roots (76 DAPs). Functions of these DAPs were predicted, and included metabolism and cellular, environmental information and genetic information processing. We hypothesize that these processes work in concert to maintain cellular homeostasis. Some DAPs are closely related to salt resistance, such as choline monooxygenase, betaine aldehyde dehydrogenase, glutathione S-transferase (GST) and F-type H+-transporting ATPase. The expression pattern of ten DAPs encoding genes was consistent with the iTRAQ data. CONCLUSIONS During sugar beet adaptation to salt stress, leaves and roots cope using distinct mechanisms of molecular metabolism regulation. This study provides significant insights into the molecular mechanism underlying the response of higher plants to salt stress, and identified some candidate proteins involved in salt stress countermeasures.
Collapse
Affiliation(s)
- Junliang Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jie Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Dayou Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Cuihong Dai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Tianjiao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Congyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chengfei Luo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
24
|
Wang M, Zang L, Jiao F, Perez-Garcia MD, Ogé L, Hamama L, Le Gourrierec J, Sakr S, Chen J. Sugar Signaling and Post-transcriptional Regulation in Plants: An Overlooked or an Emerging Topic? FRONTIERS IN PLANT SCIENCE 2020; 11:578096. [PMID: 33224165 PMCID: PMC7674178 DOI: 10.3389/fpls.2020.578096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/02/2020] [Indexed: 05/21/2023]
Abstract
Plants are autotrophic organisms that self-produce sugars through photosynthesis. These sugars serve as an energy source, carbon skeletons, and signaling entities throughout plants' life. Post-transcriptional regulation of gene expression plays an important role in various sugar-related processes. In cells, it is regulated by many factors, such as RNA-binding proteins (RBPs), microRNAs, the spliceosome, etc. To date, most of the investigations into sugar-related gene expression have been focused on the transcriptional level in plants, while only a few studies have been conducted on post-transcriptional mechanisms. The present review provides an overview of the relationships between sugar and post-transcriptional regulation in plants. It addresses the relationships between sugar signaling and RBPs, microRNAs, and mRNA stability. These new items insights will help to reach a comprehensive understanding of the diversity of sugar signaling regulatory networks, and open onto new investigations into the relevance of these regulations for plant growth and development.
Collapse
Affiliation(s)
- Ming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Lili Zang
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | | | - Laurent Ogé
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Latifa Hamama
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - José Le Gourrierec
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Soulaiman Sakr
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
- Soulaiman Sakr,
| | - Jingtang Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Jingtang Chen,
| |
Collapse
|
25
|
Feng K, Liu JX, Xing GM, Sun S, Li S, Duan AQ, Wang F, Li MY, Xu ZS, Xiong AS. Selection of appropriate reference genes for RT-qPCR analysis under abiotic stress and hormone treatment in celery. PeerJ 2019; 7:e7925. [PMID: 31660275 PMCID: PMC6815649 DOI: 10.7717/peerj.7925] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/20/2019] [Indexed: 12/30/2022] Open
Abstract
Celery is one of the most important vegetable crop and its yield and quality is influenced by many environmental factors. Researches on gene expression not only help to unravel the molecular regulatory mechanism but also identify the key genes in the biological response. RT-qPCR is a commonly used technology to quantify the gene expression. Selecting an appropriate reference gene is an effective approach to improve the accuracy of RT-qPCR assay. To our knowledge, the evaluation of reference genes under different treatments in celery has not been reported yet. In this study, the expression stabilities of eight candidate reference genes (ACTIN, eIF-4α , GAPDH, TBP, TUB-A, UBC, TUB-B, and EF-1α ) under abiotic stresses (heat, cold, drought, and salt) and hormone treatments (SA, MeJA, GA, and ABA) were detected. The expression stabilities of candidate genes were compared and ranked by geNorm, NormFinder, BestKeeper, ΔCt, and RefFinder programs. The results calculated by different programs were not completely consistent. Considering the comprehensive analysis results, ACTIN was the most stable reference gene and TUB-B showed the worst expression stabilities under the selected abiotic stress and hormone treatments in celery. The reliability of reference genes was further confirmed by the normalization of CAT1 gene under drought stress. This study presented evidences and basis to select the appropriate reference genes under different treatments in celery.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie-xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guo-Ming Xing
- Collaborative Innovation Center for Improving Quality and Increase Profits of Protected Vegetables in Shanxi, Taigu, China
| | - Sheng Sun
- Collaborative Innovation Center for Improving Quality and Increase Profits of Protected Vegetables in Shanxi, Taigu, China
| | - Sen Li
- Collaborative Innovation Center for Improving Quality and Increase Profits of Protected Vegetables in Shanxi, Taigu, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Identification of Genes Differentially Expressed in Response to Cold in Pisum sativum Using RNA Sequencing Analyses. PLANTS 2019; 8:plants8080288. [PMID: 31443248 PMCID: PMC6724123 DOI: 10.3390/plants8080288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022]
Abstract
Low temperature stress affects growth and development in pea (Pisum sativum L.) and decreases yield. In this study, RNA sequencing time series analyses performed on lines, Champagne frost-tolerant and Térèse frost-sensitive, during a low temperature treatment versus a control condition, led us to identify 4981 differentially expressed genes. Thanks to our experimental design and statistical analyses, we were able to classify these genes into three sets. The first one was composed of 2487 genes that could be related to the constitutive differences between the two lines and were not regulated during cold treatment. The second gathered 1403 genes that could be related to the chilling response. The third set contained 1091 genes, including genes that could be related to freezing tolerance. The identification of differentially expressed genes related to cold, oxidative stress, and dehydration responses, including some transcription factors and kinases, confirmed the soundness of our analyses. In addition, we identified about one hundred genes, whose expression has not yet been linked to cold stress. Overall, our findings showed that both lines have different characteristics for their cold response (chilling response and/or freezing tolerance), as more than 90% of differentially expressed genes were specific to each of them.
Collapse
|
27
|
Yeap WC, Namasivayam P, Ooi TEK, Appleton DR, Kulaveerasingam H, Ho CL. EgRBP42 from oil palm enhances adaptation to stress in Arabidopsis through regulation of nucleocytoplasmic transport of stress-responsive mRNAs. PLANT, CELL & ENVIRONMENT 2019; 42:1657-1673. [PMID: 30549047 DOI: 10.1111/pce.13503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Abiotic stress reduces plant growth and crop productivity. However, the mechanism underlying posttranscriptional regulations of stress response remains elusive. Herein, we report the posttranscriptional mechanism of nucleocytoplasmic RNA transport of stress-responsive transcripts mediated by EgRBP42, a heterogeneous nuclear ribonucleoprotein-like RNA-binding protein from oil palm, which could be necessary for rapid protein translation to confer abiotic stress tolerance in plants. Transgenic Arabidopsis overexpressing EgRBP42 showed early flowering through alteration of gene expression of flowering regulators and exhibited tolerance towards heat, cold, drought, flood, and salinity stresses with enhanced poststress recovery response by increasing the expression of its target stress-responsive genes. EgRBP42 harbours nucleocytoplasmic shuttling activity mediated by the nuclear localization signal and the M9-like domain of EgRBP42 and interacts directly with regulators in the nucleus, membrane, and the cytoplasm. EgRBP42 regulates the nucleocytoplasmic RNA transport of target stress-responsive transcripts through direct binding to their AG-rich motifs. Additionally, EgRBP42 transcript and protein induction by environmental stimuli are regulated at the transcriptional and posttranscriptional levels. Taken together, the posttranscriptional regulation of RNA transport mediated by EgRBP42 may change the stress-responsive protein profiles under abiotic stress conditions leading to a better adaptation of plants to environmental changes.
Collapse
Affiliation(s)
- Wan-Chin Yeap
- Sime Darby Plantation Berhad, Research and Development, Biotechnology and Breeding, Sime Darby Technology Centre Sdn. Bhd., Serdang, Malaysia
| | - Parameswari Namasivayam
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Tony Eng Keong Ooi
- Sime Darby Plantation Berhad, Research and Development, Biotechnology and Breeding, Sime Darby Technology Centre Sdn. Bhd., Serdang, Malaysia
| | - David Ross Appleton
- Sime Darby Plantation Berhad, Research and Development, Biotechnology and Breeding, Sime Darby Technology Centre Sdn. Bhd., Serdang, Malaysia
| | - Harikrishna Kulaveerasingam
- Sime Darby Plantation Berhad, Research and Development, Sime Darby Research Sdn Bhd, R&D Centre-Upstream, Kuala Langat, Malaysia
| | - Chai-Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
28
|
Lenka SK, Singh AK, Muthusamy SK, Smita S, Chinnusamy V, Bansal KC. Heterologous expression of rice RNA-binding glycine-rich (RBG) gene OsRBGD3 in transgenic Arabidopsis thaliana confers cold stress tolerance. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:482-491. [PMID: 30940336 DOI: 10.1071/fp18241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Imparting cold stress tolerance to crops is a major challenge in subtropical agriculture. New genes conferring cold tolerance needs to be identified and characterised for sustainable crop production in low-temperature stress affected areas. Here we report functional characterisation of OsRBGD3, classified previously as a class D glycine-rich RNA recognition motif (RRM) containing proteins from a drought-tolerant Indica rice cultivar N22. The gene was isolated by screening yeast one-hybrid library using the minimal promoter region of the OsMYB38 that is necessary for cold stress-responsive expression. OsRBGD3 exhibited cold, drought and salt stress inductive expression in a drought tolerant N22 rice cultivar as compared with susceptible variety IR64. OsRBGD3 was found to be localised to both nuclear and cytoplasmic subcellular destinations. Constitutive overexpression of the OsRBGD3 in transgenic Arabidopsis conferred tolerance to cold stress. ABA sensitivity was also observed in transgenic lines suggesting the regulatory role of this gene in the ABA signalling pathway. OsRBGD3 overexpression also attributed to significant root development and early flowering in transgenics. Hence, OsRBGD3 could be an important target for developing cold tolerant early flowering rice and other crops' genotypes for increasing production in low temperature affected areas.
Collapse
Affiliation(s)
- Sangram K Lenka
- ICAR-National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India; and TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, 110003, India
| | - Amit K Singh
- ICAR-National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Senthilkumar K Muthusamy
- ICAR-National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India; and ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, 695017, India
| | - Shuchi Smita
- ICAR-National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India; and Department of Immunology, School of Medicine, University of Pittsburgh, PA 15261, USA
| | - Viswanathan Chinnusamy
- ICAR-Indian Agricultural Research Institute, Division of Plant Physiology, New Delhi, 110012, India
| | - Kailash C Bansal
- ICAR-National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India; and TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, 110003, India; and Corresponding author.
| |
Collapse
|
29
|
Štefanić PP, Cvjetko P, Biba R, Domijan AM, Letofsky-Papst I, Tkalec M, Šikić S, Cindrić M, Balen B. Physiological, ultrastructural and proteomic responses of tobacco seedlings exposed to silver nanoparticles and silver nitrate. CHEMOSPHERE 2018; 209:640-653. [PMID: 29958162 DOI: 10.1016/j.chemosphere.2018.06.128] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Since silver nanoparticles (AgNPs) are a dominant nanomaterial in consumer products, there is growing concern about their impact on the environment. Although numerous studies on the effects of AgNPs on living organisms have been conducted, the interaction of AgNPs with plants has not been fully clarified. To reveal the plant mechanisms activated after exposure to AgNPs and to differentiate between effects specific to nanoparticles and ionic silver, we investigated the physiological, ultrastructural and proteomic changes in seedlings of tobacco (Nicotiana tabacum) exposed to commercial AgNPs and ionic silver (AgNO3) from the seed stage. A higher Ag content was measured in seedlings exposed to AgNPs than in those exposed to the same concentration of AgNO3. However, the results on oxidative stress parameters obtained revealed that, in general, higher toxicity was recorded in AgNO3-treated seedlings than in those exposed to nanosilver. Ultrastructural analysis of root cells confirmed the presence of silver in the form of nanoparticles, which may explain the lower toxicity of AgNPs. However, the ultrastructural changes of chloroplasts as well as proteomic study showed that both AgNPs and AgNO3 can affect photosynthesis. Moreover, the majority of the proteins involved in the primary metabolism were up-regulated after both types of treatments, indicating that enhanced energy production, which can be used to reinforce defensive mechanisms, enables plants to cope with silver-induced toxicity.
Collapse
Affiliation(s)
- Petra Peharec Štefanić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Petra Cvjetko
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Renata Biba
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ana-Marija Domijan
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia
| | - Ilse Letofsky-Papst
- Institute of Electron Microscopy and Nanoanalysis (FELMI), Graz University of Technology, Graz Centre for Electron Microscopy (ZFE), Austrian Cooperative Research (ACR), Steyrergasse 17, 8010, Graz, Austria
| | - Mirta Tkalec
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Sandra Šikić
- Department of Ecology, Andrija Štampar Teaching Institute of Public Health, Mirogojska cesta 16, 10000, Zagreb, Croatia
| | - Mario Cindrić
- Ruđer Bošković Institute, POB 1016, 10 000, Zagreb, Croatia
| | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| |
Collapse
|
30
|
Chen L, Cai Y, Liu X, Guo C, Yao W, Sun S, Wu C, Jiang B, Han T, Hou W. GmGRP-like gene confers Al tolerance in Arabidopsis. Sci Rep 2018; 8:13601. [PMID: 30206281 PMCID: PMC6134052 DOI: 10.1038/s41598-018-31703-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/23/2018] [Indexed: 11/09/2022] Open
Abstract
Aluminium (Al) toxicity restrains water and nutrient uptake and is toxic to plant roots, ultimately inhibiting crop production. Here, we isolated and characterized a soybean glycine-rich protein-like gene (GmGRPL) that is mainly expressed in the root and that is regulated by Al treatment. Overexpression of GmGRPL can alleviate Al-induced root growth inhibition in Arabidopsis. The levels of IAA and ethylene in GmGRPL-overexpressing hairy roots were lower than those in control and RNA interference-exposed GmGRPL hairy roots with or without Al stress, which were mainly regulated by TAA1 and ACO, respectively. In transgenic soybean hairy roots, the MDA, H2O2 and O2-·content in GmGRPL-overexpressing hairy roots were less than that in control and RNA interference-exposed GmGRPL hairy roots under Al stress. In addition, IAA and ACC can enhance the expression level of the GmGRPL promoter with or without Al stress. These results indicated that GmGRPL can alleviate Al-induced root growth inhibition by regulating the level of IAA and ethylene and improving antioxidant activity.
Collapse
Affiliation(s)
- Li Chen
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yupeng Cai
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiujie Liu
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chen Guo
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiwei Yao
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Sun
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cunxiang Wu
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bingjun Jiang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianfu Han
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wensheng Hou
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
31
|
Kumar J, Gunapati S, Kianian SF, Singh SP. Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance. PROTOPLASMA 2018; 255:1487-1504. [PMID: 29651660 DOI: 10.1007/s00709-018-1237-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/05/2018] [Indexed: 05/19/2023]
Abstract
Drought tolerance is a complex trait that is governed by multiple genes. The study presents differential transcriptome analysis between drought-tolerant (Triticum aestivum Cv. C306) and drought-sensitive (Triticum aestivum Cv. WL711) genotypes, using Affymetrix GeneChip® Wheat Genome Array. Both genotypes exhibited diverse global transcriptional responses under control and drought conditions. Pathway analysis suggested significant induction or repression of genes involved in secondary metabolism, nucleic acid synthesis, protein synthesis, and transport in C306, as compared to WL711. Significant up- and downregulation of transcripts for enzymes, hormone metabolism, and stress response pathways were observed in C306 under drought. The elevated expression of plasma membrane intrinsic protein 1 and downregulation of late embryogenesis abundant in the leaf tissues could play an important role in delayed wilting in C306. The other regulatory genes such as MT, FT, AP2, SKP1, ABA2, ARF6, WRKY6, AOS, and LOX2 are involved in defense response in C306 genotype. Additionally, transcripts with unknown functions were identified as differentially expressed, which could participate in drought responses.
Collapse
Affiliation(s)
- Jitendra Kumar
- National Agri-Food Biotechnology Institute, Mohali, India
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, USA
| | - Samatha Gunapati
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Sudhir P Singh
- National Agri-Food Biotechnology Institute, Mohali, India.
- Center of Innovative and Applied Bioprocessing, Mohali, India.
| |
Collapse
|
32
|
Wang B, Wang G, Shen F, Zhu S. A Glycine-Rich RNA-Binding Protein, CsGR-RBP3, Is Involved in Defense Responses Against Cold Stress in Harvested Cucumber ( Cucumis sativus L.) Fruit. FRONTIERS IN PLANT SCIENCE 2018; 9:540. [PMID: 29740470 PMCID: PMC5925850 DOI: 10.3389/fpls.2018.00540] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/06/2018] [Indexed: 05/09/2023]
Abstract
Plant glycine-rich RNA-binding proteins (GR-RBPs) have been shown to play important roles in response to abiotic stresses in actively proliferating organs such as young plants, root tips, and flowers, but their roles in chilling responses of harvested fruit remains largely unknown. Here, we investigated the role of CsGR-RBP3 in the chilling response of cucumber fruit. Pre-storage cold acclimation at 10°C (PsCA) for 3 days significantly enhanced chilling tolerance of cucumber fruit compared with the control fruit that were stored at 5°C. In the control fruit, only one of the six cucumber CsGR-RBP genes, CsGR-RBP2, was enhanced whereas the other five, i.e., CsGR-RBP3, CsGR-RBP4, CsGR-RBP5, CsGR-RBP-blt801, and CsGR-RBP-RZ1A were not. However, in the fruit exposed to PsCA before storage at 5°C, CsGR-RBP2 transcript levels were not obviously different from those in the controls, whereas the other five were highly upregulated, with CsGR-RBP3 the most significantly induced. Treatment with endogenous ABA and NO biosynthesis inhibitors, tungstate and L-nitro-arginine methyl ester, respectively, prior to PsCA treatment, clearly downregulated CsGR-RBP3 expression and significantly aggravated chilling injury. These results suggest a strong connection between CsGR-RBP3 expression and chilling tolerance in cucumber fruit. Transient expression in tobacco suggests CsGR-RBP3 was located in the mitochondria, implying a role for CsGR-RBP3 in maintaining mitochondria-related functions under low temperature. Arabidopsis lines overexpressing CsGR-RBP3 displayed faster growth at 23°C, lower electrolyte leakage and higher Fv/Fm ratio at 0°C, and higher survival rate at -20°C, than wild-type plants. Under cold stress conditions, Arabidopsis plants overexpressing CsGR-RBP3 displayed lower reactive oxygen species levels, and higher catalase and superoxide dismutase expression and activities, compared with the wild-type plants. In addition, overexpression of CsGR-RBP3 significantly upregulated nine Arabidopsis genes involved in defense responses to various stresses, including chilling. These results strongly suggest CsGR-RBP3 plays a positive role in defense against chilling stress.
Collapse
Affiliation(s)
| | | | | | - Shijiang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
33
|
Sim JS, Kesawat MS, Kumar M, Kim SY, Mani V, Subramanian P, Park S, Lee CM, Kim SR, Hahn BS. Lack of the α1,3-Fucosyltransferase Gene ( Osfuct) Affects Anther Development and Pollen Viability in Rice. Int J Mol Sci 2018; 19:ijms19041225. [PMID: 29670011 PMCID: PMC5979348 DOI: 10.3390/ijms19041225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/04/2022] Open
Abstract
N-linked glycosylation is one of the key post-translational modifications. α1,3-Fucosyltransferase (OsFucT) is responsible for transferring α1,3-linked fucose residues to the glycoprotein N-glycan in plants. We characterized an Osfuct mutant that displayed pleiotropic developmental defects, such as impaired anther and pollen development, diminished growth, shorter plant height, fewer tillers, and shorter panicle length and internodes under field conditions. In addition, the anthers were curved, the pollen grains were shriveled, and pollen viability and pollen number per anther decreased dramatically in the mutant. Matrix-assisted laser desorption/ionization time-of-flight analyses of the N-glycans revealed that α1,3-fucose was lacking in the N-glycan structure of the mutant. Mutant complementation revealed that the phenotype was caused by loss of Osfuct function. Transcriptome profiling also showed that several genes essential for plant developmental processes were significantly altered in the mutant, including protein kinases, transcription factors, genes involved in metabolism, genes related to protein synthesis, and hypothetical proteins. Moreover, the mutant exhibited sensitivity to an increased concentration of salt. This study facilitates a further understanding of the function of genes mediating N-glycan modification and anther and pollen development in rice.
Collapse
Affiliation(s)
- Joon-Soo Sim
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Mahipal Singh Kesawat
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Manu Kumar
- Department of Life Sciences, Sogang University, Seoul 121-742, Korea.
| | - Su-Yeon Kim
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Vimalraj Mani
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Parthiban Subramanian
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Soyoung Park
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Chang-Muk Lee
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| | - Seong-Ryong Kim
- Department of Life Sciences, Sogang University, Seoul 121-742, Korea.
| | - Bum-Soo Hahn
- Metabolic Engineering Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea.
| |
Collapse
|
34
|
Rurek M, Czołpińska M, Pawłowski TA, Krzesiński W, Spiżewski T. Cold and Heat Stress Diversely Alter Both Cauliflower Respiration and Distinct Mitochondrial Proteins Including OXPHOS Components and Matrix Enzymes. Int J Mol Sci 2018; 19:ijms19030877. [PMID: 29547512 PMCID: PMC5877738 DOI: 10.3390/ijms19030877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
Complex proteomic and physiological approaches for studying cold and heat stress responses in plant mitochondria are still limited. Variations in the mitochondrial proteome of cauliflower (Brassica oleracea var. botrytis) curds after cold and heat and after stress recovery were assayed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) in relation to mRNA abundance and respiratory parameters. Quantitative analysis of the mitochondrial proteome revealed numerous stress-affected protein spots. In cold, major downregulations in the level of photorespiratory enzymes, porine isoforms, oxidative phosphorylation (OXPHOS) and some low-abundant proteins were observed. In contrast, carbohydrate metabolism enzymes, heat-shock proteins, translation, protein import, and OXPHOS components were involved in heat response and recovery. Several transcriptomic and metabolic regulation mechanisms are also suggested. Cauliflower plants appeared less susceptible to heat; closed stomata in heat stress resulted in moderate photosynthetic, but only minor respiratory impairments, however, photosystem II performance was unaffected. Decreased photorespiration corresponded with proteomic alterations in cold. Our results show that cold and heat stress not only operate in diverse modes (exemplified by cold-specific accumulation of some heat shock proteins), but exert some associations at molecular and physiological levels. This implies a more complex model of action of investigated stresses on plant mitochondria.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Magdalena Czołpińska
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | | | - Włodzimierz Krzesiński
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| | - Tomasz Spiżewski
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| |
Collapse
|
35
|
Hoffman AM, Avolio ML, Knapp AK, Smith MD. Codominant grasses differ in gene expression under experimental climate extremes in native tallgrass prairie. PeerJ 2018; 6:e4394. [PMID: 29473008 PMCID: PMC5816582 DOI: 10.7717/peerj.4394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/30/2018] [Indexed: 01/01/2023] Open
Abstract
Extremes in climate, such as heat waves and drought, are expected to become more frequent and intense with forecasted climate change. Plant species will almost certainly differ in their responses to these stressors. We experimentally imposed a heat wave and drought in the tallgrass prairie ecosystem near Manhattan, Kansas, USA to assess transcriptional responses of two ecologically important C4 grass species, Andropogon gerardii and Sorghastrum nutans. Based on previous research, we expected that S. nutans would regulate more genes, particularly those related to stress response, under high heat and drought. Across all treatments, S. nutans showed greater expression of negative regulatory and catabolism genes while A. gerardii upregulated cellular and protein metabolism. As predicted, S. nutans showed greater sensitivity to water stress, particularly with downregulation of non-coding RNAs and upregulation of water stress and catabolism genes. A. gerardii was less sensitive to drought, although A. gerardii tended to respond with upregulation in response to drought versus S. nutans which downregulated more genes under drier conditions. Surprisingly, A. gerardii only showed minimal gene expression response to increased temperature, while S. nutans showed no response. Gene functional annotation suggested that these two species may respond to stress via different mechanisms. Specifically, A. gerardii tends to maintain molecular function while S. nutans prioritizes avoidance. Sorghastrum nutans may strategize abscisic acid response and catabolism to respond rapidly to stress. These results have important implications for success of these two important grass species under a more variable and extreme climate forecast for the future.
Collapse
Affiliation(s)
- Ava M. Hoffman
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States of America
| | - Meghan L. Avolio
- Department of Earth & Planetary Sciences, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Alan K. Knapp
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States of America
| | - Melinda D. Smith
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
36
|
Czolpinska M, Rurek M. Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story. FRONTIERS IN PLANT SCIENCE 2018; 9:302. [PMID: 29568308 PMCID: PMC5852109 DOI: 10.3389/fpls.2018.00302] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/21/2018] [Indexed: 05/21/2023]
Abstract
Seed plants are sessile organisms that have developed a plethora of strategies for sensing, avoiding, and responding to stress. Several proteins, including the glycine-rich protein (GRP) superfamily, are involved in cellular stress responses and signaling. GRPs are characterized by high glycine content and the presence of conserved segments including glycine-containing structural motifs composed of repetitive amino acid residues. The general structure of this superfamily facilitates division of GRPs into five main subclasses. Although the participation of GRPs in plant stress response has been indicated in numerous model and non-model plant species, relatively little is known about the key physiological processes and molecular mechanisms in which those proteins are engaged. Class I, II, and IV members are known to be involved in hormone signaling, stress acclimation, and floral development, and are crucial for regulation of plant cells growth. GRPs of class IV [RNA-binding proteins (RBPs)] are involved in alternative splicing or regulation of transcription and stomatal movement, seed, pollen, and stamen development; their accumulation is regulated by the circadian clock. Owing to the fact that the overexpression of GRPs can confer tolerance to stress (e.g., some are involved in cold acclimation and may improve growth at low temperatures), these proteins could play a promising role in agriculture through plant genetic engineering. Consequently, isolation, cloning, characterization, and functional validation of novel GRPs expressed in response to the diverse stress conditions are expected to be growing areas of research in the coming years. According to our knowledge, this is the first comprehensive review on participation of plant GRPs in the response to diverse stress stimuli.
Collapse
|
37
|
Systems Approaches to Map In Vivo RNA–Protein Interactions in Arabidopsis thaliana. RNA TECHNOLOGIES 2018. [PMCID: PMC7122672 DOI: 10.1007/978-3-319-92967-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Proteins that specifically interact with mRNAs orchestrate mRNA processing steps all the way from transcription to decay. Thus, these RNA-binding proteins represent an important control mechanism to double check which proportion of nascent pre-mRNAs is ultimately available for translation into distinct proteins. Here, we discuss recent progress to obtain a systems-level understanding of in vivo RNA–protein interactions in the reference plant Arabidopsis thaliana using protein-centric and RNA-centric methods as well as combined protein binding site and structure probing.
Collapse
|
38
|
Melencion SMB, Chi YH, Pham TT, Paeng SK, Wi SD, Lee C, Ryu SW, Koo SS, Lee SY. RNA Chaperone Function of a Universal Stress Protein in Arabidopsis Confers Enhanced Cold Stress Tolerance in Plants. Int J Mol Sci 2017; 18:ijms18122546. [PMID: 29186920 PMCID: PMC5751149 DOI: 10.3390/ijms18122546] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023] Open
Abstract
The physiological function of Arabidopsis thaliana universal stress protein (AtUSP) in plant has remained unclear. Thus, we report here the functional role of the Arabidopsis universal stress protein, AtUSP (At3g53990). To determine how AtUSP affects physiological responses towards cold stress, AtUSP overexpression (AtUSP OE) and T-DNA insertion knock-out (atusp, SALK_146059) mutant lines were used. The results indicated that AtUSP OE enhanced plant tolerance to cold stress, whereas atusp did not. AtUSP is localized in the nucleus and cytoplasm, and cold stress significantly affects RNA metabolism such as by misfolding and secondary structure changes of RNA. Therefore, we investigated the relationship of AtUSP with RNA metabolism. We found that AtUSP can bind nucleic acids, including single- and double-stranded DNA and luciferase mRNA. AtUSP also displayed strong nucleic acid-melting activity. We expressed AtUSP in RL211 Escherichia coli, which contains a hairpin-loop RNA structure upstream of chloramphenicol acetyltransferase (CAT), and observed that AtUSP exhibited anti-termination activity that enabled CAT gene expression. AtUSP expression in the cold-sensitive Escherichia coli (E. coli) mutant BX04 complemented the cold sensitivity of the mutant cells. As these properties are typical characteristics of RNA chaperones, we conclude that AtUSP functions as a RNA chaperone under cold-shock conditions. Thus, the enhanced tolerance of AtUSP OE lines to cold stress is mediated by the RNA chaperone function of AtUSP.
Collapse
Affiliation(s)
- Sarah Mae Boyles Melencion
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Yong Hun Chi
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Thuy Thi Pham
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Seol Ki Paeng
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Seong Dong Wi
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Changyu Lee
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Seoung Woo Ryu
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Sung Sun Koo
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
39
|
Yin X, Komatsu S. Comprehensive analysis of response and tolerant mechanisms in early-stage soybean at initial-flooding stress. J Proteomics 2017; 169:225-232. [PMID: 28137666 DOI: 10.1016/j.jprot.2017.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, which markedly reduces its growth and yield. Morphological and biochemical changes such as an increase of fresh weight and a decrease of ATP content happen in early-stage soybean at initial-flooding stress, indicating that soybean responses to flooding stress are keys for its survival and seedling growth. Phosphoproteomics and nuclear proteomics are useful tools to detect protein-phosphorylation status and to identify transcriptional factors. In the review, the effect of flooding on soybean response to initial flooding stress is discussed based on recent results of proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies. In addition, soybean survival under flooding stress, which is defined as tolerance mechanism, is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. BIOLOGICAL SIGNIFICANCE Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, especially soybean responses to initial flooding stress is key for its survival and seedling growth. Recently, proteomic techniques are applied to investigate the response and tolerant mechanisms of soybean at initial flooding condition. In this review, the progress in proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies about the initial-flooding response mechanism in early-stage soybean is presented. In addition, the tolerant mechanism in soybean is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. Through this review, the key proteins and genes involved in initial flooding response and tolerance at early stage soybean are summarized and they contribute greatly to uncover response and tolerance mechanism at early stage under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
40
|
Yue Y, Yin C, Guo R, Peng H, Yang Z, Liu G, Bao M, Hu H. An anther-specific gene PhGRP is regulated by PhMYC2 and causes male sterility when overexpressed in petunia anthers. PLANT CELL REPORTS 2017; 36:1401-1415. [PMID: 28597062 DOI: 10.1007/s00299-017-2163-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/01/2017] [Indexed: 05/20/2023]
Abstract
An anther-specific GRP gene, regulated by PhMYC2 , causes a significant reduction of male fertility when overexpressed in petunia, and its promoter is efficient in genetic engineering of male-sterile lines. Glycine-rich proteins (GRPs) play important roles in plant anther development; however, the underlying mechanisms and related regulatory networks are poorly understood. In this study, a novel glycine-rich family gene designated as PhGRP was isolated from Petunia hybrida 'Fantasy Red'. The qRT-PCR analysis showed that it expressed specifically in anthers, and its expression peaked earlier than those well-known tapetum-specific genes, such as TA29, and several genes with the classic cis-regulatory element 'anther-box' in petunia during its anther development. The male fertility was significantly reduced in PhGRP overexpression lines, due to the abnormal formation of pollen wall. The PhGRP promoter (pPhGRP) could drive the GUS genes expressing specifically in the anthers of the transgenic Arabidopsis plants, indicating that the anther-specific characteristic of this promoter was conserved. In addition, when pPhGRP was used to drive the expression of BARNASE, complete male-sterile petunia lines were created without changes in vegetative organs and floral parts other than anthers. Finally, when pPhGRP was used as the bait to screen a yeast-one-hybrid (Y1H) library, a transcription factor (PhMYC2) belonging to the bHLH family was successfully selected, and the binding between pPhGRP and PhMYC2 was validated both by Y1H and dual-luciferase reporter assay. Overall, these results suggest that PhGRP, which is a male fertility-related gene that expresses specifically in anthers, is regulated by PhMYC2 and whose promoter can be used as an effective tool in the creation of male-sterile lines.
Collapse
Affiliation(s)
- Yuanzheng Yue
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chaoqun Yin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rui Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hao Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhaonan Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guofeng Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Huirong Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
41
|
Molecular characterization of EcCIPK24 gene of finger millet ( Eleusine coracana) for investigating its regulatory role in calcium transport. 3 Biotech 2017; 7:267. [PMID: 28794922 DOI: 10.1007/s13205-017-0874-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022] Open
Abstract
Finger millet grains contain exceptionally high levels of calcium which is much higher compared to other cereals and millets. Since calcium is an important macronutrient in human diet, it is necessary to explore the molecular basis of calcium accumulation in the seeds of finger millet. CIPK is a calcium sensor gene, having role in activating Ca2+ exchanger protein by interaction with CBL proteins. To know the role of EcCIPK24 gene in seed Ca2+ accumulation, sequence is retrieved from the transcriptome data of two finger millet genotypes GP1 (low Ca2+) and GP45 (high Ca2+), and the expression was determined through qRT-PCR. The higher expression was found in root, shoot, leaf and developing spike tissue of GP45 compared to GP1; structural analysis showed difference of nine SNPs and one extra beta sheet domain as well as differences in vacuolar localization was predicted; besides, the variation in amino acid composition among both the genotypes was also investigated. Molecular modeling and docking studies revealed that both EcCBL4 and EcCBL10 showed strong binding affinity with EcCIPK24 (GP1) compared to EcCIPK24 (GP45). It indicates a genotypic structural variation, which not only affects the affinity but also calcium transport efficiency after interaction of CIPK-CBL with calcium exchanger (EcCAX1b) to pull calcium in the vacuole. Based on the expression and in silico study, it can be suggested that by activating EcCAX1b protein, EcCIPK24 plays an important role in high seed Ca2+ accumulation.
Collapse
|
42
|
Foley SW, Kramer MC, Gregory BD. RNA structure, binding, and coordination in Arabidopsis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28660659 DOI: 10.1002/wrna.1426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/08/2017] [Accepted: 04/13/2017] [Indexed: 11/05/2022]
Abstract
From the moment of transcription, up through degradation, each RNA transcript is bound by an ever-changing cohort of RNA binding proteins. The binding of these proteins is regulated by both the primary RNA sequence, as well as the intramolecular RNA folding, or secondary structure, of the transcript. Thus, RNA secondary structure regulates many post-transcriptional processes. With the advent of next generation sequencing, several techniques have been developed to generate global landscapes of both RNA-protein interactions and RNA secondary structure. In this review, we describe the current state of the field detailing techniques to globally interrogate RNA secondary structure and/or RNA-protein interaction sites, as well as our current understanding of these features in the transcriptome of the model plant Arabidopsis thaliana. WIREs RNA 2017, 8:e1426. doi: 10.1002/wrna.1426 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Shawn W Foley
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Marianne C Kramer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
43
|
Die JV, Arora R, Rowland LJ. Proteome dynamics of cold-acclimating Rhododendron species contrasting in their freezing tolerance and thermonasty behavior. PLoS One 2017; 12:e0177389. [PMID: 28542212 PMCID: PMC5441609 DOI: 10.1371/journal.pone.0177389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/26/2017] [Indexed: 12/28/2022] Open
Abstract
To gain a better understanding of cold acclimation in rhododendron and in woody perennials in general, we used the 2D-DIGE technique to analyze the rhododendron proteome during the seasonal development of freezing tolerance. We selected two species varying in their cold acclimation ability as well as their thermonasty response (folding of leaves in response to low temperature). Proteins were extracted from leaves of non-acclimated (NA) and cold acclimated (CA) plants of the hardier thermonastic species, R. catawbiense (Cata.), and from leaves of cold acclimated plants of the less hardy, non-thermonastic R. ponticum (Pont.). All three protein samples (Cata.NA, Cata.CA, and Pont.CA) were labeled with different CyDyes and separated together on a single gel. Triplicate gels were run and protein profiles were compared resulting in the identification of 72 protein spots that consistently had different abundances in at least one pair-wise comparison. From the 72 differential spots, we chose 56 spots to excise and characterize further by mass spectrometry (MS). Changes in the proteome associated with the seasonal development of cold acclimation were identified from the Cata.CA-Cata.NA comparisons. Differentially abundant proteins associated with the acquisition of superior freezing tolerance and with the thermonastic response were identified from the Cata.CA-Pont.CA comparisons. Our results indicate that cold acclimation in rhododendron involves increases in abundance of several proteins related to stress (freezing/desiccation tolerance), energy and carbohydrate metabolism, regulation/signaling, secondary metabolism (possibly involving cell wall remodeling), and permeability of the cell membrane. Cold acclimation also involves decreases in abundance of several proteins involved in photosynthesis. Differences in freezing tolerance between genotypes can probably be attributed to observed differences in levels of proteins involved in these functions. Also differences in freezing tolerance may be attributed to higher levels of some constitutive protective proteins in Cata. than in Pont. that may be required to overcome freeze damage, such as glutathione peroxidase, glutamine synthetase, and a plastid-lipid-associated protein.
Collapse
Affiliation(s)
- Jose V. Die
- Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, Iowa, United States of America
| | - Lisa J. Rowland
- Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| |
Collapse
|
44
|
Shi X, Castandet B, Germain A, Hanson MR, Bentolila S. ORRM5, an RNA recognition motif-containing protein, has a unique effect on mitochondrial RNA editing. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2833-2847. [PMID: 28549172 PMCID: PMC5853588 DOI: 10.1093/jxb/erx139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/30/2017] [Indexed: 05/02/2023]
Abstract
Plants have an RNA editing mechanism that prevents deleterious organelle mutations from resulting in impaired proteins. A typical flowering plant modifies about 40 cytidines in chloroplast transcripts and many hundreds of cytidines in mitochondrial transcripts. The plant editosome, the molecular machinery responsible for this process, contains members of several protein families, including the organelle RNA recognition motif (ORRM)-containing family. ORRM1 and ORRM6 are chloroplast editing factors, while ORRM2, ORRM3, and ORRM4 are mitochondrial editing factors. Here we report the identification of organelle RRM protein 5 (ORRM5) as a mitochondrial editing factor with a unique mode of action. Unlike other ORRM editing factors, the absence of ORRM5 in orrm5 mutant plants results in an increase of the editing extent in 14% of the mitochondrial sites surveyed. The orrm5 mutant also exhibits a reduced splicing efficiency of the first nad5 intron and slower growth and delayed flowering time. ORRM5 contains an RNA recognition motif (RRM) and a glycine-rich domain at the C terminus. The RRM provides the editing activity of ORRM5 and is able to complement the splicing but not the morphological defects.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | - Arnaud Germain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Stéphane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Correspondence:
| |
Collapse
|
45
|
Zhou Q, Chen Z, Lee J, Li X, Sun W. Proteomic analysis of tea plants (Camellia sinensis) with purple young shoots during leaf development. PLoS One 2017; 12:e0177816. [PMID: 28520776 PMCID: PMC5433784 DOI: 10.1371/journal.pone.0177816] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
Tea products made from purple leaves are highly preferred by consumers due to the health benefits. This study developed a proteome reference map related to color changes during leaf growth in tea (Camellia sinensis) plant with purple young shoots using two-dimensional electrophoresis (2-DE). Forty-six differentially expressed proteins were detected in the gel and successfully identified by using MALDI-TOF/TOF-MS. The pronounced changes in the proteomic profile between tender purple leaves (TPL) and mature green leaves (MGL) included: 1) the lower activity of proteins associated with CO2 assimilation, energy metabolism and photo flux efficiency and higher content of anthocyanins in TPL than those in MGL may protect tender leaves against photo-damage; 2) the higher abundance of chalcone synthase (CHS), chalcone isomerase (CHI) and flavonol synthase (FLS) likely contributes to the synthesis of anthocyanins, catechins and flavonols in TPL tissues; 3) higher abundance of stress response proteins, such as glutathione S-transferases (GST) and phospholipid hydroperoxide glutathione peroxidase (PHGPx), could enhance the tolerance of TPL tissues to adverse condition in; and 4) the increased abundance of proteins related to protein synthesis, nucleic acids and cell wall proteins should be beneficial for the proliferation and expansion of leaf cell in TPL tissues. qPCR analysis showed that the expression of differentially abundant proteins was regulated at the transcriptional level. Therefore, the results indicated that higher abundance of CHI and CHS may account for the production of the purple-shoot phenotype in Wuyiqizhong 18 and thereby, enhancing the anthocyanin biosynthesis. The higher abundance of glutamine synthetase (GS) proteins related to the theanine biosynthesis may improve the flavor of tea products from TPL materials. Thus, this work should help to understand the molecular mechanisms underlying the changes in leaf color alteration.
Collapse
Affiliation(s)
- Qiongqiong Zhou
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Zhidan Chen
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinwook Lee
- Department of Horticultural Science, Mokpo National University, Muan, Republic of Korea
| | - Xinghui Li
- Tea Research Institute, Nanjing Agricultural University, Nanjing, China
| | - Weijiang Sun
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
46
|
Shi X, Hanson MR, Bentolila S. Functional diversity of Arabidopsis organelle-localized RNA-recognition motif-containing proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28371504 DOI: 10.1002/wrna.1420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/20/2022]
Abstract
RNA-Binding Proteins (RBPs) play key roles in plant gene expression and regulation. RBPs contain a variety of RNA-binding motifs, the most abundant and most widespread one in eukaryotes is the RNA recognition motif (RRM). Many nucleus-encoded RRM-containing proteins are transported into chloroplasts and/or mitochondria, and participate in various RNA-related processes in plant organelles. Loss of these proteins can have a detrimental effect on some critical processes such as photosynthesis and respiration, sometimes leading to lethality. Progress has been made in the last few years in understanding the function of particular organelle-localized RRM-containing proteins. Members of the Organelle RRM protein (ORRM, some also characterized as Glycine-Rich RNA-Binding Proteins) family and the Chloroplast RiboNucleoProtein (cpRNP) family, are involved in various types of RNA metabolism, including RNA editing, RNA stability and RNA processing. Organelle-localized RRM proteins also function in plant development and stress responses, in some conditions acting as protein or RNA chaperones. There has been recent progress in characterizing the function of organelle-localized RRM proteins in RNA-related processes and how RRM proteins contribute to the normal growth and development of plants. WIREs RNA 2017, 8:e1420. doi: 10.1002/wrna.1420 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Stephane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
47
|
Ectopic Expression of Plant RNA Chaperone Offering Multiple Stress Tolerance in E. coli. Mol Biotechnol 2017; 59:66-72. [DOI: 10.1007/s12033-017-9992-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Zhang Y, Feng L, Jiang H, Zhang Y, Zhang S. Different Proteome Profiles between Male and Female Populus cathayana Exposed to UV-B Radiation. FRONTIERS IN PLANT SCIENCE 2017; 8:320. [PMID: 28326097 PMCID: PMC5339244 DOI: 10.3389/fpls.2017.00320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/22/2017] [Indexed: 05/20/2023]
Abstract
With increasing altitude, solar UV-B radiation is enhanced. Based on the phenomenon of male-biased sex ratio of Populus cathayana Rehder in high altitude alpine area, we hypothesized that males have a faster and more sophisticated responsive mechanism to high UV-B radiation than that of females. Our previous studies have shown sexually different responses to high UV-B radiation were existed in P. cathayana at the morphological, physiological, and transcriptomic levels. However, the responses at the proteomic level remain unclear. In this study, an isobaric tag for relative and absolute quantification (iTRAQ)-based quantitative proteome analysis was performed in P. cathayana females and males. A total of 2,405 proteins were identified, with 331 proteins defined as differentially expressed proteins (DEPs). Among of these, 79 and 138 DEPs were decreased and 47 and 107 DEPs were increased under high solar UV-B radiation in females and males, respectively. A bioinformatics analysis categorized the common responsive proteins in the sexes as related to carbohydrate and energy metabolism, translation/transcription/post-transcriptional modification, photosynthesis, and redox reactions. The responsive proteins that showed differences in sex were mainly those involved in amino acid metabolism, stress response, and translation/transcription/post-transcriptional modification. This study provides proteomic profiles that poplars responding to solar UV-B radiation, and it also provides new insights into differentially sex-related responses to UV-B radiation.
Collapse
Affiliation(s)
- Yunxiang Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of SciencesChengdu, China
- University of Chinese Academy of SciencesBeijing, China
| | - Lihua Feng
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of SciencesChengdu, China
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of HaifaHaifa, Israel
| | - Hao Jiang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of SciencesChengdu, China
| | - Yuanbin Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of SciencesChengdu, China
| | - Sheng Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of SciencesChengdu, China
- *Correspondence: Sheng Zhang
| |
Collapse
|
49
|
Wong MM, Chong GL, Verslues PE. Epigenetics and RNA Processing: Connections to Drought, Salt, and ABA? Methods Mol Biol 2017; 1631:3-21. [PMID: 28735388 DOI: 10.1007/978-1-4939-7136-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There have been great research advances in epigenetics, RNA splicing, and mRNA processing over recent years. In parallel, there have been many advances in abiotic stress and Abscisic Acid (ABA) signaling. Here we overview studies that have examined stress-induced changes in the epigenome and RNA processing as well as cases where disrupting these processes changes the plant response to abiotic stress. We also highlight some examples where specific connections of stress or ABA signaling to epigenetics or RNA processing have been found. By implication, this also points out cases where such mechanistic connections are likely to exist but are yet to be characterized. In the absence of such specific connections to stress signaling, it should be kept in mind that stress sensitivity phenotypes of some epigenetic or RNA processing mutants maybe the result of indirect, pleiotropic effects and thus may perhaps not indicate a direct function in stress acclimation.
Collapse
Affiliation(s)
- Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Geeng Loo Chong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan. .,Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
50
|
Van Dingenen J, Blomme J, Gonzalez N, Inzé D. Plants grow with a little help from their organelle friends. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6267-6281. [PMID: 27815330 DOI: 10.1093/jxb/erw399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplasts and mitochondria are indispensable for plant development. They not only provide energy and carbon sources to cells, but also have evolved to become major players in a variety of processes such as amino acid metabolism, hormone biosynthesis and cellular signalling. As semi-autonomous organelles, they contain a small genome that relies largely on nuclear factors for its maintenance and expression. An intensive crosstalk between the nucleus and the organelles is therefore essential to ensure proper functioning, and the nuclear genes encoding organellar proteins involved in photosynthesis and oxidative phosphorylation are obviously crucial for plant growth. Organ growth is determined by two main cellular processes: cell proliferation and cell expansion. Here, we review how plant growth is affected in mutants of organellar proteins that are differentially expressed during leaf and root development. Our findings indicate a clear role for organellar proteins in plant organ growth, primarily during cell proliferation. However, to date, the role of the nuclear-encoded organellar proteins in the cellular processes driving organ growth has not been investigated in much detail. We therefore encourage researchers to extend their phenotypic characterization beyond macroscopic features in order to get a better view on how chloroplasts and mitochondria regulate the basic processes of cell proliferation and cell expansion, essential to driving growth.
Collapse
Affiliation(s)
- Judith Van Dingenen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|