1
|
Wei J, Zhou Q, Zhang J, Wu M, Li G, Yang L. Dual RNA-seq reveals distinct families of co-regulated and structurally conserved effectors in Botrytis cinerea infection of Arabidopsis thaliana. BMC Biol 2024; 22:239. [PMID: 39428503 PMCID: PMC11492575 DOI: 10.1186/s12915-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Botrytis cinerea is a broad-host-range pathogen causing gray mold disease and significant yield losses of numerous crops. However, the mechanisms underlying its rapid invasion and efficient killing of plant cells remain unclear. RESULTS In this study, we elucidated the dynamics of B. cinerea infection in Arabidopsis thaliana by live cell imaging and dual RNA sequencing. We found extensive transcriptional reprogramming events in both the pathogen and the host, which involved metabolic pathways, signaling cascades, and transcriptional regulation. For the pathogen, we identified 591 candidate effector proteins (CEPs) and comprehensively analyzed their co-expression, sequence similarity, and structural conservation. The results revealed temporal co-regulation patterns of these CEPs, indicating coordinated deployment of effectors during B. cinerea infection. Through functional screening of 48 selected CEPs in Nicotiana benthamiana, we identified 11 cell death-inducing proteins (CDIPs) in B. cinerea. CONCLUSIONS The findings provide important insights into the transcriptional dynamics and effector biology driving B. cinerea pathogenesis. The rapid infection of this pathogen involves the temporal co-regulation of CEPs and the prominent role of CDIPs in host cell death. This work highlights significant changes in gene expression associated with gray mold disease, underscoring the importance of a diverse repertoire of effectors crucial for successful infection.
Collapse
Affiliation(s)
- Jinfeng Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
2
|
Oh SA, Park SK. Ectopic expression of a thaumatin-like protein impairs the timely deposition and dissolution of callose during microsporogenesis, leading to microspore death and male sterility in Arabidopsis. PLANT REPRODUCTION 2024; 37:365-378. [PMID: 38351414 DOI: 10.1007/s00497-024-00498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 09/06/2024]
Abstract
KEY MESSAGE Two pollen-preferential thaumatin-like proteins show both common and distinctive expression profiles. Precocious expression of one of them drastically disturbs timely deposition and dissolution of callose during microsporogenesis, leading to microspore death. Thaumatin-like proteins (TLPs), members of the pathogenesis-related protein family 5 (PR-5), are involved in plant defenses against biotic and abiotic stresses through antifungal activity and enhanced tolerance. Accordingly, studies on TLPs have focused on their responses to various pathogens and stresses and on engineering agronomically valuable crops that can be cultivated in suboptimal environments. On the other hand, the role of TLP members in plant development and their genetic regulation remains largely unexplored. Recently, we reported that the generative cell internalization after pollen mitosis I, an essential pollen patterning step for the nonmotile sperm cell delivery through a pollen tube, depends on STICKY GENERATIVE CELL which suppresses callose deposition in the nascent generative cell and interacts with a germline cell preferential GCTLP1 in Arabidopsis. Here, we additionally identified GCTLP2 which is similarly expressed in the germline cells. We generated various transgenic lines and examined their expressions and phenotypes to elucidate GCTLP functions during pollen development. Expression profiles suggest two GCTLP proteins may have common but also distinctive roles during pollen development. Importantly, ectopic expression analyses show that precocious expression of GCTLP2 severely disturbs the timely deposition and degradation of callose during microsporogenesis which is essential to produce viable microspores. Therefore, our study broadens the knowledge of TLP function and callose regulation for successful pollen development in Arabidopsis.
Collapse
Affiliation(s)
- Sung-Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Liu Z, Duan N, Yang Z, Yue L, Fei Z, Kong S. Identification of male-fertility gene AsaNRF1 and molecular marker development in cultivated garlic ( Allium sativum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1419260. [PMID: 38863545 PMCID: PMC11165202 DOI: 10.3389/fpls.2024.1419260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Garlic cultivars are predominantly characterized by their sterility and reliance on asexual reproduction, which have traditionally prevented the use of hybrid breeding for cultivar improvement in garlic. Our investigation has revealed a notable exception in the garlic line G398, which demonstrates the ability to produce fertile pollen. Notably, at the seventh stage of anther development, callose degradation in the sterile line G390 was impeded, while G398 exhibited normal callose degradation. Transcriptome profiling revealed an enhanced expression of the callose-degrading gene, AsaNRF1, in the mature flower buds of the fertile line G398 compared to the sterile line G390. An insertion in the promoter of AsaNRF1 in G390 was identified, which led to its reduced expression at the tetrad stage and consequently delayed callose degradation, potentially resulting in the male sterility of G390. A discriminatory marker was developed to distinguish between fertile G398 and sterile G390, facilitating the assessment of male fertility in garlic germplasm resources. This study introduces a practical approach to harnessing garlic hybridization, which can further facilitate the breeding of new cultivars and the creation of novel male-fertile garlic germplasm using modern molecular biology methods.
Collapse
Affiliation(s)
- Zezhou Liu
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Key Laboratory for Biology of Greenhouse Vegetables of Shandong Province/National Center for Vegetable Improvement, Jinan, China
| | - Naibin Duan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zonghui Yang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Key Laboratory for Biology of Greenhouse Vegetables of Shandong Province/National Center for Vegetable Improvement, Jinan, China
| | - Lixin Yue
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Key Laboratory for Biology of Greenhouse Vegetables of Shandong Province/National Center for Vegetable Improvement, Jinan, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Suping Kong
- Institute of Vegetables, Shandong Academy of Agricultural Sciences/Key Laboratory for Biology of Greenhouse Vegetables of Shandong Province/National Center for Vegetable Improvement, Jinan, China
| |
Collapse
|
4
|
Hsieh YSY, Kao MR, Tucker MR. The knowns and unknowns of callose biosynthesis in terrestrial plants. Carbohydr Res 2024; 538:109103. [PMID: 38555659 DOI: 10.1016/j.carres.2024.109103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Callose, a linear (1,3)-β-glucan, is an indispensable carbohydrate polymer required for plant growth and development. Advances in biochemical, genetic, and genomic tools, along with specific antibodies, have significantly enhanced our understanding of callose biosynthesis. As additional components of the callose synthase machinery emerge, the elucidation of molecular biosynthetic mechanisms is expected to follow. Short-term objectives involve defining the stoichiometry and turnover rates of callose synthase subunits. Long-term goals include generating recombinant callose synthases to elucidate their biochemical properties and molecular mechanisms, potentially culminating in the determination of callose synthase three-dimensional structure. This review delves into the structures and intricate molecular processes underlying callose biosynthesis, emphasizing regulatory elements and assembly mechanisms.
Collapse
Affiliation(s)
- Yves S Y Hsieh
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91, Stockholm, Sweden; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan.
| | - Mu-Rong Kao
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91, Stockholm, Sweden; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia.
| |
Collapse
|
5
|
Wang YL, Li L, Paudel BR, Zhao JL. Genomic Insights into High-Altitude Adaptation: A Comparative Analysis of Roscoea alpina and R. purpurea in the Himalayas. Int J Mol Sci 2024; 25:2265. [PMID: 38396942 PMCID: PMC10889555 DOI: 10.3390/ijms25042265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Environmental stress at high altitudes drives the development of distinct adaptive mechanisms in plants. However, studies exploring the genetic adaptive mechanisms of high-altitude plant species are scarce. In the present study, we explored the high-altitude adaptive mechanisms of plants in the Himalayas through whole-genome resequencing. We studied two widespread members of the Himalayan endemic alpine genus Roscoea (Zingiberaceae): R. alpina (a selfing species) and R. purpurea (an outcrossing species). These species are distributed widely in the Himalayas with distinct non-overlapping altitude distributions; R. alpina is distributed at higher elevations, and R. purpurea occurs at lower elevations. Compared to R. purpurea, R. alpina exhibited higher levels of linkage disequilibrium, Tajima's D, and inbreeding coefficient, as well as lower recombination rates and genetic diversity. Approximately 96.3% of the genes in the reference genome underwent significant genetic divergence (FST ≥ 0.25). We reported 58 completely divergent genes (FST = 1), of which only 17 genes were annotated with specific functions. The functions of these genes were primarily related to adapting to the specific characteristics of high-altitude environments. Our findings provide novel insights into how evolutionary innovations promote the adaptation of mountain alpine species to high altitudes and harsh habitats.
Collapse
Affiliation(s)
- Ya-Li Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Y.-L.W.); (L.L.)
| | - Li Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Y.-L.W.); (L.L.)
| | - Babu Ram Paudel
- Research Centre for Applied Science and Technology, Tribhuvan University, Kirtipur 44613, Nepal
| | - Jian-Li Zhao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Y.-L.W.); (L.L.)
| |
Collapse
|
6
|
Saatian B, Kohalmi SE, Cui Y. Localization of Arabidopsis Glucan Synthase-Like 5, 8, and 12 to plasmodesmata and the GSL8-dependent role of PDLP5 in regulating plasmodesmal permeability. PLANT SIGNALING & BEHAVIOR 2023; 18:2164670. [PMID: 36645916 PMCID: PMC9851254 DOI: 10.1080/15592324.2022.2164670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Cell-to-cell communication via membranous channels called plasmodesmata (PD) plays critical roles during plant development and in response to biotic and abiotic stresses. Several enzymes and receptor-like proteins (RLPs), including Arabidopsis thaliana glucan synthase-likes (GSLs), also known as callose synthases (CALSs), and PD-located proteins (PDLPs), have been implicated in plasmodesmal permeability regulation and intercellular communication. Localization of PDLPs to punctate structures at the cell periphery and their receptor-like identity have raised the hypothesis that PDLPs are involved in the regulation of symplastic trafficking during plant development and in response to endogenous and exogenous signals. Indeed, it was shown that PDLP5 could limit plasmodesmal permeability through inducing an increase in callose accumulation at PD. However, mechanistically, how this is achieved remains to be elucidated. To address this key issue in understanding the regulation of PD, physical and functional interactions between PDLPs and GSLs (using the PDLP5-GSL8/CALS10 pair as a model) were investigated. Our results show that GSL8/CALS10 plays essential roles and is required for the function and plasmodesmal localization of PDLP5. Furthermore, it was demonstrated that the localization of PDLP5 to PD and its function in inducing callose deposition are GSL8-dependent. Importantly, our transgenic study shows that three key members of the GSL family, i.e., GSL5/CALS12, GSL8/CALS10, and GSL12/CALS3, localize to PD and co-localize with PDLP5, suggesting that GSL8/CALS10 might not be the only callose synthase with the determining role in PD regulation. These findings, together with our previous observation showing the direct interaction of GSL8/CALS10 with PDLP5, indicate the pivotal role of the GSL8/CALS10-PDLP5 interplay in regulating PD permeability. Future work is needed to investigate whether the PDLP5 functionality and localization are also disrupted in gsl5 and gsl12, or it is just gsl8-specific.
Collapse
Affiliation(s)
- Behnaz Saatian
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
- Department of Biology, Western University, London, Ontario, Canada
| | | | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Fang S, Shang X, He Q, Li W, Song X, Zhang B, Guo W. A cell wall-localized β-1,3-glucanase promotes fiber cell elongation and secondary cell wall deposition. PLANT PHYSIOLOGY 2023; 194:106-123. [PMID: 37427813 DOI: 10.1093/plphys/kiad407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
β-1,3-glucanase functions in plant physiological and developmental processes. However, how β-1,3-glucanase participates in cell wall development remains largely unknown. Here, we answered this question by examining the role of GhGLU18, a β-1,3-glucanase, in cotton (Gossypium hirsutum) fibers, in which the content of β-1,3-glucan changes dynamically from 10% of the cell wall mass at the onset of secondary wall deposition to <1% at maturation. GhGLU18 was specifically expressed in cotton fiber with higher expression in late fiber elongation and secondary cell wall (SCW) synthesis stages. GhGLU18 largely localized to the cell wall and was able to hydrolyze β-1,3-glucan in vitro. Overexpression of GhGLU18 promoted polysaccharide accumulation, cell wall reconstruction, and cellulose synthesis, which led to increased fiber length and strength with thicker cell walls and shorter pitch of the fiber helix. However, GhGLU18-suppressed cotton resulted in opposite phenotypes. Additionally, GhGLU18 was directly activated by GhFSN1 (fiber SCW-related NAC1), a NAC transcription factor reported previously as the master regulator in SCW formation during fiber development. Our results demonstrate that cell wall-localized GhGLU18 promotes fiber elongation and SCW thickening by degrading callose and enhancing polysaccharide metabolism and cell wall synthesis.
Collapse
Affiliation(s)
- Shuai Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingfei He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Zhang M, Cheng W, Wang J, Cheng T, Lin X, Zhang Q, Li C. Genome-Wide Identification of Callose Synthase Family Genes and Their Expression Analysis in Floral Bud Development and Hormonal Responses in Prunus mume. PLANTS (BASEL, SWITZERLAND) 2023; 12:4159. [PMID: 38140486 PMCID: PMC10748206 DOI: 10.3390/plants12244159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Callose is an important polysaccharide composed of beta-1,3-glucans and is widely implicated in plant development and defense responses. Callose synthesis is mainly catalyzed by a family of callose synthases, also known as glucan synthase-like (GSL) enzymes. Despite the fact that GSL family genes were studied in a few plant species, their functional roles have not been fully understood in woody perennials. In this study, we identified total of 84 GSL genes in seven plant species and classified them into six phylogenetic clades. An evolutionary analysis revealed different modes of duplication driving the expansion of GSL family genes in monocot and dicot species, with strong purifying selection constraining the protein evolution. We further examined the gene structure, protein sequences, and physiochemical properties of 11 GSL enzymes in Prunus mume and observed strong sequence conservation within the functional domain of PmGSL proteins. However, the exon-intron distribution and protein motif composition are less conservative among PmGSL genes. With a promoter analysis, we detected abundant hormonal responsive cis-acting elements and we inferred the putative transcription factors regulating PmGSLs. To further understand the function of GSL family genes, we analyzed their expression patterns across different tissues, and during the process of floral bud development, pathogen infection, and hormonal responses in Prunus species and identified multiple GSL gene members possibly implicated in the callose deposition associated with bud dormancy cycling, pathogen infection, and hormone signaling. In summary, our study provides a comprehensive understanding of GSL family genes in Prunus species and has laid the foundation for future functional research of callose synthase genes in perennial trees.
Collapse
Affiliation(s)
- Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (M.Z.); (W.C.); (J.W.); (T.C.)
| | - Wenhui Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (M.Z.); (W.C.); (J.W.); (T.C.)
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (M.Z.); (W.C.); (J.W.); (T.C.)
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (M.Z.); (W.C.); (J.W.); (T.C.)
| | - Xinlian Lin
- Flower Research Institute, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou 514071, China;
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (M.Z.); (W.C.); (J.W.); (T.C.)
| | - Cuiling Li
- Flower Research Institute, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou 514071, China;
| |
Collapse
|
9
|
Hibbert LE, Qian Y, Smith HK, Milner S, Katz E, Kliebenstein DJ, Taylor G. Making watercress ( Nasturtium officinale) cropping sustainable: genomic insights into enhanced phosphorus use efficiency in an aquatic crop. FRONTIERS IN PLANT SCIENCE 2023; 14:1279823. [PMID: 38023842 PMCID: PMC10662076 DOI: 10.3389/fpls.2023.1279823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
Watercress (Nasturtium officinale) is a nutrient-dense salad crop with high antioxidant capacity and glucosinolate concentration and with the potential to contribute to nutrient security as a locally grown outdoor aquatic crop in northern temperate climates. However, phosphate-based fertilizers used to support plant growth contribute to the eutrophication of aquatic habitats, often pristine chalk streams, downstream of farms, increasing pressure to minimize fertilizer use and develop a more phosphorus-use efficient (PUE) crop. Here, we grew genetically distinct watercress lines selected from a bi-parental mapping population on a commercial watercress farm either without additional phosphorus (P-) or under a commercial phosphate-based fertilizer regime (P+), to decipher effects on morphology, nutritional profile, and the transcriptome. Watercress plants sustained shoot yield in P- conditions, through enhanced root biomass, but with shorter stems and smaller leaves. Glucosinolate concentration was not affected by P- conditions, but both antioxidant capacity and the concentration of sugars and starch in shoot tissue were enhanced. We identified two watercress breeding lines, with contrasting strategies for enhanced PUE: line 60, with highly plastic root systems and increased root growth in P-, and line 102, maintaining high yield irrespective of P supply, but less plastic. RNA-seq analysis revealed a suite of genes involved in cell membrane remodeling, root development, suberization, and phosphate transport as potential future breeding targets for enhanced PUE. We identified watercress gene targets for enhanced PUE for future biotechnological and breeding approaches enabling less fertilizer inputs and reduced environmental damage from watercress cultivation.
Collapse
Affiliation(s)
- Lauren E. Hibbert
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
- School of Biological Sciences, University of Southampton, Hampshire, United Kingdom
| | - Yufei Qian
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| | | | | | - Ella Katz
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| | | | - Gail Taylor
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| |
Collapse
|
10
|
Qiu R, Liu Y, Cai Z, Li J, Wu C, Wang G, Lin C, Peng Y, Deng Z, Tang W, Wu W, Duan Y. Glucan Synthase-like 2 is Required for Seed Initiation and Filling as Well as Pollen Fertility in Rice. RICE (NEW YORK, N.Y.) 2023; 16:44. [PMID: 37804355 PMCID: PMC10560172 DOI: 10.1186/s12284-023-00662-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND The Glucan synthase-like (GSL) genes are indispensable for some important highly-specialized developmental and cellular processes involving callose synthesis and deposition in plants. At present, the best-characterized reproductive functions of GSL genes are those for pollen formation and ovary expansion, but their role in seed initiation remains unknown. RESULTS We identified a rice seed mutant, watery seed 1-1 (ws1-1), which contained a mutation in the OsGSL2 gene. The mutant produced seeds lacking embryo and endosperm but filled with transparent and sucrose-rich liquid. In a ws1-1 spikelet, the ovule development was normal, but the microsporogenesis and male gametophyte development were compromised, resulting in the reduction of fertile pollen. After fertilization, while the seed coat normally developed, the embryo failed to differentiate normally. In addition, the divided endosperm-free nuclei did not migrate to the periphery of the embryo sac but aggregated so that their proliferation and cellularization were arrested. Moreover, the degeneration of nucellus cells was delayed in ws1-1. OsGSL2 is highly expressed in reproductive organs and developing seeds. Disrupting OsGSL2 reduced callose deposition on the outer walls of the microspores and impaired the formation of the annular callose sheath in developing caryopsis, leading to pollen defect and seed abortion. CONCLUSIONS Our findings revealed that OsGSL2 is essential for rice fertility and is required for embryo differentiation and endosperm-free nucleus positioning, indicating a distinct role of OsGSL2, a callose synthase gene, in seed initiation, which provides new insight into the regulation of seed development in cereals.
Collapse
Affiliation(s)
- Ronghua Qiu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhengzheng Cai
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieqiong Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunyan Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gang Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenchen Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yulin Peng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhanlin Deng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiqi Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiren Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yuanlin Duan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Ušák D, Haluška S, Pleskot R. Callose synthesis at the center point of plant development-An evolutionary insight. PLANT PHYSIOLOGY 2023; 193:54-69. [PMID: 37165709 DOI: 10.1093/plphys/kiad274] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Polar callose deposition into the extracellular matrix is tightly controlled in time and space. Its presence in the cell wall modifies the properties of the surrounding area, which is fundamental for the correct execution of numerous processes such as cell division, male gametophyte development, intercellular transport, or responses to biotic and abiotic stresses. Previous studies have been invaluable in characterizing specific callose synthases (CalSs) during individual cellular processes. However, the complex view of the relationships between a particular CalS and a specific process is still lacking. Here we review the recent proceedings on the role of callose and individual CalSs in cell wall remodelling from an evolutionary perspective and with a particular focus on cytokinesis. We provide a robust phylogenetic analysis of CalS across the plant kingdom, which implies a 3-subfamily distribution of CalS. We also discuss the possible linkage between the evolution of CalSs and their function in specific cell types and processes.
Collapse
Affiliation(s)
- David Ušák
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Samuel Haluška
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Roman Pleskot
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
| |
Collapse
|
12
|
Kapoor K, Geitmann A. Pollen tube invasive growth is promoted by callose. PLANT REPRODUCTION 2023; 36:157-171. [PMID: 36717422 DOI: 10.1007/s00497-023-00458-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/17/2023] [Indexed: 06/09/2023]
Abstract
Callose, a β-1,3-glucan, lines the pollen tube cell wall except for the apical growing region, and it constitutes the main polysaccharide in pollen tube plugs. These regularly deposited plugs separate the active portion of the pollen tube cytoplasm from the degenerating cell segments. They have been hypothesized to reduce the total amount of cell volume requiring turgor regulation, thus aiding the invasive growth mechanism. To test this, we characterized the growth pattern of Arabidopsis callose synthase mutants with altered callose deposition patterns. Mutant pollen tubes without callose wall lining or plugs had a wider diameter but grew slower compared to their respective wildtype. To probe the pollen tube's ability to perform durotropism in the absence of callose, we performed mechanical assays such as growth in stiffened media and assessed turgor through incipient plasmolysis. We found that mutants lacking plugs had lower invading capacity and higher turgor pressure when faced with a mechanically challenging substrate. To explain this unexpected elevation in turgor pressure in the callose synthase mutants we suspected that it is enabled by feedback-driven increased levels of de-esterified pectin and/or cellulose in the tube cell wall. Through immunolabeling we tested this hypothesis and found that the content and spatial distribution of these cell wall polysaccharides was altered in callose-deficient mutant pollen tubes. Combined, the results reveal how callose contributes to the pollen tube's invasive capacity and thus plays an important role in fertilization. In order to understand, how the pollen tube deposits callose, we examined the involvement of the actin cytoskeleton in the spatial targeting of callose synthases to the cell surface. The spatial proximity of actin with locations of callose deposition and the dramatic effect of pharmacological interference with actin polymerization suggest a potential role for the cytoskeleton in the spatial control of the characteristic wall assembly process in pollen tubes.
Collapse
Affiliation(s)
- Karuna Kapoor
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Anja Geitmann
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada.
| |
Collapse
|
13
|
Li N, Lin Z, Yu P, Zeng Y, Du S, Huang LJ. The multifarious role of callose and callose synthase in plant development and environment interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1183402. [PMID: 37324665 PMCID: PMC10264662 DOI: 10.3389/fpls.2023.1183402] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Callose is an important linear form of polysaccharide synthesized in plant cell walls. It is mainly composed of β-1,3-linked glucose residues with rare amount of β-1,6-linked branches. Callose can be detected in almost all plant tissues and are widely involved in various stages of plant growth and development. Callose is accumulated on plant cell plates, microspores, sieve plates, and plasmodesmata in cell walls and is inducible upon heavy metal treatment, pathogen invasion, and mechanical wounding. Callose in plant cells is synthesized by callose synthases located on the cell membrane. The chemical composition of callose and the components of callose synthases were once controversial until the application of molecular biology and genetics in the model plant Arabidopsis thaliana that led to the cloning of genes encoding synthases responsible for callose biosynthesis. This minireview summarizes the research progress of plant callose and its synthetizing enzymes in recent years to illustrate the important and versatile role of callose in plant life activities.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China
| | - Zeng Lin
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Peiyao Yu
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yanling Zeng
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Shenxiu Du
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li-Jun Huang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
14
|
Caperta AD, Fernandes I, Conceição SIR, Marques I, Róis AS, Paulo OS. Ovule Transcriptome Analysis Discloses Deregulation of Genes and Pathways in Sexual and Apomictic Limonium Species (Plumbaginaceae). Genes (Basel) 2023; 14:genes14040901. [PMID: 37107659 PMCID: PMC10137852 DOI: 10.3390/genes14040901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The genus Limonium Mill. (sea lavenders) includes species with sexual and apomixis reproductive strategies, although the genes involved in these processes are unknown. To explore the mechanisms beyond these reproduction modes, transcriptome profiling of sexual, male sterile, and facultative apomictic species was carried out using ovules from different developmental stages. In total, 15,166 unigenes were found to be differentially expressed with apomictic vs. sexual reproduction, of which 4275 were uniquely annotated using an Arabidopsis thaliana database, with different regulations according to each stage and/or species compared. Gene ontology (GO) enrichment analysis indicated that genes related to tubulin, actin, the ubiquitin degradation process, reactive oxygen species scavenging, hormone signaling such as the ethylene signaling pathway and gibberellic acid-dependent signal, and transcription factors were found among differentially expressed genes (DEGs) between apomictic and sexual plants. We found that 24% of uniquely annotated DEGs were likely to be implicated in flower development, male sterility, pollen formation, pollen-stigma interactions, and pollen tube formation. The present study identifies candidate genes that are highly associated with distinct reproductive modes and sheds light on the molecular mechanisms of apomixis expression in Limonium sp.
Collapse
Affiliation(s)
- Ana D Caperta
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Isabel Fernandes
- cE3c-Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Sofia I R Conceição
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- LASIGE Computer Science and Engineering Research Centre, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Isabel Marques
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Forest Research Centre (CEF), Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana S Róis
- Linking Landscape, Environment, Agriculture and Food (LEAF), Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- School of Psychology and Life Sciences, Universidade Lusófona de Humanidades e Tecnologias (ULHT), Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Octávio S Paulo
- cE3c-Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
15
|
Xia Z, Wen B, Shao J, Zhang T, Hu M, Lin L, Zheng Y, Shi Z, Dong X, Song J, Li Y, Wu Y, Yuan Y, Wu J, Chen Q, Chen J. The transcription factor PbrbZIP52 positively affects pear pollen tube longevity by promoting callose synthesis. PLANT PHYSIOLOGY 2023; 191:1734-1750. [PMID: 36617219 PMCID: PMC10022607 DOI: 10.1093/plphys/kiad002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
In pear (Pyrus bretschneideri), pollen tube growth is critical for the double fertilization associated with seed setting, which in turn affects fruit yield. The normal deposition of callose mediates the polar growth of pollen tubes. However, the mechanism regulating callose synthesis in pollen tubes remains relatively uncharacterized. In this study, we revealed that the typical pear pollen tube lifecycle has a semi-growth duration (GD50) of 16.16 h under in vitro culture conditions. Moreover, callose plugs were deposited throughout the pollen tube lifecycle. The formation of callose plugs was inhibited by 2-deoxy-D-glucose, which also accelerated the senescence of pear pollen tubes. Additionally, PbrCalS1B.1, which encodes a plasma membrane-localized callose synthase, was expressed specifically in pollen tubes and restored the fertility of the Arabidopsis (Arabidopsis thaliana) cals5 mutant, in which callose synthesis is inhibited. However, this restoration of fertility was impaired by the transient silencing of PbrCalS1B.1, which restricts callose plug formation and shortens the pear pollen tube lifecycle. More specifically, PbrbZIP52 regulated PbrCalS1B.1 transcription by binding to promoter A-box elements to maintain the periodic formation of callose plugs and normal pollen tube growth, ultimately leading to double fertilization. This study confirmed that PbrbZIP52 positively affects pear pollen tube longevity by promoting callose synthesis. This finding may be useful for breeding high-yielding pear cultivars and stabilizing fruit setting in commercial orchards.
Collapse
Affiliation(s)
- Zhongheng Xia
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binxu Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Shao
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Tianci Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengmeng Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Lin
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Anxi 362406, China
| | - Yiping Zheng
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China
| | - Zhixin Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinlin Dong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juanjuan Song
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanshan Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongjie Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yafang Yuan
- Department of Horticulture and Landscape Architecture, Fujian Vocational College of Agriculture, Fuzhou 350119, China
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingxi Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianqing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Sangi S, Olimpio GV, Coelho FS, Alexandrino CR, Da Cunha M, Grativol C. Flagellin and mannitol modulate callose biosynthesis and deposition in soybean seedlings. PHYSIOLOGIA PLANTARUM 2023; 175:e13877. [PMID: 36811487 DOI: 10.1111/ppl.13877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Callose is a polymer deposited on the cell wall and is necessary for plant growth and development. Callose is synthesized by genes from the glucan synthase-like family (GSL) and dynamically responds to various types of stress. Callose can inhibit pathogenic infection, in the case of biotic stresses, and maintain cell turgor and stiffen the plant cell wall in abiotic stresses. Here, we report the identification of 23 GSL genes (GmGSL) in the soybean genome. We performed phylogenetic analyses, gene structure prediction, duplication patterns, and expression profiles on several RNA-Seq libraries. Our analyses show that WGD/Segmental duplication contributed to expanding this gene family in soybean. Next, we analyzed the callose responses in soybean under abiotic and biotic stresses. The data show that callose is induced by both osmotic stress and flagellin 22 (flg22) and is related to the activity of β-1,3-glucanases. By using RT-qPCR, we evaluated the expression of GSL genes during the treatment of soybean roots with mannitol and flg22. The GmGSL23 gene was upregulated in seedlings treated with osmotic stress or flg22, showing the essential role of this gene in the soybean defense response to pathogenic organisms and osmotic stress. Our results provide an important understanding of the role of callose deposition and regulation of GSL genes in response to osmotic stress and flg22 infection in soybean seedlings.
Collapse
Affiliation(s)
- Sara Sangi
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Geovanna Vitória Olimpio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Fernanda Silva Coelho
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Camilla R Alexandrino
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Clícia Grativol
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
17
|
Zhong W, Zheng C, Dong L, Kang L, Yang F. The maize callose synthase SLM1 is critical for a normal growth by controlling the vascular development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:2. [PMID: 37312868 PMCID: PMC10248632 DOI: 10.1007/s11032-022-01350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 06/15/2023]
Abstract
Callose, mainly deposited at the cell plate and in the newly formed cell wall at a very low level, is critical for cell activity and growth in plants. The genetic control and function of callose synthases, responsible for the synthesis of callose, are largely unknown in maize. In this study, we cloned a maize callose synthase, SLM1 (Seedling Lethal Mutant1) encoding for a GLUCAN SYNTHASE-LIKE (GSL) gene, from a seedling lethal mutant. Three different point mutations confirmed the key role of SLM1 to maintain maize normal growth. SLM1 was specifically expressed in immature leaf vascular with an enrichment in phloem of developing vasculature. Consistently, slm1 had severe defects in vasculature and leaf development, and terminated growth about 2 weeks after germination. Thus, SLM1 is a key gene to maintain normal growth by controlling leaf vascular development and cell activities. Loss of SLM1 function interrupted severely the important signaling pathways in which cell cyclin and histone related genes are involved. Our study reveals the critical function of a maize GSL gene and also its downstream signaling to maintain a normal growth of maize. Supplementary information The online version contains supplementary material available at 10.1007/s11032-022-01350-4.
Collapse
Affiliation(s)
- Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Chang Zheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Liang Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Lu Kang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
18
|
Shikanai Y, Takahashi S, Enomoto Y, Yamagami M, Yamaguchi K, Shigenobu S, Kamiya T, Fujiwara T. Arabidopsis Glucan Synthase-Like1 (GSL1) Is Required for Tolerance to Low-Calcium Conditions and Exhibits a Function Comparable to GSL10. PLANT & CELL PHYSIOLOGY 2022; 63:1474-1484. [PMID: 35876020 DOI: 10.1093/pcp/pcac106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/16/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Crops that exhibit symptoms of calcium (Ca) deficiency constitute a major agricultural problem. Molecular breeding of resistant cultivars is a promising method for overcoming this problem. However, the involved genes must first be identified. Here, we show that the glucan synthase-like (GSL) 1 gene is essential for low-Ca tolerance in Arabidopsis thaliana. GSL1 is homologous to GSL10, which we previously showed was essential for low-Ca tolerance. Under low-Ca conditions, gsl1 mutants exhibit reduced growth and the onset of necrosis in new leaves. These symptoms are typical of Ca-deficient crops. A grafting experiment suggested that the shoot genotype, but not the root genotype, was important for the suppression of shoot necrosis. The ectopic accumulation of callose under low-Ca conditions was significantly reduced in gsl1 mutants compared with wild-type plants. Because the corresponding single-mutant phenotypes are similar, we investigated the interaction between GSL1 and GSL10 by testing the gsl1 gsl10 double mutant for sensitivity to low-Ca conditions. The double mutant exhibited a more severe phenotype than did the single mutants, indicating that the effects of GSL1 and GSL10 on low-Ca tolerance are additive. Because GSL genes are highly conserved within the plant kingdom, the GSL loci may be useful for breeding low-Ca tolerant crops.
Collapse
Affiliation(s)
- Yusuke Shikanai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Satomi Takahashi
- Faculty of Agriculture, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Yusuke Enomoto
- Department of Radioecology, Institute of Environmental Sciences, Aomori, 039-3212 Japan
- Showa Gakuin Junior & Senior High School, Higashisugano, Ichikawa, Chiba, 272-0823 Japan
| | - Mutsumi Yamagami
- Department of Radioecology, Institute of Environmental Sciences, Aomori, 039-3212 Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Aichi, 444-8585 Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Aichi, 444-8585 Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| |
Collapse
|
19
|
Shikanai Y, Asada M, Sato T, Enomoto Y, Yamagami M, Yamaguchi K, Shigenobu S, Kamiya T, Fujiwara T. Role of GSL8 in low calcium tolerance in Arabidopsis thaliana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:221-227. [PMID: 36349239 PMCID: PMC9592936 DOI: 10.5511/plantbiotechnology.22.0421a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/21/2022] [Indexed: 06/16/2023]
Abstract
Calcium (Ca) deficiency affects the yields and quality of agricultural products. Susceptibility to Ca deficiency varies among crops and cultivars; however, its genetic basis remains largely unknown. Genes required for low Ca tolerance in Arabidopsis thaliana have been identified. In this study, we identified a novel gene required for low Ca tolerance in A. thaliana. We isolated a mutant sensitive to low Ca concentrations and identified Glucan synthase-like (GSL) 8 as a gene responsible for low Ca tolerance. GSL8 is a paralog of the previously identified low Ca tolerance gene GSL10, which encodes β-1,3 glucan(callose) synthase. Under low Ca conditions, the shoot growth of gsl8 mutants were inhibited compared to wild-type plants. A grafting experiment indicated that the shoot, but not root, genotype was important for the shoot growth phenotype. The ectopic accumulation of callose under low Ca conditions was reduced in gsl8 mutants. We further investigated the interaction between GSL8 and GSL10 by testing the gsl8 gsl10 double mutant for sensitivity to low Ca concentrations. The double mutant exhibited a more severe phenotype than the single mutant under 0.3 mM Ca, indicating additive effects of GSL8 and GSL10 with respect to low Ca tolerance. These results establish that GSL genes are required for low Ca tolerance in A. thaliana.
Collapse
Affiliation(s)
- Yusuke Shikanai
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
| | - Mayu Asada
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
| | - Takafumi Sato
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
| | - Yusuke Enomoto
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
| | - Mutsumi Yamagami
- Department of Radioecology, Institute of Environmental Sciences, Aomori 039-3212, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
20
|
Cao P, Tang C, Wu X, Qian M, Lv S, Gao H, Qiao X, Chen G, Wang P, Zhang S, Wu J. PbrCalS5, a callose synthase protein, is involved in pollen tube growth in Pyrus bretschneideri. PLANTA 2022; 256:22. [PMID: 35767158 DOI: 10.1007/s00425-022-03931-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Identification of CalS genes in seven Rosaceae species and functional characterization of PbrCalS5 in pear pollen tube growth by regulating callose deposition. Callose exists widely in angiosperms and has significant functions in a range of developmental processes. Callose is synthesized by callose synthase (CalS). However, the members of the callose synthase gene family and their evolutionary profiles, along with their biological functions, in species of the Rosaceae remain unknown. In this study, a total of 69 members of the CalS gene family in seven Rosaceae species (Fragaria vesca, Malus × domestica, Prunus avium, Pyrus bretschneideri, Prunus mume, Prunus persica and Rubus occidentalis) were identified and divided into six clades. Different types of gene duplication events contributed to the expansions of the CalS gene family in the seven species, with purifying selection playing a key role in the evolution of the CalS genes. Tissue-specific expression patterns analysis revealed that PbrCalS5 was highly expressed in the pear pollen tube and was selected for further functional analysis. Subcellular localization indicated that PbrCalS5 was localized in the plasma membrane and cell wall. Antisense oligodeoxynucleotide (AS-ODN) assays resulted in the inhibition of PbrCalS5 expression, leading to the decreased callose deposition in the pollen tube wall and subsequent inhibition of pear pollen tube growth. These results provide the theoretical basis for exploring the functional roles of CalS genes in pear pollen tube growth.
Collapse
Affiliation(s)
- Peng Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
| | - Xiao Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shouzheng Lv
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongru Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guodong Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China.
- Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China.
| |
Collapse
|
21
|
Parrotta L, Faleri C, Del Casino C, Mareri L, Aloisi I, Guerriero G, Hausman JF, Del Duca S, Cai G. Biochemical and cytological interactions between callose synthase and microtubules in the tobacco pollen tube. PLANT CELL REPORTS 2022; 41:1301-1318. [PMID: 35303156 PMCID: PMC9110548 DOI: 10.1007/s00299-022-02860-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/02/2022] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE The article concerns the association between callose synthase and cytoskeleton by biochemical and ultrastructural analyses in the pollen tube. Results confirmed this association and immunogold labeling showed a colocalization. Callose is a cell wall polysaccharide involved in fundamental biological processes, from plant development to the response to abiotic and biotic stress. To gain insight into the deposition pattern of callose, it is important to know how the enzyme callose synthase is regulated through the interaction with the vesicle-cytoskeletal system. Actin filaments likely determine the long-range distribution of callose synthase through transport vesicles but the spatial/biochemical relationships between callose synthase and microtubules are poorly understood, although experimental evidence supports the association between callose synthase and tubulin. In this manuscript, we further investigated the association between callose synthase and microtubules through biochemical and ultrastructural analyses in the pollen tube model system, where callose is an essential component of the cell wall. Results by native 2-D electrophoresis, isolation of callose synthase complex and far-western blot confirmed that callose synthase is associated with tubulin and can therefore interface with cortical microtubules. In contrast, actin and sucrose synthase were not permanently associated with callose synthase. Immunogold labeling showed colocalization between the enzyme and microtubules, occasionally mediated by vesicles. Overall, the data indicate that pollen tube callose synthase exerts its activity in cooperation with the microtubular cytoskeleton.
Collapse
Affiliation(s)
- Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521, Cesena, Italy.
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100, Siena, Italy
| | - Cecilia Del Casino
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100, Siena, Italy
| | - Lavinia Mareri
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100, Siena, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Gea Guerriero
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Jean-Francois Hausman
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521, Cesena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
22
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
23
|
Feng J, Chen Y, Xiao X, Qu Y, Li P, Lu Q, Huang J. Genome-wide analysis of the CalS gene family in cotton reveals their potential roles in fiber development and responses to stress. PeerJ 2021; 9:e12557. [PMID: 34909280 PMCID: PMC8641485 DOI: 10.7717/peerj.12557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Callose deposition occurs during plant growth and development, as well as when plants are under biotic and abiotic stress. Callose synthase is a key enzyme for the synthesis of callose. In this study, 27, 28, 16, and 15 callose synthase family members were identified in Gossypium hirsutum, Gossypium barbadense, Gossypium raimondii, and Gossypium arboreum using the sequence of Arabidopsis callose synthase. The CalSs were divided into five groups by phylogenetic, gene structure, and conservative motif analysis. The conserved motifs and gene structures of CalSs in each group were highly similar. Based on the analysis of cis-acting elements, it is inferred that GhCalSs were regulated by abiotic stress. WGD/Segmental duplication promoted the amplification of the CalS gene in cotton, and purification selection had an important function in the CalS family. The transcriptome data and qRT-PCR under cold, heat, salt, and PEG treatments showed that GhCalSs were involved in abiotic stress. The expression patterns of GhCalSs were different in various tissues. We predicted that GhCalS4, which was highly expressed in fibers, had an important effect on fiber elongation. Hence, these results help us understand the role of GhCalSs in fiber development and stress response.
Collapse
Affiliation(s)
- Jiajia Feng
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China.,School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Yi Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xianghui Xiao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Yunfang Qu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Quanwei Lu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China.,School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Jinling Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
24
|
Characterization and Expression Analyses of Callose Synthase Enzyme (Cals) Family Genes in Maize (Zea mays L.). Biochem Genet 2021; 60:351-369. [PMID: 34224040 DOI: 10.1007/s10528-021-10103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/19/2021] [Indexed: 10/20/2022]
Abstract
The callose synthase enzyme genes (Cals) generally plays an important role in resisting to environmental stresses as well as in regulating the microspore development of higher plant. However till now, few researches about ZmCals genes have been reported in maize. In this study, ten ZmCals genes were identified, and they are distributed on four chromosomes in maize. All ZmCals proteins contain Glucan-synthase-domain and Fks1-domain. RNA-seq data from public databases were analyzed and the result suggested that ZmCals involved in the development of various tissues, and a strong expression presented especially in young tissue. qRT-PCR analysis shown that most of ZmCals are highly expressed in root, stem and leaf at jointing stage (V6 stage) with maize inbred line B73. Seven out of 10 ZmCals genes display higher expression during maize anther development especially from stage 6 to stage 8b, the dynamic accumulation process of callose is also observed during these period with aniline blue staining. Above results indicated multiple ZmCals may participate in the deposition of callose in maize anther. Therefore, ZmCals are necessary not only for reproductive organ but also for nutritive organ during maize growth and development. This study lays certain foundation for further investigating the roles of the callose synthase enzymes genes in maize.
Collapse
|
25
|
Oh SA, Park HJ, Kim MH, Park SK. Analysis of sticky generative cell mutants reveals that suppression of callose deposition in the generative cell is necessary for generative cell internalization and differentiation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:228-244. [PMID: 33458909 DOI: 10.1111/tpj.15162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
In flowering plants, double fertilization between male and female gametophytes, which are separated by distance, largely depends on the unique pattern of the male gametophyte (pollen): two non-motile sperm cells suspended within a tube-producing vegetative cell. A morphological screen to elucidate the genetic control governing the strategic patterning of pollen has led to the isolation of a sticky generative cell (sgc) mutant that dehisces abnormal pollen with the generative cell immobilized at the pollen wall. Analyses revealed that the sgc mutation is specifically detrimental to pollen development, causing ectopic callose deposition that impedes the timely internalization and differentiation of the generative cell. We found that the SGC gene encodes the highly conserved domain of unknown function 707 (DUF707) gene that is broadly expressed but is germline specific during pollen development. Additionally, transgenic plants co-expressing fluorescently fused SGC protein and known organelle markers showed that SGC localizes in the endoplasmic reticulum, Golgi apparatus and vacuoles in pollen. A yeast two-hybrid screen with an SGC bait identified a thaumatin-like protein that we named GCTLP1, some homologs of which bind and/or digest β-1,3-glucans, the main constituent of callose. GCTLP1 is expressed in a germline-specific manner and colocalizes with SGC during pollen development, indicating that GCTLP1 is a putative SGC interactor. Collectively, our results show that SGC suppresses callose deposition in the nascent generative cell, thereby allowing the generative cell to fully internalize into the vegetative cell and correctly differentiate as the germline progenitor, with the potential involvement of the GCTLP1 protein, during pollen development in Arabidopsis.
Collapse
Affiliation(s)
- Sung-Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyo-Jin Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myung-Hee Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soon-Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
26
|
Liu L, Wang T. Male gametophyte development in flowering plants: A story of quarantine and sacrifice. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153365. [PMID: 33548696 DOI: 10.1016/j.jplph.2021.153365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 05/19/2023]
Abstract
Over 160 years ago, scientists made the first microscopic observations of angiosperm pollen. Unlike in animals, male meiosis in angiosperms produces a haploid microspore that undergoes one asymmetric division to form a vegetative cell and a generative cell. These two cells have distinct fates: the vegetative cell exits the cell cycle and elongates to form a tip-growing pollen tube; the generative cell divides once more in the pollen grain or within the growing pollen tube to form a pair of sperm cells. The concept that male germ cells are less active than the vegetative cell came from biochemical analyses and pollen structure anatomy early in the last century and is supported by the pollen transcriptome data of the last decade. However, the mechanism of how and when the transcriptional repression in male germ cells occurs is still not fully understood. In this review, we provide a brief account of the cytological and metabolic differentiation between the vegetative cell and male germ cells, with emphasis on the role of temporary callose walls, dynamic nuclear pore density, transcription repression, and histone variants. We further discuss the intercellular movement of small interfering RNA (siRNA) derived from transposable elements (TEs) and reexamine the function of TE expression in male germ cells.
Collapse
Affiliation(s)
- Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
27
|
Wang H, Cao S, Li T, Zhang L, Yao J, Xia X, Zhang R. Classification and expression analysis of cucumber ( Cucumis sativus L.) callose synthase ( CalS) family genes and localization of CsCalS4, a protein involved in pollen development. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2022.2038670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Hongyun Wang
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Shoujun Cao
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Tao Li
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Lili Zhang
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Jiangang Yao
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Xiubo Xia
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| | - Ruiqing Zhang
- Institute of Vegetables and Flowers Research, Yantai Agricultural Science Academy of Shandong Province, Yantai, China
| |
Collapse
|
28
|
Wang B, Fang R, Zhang J, Han J, Chen F, He F, Liu YG, Chen L. Rice LecRK5 phosphorylates a UGPase to regulate callose biosynthesis during pollen development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4033-4041. [PMID: 32270203 PMCID: PMC7475243 DOI: 10.1093/jxb/eraa180] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/08/2020] [Indexed: 05/19/2023]
Abstract
The temporary callose layer surrounding the tetrads of microspores is critical for male gametophyte development in flowering plants, as abnormal callose deposition can lead to microspore abortion. A sophisticated signaling network regulates callose biosynthesis but these pathways are poorly understood. In this study, we characterized a rice male-sterile mutant, oslecrk5, which showed defective callose deposition during meiosis. OsLecRK5 encodes a plasma membrane-localized lectin receptor-like kinase, which can form a dimer with itself. Moreover, normal anther development requires the K-phosphorylation site (a conserved residue at the ATP-binding site) of OsLecRK5. In vitro assay showed that OsLecRK5 phosphorylates the callose synthesis enzyme UGP1, enhancing callose biosynthesis during anther development. Together, our results demonstrate that plasma membrane-localized OsLecRK5 phosphorylates UGP1 and promotes its activity in callose biosynthesis in rice. This is the first evidence that a receptor-like kinase positively regulates callose biosynthesis.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ruiqiu Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Dongyang Institute of Maize Research, Zhejiang Academy of Agricultural Sciences, Dongyang, Zhejiang, China
| | - Jia Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Faming Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Furong He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Correspondence:
| |
Collapse
|
29
|
Curtolo M, Granato LM, Soratto TAT, Curtolo M, Gazaffi R, Takita MA, Cristofani-Yaly M, Machado MA. Expression Quantitative Trait Loci (eQTL) mapping for callose synthases in intergeneric hybrids of Citrus challenged with the bacteria Candidatus Liberibacter asiaticus. Genet Mol Biol 2020; 43:e20190133. [PMID: 32568357 PMCID: PMC7295156 DOI: 10.1590/1678-4685-gmb-2019-0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
Citrus plants have been extremely affected by Huanglongbing (HLB) worldwide, causing
economic losses. HLB disease causes disorders in citrus plants, leading to callose
deposition in the phloem vessel sieve plates. Callose is synthesized by callose
synthases, which are encoded by 12 genes (calS1–
calS12)in Arabidopsis thaliana. We evaluated the
expression of eight callose synthase genes from Citrus in hybrids between
Citrus sunki and Poncirus trifoliata infected
with HLB. The objective of this work was to identify possible tolerance loci
combining the expression quantitative trait loci (eQTL) of different callose
synthases and genetic Single-Nucleotide Polymorphism (SNP) maps of C.
sunki and P. trifoliata. The expression data from all
CscalS ranged widely among the hybrids. Furthermore, the data
allowed the detection of 18 eQTL in the C. sunki map and 34 eQTL in
the P. trifoliata map. In both maps, some eQTL for different
CscalS were overlapped; thus, a single region could be associated
with the regulation of more than one CscalS. The regions identified
in this work can be interesting targets for future studies of Citrus
breeding programs to manipulate callose synthesis during HLB infection.
Collapse
Affiliation(s)
- Maiara Curtolo
- Instituto Agronômico de Campinas, Centro APTA Citros Sylvio Moreira, Cordeirópolis, SP, Brazil.,Universidade Estadual de Campinas, Programa de Pós-Graduação em Genética e Biologia Molecular, Campinas, SP, Brazil
| | - Laís Moreira Granato
- Instituto Agronômico de Campinas, Centro APTA Citros Sylvio Moreira, Cordeirópolis, SP, Brazil
| | | | - Maisa Curtolo
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Programa de Pós-Graduação em Genética e Melhoramento de Plantas, Piracicaba, SP, Brazil
| | - Rodrigo Gazaffi
- Universidade Federal de São Carlos, Centro de Ciências Agrárias, Departamento de Biotecnologia e Produção Vegetal e Animal, Araras, SP, Brazil
| | - Marco Aurélio Takita
- Instituto Agronômico de Campinas, Centro APTA Citros Sylvio Moreira, Cordeirópolis, SP, Brazil
| | | | - Marcos Antonio Machado
- Instituto Agronômico de Campinas, Centro APTA Citros Sylvio Moreira, Cordeirópolis, SP, Brazil
| |
Collapse
|
30
|
Population structure and genetic diversity in red clover (Trifolium pratense L.) germplasm. Sci Rep 2020; 10:8364. [PMID: 32433569 PMCID: PMC7239897 DOI: 10.1038/s41598-020-64989-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/22/2020] [Indexed: 01/29/2023] Open
Abstract
Red clover (Trifolium pratense L.) is a highly adaptable forage crop for temperate livestock agriculture. Genetic variation can be identified, via molecular techniques, and used to assess diversity among populations that may otherwise be indistinguishable. Here we have used genotyping by sequencing (GBS) to determine the genetic variation and population structure in red clover natural populations from Europe and Asia, and varieties or synthetic populations. Cluster analysis differentiated the collection into four large regional groups: Asia, Iberia, UK, and Central Europe. The five varieties clustered with the geographical area from which they were derived. Two methods (BayeScan and Samβada) were used to search for outlier loci indicating signatures of selection. A total of 60 loci were identified by both methods, but no specific genomic region was highlighted. The rate of decay in linkage disequilibrium was fast, and no significant evidence of any bottlenecks was found. Phenotypic analysis showed that a more prostrate and spreading growth habit was predominantly found among populations from Iberia and the UK. A genome wide association study identified a single nucleotide polymorphism (SNP) located in a homologue of the VEG2 gene from pea, associated with flowering time. The identification of genetic variation within the natural populations is likely to be useful for enhancing the breeding of red clover in the future.
Collapse
|
31
|
Pu Y, Hou L, Guo Y, Ullah I, Yang Y, Yue Y. Genome-wide analysis of the callose enzyme families of fertile and sterile flower buds of the Chinese cabbage (Brassica rapa L. ssp. pekinensis). FEBS Open Bio 2019; 9:1432-1449. [PMID: 31168951 PMCID: PMC6668379 DOI: 10.1002/2211-5463.12685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 05/10/2019] [Accepted: 06/04/2019] [Indexed: 12/03/2022] Open
Abstract
Callose is a β‐1,3‐glucan commonly found in higher plants that plays an important role in regulating plant pollen development. It is synthesized by glucan synthase‐like (GSL) and is degraded by the enzyme endo‐1,3‐β‐glucosidase. However, genome‐wide analyses of callose GSL and endo‐1,3‐β‐glucosidase enzymes in fertile and sterile flower buds of Chinese cabbage have not yet been reported. Here, we show that delayed callose degradation at the tetrad stage may be the main cause of microspore abortion in Chinese cabbage with nuclear sterility near‐isogenic line ‘10L03’. Fifteen callose GSLs and 77 endo‐1,3‐β‐glucosidase enzymes were identified in Chinese cabbage. Phylogenetic, gene structural and chromosomal analyses revealed that the expansion occurred due to three polyploidization events of these two gene families. Expression pattern analysis showed that the GSL and endo‐1,3‐β‐glucosidase enzymes are involved in the development of various tissues and that the genes functionally diverged during long‐term evolution. Relative gene expression analysis of Chinese cabbage flowers at different developmental stages showed that high expression of the synthetic enzyme BraA01g041620 and low expression of AtA6‐homologous genes (BraA04g008040, BraA07g009320, BraA01g030220 and BraA03g040850) and two other genes (BraA10g020080 and BraA05g038340) for degrading enzymes in the meiosis and tetrad stages may cause nuclear sterility in the near‐isogenic line ‘10L03’. Overall, our data provide an important foundation for comprehending the potential roles of the callose GSL and endo‐1,3‐β‐glucosidase enzymes in regulating pollen development in Chinese cabbage.
Collapse
Affiliation(s)
- Yanan Pu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China.,Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lingyun Hou
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Yingqi Guo
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ikram Ullah
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Yongping Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yanling Yue
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
32
|
Rivas-Sendra A, Corral-Martínez P, Porcel R, Camacho-Fernández C, Calabuig-Serna A, Seguí-Simarro JM. Embryogenic competence of microspores is associated with their ability to form a callosic, osmoprotective subintinal layer. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1267-1281. [PMID: 30715473 PMCID: PMC6382338 DOI: 10.1093/jxb/ery458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/19/2018] [Indexed: 05/05/2023]
Abstract
Microspore embryogenesis is an experimental morphogenic pathway with important applications in basic research and applied plant breeding, but its genetic, cellular, and molecular bases are poorly understood. We applied a multidisciplinary approach using confocal and electron microscopy, detection of Ca2+, callose, and cellulose, treatments with caffeine, digitonin, and endosidin7, morphometry, qPCR, osmometry, and viability assays in order to study the dynamics of cell wall formation during embryogenesis induction in a high-response rapeseed (Brassica napus) line and two recalcitrant rapeseed and eggplant (Solanum melongena) lines. Formation of a callose-rich subintinal layer (SL) was common to microspore embryogenesis in the different genotypes. However, this process was directly related to embryogenic response, being greater in high-response genotypes. A link could be established between Ca2+ influx, abnormal callose/cellulose deposition, and the genotype-specific embryogenic competence. Callose deposition in inner walls and SLs are independent processes, regulated by different callose synthases. Viability and control of internal osmolality are also related to SL formation. In summary, we identified one of the causes of recalcitrance to embryogenesis induction: a reduced or absent protective SL. In responding genotypes, SLs are markers for changes in cell fate and serve as osmoprotective barriers to increase viability in imbalanced in vitro environments. Genotype-specific differences relate to different responses against abiotic (heat/osmotic) stresses.
Collapse
Affiliation(s)
- Alba Rivas-Sendra
- Cell Biology Group - COMAV Institute, Universitat Politècnica de València (UPV), Valencia, Spain
- Present address: Universidad Regional Amazónica IKIAM, Tena, Ecuador
| | - Patricia Corral-Martínez
- Cell Biology Group - COMAV Institute, Universitat Politècnica de València (UPV), Valencia, Spain
| | - Rosa Porcel
- Cell Biology Group - COMAV Institute, Universitat Politècnica de València (UPV), Valencia, Spain
| | | | - Antonio Calabuig-Serna
- Cell Biology Group - COMAV Institute, Universitat Politècnica de València (UPV), Valencia, Spain
| | | |
Collapse
|
33
|
Smertenko A. Phragmoplast expansion: the four-stroke engine that powers plant cytokinesis. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:130-137. [PMID: 30072118 DOI: 10.1016/j.pbi.2018.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/28/2018] [Accepted: 07/13/2018] [Indexed: 05/21/2023]
Abstract
The phragmoplast is a plant-specific secretory module that partitions daughter cells during cytokinesis by constructing a cell plate from membranes and oligosaccharides. The cell plate is typically a long structure, which requires the phragmoplast to expand to complete cytokinesis. The phragmoplast expands by coordinating microtubule dynamics with membrane trafficking. Each step in phragmoplast expansion involves the establishment of anti-parallel microtubule overlaps that are enriched with the protein MAP65, which recruits cytokinetic vesicles through interaction with the tethering factor, TRAPPII. Cell plate assembly triggers dissolution of the anti-parallel overlaps and stabilization of microtubule plus ends through association with the cell plate assembly machinery. This opinion article discusses processes that drive phragmoplast expansion as well as highlights key questions that remain for better understanding its role in plant cell division.
Collapse
Affiliation(s)
- Andrei Smertenko
- Institute of Biological Chemistry, College of Human, Agricultural, and Natural Resource Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
34
|
Saatian B, Austin RS, Tian G, Chen C, Nguyen V, Kohalmi SE, Geelen D, Cui Y. Analysis of a novel mutant allele of GSL8 reveals its key roles in cytokinesis and symplastic trafficking in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:295. [PMID: 30466394 PMCID: PMC6249969 DOI: 10.1186/s12870-018-1515-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/31/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Plant cell walls are mainly composed of polysaccharides such as cellulose and callose. Callose exists at a very low level in the cell wall; however, it plays critical roles at different stages of plant development as well as in defence against unfavorable conditions. Callose is accumulated at the cell plate, at plasmodesmata and in male and female gametophytes. Despite the important roles of callose in plants, the mechanisms of its synthesis and regulatory properties are not well understood. RESULTS CALLOSE SYNTHASE (CALS) genes, also known as GLUCAN SYNTHASE-LIKE (GSL), comprise a family of 12 members in Arabidopsis thaliana. Here, we describe a new allele of GSL8 (named essp8) that exhibits pleiotropic seedling defects. Reduction of callose deposition at the cell plates and plasmodesmata in essp8 leads to ectopic endomitosis and an increase in the size exclusion limit of plasmodesmata during early seedling development. Movement of two non-cell-autonomous factors, SHORT ROOT and microRNA165/6, both required for root radial patterning during embryonic root development, are dysregulated in the primary root of essp8. This observation provides evidence for a molecular mechanism explaining the gsl8 root phenotype. We demonstrated that GSL8 interacts with PLASMODESMATA-LOCALIZED PROTEIN 5, a β-1,3-glucanase, and GSL10. We propose that they all might be part of a putative callose synthase complex, allowing a concerted regulation of callose deposition at plasmodesmata. CONCLUSION Analysis of a novel mutant allele of GSL8 reveals that GSL8 is a key player in early seedling development in Arabidopsis. GSL8 is required for maintaining the basic ploidy level and regulating the symplastic trafficking. Callose deposition at plasmodesmata is highly regulated and occurs through interaction of different components, likely to be incorporated into a callose biosynthesis complex. We are providing new evidence supporting an earlier hypothesis that GSL8 might have regulatory roles apart from its enzymatic function in plasmodesmata regulation.
Collapse
Affiliation(s)
- Behnaz Saatian
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON Canada
- Department of Biology, Western University, 1391 Sandford St, London, ON N5V 4T3 Canada
| | - Ryan S. Austin
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON Canada
- Department of Biology, Western University, 1391 Sandford St, London, ON N5V 4T3 Canada
| | - Gang Tian
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON Canada
| | - Chen Chen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON Canada
- Department of Biology, Western University, 1391 Sandford St, London, ON N5V 4T3 Canada
| | - Vi Nguyen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON Canada
| | - Susanne E. Kohalmi
- Department of Biology, Western University, 1391 Sandford St, London, ON N5V 4T3 Canada
| | - Danny Geelen
- In Vitro Biology and Horticulture, Department of Plant Production, University of Ghent, 9000 Ghent, Belgium
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON Canada
- Department of Biology, Western University, 1391 Sandford St, London, ON N5V 4T3 Canada
| |
Collapse
|
35
|
Chen L, Ding X, Zhang H, He T, Li Y, Wang T, Li X, Jin L, Song Q, Yang S, Gai J. Comparative analysis of circular RNAs between soybean cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B by high-throughput sequencing. BMC Genomics 2018; 19:663. [PMID: 30208848 PMCID: PMC6134632 DOI: 10.1186/s12864-018-5054-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/03/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) is a natural phenomenon of pollen abortion caused by the interaction between cytoplasmic genes and nuclear genes. CMS is a simple and effective pollination control system, and plays an important role in crop heterosis utilization. Circular RNAs (circRNAs) are a vital type of non-coding RNAs, which play crucial roles in microRNAs (miRNAs) function and post-transcription control. To explore the expression profile and possible functions of circRNAs in the soybean CMS line NJCMS1A and its maintainer NJCMS1B, high-throughput deep sequencing coupled with RNase R enrichment strategy was conducted. RESULTS CircRNA libraries were constructed from flower buds of NJCMS1A and its maintainer NJCMS1B with three biological replicates. A total of 2867 circRNAs were identified, with 1009 circRNAs differentially expressed between NJCMS1A and NJCMS1B based on analysis of high-throughput sequencing. Of the 12 randomly selected circRNAs with different expression levels, 10 showed consistent expression patterns based on high-throughput sequencing and quantitative real-time PCR analyses. Tissue specific expression patterns were also verified with two circRNAs by quantitative real-time PCR. Most parental genes of differentially expressed circRNAs were mainly involved in biological processes such as metabolic process, biological regulation, and reproductive process. Moreover, 83 miRNAs were predicted from the differentially expressed circRNAs, some of which were strongly related to pollen development and male fertility; The functions of miRNA targets were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and the target mRNAs were significantly enriched in signal transduction and programmed cell death. Furthermore, a total of 165 soybean circRNAs were predicted to contain at least one internal ribosome entry site (IRES) element and an open reading frame, indicating their potential to encode polypeptides or proteins. CONCLUSIONS Our study indicated that the circRNAs might participate in the regulation of flower and pollen development, which could provide a new insight into the molecular mechanisms of CMS in soybean.
Collapse
Affiliation(s)
- Linfeng Chen
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Zhang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tingting He
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yanwei Li
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tanliu Wang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaoqiang Li
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ling Jin
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD 20705 USA
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
36
|
O’Lexy R, Kasai K, Clark N, Fujiwara T, Sozzani R, Gallagher KL. Exposure to heavy metal stress triggers changes in plasmodesmatal permeability via deposition and breakdown of callose. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3715-3728. [PMID: 29901781 PMCID: PMC6022669 DOI: 10.1093/jxb/ery171] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/15/2018] [Indexed: 05/19/2023]
Abstract
Both plants and animals must contend with changes in their environment. The ability to respond appropriately to these changes often underlies the ability of the individual to survive. In plants, an early response to environmental stress is an alteration in plasmodesmatal permeability with accompanying changes in cell to cell signaling. However, the ways in which plasmodesmata are modified, the molecular players involved in this regulation, and the biological significance of these responses are not well understood. Here, we examine the effects of nutrient scarcity and excess on plasmodesmata-mediated transport in the Arabidopsis thaliana root and identify two CALLOSE SYNTHASES and two β-1,3-GLUCANASES as key regulators of these processes. Our results suggest that modification of plasmodesmata-mediated signaling underlies the ability of the plant to maintain root growth and properly partition nutrients when grown under conditions of excess nutrients.
Collapse
Affiliation(s)
- Ruthsabel O’Lexy
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Koji Kasai
- Department of Agriculture and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Natalie Clark
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Biomathematics Graduate Program, North Carolina State University, Raleigh, NC, USA
| | - Toru Fujiwara
- Department of Agriculture and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Biomathematics Graduate Program, North Carolina State University, Raleigh, NC, USA
| | - Kimberly L Gallagher
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Correspondence:
| |
Collapse
|
37
|
Lopez RA, Renzaglia KS. The Ceratopteris (fern) developing motile gamete walls contain diverse polysaccharides, but not pectin. PLANTA 2018; 247:393-404. [PMID: 29027584 DOI: 10.1007/s00425-017-2793-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Unlike most plant cell walls, the five consecutive walls laid down during spermatogenesis in the model fern Ceratopteris contain sparse cellulose, lack pectin and are enriched with callose and hemicelluloses. Seed-free plants like bryophytes and pteridophytes produce swimming male gametes for sexual reproduction. During spermatogenesis, unique walls are formed that are essential to the appropriate development and maturation of the motile gametes. Other than the detection of callose and general wall polysaccharides in scattered groups, little is known about the sequence of wall formation and the composition of these walls during sperm cell differentiation in plants that produce swimming sperm. Using histochemistry and immunogold localizations, we examined the distribution of callose, cellulose, mannan and xylan-containing hemicelluloses, and homogalacturonan (HG) pectins in the special walls deposited during spermatogenesis in Ceratopteris. Five walls are produced in sequence and each has a unique fate. The first wall (W1) contains callose and sparse xylan-containing hemicelluloses. Wall two (W2) is thin and composed of cellulose crosslinked by xylan-containing hemicelluloses. The third wall (W3) is thick and composed entirely of callose, and the fourth wall (W4) is built of cellulose heavily crosslinked by galactoxyloglucan hemicelluloses. Wall five (W5) is an arabinogalactan protein (AGP)-rich matrix in which the gamete changes shape and multiple flagella elongate. We detected no esterified or unesterified HG pectins in any of the walls laid down during spermatogenesis. To consider evolutionary modifications in cell walls associated with motile gametes, comparisons are presented with male gametophyte and spermatogenous cell walls across plant groups.
Collapse
Affiliation(s)
- Renee A Lopez
- Department of Plant Biology, MC:6509, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA.
| | - Karen S Renzaglia
- Department of Plant Biology, MC:6509, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA
| |
Collapse
|
38
|
Smertenko A, Hewitt SL, Jacques CN, Kacprzyk R, Liu Y, Marcec MJ, Moyo L, Ogden A, Oung HM, Schmidt S, Serrano-Romero EA. Phragmoplast microtubule dynamics - a game of zones. J Cell Sci 2018; 131:jcs.203331. [PMID: 29074579 DOI: 10.1242/jcs.203331] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Plant morphogenesis relies on the accurate positioning of the partition (cell plate) between dividing cells during cytokinesis. The cell plate is synthetized by a specialized structure called the phragmoplast, which consists of microtubules, actin filaments, membrane compartments and associated proteins. The phragmoplast forms between daughter nuclei during the transition from anaphase to telophase. As cells are commonly larger than the originally formed phragmoplast, the construction of the cell plate requires phragmoplast expansion. This expansion depends on microtubule polymerization at the phragmoplast forefront (leading zone) and loss at the back (lagging zone). Leading and lagging zones sandwich the 'transition' zone. A population of stable microtubules in the transition zone facilitates transport of building materials to the midzone where the cell plate assembly takes place. Whereas microtubules undergo dynamic instability in all zones, the overall balance appears to be shifted towards depolymerization in the lagging zone. Polymerization of microtubules behind the lagging zone has not been reported to date, suggesting that microtubule loss there is irreversible. In this Review, we discuss: (1) the regulation of microtubule dynamics in the phragmoplast zones during expansion; (2) mechanisms of the midzone establishment and initiation of cell plate biogenesis; and (3) signaling in the phragmoplast.
Collapse
Affiliation(s)
- Andrei Smertenko
- Institute of Biological Chemistry, Pullman, WA 99164, USA .,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Seanna L Hewitt
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Horticulture, Washington State University, Pullman, WA 99164, USA
| | - Caitlin N Jacques
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Rafal Kacprzyk
- Institute of Biological Chemistry, Pullman, WA 99164, USA
| | - Yan Liu
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Matthew J Marcec
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Lindani Moyo
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Aaron Ogden
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Hui Min Oung
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Sharol Schmidt
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Erika A Serrano-Romero
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
39
|
Sinclair R, Rosquete MR, Drakakaki G. Post-Golgi Trafficking and Transport of Cell Wall Components. FRONTIERS IN PLANT SCIENCE 2018; 9:1784. [PMID: 30581448 PMCID: PMC6292943 DOI: 10.3389/fpls.2018.01784] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/16/2018] [Indexed: 05/13/2023]
Abstract
The cell wall, a complex macromolecular composite structure surrounding and protecting plant cells, is essential for development, signal transduction, and disease resistance. This structure is also integral to cell expansion, as its tensile resistance is the primary balancing mechanism against internal turgor pressure. Throughout these processes, the biosynthesis, transport, deposition, and assembly of cell wall polymers are tightly regulated. The plant endomembrane system facilitates transport of polysaccharides, polysaccharide biosynthetic and modifying enzymes and glycoproteins through vesicle trafficking pathways. Although a number of enzymes involved in cell wall biosynthesis have been identified, comparatively little is known about the transport of cell wall polysaccharides and glycoproteins by the endomembrane system. This review summarizes our current understanding of trafficking of cell wall components during cell growth and cell division. Emerging technologies, such as vesicle glycomics, are also discussed as promising avenues to gain insights into the trafficking of structural polysaccharides to the apoplast.
Collapse
|
40
|
Leijon F, Melzer M, Zhou Q, Srivastava V, Bulone V. Proteomic Analysis of Plasmodesmata From Populus Cell Suspension Cultures in Relation With Callose Biosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1681. [PMID: 30510561 PMCID: PMC6252348 DOI: 10.3389/fpls.2018.01681] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/29/2018] [Indexed: 05/19/2023]
Abstract
Plasmodesmata are channels that link adjacent cells in plant tissues through which molecular exchanges take place. They are involved in multiple processes vital to plant cells, such as responses to hormonal signaling or environmental challenges including osmotic stress, wounding and pathogen attack. Despite the importance of plasmodesmata, their proteome is not well-defined. Here, we have isolated fractions enriched in plasmodesmata from cell suspension cultures of Populus trichocarpa and identified 201 proteins that are enriched in these fractions, thereby providing further insight on the multiple functions of plasmodesmata. Proteomics analysis revealed an enrichment of proteins specifically involved in responses to stress, transport, metabolism and signal transduction. Consistent with the role of callose deposition and turnover in the closure and aperture of the plasmodesmata and our proteomic analysis, we demonstrate the enrichment of callose synthase activity in the plasmodesmata represented by several gene products. A new form of calcium-independent callose synthase activity was detected, in addition to the typical calcium-dependent enzyme activity, suggesting a role of calcium in the regulation of plasmodesmata through two forms of callose synthase activities. Our report provides the first proteomic investigation of the plasmodesmata from a tree species and the direct biochemical evidence for the occurrence of several forms of active callose synthases in these structures. Data are available via ProteomeXchange with identifier PXD010692.
Collapse
Affiliation(s)
- Felicia Leijon
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Qi Zhou
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
- *Correspondence: Vaibhav Srivastava, Vincent Bulone,
| | - Vincent Bulone
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
- ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Vaibhav Srivastava, Vincent Bulone,
| |
Collapse
|
41
|
Záveská Drábková L, Honys D. Evolutionary history of callose synthases in terrestrial plants with emphasis on proteins involved in male gametophyte development. PLoS One 2017; 12:e0187331. [PMID: 29131847 PMCID: PMC5683620 DOI: 10.1371/journal.pone.0187331] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/17/2017] [Indexed: 11/30/2022] Open
Abstract
Callose is a plant-specific polysaccharide (β-1,3-glucan) playing an important role in angiosperms in many developmental processes and responses to biotic and abiotic stresses. Callose is synthesised at the plasma membrane of plant cells by callose synthase (CalS) and, among others, represents the main polysaccharide in the callose wall surrounding the tetrads of developing microspores and in the growing pollen tube wall. CalS proteins involvement in spore development is a plesiomorphic feature of terrestrial plants, but very little is known about their evolutionary origin and relationships amongst the members of this protein family. We performed thorough comparative analyses of callose synthase family proteins from major plant lineages to determine their evolutionary history across the plant kingdom. A total of 1211 candidate CalS sequences were identified and compared amongst diverse taxonomic groups of plants, from bryophytes to angiosperms. Phylogenetic analyses identified six main clades of CalS proteins and suggested duplications during the evolution of specialised functions. Twelve family members had previously been identified in Arabidopsis thaliana. We focused on five CalS subfamilies directly linked to pollen function and found that proteins expressed in pollen evolved twice. CalS9/10 and CalS11/12 formed well-defined clades, whereas pollen-specific CalS5 was found within subfamilies that mostly did not express in mature pollen vegetative cell, although were found in sperm cells. Expression of five out of seven mature pollen-expressed CalS genes was affected by mutations in bzip transcription factors. Only three subfamilies, CalS5, CalS10, and CalS11, however, formed monophyletic, mostly conserved clades. The pairs CalS9/CalS10, CalS11/CalS12 and CalS3 may have diverged after angiosperms diversified from lycophytes and bryophytes. Our analysis of fully sequenced plant proteins identified new evolutionary lineages of callose synthase subfamilies and has established a basis for understanding their functional evolution in terrestrial plants.
Collapse
Affiliation(s)
- Lenka Záveská Drábková
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Praha 6, Czech Republic
- * E-mail: (LZD); (DH)
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Praha 6, Czech Republic
- * E-mail: (LZD); (DH)
| |
Collapse
|
42
|
Iswanto ABB, Kim JY. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis. PLANTS 2017; 6:plants6020015. [PMID: 28368351 PMCID: PMC5489787 DOI: 10.3390/plants6020015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/16/2022]
Abstract
Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.
Collapse
Affiliation(s)
- Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
43
|
Li J, Zhao PX. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach. FRONTIERS IN PLANT SCIENCE 2016; 7:903. [PMID: 27446133 PMCID: PMC4916224 DOI: 10.3389/fpls.2016.00903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/.
Collapse
|
44
|
de Michele R, McFarlane HE, Parsons HT, Meents MJ, Lao J, González Fernández-Niño SM, Petzold CJ, Frommer WB, Samuels AL, Heazlewood JL. Free-Flow Electrophoresis of Plasma Membrane Vesicles Enriched by Two-Phase Partitioning Enhances the Quality of the Proteome from Arabidopsis Seedlings. J Proteome Res 2016; 15:900-13. [PMID: 26781341 DOI: 10.1021/acs.jproteome.5b00876] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The plant plasma membrane is the interface between the cell and its environment undertaking a range of important functions related to transport, signaling, cell wall biosynthesis, and secretion. Multiple proteomic studies have attempted to capture the diversity of proteins in the plasma membrane using biochemical fractionation techniques. In this study, two-phase partitioning was combined with free-flow electrophoresis to produce a population of highly purified plasma membrane vesicles that were subsequently characterized by tandem mass spectroscopy. This combined high-quality plasma membrane isolation technique produced a reproducible proteomic library of over 1000 proteins with an extended dynamic range including plasma membrane-associated proteins. The approach enabled the detection of a number of putative plasma membrane proteins not previously identified by other studies, including peripheral membrane proteins. Utilizing multiple data sources, we developed a PM-confidence score to provide a value indicating association to the plasma membrane. This study highlights over 700 proteins that, while seemingly abundant at the plasma membrane, are mostly unstudied. To validate this data set, we selected 14 candidates and transiently localized 13 to the plasma membrane using a fluorescent tag. Given the importance of the plasma membrane, this data set provides a valuable tool to further investigate important proteins. The mass spectrometry data are available via ProteomeXchange, identifier PXD001795.
Collapse
Affiliation(s)
- Roberto de Michele
- Department of Plant Biology, Carnegie Institution for Science , Stanford, California 94305, United States.,Institute of Biosciences and Bioresources (CNR-IBBR), National Research Council of Italy , Palermo 90129, Italy
| | - Heather E McFarlane
- Department of Botany, University of British Columbia , Vancouver, BC V6T 1Z4, Canada.,Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany
| | - Harriet T Parsons
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,Department of Plant and Environmental Sciences, University of Copenhagen , Copenhagen C-1871, Denmark
| | - Miranda J Meents
- Department of Botany, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Jeemeng Lao
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Susana M González Fernández-Niño
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Christopher J Petzold
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science , Stanford, California 94305, United States
| | - A Lacey Samuels
- Department of Botany, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Joshua L Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne , Melbourne, Victoria 3010, Australia
| |
Collapse
|
45
|
Gillmor CS, Roeder AHK, Sieber P, Somerville C, Lukowitz W. A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis. PLoS One 2016; 11:e0146492. [PMID: 26745275 PMCID: PMC4712874 DOI: 10.1371/journal.pone.0146492] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022] Open
Abstract
Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two loci show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125), and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development). No mutations that completely abolish the formation of cross walls in diploid cells were found. Our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms.
Collapse
Affiliation(s)
- C. Stewart Gillmor
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- Department of Biological Sciences, Stanford University, Stanford, California, 94305, United States of America
| | - Adrienne H. K. Roeder
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- Department of Biological Sciences, Stanford University, Stanford, California, 94305, United States of America
| | - Patrick Sieber
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
| | - Chris Somerville
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- Department of Biological Sciences, Stanford University, Stanford, California, 94305, United States of America
| | - Wolfgang Lukowitz
- Department of Plant Biology, Carnegie Institution, Stanford, California, 94305, United States of America
- * E-mail:
| |
Collapse
|
46
|
Shi X, Han X, Lu TG. Callose synthesis during reproductive development in monocotyledonous and dicotyledonous plants. PLANT SIGNALING & BEHAVIOR 2016; 11:e1062196. [PMID: 26451709 PMCID: PMC4883888 DOI: 10.1080/15592324.2015.1062196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 05/21/2023]
Abstract
Callose, a linear β-1,3-glucan molecule, plays important roles in a variety of processes in angiosperms, including development and the response to biotic and abiotic stress. Despite the importance of callose deposition, our understanding of the roles of callose in rice reproductive development and the regulation of callose biosynthesis is limited. GLUCAN SYNTHASE-LIKE genes encode callose synthases (GSLs), which function in the production of callose at diverse sites in plants. Studies have shown that callose participated in plant reproductive development, and that the timely deposition and degradation of callose were essential for normal male gametophyte development. In this mini-review, we described conserved sequences found in GSL family proteins from monocotyledonous (Oryza sativa and Zea mays) and dicotyledonous (Arabidopsis thaliana and Glycine max) plants. We also describe the latest findings on callose biosynthesis and deposition during reproductive development and discuss future challenges in unraveling the mechanism of callose synthesis and deposition in higher plants.
Collapse
Affiliation(s)
- Xiao Shi
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement; Chinese Academy of Agricultural Sciences; Beijing, China
| | - Xiao Han
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement; Chinese Academy of Agricultural Sciences; Beijing, China
| | - Tie-gang Lu
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement; Chinese Academy of Agricultural Sciences; Beijing, China
| |
Collapse
|
47
|
Srivastava V, Weber JR, Malm E, Fouke BW, Bulone V. Proteomic Analysis of a Poplar Cell Suspension Culture Suggests a Major Role of Protein S-Acylation in Diverse Cellular Processes. FRONTIERS IN PLANT SCIENCE 2016; 7:477. [PMID: 27148305 PMCID: PMC4828459 DOI: 10.3389/fpls.2016.00477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/24/2016] [Indexed: 05/03/2023]
Abstract
S-acylation is a reversible post-translational modification of proteins known to be involved in membrane targeting, subcellular trafficking, and the determination of a great variety of functional properties of proteins. The aim of this work was to identify S-acylated proteins in poplar. The use of an acyl-biotin exchange method and mass spectrometry allowed the identification of around 450 S-acylated proteins, which were subdivided into three major groups of proteins involved in transport, signal transduction, and response to stress, respectively. The largest group of S-acylated proteins was the protein kinase superfamily. Soluble N-ethylmaleimide-sensitive factor-activating protein receptors, band 7 family proteins and tetraspanins, all primarily related to intracellular trafficking, were also identified. In addition, cell wall related proteins, including cellulose synthases and other glucan synthases, were found to be S-acylated. Twenty four of the identified S-acylated proteins were also enriched in detergent-resistant membrane microdomains, suggesting S-acylation plays a key role in the localization of proteins to specialized plasma membrane subdomains. This dataset promises to enhance our current understanding of the various functions of S-acylated proteins in plants.
Collapse
Affiliation(s)
- Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University CentreStockholm, Sweden
- *Correspondence: Vincent Bulone, ; Vaibhav Srivastava,
| | - Joseph R. Weber
- Roy J. Carver Biotechnology Centre, Institute for Genomic Biology, University of Illinois Urbana–ChampaignUrbana, IL, USA
| | - Erik Malm
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University CentreStockholm, Sweden
| | - Bruce W. Fouke
- Roy J. Carver Biotechnology Centre, Institute for Genomic Biology, University of Illinois Urbana–ChampaignUrbana, IL, USA
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University CentreStockholm, Sweden
- ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Waite CampusUrrbrae, SA, Australia
- *Correspondence: Vincent Bulone, ; Vaibhav Srivastava,
| |
Collapse
|
48
|
Kubota S, Iwasaki T, Hanada K, Nagano AJ, Fujiyama A, Toyoda A, Sugano S, Suzuki Y, Hikosaka K, Ito M, Morinaga SI. A Genome Scan for Genes Underlying Microgeographic-Scale Local Adaptation in a Wild Arabidopsis Species. PLoS Genet 2015; 11:e1005361. [PMID: 26172569 PMCID: PMC4501782 DOI: 10.1371/journal.pgen.1005361] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/15/2015] [Indexed: 11/18/2022] Open
Abstract
Adaptive divergence at the microgeographic scale has been generally disregarded because high gene flow is expected to disrupt local adaptation. Yet, growing number of studies reporting adaptive divergence at a small spatial scale highlight the importance of this process in evolutionary biology. To investigate the genetic basis of microgeographic local adaptation, we conducted a genome-wide scan among sets of continuously distributed populations of Arabidopsis halleri subsp. gemmifera that show altitudinal phenotypic divergence despite gene flow. Genomic comparisons were independently conducted in two distinct mountains where similar highland ecotypes are observed, presumably as a result of convergent evolution. Here, we established a de novo reference genome and employed an individual-based resequencing for a total of 56 individuals. Among 527,225 reliable SNP loci, we focused on those showing a unidirectional allele frequency shift across altitudes. Statistical tests on the screened genes showed that our microgeographic population genomic approach successfully retrieve genes with functional annotations that are in line with the known phenotypic and environmental differences between altitudes. Furthermore, comparison between the two distinct mountains enabled us to screen out those genes that are neutral or adaptive only in either mountain, and identify the genes involved in the convergent evolution. Our study demonstrates that the genomic comparison among a set of genetically connected populations, instead of the commonly-performed comparison between two isolated populations, can also offer an effective screening for the genetic basis of local adaptation.
Collapse
Affiliation(s)
- Shosei Kubota
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan; College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan.
| | - Takaya Iwasaki
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Kousuke Hanada
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa, Japan; Frontier Research Academy for Young Researchers, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Atsushi J Nagano
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Asao Fujiyama
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Sumio Sugano
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kouki Hikosaka
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Miyagai, Japan
| | - Motomi Ito
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Shin-Ichi Morinaga
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| |
Collapse
|
49
|
Shi X, Sun X, Zhang Z, Feng D, Zhang Q, Han L, Wu J, Lu T. GLUCAN SYNTHASE-LIKE 5 (GSL5) Plays an Essential Role in Male Fertility by Regulating Callose Metabolism During Microsporogenesis in Rice. ACTA ACUST UNITED AC 2014; 56:497-509. [DOI: 10.1093/pcp/pcu193] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Ellinger D, Voigt CA. Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. ANNALS OF BOTANY 2014; 114:1349-58. [PMID: 24984713 PMCID: PMC4195556 DOI: 10.1093/aob/mcu120] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/16/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND (1,3)-β-Glucan callose is a cell wall polymer that is involved in several fundamental biological processes, ranging from plant development to the response to abiotic and biotic stresses. Despite its importance in maintaining plant integrity and plant defence, knowledge about the regulation of callose biosynthesis at its diverse sites of action within the plant is still limited. The moderately sized family of GSL (GLUCAN SYNTHASE-LIKE) genes is predicted to encode callose synthases with a specific biological function and subcellular localization. Phosphorylation and directed translocation of callose synthases seem to be key post-translational mechanisms of enzymatic regulation, whereas transcriptional control of GSL genes might only have a minor function in response to biotic or abiotic stresses. SCOPE AND CONCLUSIONS Among the different sites of callose biosynthesis within the plant, particular attention has been focused on the formation of callose in response to pathogen attack. Here, callose is deposited between the plasma membrane and the cell wall to act as a physical barrier to stop or slow invading pathogens. Arabidopsis (Arabidopsis thaliana) is one of the best-studied models not only for general plant defence responses but also for the regulation of pathogen-induced callose biosynthesis. Callose synthase GSL5 (GLUCAN SYNTHASE-LIKE5) has been shown to be responsible for stress-induced callose deposition. Within the last decade of research into stress-induced callose, growing evidence has been found that the timing of callose deposition in the multilayered system of plant defence responses could be the key parameter for optimal effectiveness. This timing seems to be achieved through co-ordinated transport and formation of the callose synthase complex.
Collapse
Affiliation(s)
- Dorothea Ellinger
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Christian A Voigt
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| |
Collapse
|