1
|
El-Sappah AH, Zhu Y, Huang Q, Chen B, Soaud SA, Abd Elhamid MA, Yan K, Li J, El-Tarabily KA. Plants' molecular behavior to heavy metals: from criticality to toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1423625. [PMID: 39280950 PMCID: PMC11392792 DOI: 10.3389/fpls.2024.1423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
The contamination of soil and water with high levels of heavy metals (HMs) has emerged as a significant obstacle to agricultural productivity and overall crop quality. Certain HMs, although serving as essential micronutrients, are required in smaller quantities for plant growth. However, when present in higher concentrations, they become very toxic. Several studies have shown that to balance out the harmful effects of HMs, complex systems are needed at the molecular, physiological, biochemical, cellular, tissue, and whole plant levels. This could lead to more crops being grown. Our review focused on HMs' resources, occurrences, and agricultural implications. This review will also look at how plants react to HMs and how they affect seed performance as well as the benefits that HMs provide for plants. Furthermore, the review examines HMs' transport genes in plants and their molecular, biochemical, and metabolic responses to HMs. We have also examined the obstacles and potential for HMs in plants and their management strategies.
Collapse
Affiliation(s)
- Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yumin Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Bo Chen
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Salma A Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Gracia-Rodriguez C, Lopez-Ortiz C, Flores-Iga G, Ibarra-Muñoz L, Nimmakayala P, Reddy UK, Balagurusamy N. From genes to ecosystems: Decoding plant tolerance mechanisms to arsenic stress. Heliyon 2024; 10:e29140. [PMID: 38601600 PMCID: PMC11004893 DOI: 10.1016/j.heliyon.2024.e29140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Arsenic (As), a metalloid of considerable toxicity, has become increasingly bioavailable through anthropogenic activities, raising As contamination levels in groundwater and agricultural soils worldwide. This bioavailability has profound implications for plant biology and farming systems. As can detrimentally affect crop yield and pose risks of bioaccumulation and subsequent entry into the food chain. Upon exposure to As, plants initiate a multifaceted molecular response involving crucial signaling pathways, such as those mediated by calcium, mitogen-activated protein kinases, and various phytohormones (e.g., auxin, methyl jasmonate, cytokinin). These pathways, in turn, activate enzymes within the antioxidant system, which combat the reactive oxygen/nitrogen species (ROS and RNS) generated by As-induced stress. Plants exhibit a sophisticated genomic response to As, involving the upregulation of genes associated with uptake, chelation, and sequestration. Specific gene families, such as those coding for aquaglyceroporins and ABC transporters, are key in mediating As uptake and translocation within plant tissues. Moreover, we explore the gene regulatory networks that orchestrate the synthesis of phytochelatins and metallothioneins, which are crucial for As chelation and detoxification. Transcription factors, particularly those belonging to the MYB, NAC, and WRKY families, emerge as central regulators in activating As-responsive genes. On a post-translational level, we examine how ubiquitination pathways modulate the stability and function of proteins involved in As metabolism. By integrating omics findings, this review provides a comprehensive overview of the complex genomic landscape that defines plant responses to As. Knowledge gained from these genomic and epigenetic insights is pivotal for developing biotechnological strategies to enhance crop As tolerance.
Collapse
Affiliation(s)
- Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Gerardo Flores-Iga
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Lizbeth Ibarra-Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| |
Collapse
|
3
|
Wen Y, Chairattanawat C, Vo KTX, Liu J, Zhang J, Pan T, Kim DY, Martinoia E, Zhong CY, Wang MH, Jeon JS, Song WY. VOZ1 and VOZ2 transcription factors regulate arsenic tolerance and distribution in rice and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1209860. [PMID: 37799560 PMCID: PMC10548236 DOI: 10.3389/fpls.2023.1209860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023]
Abstract
Rice is the major source of arsenic (As) intake in humans, as this staple crop readily accumulates As in the grain. Identifying the genes and molecular mechanisms underlying As accumulation and tolerance is a crucial step toward developing rice with reduced As levels. We identified 25 rice genes that improve As tolerance in yeast cells by expressing a complementary DNA (cDNA) library generated from As-treated rice roots. Among them, a zinc finger-type transcription factor VASCULAR PLANT ONE- ZINC FINGER 1 (OsVOZ1) (OsVOZ1) conferred the most pronounced As tolerance. OsVOZ1 inhibits As accumulation in yeast via activation of As efflux transporter Acr3p by post-transcriptional modification in yeast. The Arabidopsis voz1 voz2 double-knockout mutant exhibited As hypersensitivity, altered As concentrations in various tissues, and reduced As transport activity via the phloem. Arabidopsis and rice VOZs were highly expressed in phloem cells in various tissues, which are critical for As distribution in plant tissues. The double-knockdown and single-knockout plants of OsVOZ1 and OsVOZ2 reduced As accumulation in their seeds. These findings suggest that rice and Arabidopsis VOZs regulate the translocation of As into tissues by regulating the phloem loading of this element.
Collapse
Affiliation(s)
- Ying Wen
- Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Chayanee Chairattanawat
- Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kieu Thi Xuan Vo
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Jiayou Liu
- Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Jie Zhang
- Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Ting Pan
- Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Do-Young Kim
- Advanced Bio-convergence Center, Pohang Technopark, Pohang, Republic of Korea
| | - Enrico Martinoia
- Institute of Plant Biology, University Zurich, Zurich, Switzerland
| | - Chun-Yan Zhong
- Zhaoqing Institute of Agricultural Sciences, Zhaoqing, China
| | - Mao-Hui Wang
- Zhaoqing Institute of Agricultural Sciences, Zhaoqing, China
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Won-Yong Song
- Department of Horticulture, Foshan University, Foshan, Guangdong, China
- Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
4
|
Zhang J, Wysocki R, Li F, Yu M, Martinoia E, Song WY. Role of ubiquitination in arsenic tolerance in plants. TRENDS IN PLANT SCIENCE 2023; 28:880-892. [PMID: 37002000 DOI: 10.1016/j.tplants.2023.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Arsenic (As) is harmful to all living organisms, including humans and plants. To limit As uptake and avoid its toxicity, plants employ systems that regulate the uptake of As from the soil and its translocation from roots to grains. Ubiquitination, a highly conserved post-translational modification (PTM) in all eukaryotes, plays crucial roles in modulating As detoxification mechanisms in budding yeast (Saccharomyces cerevisiae), but little is known about its roles in As tolerance and transport in plants. In this opinion article we review recent findings and suggest that ubiquitination plays a crucial role in regulating As transport in plants. We also propose ideas for future research to explore the importance of ubiquitination for enhancing As tolerance in crops.
Collapse
Affiliation(s)
- Jie Zhang
- Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, Guangdong 528000, China
| | - Robert Wysocki
- Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Min Yu
- Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, Guangdong 528000, China.
| | - Enrico Martinoia
- Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, Guangdong 528000, China; Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| | - Won-Yong Song
- Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, Guangdong 528000, China; Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| |
Collapse
|
5
|
Gao Y, Yuan Y, Zhang X, Song H, Yang Q, Yang P, Gao X, Gao J, Feng B. Conuping BSA-Seq and RNA-Seq Reveal the Molecular Pathway and Genes Associated with the Plant Height of Foxtail Millet ( Setaria italica). Int J Mol Sci 2022; 23:11824. [PMID: 36233125 PMCID: PMC9569614 DOI: 10.3390/ijms231911824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Foxtail millet (Setaria italica) plays an important role in C4 crop research and agricultural development in arid areas due to its short growth period, drought tolerance, and barren tolerance. Exploration of the dwarfing mechanism and the dwarf genes of foxtail millet can provide a reference for dwarf breeding and dwarf research of other C4 crops. In this study, genetic analysis was performed using phenotypic data, candidate genes were screened by bulk segregant analysis sequencing (BSA-Seq); differentially expressed genes and metabolic pathways in different strains of high samples were analyzed by RNA sequencing (RNA-Seq). The association analysis of BSA-Seq and RNA-Seq further narrowed the candidate range. As a result, a total of three quantitative trait loci (QTLs) and nine candidate genes related to plant height were obtained on chromosomes I and IX. Based on the functional prediction of the candidate genes, we propose a hypothetical mechanism for the formation of millet dwarfing, in which, metabolism and MAPK signaling play important roles in the formation of foxtail millet plant height.
Collapse
Affiliation(s)
- Yongbin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Yangling 712100, China
- Dexing Township Agro-Pastoral Comprehensive Service Center, Nyingchi 860700, China
| | - Yuhao Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Yangling 712100, China
| | - Xiongying Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Yangling 712100, China
| | - Hui Song
- Anyang Academy of Agricultural Sciences, Anyang 455099, China
| | - Qinghua Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Yangling 712100, China
| | - Pu Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Yangling 712100, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Yangling 712100, China
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Yangling 712100, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
6
|
Zhang J, Hamza A, Xie Z, Hussain S, Brestic M, Tahir MA, Ulhassan Z, Yu M, Allakhverdiev SI, Shabala S. Arsenic transport and interaction with plant metabolism: Clues for improving agricultural productivity and food safety. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117987. [PMID: 34425370 DOI: 10.1016/j.envpol.2021.117987] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 08/14/2021] [Indexed: 05/13/2023]
Abstract
Arsenic (As) is a ubiquitous metalloid that is highly toxic to all living organisms. When grown in As-contaminated soils, plants may accumulate significant amounts of As in the grains or edible shoot parts which then enter a food chain. Plant growth and development per se are also both affected by arsenic. These effects are traditionally attributed to As-induced accumulation of reactive oxygen species (ROS) and a consequent lipid peroxidation and damage to cellular membranes. However, this view is oversimplified, as As exposure have a major impact on many metabolic processes in plants, including availability of essential nutrients, photosynthesis, carbohydrate metabolism, lipid metabolism, protein metabolism, and sulfur metabolism. This review is aimed to fill this gap in the knowledge. In addition, the molecular basis of arsenic uptake and transport in plants and prospects of creating low As-accumulating crop species, for both agricultural productivity and food safety, are discussed.
Collapse
Affiliation(s)
- Jie Zhang
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Ameer Hamza
- School of Environment Science and Engineering, China University of Geoscience, Wuhan, 430074, China; College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Zuoming Xie
- School of Environment Science and Engineering, China University of Geoscience, Wuhan, 430074, China
| | - Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang, Chengdu, 611130, China.
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Mukkram Ali Tahir
- College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Suleyman I Allakhverdiev
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China; K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow, 127276, Russia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas7001, Australia.
| |
Collapse
|
7
|
Chen Y, Wang HY, Chen YF. The transcription factor MYB40 is a central regulator in arsenic resistance in Arabidopsis. PLANT COMMUNICATIONS 2021; 2:100234. [PMID: 34778748 PMCID: PMC8577101 DOI: 10.1016/j.xplc.2021.100234] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 06/01/2023]
Abstract
Arsenic is a metalloid that is toxic to plants. Arsenate (As(V)), the prevalent chemical form of arsenic, is a phosphate (Pi) analog and is incorporated into plant cells via Pi transporters. Here, we found that the MYB40 transcription factor played important roles in the control of Arabidopsis As(V) resistance. The expression of MYB40 was induced by As(V) stress. MYB40-overexpressing lines had an obvious As(V)-resistant phenotype and a reduced As(V)/Pi uptake rate, whereas myb40 mutants were sensitive to As(V) stress. Upon exposure to As(V), MYB40 directly repressed the expression of PHT1;1, which encodes a main Pi transporter. The As(V)-resistant phenotypes of MYB40-overexpressing lines were impaired by overexpression of PHT1;1, demonstrating an epistatic genetic relationship between MYB40 and PHT1;1. Moreover, overexpression of MYB40 enhanced, and disruption of MYB40 reduced, thiol-peptide contents. Upon exposure to As(V), MYB40 positively regulated the expression of PCS1, which encodes a phytochelatin synthase, and ABCC1 and ABCC2, which encode the major vacuolar phytochelatin transporters. Together, our data demonstrate that AtMYB40 acts as a central regulator of As(V) responses, providing a genetic strategy for enhancing plant As(V) tolerance and reducing As(V) uptake to improve food safety.
Collapse
Affiliation(s)
- Yun Chen
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong-Yang Wang
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi-Fang Chen
- College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Navarro C, Mateo-Elizalde C, Mohan TC, Sánchez-Bermejo E, Urrutia O, Fernández-Muñiz MN, García-Mina JM, Muñoz R, Paz-Ares J, Castrillo G, Leyva A. Arsenite provides a selective signal that coordinates arsenate uptake and detoxification through the regulation of PHR1 stability in Arabidopsis. MOLECULAR PLANT 2021; 14:1489-1507. [PMID: 34048950 DOI: 10.1016/j.molp.2021.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
In nature, plants acquire nutrients from soils to sustain growth, and at the same time, they need to avoid the uptake of toxic compounds and/or possess tolerance systems to cope with them. This is particularly challenging when the toxic compound and the nutrient are chemically similar, as in the case of phosphate and arsenate. In this study, we demonstrated that regulatory elements of the phosphate starvation response (PSR) coordinate the arsenate detoxification machinery in the cell. We showed that arsenate repression of the phosphate transporter PHT1;1 is associated with the degradation of the PSR master regulator PHR1. Once arsenic is sequestered into the vacuole, PHR1 stability is restored and PHT1;1 expression is recovered. Furthermore, we identified an arsenite responsive SKP1-like protein and a PHR1 interactor F-box (PHIF1) as constituents of the SCF complex responsible for PHR1 degradation.We found that arsenite, the form to which arsenate is reduced for compartmentalization in vacuoles, represses PHT1;1 expression, providing a highly selective signal versus phosphate to control PHT1;1 expression in response to arsenate. Collectively, our results provide molecular insights into a sensing mechanism that regulates arsenate/phosphate uptake depending on the plant's detoxification capacity.
Collapse
Affiliation(s)
- Cristina Navarro
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Cristian Mateo-Elizalde
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Thotegowdanapalya C Mohan
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Eduardo Sánchez-Bermejo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Oscar Urrutia
- Department of Environmental Biology, Sciences School, University of Navarra, Pamplona 31008, Spain
| | - María Nieves Fernández-Muñiz
- Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - José M García-Mina
- Department of Environmental Biology, Sciences School, University of Navarra, Pamplona 31008, Spain
| | - Riansares Muñoz
- Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Gabriel Castrillo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain.
| | - Antonio Leyva
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain.
| |
Collapse
|
9
|
Bhat JA, Ahmad P, Corpas FJ. Main nitric oxide (NO) hallmarks to relieve arsenic stress in higher plants. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124289. [PMID: 33153789 DOI: 10.1016/j.jhazmat.2020.124289] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/10/2020] [Accepted: 10/13/2020] [Indexed: 05/19/2023]
Abstract
Arsenic (As) is a toxic metalloid that adversely affects plant growth, and poses severe risks to human health. It induces disturbance to many physiological and metabolic pathways such as nutrient, water and redox imbalance, abnormal photosynthesis and ATP synthesis and loss of membrane integrity. Nitric oxide (NO) is a free radical molecule endogenously generated in plant cells which has signalling properties. Under As-stress, the endogenous NO metabolism is significantly affected in a clear connection with the metabolism of reactive oxygen species (ROS) triggering nitro-oxidative stress. However, the exogenous NO application provides beneficial effects under As-stress conditions which can relieve oxidative damages by stimulating the antioxidant systems, regulation of the expression of the transporter and other defence-related genes, modification of root cell wall composition or the biosynthesis of enriched sulfur compounds such phytochelatins (PCs). This review aims to provide up-to-date information on the key NO hallmarks to relieve As-stress in higher plants. Furthermore, it will be analyzed the diverse genetic engineering techniques to increase the endogenous NO content which could open new biotechnological applications, especially in crops under arsenic stress.
Collapse
Affiliation(s)
- Javaid Akhter Bhat
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, 8, Riyadh, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/ Profesor Albareda, 1, 18008 Granada, Spain.
| |
Collapse
|
10
|
Wu J, Peled-Zehavi H, Galili G. The m 6 A reader ECT2 post-transcriptionally regulates proteasome activity in Arabidopsis. THE NEW PHYTOLOGIST 2020; 228:151-162. [PMID: 32416015 DOI: 10.1111/nph.16660] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/29/2020] [Indexed: 05/23/2023]
Abstract
Methylation of internal adenosine at nitrogen-6 position (m6 A) is the most abundant post-transcriptional modification in eukaryotic RNAs. These modifications are recognized by m6 A-binding proteins ('readers') that affect downstream functions. In plants, the scope of gene expression regulation by reader proteins is not clear. Here, overexpression and loss-of-function mutants were used to characterize the role of the Arabidopsis m6 A reader ECT2 in proteasome regulation. ECT2 regulates the mRNA levels of the proteasome regulator PTRE1 and of several 20S proteasome subunits, resulting in enhanced 26S proteasome activity. This regulation is dependent on ECT2 m6 A binding function. Interestingly, though ECT2 positively regulates proteasome activity in both young and mature plants, PTRE1 has different regulatory effects in different developmental stages. In mature plants, PTRE1 inhibits 26S proteasome activity, while in seedlings PTRE1 knockout mutants have reduced 26S proteasome activity. Taken together, our results suggest a novel epitranscriptomic mechanism of proteasome regulation by ECT2 that is used to fine tune proteasome activity by affecting the expression of PTRE1 and 20S proteasome subunits.
Collapse
Affiliation(s)
- Jian Wu
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Hadas Peled-Zehavi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Gad Galili
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
11
|
Staszak AM, Małecka A, Ciereszko I, Ratajczak E. Differences in stress defence mechanisms in germinating seeds of Pinus sylvestris exposed to various lead chemical forms. PLoS One 2020; 15:e0238448. [PMID: 32986744 PMCID: PMC7521717 DOI: 10.1371/journal.pone.0238448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/15/2020] [Indexed: 11/19/2022] Open
Abstract
Exposure to lead (Pb) can have serious toxic effects on the physiological and biochemical processes of plants. The chemical form of the metal determines the degree of its toxicity. In our research, we examined the effect of lead in the form of lead nitrate [Pb(NO3)2] and lead chloride (PbCl2) in concentrations of 12.5 mM and 25 mM on pine (Pinus sylvestris) seed germination. Nitrogen salt causes more severe changes than chloride salt. Increasing levels of electrolyte leakage, malondialdehyde, and hydrogen peroxide were detected during germination processes. The high levels of ROS lead to redox changes in the cell. We observed a reduction in the level of the reduced form of glutathione (GSH), and at the same time observed increased levels of the oxidised form of glutathione (GSSG) depending on the concentration and also the time of exposure to lead compounds. At the beginning of germination processes, the effective non-enzymatic activity of the antioxidant cycle was dominant, and at the late stage the enzymatic activity was noticed in the presence of Pb compounds. CAT activity significantly increased after Pb compound exposition.
Collapse
Affiliation(s)
- Aleksandra Maria Staszak
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Bialystok, Poland
- * E-mail:
| | - Arleta Małecka
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Iwona Ciereszko
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Bialystok, Poland
| | | |
Collapse
|
12
|
Xu FQ, Xue HW. The ubiquitin-proteasome system in plant responses to environments. PLANT, CELL & ENVIRONMENT 2019; 42:2931-2944. [PMID: 31364170 DOI: 10.1111/pce.13633] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 05/12/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a rapid regulatory mechanism for selective protein degradation in plants and plays crucial roles in growth and development. There is increasing evidence that the UPS is also an integral part of plant adaptation to environmental stress, such as drought, salinity, cold, nutrient deprivation and pathogens. This review focuses on recent studies illustrating the important functions of the UPS components E2s, E3s and subunits of the proteasome and describes the regulation of proteasome activity during plant responses to environment stimuli. The future research hotspots and the potential for utilization of the UPS to improve plant tolerance to stress are discussed.
Collapse
Affiliation(s)
- Fa-Qing Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
13
|
Wang Y, Wu Q, Liu L, Li X, Lin A, Li C. MoMCP1, a Cytochrome P450 Gene, Is Required for Alleviating Manganese Toxin Revealed by Transcriptomics Analysis in Magnaporthe oryzae. Int J Mol Sci 2019; 20:ijms20071590. [PMID: 30934953 PMCID: PMC6480321 DOI: 10.3390/ijms20071590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/24/2022] Open
Abstract
Manganese, as an essential trace element, participates in many physiological reactions by regulating Mn associated enzymes. Magnaporthe oryzae is a serious pathogen and causes destructive losses for rice production. We identified a cytochrome P450 gene, MoMCP1, involving the alleviation of manganese toxin and pathogenicity. To identify the underlying mechanisms, transcriptomics were performed. The results indicated that many pathogenicity related genes were regulated, especially hydrophobin related genes in ∆Momcp1. Furthermore, the Mn2+ toxicity decreased the expressions of genes involved in the oxidative phosphorylation and energy production, and increased the reactive oxygen species (ROS) levels, which might impair the functions of mitochondrion and vacuole, compromising the pathogenicity and development in ∆Momcp1. Additionally, our results provided further information about Mn associated the gene network for Mn metabolism in cells.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Qi Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- College of Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Lina Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| | - Xiaoling Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650223, China.
| | - Aijia Lin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
14
|
Franić M, Galić V. As, Cd, Cr, Cu, Hg: Physiological Implications and Toxicity in Plants. PLANT METALLOMICS AND FUNCTIONAL OMICS 2019:209-251. [DOI: 10.1007/978-3-030-19103-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Li LQ, Liu L, Zhuo W, Chen Q, Hu S, Peng S, Wang XY, Lu YF, Lu LM. Physiological and quantitative proteomic analyses unraveling potassium deficiency stress response in alligator weed (Alternanthera philoxeroides L.) root. PLANT MOLECULAR BIOLOGY 2018; 97:265-278. [PMID: 29777486 DOI: 10.1007/s11103-018-0738-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Physiological and iTRAQ based proteomic analysis provided new insights into potassium deficiency stress response in alligator weed root. Alligator weed (Alternanthera philoxeroides) has a strong ability to adapt to potassium deficiency (LK) stress. Proteomic changes in response to this stress are largely unknown in alligator weed. In this study, we investigated physiological and molecular mechanisms under LK using isobaric tags for relative and absolute quantitation to characterize proteome-level changes in this plant. First, root physiology, 2, 3, 5-Triphenyl-trazolium chloride (TTC) assay and peroxidase activity were significantly altered after 10 and 15 days of LK treatment. The comparative proteomic analysis suggested a total of 375 proteins were differential abundance proteins. The proteomic results were verified by western blot assays and quantitative real-time PCR. Correlation analysis of transcription and proteomics suggested protein processing in the endoplasmic reticulum, endocytosis, and spliceosome pathways were significantly enriched. The protein responsible for energy metabolism, signal sensing and transduction and protein degradation played crucial roles in this stress. Twelve ubiquitin pathway related proteins were identified in our study, among them 11 proteins were up-regulated. All protein ubiquitination of lysine using pan antibodies were also increased after LK treatment. Our study provide a valuable insights of molecular mechanism underlying LK stress response in alligator weed roots and afford a vital basis to further study potassium nutrition molecular breeding of other plant species.
Collapse
Affiliation(s)
- Li-Qin Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lun Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhuo
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuang Peng
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xi-Yao Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi-Fei Lu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li-Ming Lu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
16
|
Joly-Lopez Z, Forczek E, Vello E, Hoen DR, Tomita A, Bureau TE. Abiotic Stress Phenotypes Are Associated with Conserved Genes Derived from Transposable Elements. FRONTIERS IN PLANT SCIENCE 2017; 8:2027. [PMID: 29250089 PMCID: PMC5715367 DOI: 10.3389/fpls.2017.02027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/14/2017] [Indexed: 05/08/2023]
Abstract
Plant phenomics offers unique opportunities to accelerate our understanding of gene function and plant response to different environments, and may be particularly useful for studying previously uncharacterized genes. One important type of poorly characterized genes is those derived from transposable elements (TEs), which have departed from a mobility-driven lifestyle to attain new adaptive roles for the host (exapted TEs). We used phenomics approaches, coupled with reverse genetics, to analyze T-DNA insertion mutants of both previously reported and novel protein-coding exapted TEs in the model plant Arabidopsis thaliana. We show that mutations in most of these exapted TEs result in phenotypes, particularly when challenged by abiotic stress. We built statistical multi-dimensional phenotypic profiles and compared them to wild-type and known stress responsive mutant lines for each particular stress condition. We found that these exapted TEs may play roles in responses to phosphate limitation, tolerance to high salt concentration, freezing temperatures, and arsenic toxicity. These results not only experimentally validate a large set of putative functional exapted TEs recently discovered through computational analysis, but also uncover additional novel phenotypes for previously well-characterized exapted TEs in A. thaliana.
Collapse
|
17
|
Marmiroli M, Mussi F, Imperiale D, Marmiroli N. Target proteins reprogrammed by As and As + Si treatments in Solanum lycopersicum L. fruit. BMC PLANT BIOLOGY 2017; 17:210. [PMID: 29157202 PMCID: PMC5696772 DOI: 10.1186/s12870-017-1168-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/10/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Arsenic is an important contaminant of many arable soils worldwide, while silicon, one of the most abundant elements in the earth's crust, interacts with As in the context of plant metabolism. As toxicity results largely from its stimulation of reactive oxygen species, and it is believed that Si can mitigate this process through reduction of the level of oxidative stress. Experiments targeting the proteomic impact of exposure to As and Si have to date largely focused on analyses of root, shoot and seed of a range of mainly non-solanaceous species, thus it remains unclear whether oxidative stress is the most important manifestation of As toxicity in Solanum lycopersicum fruit which during ripening go through drastic physiological and molecular readjustments. The role of Si also needs to be re-evaluated. RESULTS A comparison was drawn between the proteomic responses to As and As + Si treatments of the fruit of two tomato cultivars (cvs. Aragon and Gladis) known to contrast for their ability to take up these elements and to translocate them into fruits. Treatments were applied at the beginning of the red ripening stage, and the fruit proteomes were captured after a 14 day period of exposure. For each cultivar, a set of differentially abundant fruit proteins (from non-treated and treated plants) were isolated by 2DGE and identified using mass spectrometry. In the fruit of cv. Aragon, the As treatment reprogrammed proteins largely involved in transcription regulation (growth- regulating factor 9-like), and cell structure (actin-51), while in the cv. Gladis, the majority of differentially expressed proteins were associated with protein ubiquitination and proteolysis (E3 ubiquitin protein, and hormones (1-aminocyclopropane 1-carboxylase). CONCLUSIONS The present experiments were intended to establish whether Si supplementation can be used to reverse the proteomic disturbance induced by the As treatment; this reprogram was only partial and more effective in the fruit of cv. Gladis than in that of cv. Aragon. Proteins responsible for the protection of the fruits' quality in the face of As-induced stress were identified. Moreover, supplementation with Si seemed to limit to a degree the accumulation of As in the tomato fruit of cv. Aragon.
Collapse
Affiliation(s)
- Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy
| | - Francesca Mussi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy
| | - Davide Imperiale
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
18
|
Hwang SG, Chapagain S, Lee JW, Han AR, Jang CS. Genome-wide transcriptome profiling of genes associated with arsenate toxicity in an arsenic-tolerant rice mutant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:40-51. [PMID: 28987861 DOI: 10.1016/j.plaphy.2017.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 05/07/2023]
Abstract
The presence of arsenic (As) in polluted environments, such as ground water, affects the accumulation of As in rice grains and causes a serious threat to human health. However, the precise molecular regulations related to As toxicity and tolerance in rice remain largely unknown. In the present study, we developed an arsenic-tolerant type 1 (ATT1) rice mutant by γ-irradiation mutagenesis and performed genome-wide transcriptome analysis for the characterization of As-responsive genes. Toxicity inhibited transcriptional regulation of putative genes involved in photosynthesis, mitochondrial electron transport, and lipid biosynthesis metabolism in wild-type (WT) and ATT1 rice mutant. However, many cysteine biosynthesis-related genes were significantly upregulated in both plants. We also attempted to elucidate the putative genes associated with As tolerance by comparing transcriptomes and identified ATT1-specific transcriptional regulation of genes involved in stress and RNA-protein synthesis. This analysis identified 50 genes that had DNA polymorphisms in upstream regions that differed from those in the exon regions, which suggested that genetic variations in the upstream regions might enhance As tolerance in the mutants. Therefore, the expression profiles of the genes evaluated in this study may improve understanding of the functional roles of As-related genes in response to As tolerance mechanisms and could potentially be used in molecular breeding to limit As accumulation in rice grains.
Collapse
Affiliation(s)
- Sun-Goo Hwang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - Sandeep Chapagain
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - Jae Woo Lee
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - A-Reum Han
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea.
| |
Collapse
|
19
|
Mohan TC, Castrillo G, Navarro C, Zarco-Fernández S, Ramireddy E, Mateo C, Zamarreño AM, Paz-Ares J, Muñoz R, García-Mina JM, Hernández LE, Schmülling T, Leyva A. Cytokinin Determines Thiol-Mediated Arsenic Tolerance and Accumulation. PLANT PHYSIOLOGY 2016; 171:1418-26. [PMID: 27208271 PMCID: PMC4902620 DOI: 10.1104/pp.16.00372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/12/2016] [Indexed: 05/09/2023]
Abstract
The presence of arsenic in soil and water is a constant threat to plant growth in many regions of the world. Phytohormones act in the integration of growth control and stress response, but their role in plant responses to arsenic remains to be elucidated. Here, we show that arsenate [As(V)], the most prevalent arsenic chemical species in nature, causes severe depletion of endogenous cytokinins (CKs) in the model plant Arabidopsis (Arabidopsis thaliana). We found that CK signaling mutants and transgenic plants with reduced endogenous CK levels showed an As(V)-tolerant phenotype. Our data indicate that in CK-depleted plants exposed to As(V), transcript levels of As(V)/phosphate-transporters were similar or even higher than in wild-type plants. In contrast, CK depletion provoked the coordinated activation of As(V) tolerance mechanisms, leading to the accumulation of thiol compounds such as phytochelatins and glutathione, which are essential for arsenic sequestration. Transgenic CK-deficient Arabidopsis and tobacco lines show a marked increase in arsenic accumulation. Our findings indicate that CK is an important regulatory factor in plant adaptation to arsenic stress.
Collapse
Affiliation(s)
- Thotegowdanapalya C Mohan
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain (T.C.M., G.C., C.N., C.M., J.P.-A., A.L.); Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain (S.Z.-F., R.M.); Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany (E.R., T.S.); Department of Environmental Biology (Agricultural Chemistry and Biology Group), Faculty of Sciences, University of Navarra, Sciencies Building, 31008 Pamplona, Spain (A.M.Z., J.M.G.-M.); and Departamento de Biología, Universidad Autónoma de Madrid, Edif. de Biológicas BS13, Campus de Cantoblanco, 28049 Madrid, Spain (L.E.H.)
| | - Gabriel Castrillo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain (T.C.M., G.C., C.N., C.M., J.P.-A., A.L.); Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain (S.Z.-F., R.M.); Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany (E.R., T.S.); Department of Environmental Biology (Agricultural Chemistry and Biology Group), Faculty of Sciences, University of Navarra, Sciencies Building, 31008 Pamplona, Spain (A.M.Z., J.M.G.-M.); and Departamento de Biología, Universidad Autónoma de Madrid, Edif. de Biológicas BS13, Campus de Cantoblanco, 28049 Madrid, Spain (L.E.H.)
| | - Cristina Navarro
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain (T.C.M., G.C., C.N., C.M., J.P.-A., A.L.); Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain (S.Z.-F., R.M.); Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany (E.R., T.S.); Department of Environmental Biology (Agricultural Chemistry and Biology Group), Faculty of Sciences, University of Navarra, Sciencies Building, 31008 Pamplona, Spain (A.M.Z., J.M.G.-M.); and Departamento de Biología, Universidad Autónoma de Madrid, Edif. de Biológicas BS13, Campus de Cantoblanco, 28049 Madrid, Spain (L.E.H.)
| | - Sonia Zarco-Fernández
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain (T.C.M., G.C., C.N., C.M., J.P.-A., A.L.); Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain (S.Z.-F., R.M.); Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany (E.R., T.S.); Department of Environmental Biology (Agricultural Chemistry and Biology Group), Faculty of Sciences, University of Navarra, Sciencies Building, 31008 Pamplona, Spain (A.M.Z., J.M.G.-M.); and Departamento de Biología, Universidad Autónoma de Madrid, Edif. de Biológicas BS13, Campus de Cantoblanco, 28049 Madrid, Spain (L.E.H.)
| | - Eswarayya Ramireddy
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain (T.C.M., G.C., C.N., C.M., J.P.-A., A.L.); Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain (S.Z.-F., R.M.); Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany (E.R., T.S.); Department of Environmental Biology (Agricultural Chemistry and Biology Group), Faculty of Sciences, University of Navarra, Sciencies Building, 31008 Pamplona, Spain (A.M.Z., J.M.G.-M.); and Departamento de Biología, Universidad Autónoma de Madrid, Edif. de Biológicas BS13, Campus de Cantoblanco, 28049 Madrid, Spain (L.E.H.)
| | - Cristian Mateo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain (T.C.M., G.C., C.N., C.M., J.P.-A., A.L.); Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain (S.Z.-F., R.M.); Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany (E.R., T.S.); Department of Environmental Biology (Agricultural Chemistry and Biology Group), Faculty of Sciences, University of Navarra, Sciencies Building, 31008 Pamplona, Spain (A.M.Z., J.M.G.-M.); and Departamento de Biología, Universidad Autónoma de Madrid, Edif. de Biológicas BS13, Campus de Cantoblanco, 28049 Madrid, Spain (L.E.H.)
| | - Angel M Zamarreño
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain (T.C.M., G.C., C.N., C.M., J.P.-A., A.L.); Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain (S.Z.-F., R.M.); Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany (E.R., T.S.); Department of Environmental Biology (Agricultural Chemistry and Biology Group), Faculty of Sciences, University of Navarra, Sciencies Building, 31008 Pamplona, Spain (A.M.Z., J.M.G.-M.); and Departamento de Biología, Universidad Autónoma de Madrid, Edif. de Biológicas BS13, Campus de Cantoblanco, 28049 Madrid, Spain (L.E.H.)
| | - Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain (T.C.M., G.C., C.N., C.M., J.P.-A., A.L.); Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain (S.Z.-F., R.M.); Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany (E.R., T.S.); Department of Environmental Biology (Agricultural Chemistry and Biology Group), Faculty of Sciences, University of Navarra, Sciencies Building, 31008 Pamplona, Spain (A.M.Z., J.M.G.-M.); and Departamento de Biología, Universidad Autónoma de Madrid, Edif. de Biológicas BS13, Campus de Cantoblanco, 28049 Madrid, Spain (L.E.H.)
| | - Riansares Muñoz
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain (T.C.M., G.C., C.N., C.M., J.P.-A., A.L.); Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain (S.Z.-F., R.M.); Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany (E.R., T.S.); Department of Environmental Biology (Agricultural Chemistry and Biology Group), Faculty of Sciences, University of Navarra, Sciencies Building, 31008 Pamplona, Spain (A.M.Z., J.M.G.-M.); and Departamento de Biología, Universidad Autónoma de Madrid, Edif. de Biológicas BS13, Campus de Cantoblanco, 28049 Madrid, Spain (L.E.H.)
| | - Jose M García-Mina
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain (T.C.M., G.C., C.N., C.M., J.P.-A., A.L.); Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain (S.Z.-F., R.M.); Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany (E.R., T.S.); Department of Environmental Biology (Agricultural Chemistry and Biology Group), Faculty of Sciences, University of Navarra, Sciencies Building, 31008 Pamplona, Spain (A.M.Z., J.M.G.-M.); and Departamento de Biología, Universidad Autónoma de Madrid, Edif. de Biológicas BS13, Campus de Cantoblanco, 28049 Madrid, Spain (L.E.H.)
| | - Luis E Hernández
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain (T.C.M., G.C., C.N., C.M., J.P.-A., A.L.); Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain (S.Z.-F., R.M.); Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany (E.R., T.S.); Department of Environmental Biology (Agricultural Chemistry and Biology Group), Faculty of Sciences, University of Navarra, Sciencies Building, 31008 Pamplona, Spain (A.M.Z., J.M.G.-M.); and Departamento de Biología, Universidad Autónoma de Madrid, Edif. de Biológicas BS13, Campus de Cantoblanco, 28049 Madrid, Spain (L.E.H.)
| | - Thomas Schmülling
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain (T.C.M., G.C., C.N., C.M., J.P.-A., A.L.); Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain (S.Z.-F., R.M.); Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany (E.R., T.S.); Department of Environmental Biology (Agricultural Chemistry and Biology Group), Faculty of Sciences, University of Navarra, Sciencies Building, 31008 Pamplona, Spain (A.M.Z., J.M.G.-M.); and Departamento de Biología, Universidad Autónoma de Madrid, Edif. de Biológicas BS13, Campus de Cantoblanco, 28049 Madrid, Spain (L.E.H.)
| | - Antonio Leyva
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain (T.C.M., G.C., C.N., C.M., J.P.-A., A.L.); Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain (S.Z.-F., R.M.); Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany (E.R., T.S.); Department of Environmental Biology (Agricultural Chemistry and Biology Group), Faculty of Sciences, University of Navarra, Sciencies Building, 31008 Pamplona, Spain (A.M.Z., J.M.G.-M.); and Departamento de Biología, Universidad Autónoma de Madrid, Edif. de Biológicas BS13, Campus de Cantoblanco, 28049 Madrid, Spain (L.E.H.)
| |
Collapse
|
20
|
Yang BJ, Han XX, Yin LL, Xing MQ, Xu ZH, Xue HW. Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling. Nat Commun 2016; 7:11388. [PMID: 27109828 PMCID: PMC4848511 DOI: 10.1038/ncomms11388] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/21/2016] [Indexed: 01/14/2023] Open
Abstract
The plant hormone auxin is perceived by the nuclear F-box protein TIR1 receptor family and regulates gene expression through degradation of Aux/IAA transcriptional repressors. Several studies have revealed the importance of the proteasome in auxin signalling, but details on how the proteolytic machinery is regulated and how this relates to degradation of Aux/IAA proteins remains unclear. Here we show that an Arabidopsis homologue of the proteasome inhibitor PI31, which we name PROTEASOME REGULATOR1 (PTRE1), is a positive regulator of the 26S proteasome. Loss-of-function ptre1 mutants are insensitive to auxin-mediated suppression of proteasome activity, show diminished auxin-induced degradation of Aux/IAA proteins and display auxin-related phenotypes. We found that auxin alters the subcellular localization of PTRE1, suggesting this may be part of the mechanism by which it reduces proteasome activity. Based on these results, we propose that auxin regulates proteasome activity via PTRE1 to fine-tune the homoeostasis of Aux/IAA repressor proteins thus modifying auxin activity. Plant responses to auxin require proteasome-mediated degradation of Aux/IAA transcriptional repressor proteins. Here, Yang et al. show that auxin suppresses proteasome activity in a manner dependent on the proteasome regulator PTRE1 and propose a mechanism for fine tuning Aux/IAA homoeostasis.
Collapse
Affiliation(s)
- Bao-Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xin-Xin Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai 200032, People's Republic of China
| | - Lin-Lin Yin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai 200032, People's Republic of China
| | - Mei-Qing Xing
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai 200032, People's Republic of China
| | - Zhi-Hong Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai 200032, People's Republic of China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
21
|
Shanmugam V, Wang YW, Tsednee M, Karunakaran K, Yeh KC. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:464-77. [PMID: 26333047 DOI: 10.1111/tpj.13011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/17/2015] [Accepted: 08/25/2015] [Indexed: 05/18/2023]
Abstract
Iron (Fe) deficiency is a common agricultural problem that affects both the productivity and nutritional quality of plants. Thus, identifying the key factors involved in the tolerance of Fe deficiency is important. In the present study, the zir1 mutant, which is glutathione deficient, was found to be more sensitive to Fe deficiency than the wild type, and grew poorly in alkaline soil. Other glutathione-deficient mutants also showed various degrees of sensitivity to Fe-limited conditions. Interestingly, we found that the glutathione level was increased under Fe deficiency in the wild type. By contrast, blocking glutathione biosynthesis led to increased physiological sensitivity to Fe deficiency. On the other hand, overexpressing glutathione enhanced the tolerance to Fe deficiency. Under Fe-limited conditions, glutathione-deficient mutants, zir1, pad2 and cad2 accumulated lower levels of Fe than the wild type. The key genes involved in Fe uptake, including IRT1, FRO2 and FIT, are expressed at low levels in zir1; however, a split-root experiment suggested that the systemic signals that govern the expression of Fe uptake-related genes are still active in zir1. Furthermore, we found that zir1 had a lower accumulation of nitric oxide (NO) and NO reservoir S-nitrosoglutathione (GSNO). Although NO is a signaling molecule involved in the induction of Fe uptake-related genes during Fe deficiency, the NO-mediated induction of Fe-uptake genes is dependent on glutathione supply in the zir1 mutant. These results provide direct evidence that glutathione plays an essential role in Fe-deficiency tolerance and NO-mediated Fe-deficiency signaling in Arabidopsis.
Collapse
Affiliation(s)
| | - Yi-Wen Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Munkhtsetseg Tsednee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Krithika Karunakaran
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
22
|
Edmundson MC, Horsfall L. Construction of a Modular Arsenic-Resistance Operon in E. coli and the Production of Arsenic Nanoparticles. Front Bioeng Biotechnol 2015; 3:160. [PMID: 26539432 PMCID: PMC4611968 DOI: 10.3389/fbioe.2015.00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 11/29/2022] Open
Abstract
Arsenic is a widespread contaminant of both land and water around the world. Current methods of decontamination such as phytoremediation and chemical adsorbents can be resource and time intensive, and may not be suitable for some areas such as remote communities where cost and transportation are major issues. Bacterial decontamination, with strict controls preventing environmental release, may offer a cost-effective alternative or provide a financial incentive when used in combination with other remediation techniques. In this study, we have produced Escherichia coli strains containing arsenic-resistance genes from a number of sources, overexpressing them and testing their effects on arsenic resistance. While the lab E. coli strain JM109 (the “wild-type”) is resistant up to 20 mM sodium arsenate, the strain containing our plasmid pEC20 is resistant up to 80 mM. When combined with our construct pArsRBCC arsenic-containing nanoparticles were observed at the cell surface; the elements of pEC20 and pArsRBCC were therefore combined in a modular construct, pArs, in order to evaluate the roles and synergistic effects of the components of the original plasmids in arsenic resistance and nanoparticle formation. We have also investigated introducing the lac operator in order to more tightly control expression from pArs. We demonstrate that our strains are able to reduce toxic forms of arsenic into stable, insoluble metallic As(0), providing one way to remove arsenate contamination, and which may also be of benefit for other heavy metals.
Collapse
Affiliation(s)
| | - Louise Horsfall
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
23
|
Singh VP, Singh S, Kumar J, Prasad SM. Investigating the roles of ascorbate-glutathione cycle and thiol metabolism in arsenate tolerance in ridged Luffa seedlings. PROTOPLASMA 2015; 252:1217-29. [PMID: 25586108 DOI: 10.1007/s00709-014-0753-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/27/2014] [Indexed: 05/23/2023]
Abstract
The present study is aimed to investigate whether ascorbate-glutathione cycle (AsA-GSH cycle) or thiol metabolism is involved in the regulation of arsenate (As(V))-induced oxidative stress and tolerance in ridged Luffa seedlings. As(V) significantly (p < 0.05) declined the growth of Luffa seedlings which was accompanied by the enhanced accumulation of As. The enhanced accumulation of As in tissues declined total protein and nitrogen contents and photosynthesis, and increased the accumulation of reactive oxygen species (ROS). The enhanced levels of ROS cause damage to lipids and proteins as indicated by the increased contents of malondialdehyde (MDA) and reactive carbonyl groups (RCG). The components of AsA-GSH cycle such as ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and reduced ascorbate were downregulated, while glutathione reductase and glutathione were upregulated by As(V) stress. Thiol metabolic enzymes such as cysteine synthase, γ-glutamylcysteine synthetase, and glutathione synthetase, and compounds such as cysteine, glutathione, and non-protein thiols were stimulated by As(V) stress. These results suggest that thiol metabolism plays a key role in mitigating As(V)-mediated further damage to Luffa seedlings, while AsA-GSH cycle components had a little role in imparting As(V) tolerance. The present study provides information regarding the involvement of AsA-GSH cycle and thiol metabolism in imparting As(V) tolerance in Luffa. The results of this study can be utilized for As(V) toxicity management in Luffa while keeping these biochemical components into consideration.
Collapse
Affiliation(s)
- Vijay Pratap Singh
- Government Ramanuj Pratap Singhdev Post Graduate College, Baikunthpur, Koriya, 497335, Chhattisgarh, India,
| | | | | | | |
Collapse
|
24
|
Ali B, Gill RA, Yang S, Gill MB, Farooq MA, Liu D, Daud MK, Ali S, Zhou W. Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L. PLoS One 2015; 10:e0123328. [PMID: 25909456 PMCID: PMC4409391 DOI: 10.1371/journal.pone.0123328] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/03/2015] [Indexed: 01/17/2023] Open
Abstract
It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed.
Collapse
Affiliation(s)
- Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Rafaqat A. Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Su Yang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Muhammad B. Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Muhammad A. Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Dan Liu
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Muhammad K. Daud
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
- * E-mail:
| |
Collapse
|
25
|
Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun 2014; 5:4617. [PMID: 25099865 DOI: 10.1038/ncomms5617] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/08/2014] [Indexed: 11/08/2022] Open
Abstract
The enormous amount of environmental arsenic was a major factor in determining the biochemistry of incipient life forms early in the Earth's history. The most abundant chemical form in the reducing atmosphere was arsenite, which forced organisms to evolve strategies to manage this chemical species. Following the great oxygenation event, arsenite oxidized to arsenate and the action of arsenate reductases became a central survival requirement. The identity of a biologically relevant arsenate reductase in plants nonetheless continues to be debated. Here we identify a quantitative trait locus that encodes a novel arsenate reductase critical for arsenic tolerance in plants. Functional analyses indicate that several non-additive polymorphisms affect protein structure and account for the natural variation in arsenate reductase activity in Arabidopsis thaliana accessions. This study shows that arsenate reductases are an essential component for natural plant variation in As(V) tolerance.
Collapse
|
26
|
Talukdar D, Talukdar T. Coordinated response of sulfate transport, cysteine biosynthesis, and glutathione-mediated antioxidant defense in lentil (Lens culinaris Medik.) genotypes exposed to arsenic. PROTOPLASMA 2014; 251:839-855. [PMID: 24276371 DOI: 10.1007/s00709-013-0586-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/10/2013] [Indexed: 06/02/2023]
Abstract
Response of sulfate transporters, thiol metabolism, and antioxidant defense system was studied in roots of two lentil (Lens culinaris Medik.) genotypes grown in arsenic (10, 25, and 40 μM As(V))-supplemented nutrient solution, and significant changes compared to control (0 μM As(V)) were observed mainly at 25 and 40 μM. In L 414, high glutathione (GSH) redox (0.8-0.9) was maintained with elevated thiol synthesis, powered by transcriptional up-regulation of LcSultr1;1 and LcSultr1;2 sulfate transporters and significant induction of LcSAT1;1 and LcSAT1;2 (serine acetyltransferase), OAS-TL (O-acetylserine(thiol)-lyase), γ-ECS (γ-glutamylcysteine synthetase), and PCS (phytochelatin synthase) genes predominantly within 12-24 h of As exposure at 25 μM and within 6-12 h at 40 μM. This thiolic potency in L 414 roots was effectively complemented by up-regulation of gene expressions and consequent enhanced activities of superoxide dismutase, ascorbate peroxidase (APX), dehydroascorbate reductase, glutathione reductase (GR), and glutathione-S-transferase (GST) isoforms at 25 and 40 μMAs, efficiently scavenging excess reactive oxygen species to prevent onset of As-induced oxidative stress and consequent inhibition of root growth in L 414. In contrast, down-regulation of vital sulfate-uptake transporters as well as entire thiol-metabolizing system and considerably low APX, GST, and GR expressions in DPL 59 not only resulted in reduced GSH redox but also led to over-accumulation of H2O2. This triggered membrane lipid peroxidations as the marks of As-induced oxidative damage. Results indicated coordinated response of thiol-metabolism and antioxidant defense in conferring As-tolerance in lentil, and GSH is the key point in this cascade.
Collapse
Affiliation(s)
- Dibyendu Talukdar
- Plant Cell and Stress Biology Lab, Department of Botany, R.P.M. College, University of Calcutta, Uttarpara, 712258, West Bengal, India,
| | | |
Collapse
|
27
|
Kurepa J, Li Y, Smalle JA. Reversion of the Arabidopsis rpn12a-1 exon-trap mutation by an intragenic suppressor that weakens the chimeric 5' splice site. F1000Res 2013; 2:60. [PMID: 24358894 PMCID: PMC3829128 DOI: 10.12688/f1000research.2-60.v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2013] [Indexed: 12/01/2022] Open
Abstract
Background: In the
Arabidopsis 26S proteasome mutant
rpn12a-1, an exon-trap T-DNA is inserted 531 base pairs downstream of the
RPN12a STOP codon. We have previously shown that this insertion activates a STOP codon-associated latent 5' splice site that competes with the polyadenylation signal during processing of the pre-mRNA. As a result of this dual input from splicing and polyadenylation in the
rpn12a-1 mutant, two
RPN12a transcripts are produced and they encode the wild-type RPN12a and a chimeric RPN12a-NPTII protein. Both proteins form complexes with other proteasome subunits leading to the formation of wild-type and mutant proteasome versions. The net result of this heterogeneity of proteasome particles is a reduction of total cellular proteasome activity. One of the consequences of reduced proteasomal activity is decreased sensitivity to the major plant hormone cytokinin. Methods: We performed ethyl methanesulfonate mutagenesis of
rpn12a-1 and isolated revertants with wild-type cytokinin sensitivity. Results: We describe the isolation and analyses of suppressor of
rpn12a-1 (
sor1). The
sor1 mutation is intragenic and located at the fifth position of the chimeric intron. This mutation weakens the activated 5' splice site associated with the STOP codon and tilts the processing of the
RPN12a mRNA back towards polyadenylation. Conclusions: These results validate our earlier interpretation of the unusual nature of the
rpn12a-1 mutation. Furthermore, the data show that optimal 26S proteasome activity requires RPN12a accumulation beyond a critical threshold. Finally, this finding reinforces our previous conclusion that proteasome function is critical for the cytokinin-dependent regulation of plant growth.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Kentucky, 40546, USA
| | - Yan Li
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Kentucky, 40546, USA
| | - Jan A Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Kentucky, 40546, USA
| |
Collapse
|
28
|
Castrillo G, Sánchez-Bermejo E, de Lorenzo L, Crevillén P, Fraile-Escanciano A, TC M, Mouriz A, Catarecha P, Sobrino-Plata J, Olsson S, Leo del Puerto Y, Mateos I, Rojo E, Hernández LE, Jarillo JA, Piñeiro M, Paz-Ares J, Leyva A. WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. THE PLANT CELL 2013; 25:2944-57. [PMID: 23922208 PMCID: PMC3784590 DOI: 10.1105/tpc.113.114009] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Stress constantly challenges plant adaptation to the environment. Of all stress types, arsenic was a major threat during the early evolution of plants. The most prevalent chemical form of arsenic is arsenate, whose similarity to phosphate renders it easily incorporated into cells via the phosphate transporters. Here, we found that arsenate stress provokes a notable transposon burst in plants, in coordination with arsenate/phosphate transporter repression, which immediately restricts arsenate uptake. This repression was accompanied by delocalization of the phosphate transporter from the plasma membrane. When arsenate was removed, the system rapidly restored transcriptional expression and membrane localization of the transporter. We identify WRKY6 as an arsenate-responsive transcription factor that mediates arsenate/phosphate transporter gene expression and restricts arsenate-induced transposon activation. Plants therefore have a dual WRKY-dependent signaling mechanism that modulates arsenate uptake and transposon expression, providing a coordinated strategy for arsenate tolerance and transposon gene silencing.
Collapse
Affiliation(s)
- Gabriel Castrillo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Eduardo Sánchez-Bermejo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Laura de Lorenzo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Ana Fraile-Escanciano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Mohan TC
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Alfonso Mouriz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Pablo Catarecha
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Juan Sobrino-Plata
- Laboratorio de Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sanna Olsson
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Yolanda Leo del Puerto
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Isabel Mateos
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Enrique Rojo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Luis E. Hernández
- Laboratorio de Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jose A. Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Javier Paz-Ares
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Antonio Leyva
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología–Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, 28049 Madrid, Spain
- Address correspondence to
| |
Collapse
|
29
|
García-Giménez JL, Markovic J, Dasí F, Queval G, Schnaubelt D, Foyer CH, Pallardó FV. Nuclear glutathione. Biochim Biophys Acta Gen Subj 2012; 1830:3304-16. [PMID: 23069719 DOI: 10.1016/j.bbagen.2012.10.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/21/2012] [Accepted: 10/08/2012] [Indexed: 12/24/2022]
Abstract
Glutathione (GSH) is a linchpin of cellular defences in plants and animals with physiologically-important roles in the protection of cells from biotic and abiotic stresses. Moreover, glutathione participates in numerous metabolic and cell signalling processes including protein synthesis and amino acid transport, DNA repair and the control of cell division and cell suicide programmes. While it is has long been appreciated that cellular glutathione homeostasis is regulated by factors such as synthesis, degradation, transport, and redox turnover, relatively little attention has been paid to the influence of the intracellular partitioning on glutathione and its implications for the regulation of cell functions and signalling. We focus here on the functions of glutathione in the nucleus, particularly in relation to physiological processes such as the cell cycle and cell death. The sequestration of GSH in the nucleus of proliferating animal and plant cells suggests that common redox mechanisms exist for DNA regulation in G1 and mitosis in all eukaryotes. We propose that glutathione acts as "redox sensor" at the onset of DNA synthesis with roles in maintaining the nuclear architecture by providing the appropriate redox environment for the DNA replication and safeguarding DNA integrity. In addition, nuclear GSH may be involved in epigenetic phenomena and in the control of nuclear protein degradation by nuclear proteasome. Moreover, by increasing the nuclear GSH pool and reducing disulfide bonds on nuclear proteins at the onset of cell proliferation, an appropriate redox environment is generated for the stimulation of chromatin decompaction. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
|
30
|
Finnegan PM, Chen W. Arsenic toxicity: the effects on plant metabolism. Front Physiol 2012; 3:182. [PMID: 22685440 PMCID: PMC3368394 DOI: 10.3389/fphys.2012.00182] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/17/2012] [Indexed: 12/17/2022] Open
Abstract
The two forms of inorganic arsenic, arsenate (AsV) and arsenite (AsIII), are easily taken up by the cells of the plant root. Once in the cell, AsV can be readily converted to AsIII, the more toxic of the two forms. AsV and AsIII both disrupt plant metabolism, but through distinct mechanisms. AsV is a chemical analog of phosphate that can disrupt at least some phosphate-dependent aspects of metabolism. AsV can be translocated across cellular membranes by phosphate transport proteins, leading to imbalances in phosphate supply. It can compete with phosphate during phosphorylation reactions, leading to the formation of AsV adducts that are often unstable and short-lived. As an example, the formation and rapid autohydrolysis of AsV-ADP sets in place a futile cycle that uncouples photophosphorylation and oxidative phosphorylation, decreasing the ability of cells to produce ATP and carry out normal metabolism. AsIII is a dithiol reactive compound that binds to and potentially inactivates enzymes containing closely spaced cysteine residues or dithiol co-factors. Arsenic exposure generally induces the production of reactive oxygen species that can lead to the production of antioxidant metabolites and numerous enzymes involved in antioxidant defense. Oxidative carbon metabolism, amino acid and protein relationships, and nitrogen and sulfur assimilation pathways are also impacted by As exposure. Readjustment of several metabolic pathways, such as glutathione production, has been shown to lead to increased arsenic tolerance in plants. Species- and cultivar-dependent variation in arsenic sensitivity and the remodeling of metabolite pools that occurs in response to As exposure gives hope that additional metabolic pathways associated with As tolerance will be identified.
Collapse
Affiliation(s)
- Patrick M. Finnegan
- Faculty of Natural and Agricultural Sciences, School of Plant Biology and Institute of Agriculture, The University of Western AustraliaCrawley, WA, Australia
| | - Weihua Chen
- Faculty of Natural and Agricultural Sciences, School of Plant Biology and Institute of Agriculture, The University of Western AustraliaCrawley, WA, Australia
| |
Collapse
|
31
|
Jobe TO, Sung DY, Akmakjian G, Pham A, Komives EA, Mendoza-Cózatl DG, Schroeder JI. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:783-95. [PMID: 22283708 PMCID: PMC4688143 DOI: 10.1111/j.1365-313x.2012.04924.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M(2) seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion, are necessary to induce the transcription of sulfate assimilation genes during early cadmium stress.
Collapse
Affiliation(s)
- Timothy O. Jobe
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093-0116, USA
| | - Dong-Yul Sung
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093-0116, USA
| | - Garo Akmakjian
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093-0116, USA
| | - Allis Pham
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093-0116, USA
| | - Elizabeth A. Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0378, USA
| | - David G. Mendoza-Cózatl
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093-0116, USA
- Division of Plant Sciences, C. S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211-7310, USA
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093-0116, USA
- For correspondence ()
| |
Collapse
|
32
|
Shanmugam V, Tsednee M, Yeh KC. ZINC TOLERANCE INDUCED BY IRON 1 reveals the importance of glutathione in the cross-homeostasis between zinc and iron in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:1006-17. [PMID: 22066515 DOI: 10.1111/j.1365-313x.2011.04850.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Zinc is an essential micronutrient for plants, but it is toxic in excess concentrations. In Arabidopsis, additional iron (Fe) can increase Zn tolerance. We isolated a mutant, zinc tolerance induced by iron 1, designated zir1, with a defect in Fe-mediated Zn tolerance. Using map-based cloning and genetic complementation, we identified that zir1 has a mutation of glutamate to lysine at position 385 on γ-glutamylcysteine synthetase (GSH1), the enzyme involved in glutathione biosynthesis. The zir1 mutant contains only 15% of the wild-type glutathione level. Blocking glutathione biosynthesis in wild-type plants by a specific inhibitor of GSH1, buthionine sulfoximine, resulted in loss of Fe-mediated Zn tolerance, which provides further evidence that glutathione plays an essential role in Fe-mediated Zn tolerance. Two glutathione-deficient mutant alleles of GSH1, pad2-1 and cad2-1, which contain 22% and 39%, respectively, of the wild-type glutathione level, revealed that a minimal glutathione level between 22 and 39% of the wild-type level is required for Fe-mediated Zn tolerance. Under excess Zn and Fe, the recovery of shoot Fe contents in pad2-1 and cad2-1 was lower than that of the wild type. However, the phytochelatin-deficient mutant cad1-3 showed normal Fe-mediated Zn tolerance. These results indicate a specific role of glutathione in Fe-mediated Zn tolerance. The induced accumulation of glutathione in response to excess Zn and Fe suggests that glutathione plays a specific role in Fe-mediated Zn tolerance in Arabidopsis. We conclude that glutathione is required for the cross-homeostasis between Zn and Fe in Arabidopsis.
Collapse
Affiliation(s)
- Varanavasiappan Shanmugam
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
33
|
Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH. Glutathione in plants: an integrated overview. PLANT, CELL & ENVIRONMENT 2012; 35:454-84. [PMID: 21777251 DOI: 10.1111/j.1365-3040.2011.02400.x] [Citation(s) in RCA: 811] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants cannot survive without glutathione (γ-glutamylcysteinylglycine) or γ-glutamylcysteine-containing homologues. The reasons why this small molecule is indispensable are not fully understood, but it can be inferred that glutathione has functions in plant development that cannot be performed by other thiols or antioxidants. The known functions of glutathione include roles in biosynthetic pathways, detoxification, antioxidant biochemistry and redox homeostasis. Glutathione can interact in multiple ways with proteins through thiol-disulphide exchange and related processes. Its strategic position between oxidants such as reactive oxygen species and cellular reductants makes the glutathione system perfectly configured for signalling functions. Recent years have witnessed considerable progress in understanding glutathione synthesis, degradation and transport, particularly in relation to cellular redox homeostasis and related signalling under optimal and stress conditions. Here we outline the key recent advances and discuss how alterations in glutathione status, such as those observed during stress, may participate in signal transduction cascades. The discussion highlights some of the issues surrounding the regulation of glutathione contents, the control of glutathione redox potential, and how the functions of glutathione and other thiols are integrated to fine-tune photorespiratory and respiratory metabolism and to modulate phytohormone signalling pathways through appropriate modification of sensitive protein cysteine residues.
Collapse
Affiliation(s)
- Graham Noctor
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, Orsay cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ding D, Li W, Song G, Qi H, Liu J, Tang J. Identification of QTLs for arsenic accumulation in maize (Zea mays L.) using a RIL population. PLoS One 2011; 6:e25646. [PMID: 22028786 PMCID: PMC3196502 DOI: 10.1371/journal.pone.0025646] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 09/07/2011] [Indexed: 11/18/2022] Open
Abstract
The Arsenic (As) concentration in different tissues of maize was analyzed using a set of RIL populations derived from an elite hybrid, Nongda108. The results showed that the trend of As concentration in the four measured tissues was leaves>stems>bracts>kernels. Eleven QTLs for As concentration were detected in the four tissues. Three QTLs for As concentration in leaves were mapped on chromosomes 1, 5, and 8, respectively. For As concentration in the bracts, two QTLs were identified, with 9.61% and 10.03% phenotypic variance. For As concentration in the stems, three QTLs were detected with 8.24%, 14.86%, and 15.23% phenotypic variance. Three QTLs were identified for kernels on chromosomes 3, 5, and 7, respectively, with 10.73%, 8.52%, and 9.10% phenotypic variance. Only one common chromosomal region between SSR marker bnlg1811 and umc1243 was detected for QTLs qLAV1 and qSAC1. The results implied that the As accumulation in different tissues in maize was controlled by different molecular mechanism. The study demonstrated that maize could be a useful plant for phytoremediation of As-contaminated paddy soil, and the QTLs will be useful for selecting inbred lines and hybrids with low As concentration in their kernels.
Collapse
Affiliation(s)
- Dong Ding
- College of Agronomy, Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Weihua Li
- College of Agronomy, Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Guiliang Song
- College of Agronomy, Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Hongyuan Qi
- College of Agronomy, Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| | - Jingbao Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jihua Tang
- College of Agronomy, Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
35
|
Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH. Glutathione. THE ARABIDOPSIS BOOK 2011; 9:e0142. [PMID: 22303267 PMCID: PMC3267239 DOI: 10.1199/tab.0142] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores.
Collapse
Affiliation(s)
- Graham Noctor
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Guillaume Queval
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
- Present address: Department of Plant Systems Biology, Flanders Institute for Biotechnology and Department of Plant Biotechnologyand Genetics, Gent University, 9052 Gent, Belgium
| | - Amna Mhamdi
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Sejir Chaouch
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Christine H. Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
36
|
Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH. Glutathione. THE ARABIDOPSIS BOOK 2011. [PMID: 22303267 DOI: 10.1199/tab0142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores.
Collapse
|
37
|
Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. PLANT PHYSIOLOGY 2011; 155:2-18. [PMID: 21205630 PMCID: PMC3075780 DOI: 10.1104/pp.110.167569] [Citation(s) in RCA: 1309] [Impact Index Per Article: 100.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/16/2010] [Indexed: 05/17/2023]
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | | |
Collapse
|
38
|
Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. PLANT PHYSIOLOGY 2011; 155:2-18. [PMID: 21205630 DOI: 10.1104/pp.110.167569na] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | | |
Collapse
|
39
|
Bart RS, Chern M, Vega-Sánchez ME, Canlas P, Ronald PC. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae. PLoS Genet 2010; 6:e1001123. [PMID: 20862311 PMCID: PMC2940737 DOI: 10.1371/journal.pgen.1001123] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 08/13/2010] [Indexed: 02/06/2023] Open
Abstract
Rice NH1 (NPR1 homolog 1) is a key mediator of innate immunity. In both plants and animals, the innate immune response is often accompanied by rapid cell death at the site of pathogen infection. Over-expression of NH1 in rice results in resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo), constitutive expression of defense related genes and enhanced benzothiadiazole (BTH)- mediated cell death. Here we describe a forward genetic screen that identified a suppressor of NH1-mediated lesion formation and resistance, snl6. Comparative genome hybridization and fine mapping rapidly identified the genomic location of the Snl6 gene. Snl6 is a member of the cinnamoyl-CoA reductase (CCR)-like gene family. We show that Snl6 is required for NH1-mediated resistance to Xoo. Further, we show that Snl6 is required for pathogenesis-related gene expression. In contrast to previously described CCR family members, disruption of Snl6 does not result in an obvious morphologic phenotype. Snl6 mutants have reduced lignin content and increased sugar extractability, an important trait for the production of cellulosic biofuels. These results suggest the existence of a conserved group of CCR-like genes involved in the defense response, and with the potential to alter lignin content without affecting development.
Collapse
Affiliation(s)
- Rebecca S. Bart
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Mawsheng Chern
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Miguel E. Vega-Sánchez
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Patrick Canlas
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
| | - Pamela C. Ronald
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Joint Bioenergy Institute, Emeryville, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Tuli R, Chakrabarty D, Trivedi PK, Tripathi RD. Recent advances in arsenic accumulation and metabolism in rice. MOLECULAR BREEDING 2010; 26:307-323. [DOI: 10.1007/s11032-010-9412-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
41
|
Kurepa J, Karangwa C, Duke LS, Smalle JA. Arabidopsis sensitivity to protein synthesis inhibitors depends on 26S proteasome activity. PLANT CELL REPORTS 2010; 29:249-259. [PMID: 20087596 DOI: 10.1007/s00299-010-0818-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 01/03/2010] [Accepted: 01/07/2010] [Indexed: 05/28/2023]
Abstract
The 26S proteasome (26SP), the central protease of the ubiquitin-dependent proteolysis pathway, controls the regulated proteolysis of functional proteins and the removal of misfolded and damaged proteins. In Arabidopsis, cellular and stress response phenotypes of a number of mutants with partially impaired 26SP function have been reported. Here, we describe the responses of proteasome mutants to protein synthesis inhibitors. We show that the rpt2a-3, rpn10-1 and rpn12a-1 mutants are hypersensitive to the antibiotic hygromycin B, and tolerant to the translation inhibitor cycloheximide (CHX) and herbicide L-phosphinothricin (PPT). In addition to the novel mechanism for herbicide tolerance, our data suggests that the combination of hygromycin B, CHX and PPT growth-response assays could be used as a facile diagnostic tool to detect altered 26SP function in plant mutants and transgenic lines.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, College of Agriculture, University of Kentucky, 1401 University Drive, Lexington, KY 40546-0236, USA
| | | | | | | |
Collapse
|
42
|
Kurepa J, Wang S, Li Y, Smalle J. Proteasome regulation, plant growth and stress tolerance. PLANT SIGNALING & BEHAVIOR 2009; 4:924-7. [PMID: 19826220 PMCID: PMC2801354 DOI: 10.4161/psb.4.10.9469] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 05/19/2023]
Abstract
Plant cells contain a mixture of 26S and 20S proteasomes that mediate ubiquitin-dependent and ubiquitin-independent proteolysis, respectively. The 26S proteasome contains the 20S proteasome and one or two regulatory particles that are required for ubiquitin-dependent degradation. Comparative analyses of Arabidopsis proteasome mutants revealed that a decrease in 26S proteasome biogenesis causes heat shock hypersensitivity and reduced cell division rates that are compensated by increased cell expansion. Loss of 26S proteasome function also leads to an increased 20S proteasome biogenesis, which in turn enhances the cellular capacity to degrade oxidized proteins and thus increases oxidative stress tolerance. These findings suggest the intriguing possibility that 26S and 20S proteasome activities are regulated to control plant development and stress responses. This mini-review highlights some of the recent studies on proteasome regulation in plants.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|