1
|
Li A, Du Q, Zeng Y, Yang R, Ge L, Zhu Z, Li C, Tan X. Light Regulated CoWRKY15 Acts on CoSQS Promoter to Promote Squalene Synthesis in Camellia oleifera Seeds. Int J Mol Sci 2024; 25:11134. [PMID: 39456916 PMCID: PMC11508267 DOI: 10.3390/ijms252011134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Squalene synthase (SQS) is the most direct key enzyme regulating squalene synthesis. To better understand the regulatory mechanisms of squalene biosynthesis, a 1423-bp long promoter region of the CoSQS gene was isolated from Camellia oleifera. Plant CARE and PLACE analysis affirmed the existence of the core promoter elements such as TATA and CAAT boxes and transcription factor binding sites like W-box and MYB in the isolated sequence. Exogenous factors regulating the CoSQS promoter were obtained by using Yeast one-hybrid screening, and the key transcription factor CoWRKY15 was found. AOS (Antibody Optimization System) analysis showed that CoWRKY15 had the highest interactions with a confidence level of 0.9026. Bioinformatics analysis showed that CoWRKY15 belonged to class 2 of the WRKY gene family. The results of subcellular localization showed that CoWRKY15 functioned in the nucleus. The results of CoWRKY15 promoter analysis showed that 8 out of 14 cis-elements with annotatable functions were related to the light response. The region of the CoSQS promoter that interacts with CoWRKY15 is -186 bp~-536 bp. The histochemical assay and squalene content suggested that the CoSQS promoter could drive the expression of GUS gene and specific promotion of CoSQS expression. It was found that CoWRKY15 could act on the -186 bp~-536 bp CoSQS promoter to regulate the expression of CoSQS and the content of squalene in C. oleifera seed kernels.
Collapse
Affiliation(s)
- Aori Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (A.L.); (Q.D.); (R.Y.); (L.G.); (Z.Z.); (C.L.)
- Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinhui Du
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (A.L.); (Q.D.); (R.Y.); (L.G.); (Z.Z.); (C.L.)
- Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yanling Zeng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (A.L.); (Q.D.); (R.Y.); (L.G.); (Z.Z.); (C.L.)
- Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha 410004, China
| | - Rui Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (A.L.); (Q.D.); (R.Y.); (L.G.); (Z.Z.); (C.L.)
- Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha 410004, China
| | - Luyao Ge
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (A.L.); (Q.D.); (R.Y.); (L.G.); (Z.Z.); (C.L.)
- Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ziyan Zhu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (A.L.); (Q.D.); (R.Y.); (L.G.); (Z.Z.); (C.L.)
- Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chenyan Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (A.L.); (Q.D.); (R.Y.); (L.G.); (Z.Z.); (C.L.)
- Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (A.L.); (Q.D.); (R.Y.); (L.G.); (Z.Z.); (C.L.)
- Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
2
|
Spychała J, Tomkowiak A, Noweiska A, Bobrowska R, Rychel-Bielska S, Bocianowski J, Wolko Ł, Kowalczewski PŁ, Nowicki M, Kwiatek MT. Expression patterns of candidate genes for the Lr46/Yr29 "slow rust" locus in common wheat (Triticum aestivum L.) and associated miRNAs inform of the gene conferring the Puccinia triticina resistance trait. PLoS One 2024; 19:e0309944. [PMID: 39240941 PMCID: PMC11379320 DOI: 10.1371/journal.pone.0309944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
Leaf rust caused by Puccinia triticina (Pt) is one of the most impactful diseases causing substantial losses in common wheat (Triticum aestivum L.) crops. In adult plants resistant to Pt, a horizontal adult plant resistance (APR) is observed: APR protects the plant against multiple pathogen races and is distinguished by durable persistence under production conditions. The Lr46/Yr29 locus was mapped to chromosome 1B of common wheat genome, but the identity of the underlying gene has not been demonstrated although several candidate genes have been proposed. This study aimed to analyze the expression of nine candidate genes located at the Lr46/Yr29 locus and their four complementary miRNAs (tae-miR5384-3p, tae-miR9780, tae-miR9775, and tae-miR164), in response to Pt infection. The plant materials tested included five reference cultivars in which the molecular marker csLV46G22 associated with the Lr46/Yr29-based Pt resistance was identified, as well as one susceptible control cultivar. Biotic stress was induced in adult plants by inoculation with fungal spores under controlled conditions. Plant material was sampled before and at 6, 12, 24, 48 hours post inoculation (hpi). Differences in expression of candidate genes at the Lr46/Yr29 locus were analyzed by qRT-PCR and showed that the expression of the genes varied at the analyzed time points. The highest expression of Lr46/Yr29 candidate genes (Lr46-Glu1, Lr46-Glu2, Lr46-Glu3, Lr46-RLK1, Lr46-RLK2, Lr46-RLK3, Lr46-RLK4, Lr46-Snex, and Lr46-WRKY) occurred at 12 and 24 hpi and such expression profiles were obtained only for one candidate gene among the nine genes analyzed (Lr46-Glu2), indicating that it may be a contributing factor in the resistance response to Pt infection.
Collapse
Affiliation(s)
- Julia Spychała
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Poznań Division, Department of Oilseed Crops, Poznań, Poland
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Aleksandra Noweiska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Poznań Division, Department of Oilseed Crops, Poznań, Poland
| | - Roksana Bobrowska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Marcin Nowicki
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Michał Tomasz Kwiatek
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Radzikow, Poland
| |
Collapse
|
3
|
Zhang L, Xing L, Dai J, Li Z, Zhang A, Wang T, Liu W, Li X, Han D. Overexpression of a Grape WRKY Transcription Factor VhWRKY44 Improves the Resistance to Cold and Salt of Arabidopsis thaliana. Int J Mol Sci 2024; 25:7437. [PMID: 39000546 PMCID: PMC11242199 DOI: 10.3390/ijms25137437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Plants are often exposed to biotic or abiotic stress, which can seriously impede their growth and development. In recent years, researchers have focused especially on the study of plant responses to biotic and abiotic stress. As one of the most widely planted grapevine rootstocks, 'Beta' has been extensively proven to be highly resistant to stress. However, further research is needed to understand the mechanisms of abiotic stress in 'Beta' rootstocks. In this study, we isolated and cloned a novel WRKY transcription factor, VhWRKY44, from the 'Beta' rootstock. Subcellular localization analysis revealed that VhWRKY44 was a nuclear-localized protein. Tissue-specific expression analysis indicated that VhWRKY44 had higher expression levels in grape roots and mature leaves. Further research demonstrated that the expression level of VhWRKY44 in grape roots and mature leaves was highly induced by salt and cold treatment. Compared with the control, Arabidopsis plants overexpressing VhWRKY44 showed stronger resistance to salt and cold stress. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were significantly increased, and the contents of proline, malondialdehyde (MDA) and chlorophyll were changed considerably. In addition, significantly higher levels of stress-related genes were detected in the transgenic lines. The results indicated that VhWRKY44 was an important transcription factor in 'Beta' with excellent salt and cold tolerance, providing a new foundation for abiotic stress research.
Collapse
Affiliation(s)
- Lihua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Liwei Xing
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Jing Dai
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Zhenghao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Aoning Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Tianhe Wang
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (W.L.)
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (W.L.)
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| |
Collapse
|
4
|
Wai MH, Luo T, Priyadarshani SVGN, Zhou Q, Mohammadi MA, Cheng H, Aslam M, Liu C, Chai G, Huang D, Liu Y, Cai H, Wang X, Qin Y, Wang L. Overexpression of AcWRKY31 Increases Sensitivity to Salt and Drought and Improves Tolerance to Mealybugs in Pineapple. PLANTS (BASEL, SWITZERLAND) 2024; 13:1850. [PMID: 38999690 PMCID: PMC11243833 DOI: 10.3390/plants13131850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
Pineapple is a globally significant tropical fruit, but its cultivation faces numerous challenges due to abiotic and biotic stresses, affecting its quality and quantity. WRKY transcription factors are known regulators of stress responses, however, their specific functions in pineapple are not fully understood. This study investigates the role of AcWRKY31 by overexpressing it in pineapple and Arabidopsis. Transgenic pineapple lines were obtained using Agrobacterium-mediated transformation methods and abiotic and biotic stress treatments. Transgenic AcWRKY31-OE pineapple plants showed an increased sensitivity to salt and drought stress and an increased resistance to biotic stress from pineapple mealybugs compared to that of WT plants. Similar experiments in AcWRKY31-OE, AtWRKY53-OE, and the Arabidopsis Atwrky53 mutant were performed and consistently confirmed these findings. A comparative transcriptomic analysis revealed 5357 upregulated genes in AcWRKY31-OE pineapple, with 30 genes related to disease and pathogen response. Notably, 18 of these genes contained a W-box sequence in their promoter region. A KEGG analysis of RNA-Seq data showed that upregulated DEG genes are mostly involved in translation, protein kinases, peptidases and inhibitors, membrane trafficking, folding, sorting, and degradation, while the downregulated genes are involved in metabolism, protein families, signaling, and cellular processes. RT-qPCR assays of selected genes confirmed the transcriptomic results. In summary, the AcWRKY31 gene is promising for the improvement of stress responses in pineapple, and it could be a valuable tool for plant breeders to develop stress-tolerant crops in the future.
Collapse
Affiliation(s)
- Myat Hnin Wai
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Botany, Mandalay University of Distance Education, Ministry of Education, Mandalay 05024, Myanmar
| | - Tiantian Luo
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - S V G N Priyadarshani
- Department of Applied Sciences, Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe 10115, Sri Lanka
| | - Qiao Zhou
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mohammad Aqa Mohammadi
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Han Cheng
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mohammad Aslam
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang Liu
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gaifeng Chai
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongping Huang
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhui Liu
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyang Cai
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomei Wang
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning 530007, China
| | - Yuan Qin
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lulu Wang
- College of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Pingtan Science and Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Dong T, Su J, Li H, Du Y, Wang Y, Chen P, Duan H. Genome-Wide Identification of the WRKY Gene Family in Four Cotton Varieties and the Positive Role of GhWRKY31 in Response to Salt and Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1814. [PMID: 38999654 PMCID: PMC11243856 DOI: 10.3390/plants13131814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
The WRKY gene family is ubiquitously distributed in plants, serving crucial functions in stress responses. Nevertheless, the structural organization and evolutionary dynamics of WRKY genes in cotton have not been fully elucidated. In this study, a total of 112, 119, 217, and 222 WRKY genes were identified in Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum, and Gossypium barbadense, respectively. These 670 WRKY genes were categorized into seven distinct subgroups and unequally distributed across chromosomes. Examination of conserved motifs, domains, cis-acting elements, and gene architecture collectively highlighted the evolutionary conservation and divergence within the WRKY gene family in cotton. Analysis of synteny and collinearity further confirmed instances of expansion, duplication, and loss events among WRKY genes during cotton evolution. Furthermore, GhWRKY31 transgenic Arabidopsis exhibited heightened germination rates and longer root lengths under drought and salt stress. Silencing GhWRKY31 in cotton led to reduced levels of ABA, proline, POD, and SOD, along with downregulated expression of stress-responsive genes. Yeast one-hybrid and molecular docking assays confirmed the binding capacity of GhWRKY31 to the W box of GhABF1, GhDREB2, and GhRD29. The findings collectively offer a systematic and comprehensive insight into the evolutionary patterns of cotton WRKYs, proposing a suitable regulatory framework for developing cotton cultivars with enhanced resilience to drought and salinity stress.
Collapse
Affiliation(s)
- Tianyu Dong
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jiuchang Su
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Haoyuan Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yajie Du
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Peilei Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Hongying Duan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
6
|
Zhang G, Sun Y, Ullah N, Kasote D, Zhu L, Liu H, Xu L. Changes in secondary metabolites contents and stress responses in Salvia miltiorrhiza via ScWRKY35 overexpression: Insights from a wild relative Salvia castanea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108671. [PMID: 38703500 DOI: 10.1016/j.plaphy.2024.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Salvia castanea Diels, a close wild relative to the medicinal plant, Salvia miltiorrhiza Bunge, primarily grows in high-altitude regions. While the two species share similar active compounds, their content varies significantly. WRKY transcription factors are key proteins, which regulate plant growth, stress response, and secondary metabolism. We identified 46 ScWRKY genes in S. castanea and found that ScWRKY35 was a highly expressed gene associated with secondary metabolites accumulation. This study aimed to explore the role of ScWRKY35 gene in regulating the accumulation of secondary metabolites and its response to UV and cadmium (Cd) exposure in S. miltiorrhiza. It was found that transgenic S. miltiorrhiza hairy roots overexpressing ScWRKY35 displayed upregulated expression of genes related to phenolic acid synthesis, resulting in increased salvianolic acid B (SAB) and rosmarinic acid (RA) contents. Conversely, tanshinone pathway gene expression decreased, leading to lower tanshinone levels. Further, overexpression of ScWRKY35 upregulated Cd transport protein HMA3 in root tissues inducing Cd sequestration. In contrast, the Cd uptake gene NRAMP1 was downregulated, reducing Cd absorption. In response to UV radiation, ScWRKY35 overexpression led to an increase in the accumulation of phenolic acid and tanshinone contents, including upregulation of genes associated with salicylic acid (SA) and jasmonic acid (JA) synthesis. Altogether, these findings highlight the role of ScWRKY35 in enhancing secondary metabolites accumulation, as well as in Cd and UV stress modulation in S. miltiorrhiza, which offers a novel insight into its phytochemistry and provides a new option for the genetic improvement of the plants.
Collapse
Affiliation(s)
- Guilian Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuee Sun
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Najeeb Ullah
- Agricultural Research Station, Office of VP for Research & Graduate Studies. Qatar University, 2713, Doha, Qatar
| | - Deepak Kasote
- Agricultural Research Station, Office of VP for Research & Graduate Studies. Qatar University, 2713, Doha, Qatar
| | - Longyi Zhu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Liu
- Institute of Agriculture, The University of Western Australia, WA, 6009, Australia
| | - Ling Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
7
|
Sun Y, Tian Z, Zuo D, Wang Q, Song G. GhUBC10-2 mediates GhGSTU17 degradation to regulate salt tolerance in cotton (Gossypium hirsutum). PLANT, CELL & ENVIRONMENT 2024; 47:1606-1624. [PMID: 38282268 DOI: 10.1111/pce.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Ubiquitin-conjugating enzyme (UBC) is a crucial component of the ubiquitin-proteasome system, which contributes to plant growth and development. While some UBCs have been identified as potential regulators of abiotic stress responses, the underlying mechanisms of this regulation remain poorly understood. Here, we report a cotton (Gossypium hirsutum) UBC gene, GhUBC10-2, which negatively regulates the salt stress response. We found that the gain of function of GhUBC10-2 in both Arabidopsis (Arabidopsis thaliana) and cotton leads to reduced salinity tolerance. Additionally, GhUBC10-2 interacts with glutathione S-transferase (GST) U17 (GhGSTU17), forming a heterodimeric complex that promotes GhGSTU17 degradation. Intriguingly, GhUBC10-2 can be self-polyubiquitinated, suggesting that it possesses E3-independent activity. Our findings provide new insights into the PTM of plant GST-mediated salt response pathways. Furthermore, we found that the WRKY transcription factor GhWRKY13 binds to the GhUBC10-2 promoter and suppresses its expression under salt conditions. Collectively, our study unveils a regulatory module encompassing GhWRKY13-GhUBC10-2-GhGSTU17, which orchestrates the modulation of reactive oxygen species homeostasis to enhance salt tolerance.
Collapse
Affiliation(s)
- Yaru Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zailong Tian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Song H, Duan Z, Zhang J. WRKY transcription factors modulate flowering time and response to environmental changes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108630. [PMID: 38657548 DOI: 10.1016/j.plaphy.2024.108630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
WRKY transcription factors (TFs), originating in green algae, regulate flowering time and responses to environmental changes in plants. However, the molecular mechanisms underlying the role of WRKY TFs in the correlation between flowering time and environmental changes remain unclear. Therefore, this review summarizes the association of WRKY TFs with flowering pathways to accelerate or delay flowering. WRKY TFs are implicated in phytohormone pathways, such as ethylene, auxin, and abscisic acid pathways, to modulate flowering time. WRKY TFs can modulate salt tolerance by regulating flowering time. WRKY TFs exhibit functional divergence in modulating environmental changes and flowering time. In summary, WRKY TFs are involved in complex pathways and modulate response to environmental changes, thus regulating flowering time.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Zhenquan Duan
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiancheng Zhang
- Key Laboratory of Biology and Genetic Improvement of Peanut, Ministry of Agriculture and Rural Affairs, PR China, Shandong Peanut Research Institute, Qingdao 266000, China
| |
Collapse
|
9
|
Kim JS, Kidokoro S, Yamaguchi-Shinozaki K, Shinozaki K. Regulatory networks in plant responses to drought and cold stress. PLANT PHYSIOLOGY 2024; 195:170-189. [PMID: 38514098 PMCID: PMC11060690 DOI: 10.1093/plphys/kiae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Drought and cold represent distinct types of abiotic stress, each initiating unique primary signaling pathways in response to dehydration and temperature changes, respectively. However, a convergence at the gene regulatory level is observed where a common set of stress-responsive genes is activated to mitigate the impacts of both stresses. In this review, we explore these intricate regulatory networks, illustrating how plants coordinate distinct stress signals into a collective transcriptional strategy. We delve into the molecular mechanisms of stress perception, stress signaling, and the activation of gene regulatory pathways, with a focus on insights gained from model species. By elucidating both the shared and distinct aspects of plant responses to drought and cold, we provide insight into the adaptive strategies of plants, paving the way for the engineering of stress-resilient crop varieties that can withstand a changing climate.
Collapse
Affiliation(s)
- June-Sik Kim
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046Japan
| | - Satoshi Kidokoro
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502Japan
| | - Kazuko Yamaguchi-Shinozaki
- Research Institute for Agriculture and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502Japan
- Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601Japan
| |
Collapse
|
10
|
Ye Y, Wen S, Ying J, Cai Y, Qian R. Screening and Preliminary Identification of Asparagus officinalis Varieties under Low-Temperature Stress. Genes (Basel) 2024; 15:486. [PMID: 38674420 PMCID: PMC11050096 DOI: 10.3390/genes15040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
To meet the large demand for Asparagus officinalis in the spring market and improve the economic benefits of cultivating asparagus, we explored the molecular mechanism underlying the response of A. officinalis to low temperature. First, "Fengdao No. 1" was screened out under low-temperature treatment. Then, the transcriptome sequencing and hormone detection of "Fengdao No. 1" and "Grande" (control) were performed. Transcriptome sequencing resulted in screening out key candidate genes, while hormone analysis indicated that ABA was important for the response to low temperature. The combined analysis indicated that the AoMYB56 gene may regulate ABA in A. officinalis under low temperature. And the phylogenetic tree was constructed, and subcellular localisation was performed. From these results, we speculated that the AoMYB56 gene may regulate ABA in A. officinalis. The results of this research provide a theoretical basis for the further exploration of low-temperature response in A. officinalis.
Collapse
Affiliation(s)
| | | | | | | | - Renjuan Qian
- Zhejiang Institute of Subtropical Crops, Wenzhou 325005, China; (Y.Y.); (S.W.); (J.Y.); (Y.C.)
| |
Collapse
|
11
|
Domes HS, Debener T. Genome-Wide Analysis of the WRKY Transcription Factor Family in Roses and Their Putative Role in Defence Signalling in the Rose-Blackspot Interaction. PLANTS (BASEL, SWITZERLAND) 2024; 13:1066. [PMID: 38674474 PMCID: PMC11054901 DOI: 10.3390/plants13081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
WRKY transcription factors are important players in plant regulatory networks, where they control and integrate various physiological processes and responses to biotic and abiotic stresses. Here, we analysed six rose genomes of 5 different species (Rosa chinensis, R. multiflora, R. roxburghii, R. sterilis, and R. rugosa) and extracted a set of 68 putative WRKY genes, extending a previously published set of 58 WRKY sequences based on the R. chinensis genome. Analysis of the promoter regions revealed numerous motifs related to induction by abiotic and, in some cases, biotic stressors. Transcriptomic data from leaves of two rose genotypes inoculated with the hemibiotrophic rose black spot fungus Diplocarpon rosae revealed the upregulation of 18 and downregulation of 9 of these WRKY genes after contact with the fungus. Notably, the resistant genotype exhibited the regulation of 25 of these genes (16 upregulated and 9 downregulated), while the susceptible genotype exhibited the regulation of 20 genes (15 upregulated and 5 downregulated). A detailed RT-qPCR analysis of RcWRKY37, an orthologue of AtWRKY75 and FaWRKY1, revealed induction patterns similar to those of the pathogenesis-related (PR) genes induced in salicylic acid (SA)-dependent defence pathways in black spot inoculation experiments. However, the overexpression of RcWRKY37 in rose petals did not induce the expression of any of the PR genes upon contact with black spot. However, wounding significantly induced the expression of RcWRKY37, while heat, cold, or drought did not have a significant effect. This study provides the first evidence for the role of RcWRKY37 in rose signalling cascades and highlights the differences between RcWRKY37 and AtWRKY75. These results improve our understanding of the regulatory function of WRKY transcription factors in plant responses to stress factors. Additionally, they provide foundational data for further studies.
Collapse
Affiliation(s)
- Helena Sophia Domes
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, 38104 Braunschweig, Germany
| | - Thomas Debener
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| |
Collapse
|
12
|
Evans KV, Ransom E, Nayakoti S, Wilding B, Mohd Salleh F, Gržina I, Erber L, Tse C, Hill C, Polanski K, Holland A, Bukhat S, Herbert RJ, de Graaf BHJ, Denby K, Buchanan-Wollaston V, Rogers HJ. Expression of the Arabidopsis redox-related LEA protein, SAG21 is regulated by ERF, NAC and WRKY transcription factors. Sci Rep 2024; 14:7756. [PMID: 38565965 PMCID: PMC10987515 DOI: 10.1038/s41598-024-58161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
SAG21/LEA5 is an unusual late embryogenesis abundant protein in Arabidopsis thaliana, that is primarily mitochondrially located and may be important in regulating translation in both chloroplasts and mitochondria. SAG21 expression is regulated by a plethora of abiotic and biotic stresses and plant growth regulators indicating a complex regulatory network. To identify key transcription factors regulating SAG21 expression, yeast-1-hybrid screens were used to identify transcription factors that bind the 1685 bp upstream of the SAG21 translational start site. Thirty-three transcription factors from nine different families bound to the SAG21 promoter, including members of the ERF, WRKY and NAC families. Key binding sites for both NAC and WRKY transcription factors were tested through site directed mutagenesis indicating the presence of cryptic binding sites for both these transcription factor families. Co-expression in protoplasts confirmed the activation of SAG21 by WRKY63/ABO3, and SAG21 upregulation elicited by oligogalacturonide elicitors was partially dependent on WRKY63, indicating its role in SAG21 pathogen responses. SAG21 upregulation by ethylene was abolished in the erf1 mutant, while wound-induced SAG21 expression was abolished in anac71 mutants, indicating SAG21 expression can be regulated by several distinct transcription factors depending on the stress condition.
Collapse
Affiliation(s)
- Kelly V Evans
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Elspeth Ransom
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Swapna Nayakoti
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Ben Wilding
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Faezah Mohd Salleh
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
- Investigative and Forensic Sciences Research Group, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Irena Gržina
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Lieselotte Erber
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Carmen Tse
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Claire Hill
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Alistair Holland
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Sherien Bukhat
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Robert J Herbert
- School of Science and the Environment, University of Worcester, Henwick Grove, Worcester, WR2 6AJ, UK
| | - Barend H J de Graaf
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Katherine Denby
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Heslington, York, YO10 5DD, UK
| | | | - Hilary J Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AT, UK.
| |
Collapse
|
13
|
Ren X, Yang C, Zhu X, Yi P, Jiang X, Yang J, Xiang S, Li Y, Yu B, Yan W, Li X, Li Y, Hu R, Hu Z. Insights into drought stress response mechanism of tobacco during seed germination by integrated analysis of transcriptome and metabolome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108526. [PMID: 38537383 DOI: 10.1016/j.plaphy.2024.108526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Drought stress inhibits seed germination, plant growth and development of tobacco, and seriously affects the yield and quality of tobacco leaves. However, the molecular mechanism underlying tobacco drought stress response remains largely unknown. In this study, integrated analysis of transcriptome and metabolome was performed on the germinated seeds of a cultivated variety K326 and its EMS mutagenic mutant M28 with great drought tolerance. The result showed that drought stress inhibited seed germination of the both varieties, while the germination rate of M28 was faster than that of K326 under drought stress. Besides, the levels of phytohormone ABA, GA19, and zeatin were increased by drought stress in M28. Five vital pathways were identified through integrated transcriptomic and metabolomic analysis, including zeatin biosynthesis, aspartate and glutamate synthesis, phenylamine metabolism, glutathione metabolism, and phenylpropanoid synthesis. Furthermore, 20 key metabolites in the above pathways were selected for further analysis of gene modular-trait relationship, and then four highly correlated modules were found. Then analysis of gene expression network was carried out of Top30 hub gene of these four modules, and 9 key candidate genes were identified, including HSP70s, XTH16s, APX, PHI-1, 14-3-3, SCP, PPO. In conclusion, our study uncovered some key drought-responsive pathways and genes of tobacco during seeds germination, providing new insights into the regulatory mechanisms of tobacco drought stress response.
Collapse
Affiliation(s)
- Xiaomin Ren
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Chenkai Yang
- Chenzhou Tobacco Company, Chenzhou, Hunan, 423000, China
| | - Xianxin Zhu
- Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Pengfei Yi
- Changde Tobacco Company, Changde, Hunan, 415300, China
| | - Xizhen Jiang
- Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jiashuo Yang
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Shipeng Xiang
- Tobacco Production Technology Center, Changsha Tobacco Company, Changsha, Hunan, 410007, China
| | - Yunxia Li
- Chenzhou Agricultural Science Research Institute, Chenzhou, Hunan, 423000, China
| | - Bei Yu
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Weijie Yan
- Changde Tobacco Company, Changde, Hunan, 415300, China
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, Hunan, 410021, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China.
| | - Risheng Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China.
| | - Zhengrong Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China.
| |
Collapse
|
14
|
Meng Y, Lv Q, Li L, Wang B, Chen L, Yang W, Lei Y, Xie Y, Li X. E3 ubiquitin ligase TaSDIR1-4A activates membrane-bound transcription factor TaWRKY29 to positively regulate drought resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:987-1000. [PMID: 38018512 PMCID: PMC10955488 DOI: 10.1111/pbi.14240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
Drought is a deleterious abiotic stress factor that constrains crop growth and development. Post-translational modification of proteins mediated by the ubiquitin-proteasome system is an effective strategy for directing plant responses to stress, but the regulatory mechanisms in wheat remain unclear. In this study, we showed that TaSDIR1-4A is a positive modulator of the drought response. Overexpression of TaSDIR1-4A increased the hypersensitivity of stomata, root length and endogenous abscisic acid (ABA) content under drought conditions. TaSDIR1-4A encodes a C3H2C3-type RING finger protein with E3 ligase activity. Amino acid mutation in its conserved domain led to loss of activity and altered the subcellular localization. The membrane-bound transcription factor TaWRKY29 was identified by yeast two-hybrid screening, and it was confirmed as interacting with TaSDIR1-4A both in vivo and in vitro. TaSDIR1-4A mediated the polyubiquitination and proteolysis of the C-terminal amino acid of TaWRKY29, and its translocation from the plasma membrane to the nucleus. Activated TaWRKY29 bound to the TaABI5 promoter to stimulate its expression, thereby positively regulating the ABA signalling pathway and drought response. Our findings demonstrate the positive role of TaSDIR1-4A in drought tolerance and provide new insights into the involvement of UPS in the wheat stress response.
Collapse
Affiliation(s)
- Ying Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Bingxin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Liuping Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Weibing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yanhong Lei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
15
|
Çelik S. Gene expression analysis of potato drought-responsive genes under drought stress in potato ( Solanum tuberosum L.) cultivars. PeerJ 2024; 12:e17116. [PMID: 38525286 PMCID: PMC10960530 DOI: 10.7717/peerj.17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
The potato (Solanum tuberosum L.), an important field crop consumed extensively worldwide, is adversely affected by abiotic stress factors especially drought. Therefore, it is vital to understand the genetic mechanism under drought stress to decrease loose of yield and quality . This trial aimed to screen drought-responsive gene expressions of potato and determine the drought-tolerant potato cultivar. The trial pattern is a completely randomized block design (CRBD) with four replications under greenhouse conditions. Four cultivars (Brooke, Orwell, Vr808, Shc909) were irrigated with four different water regimes (control and three stress conditions), and the gene expression levels of 10 potato genes were investigated. The stress treatments as follows: Control = 100% field capacity; slight drought = 75% field capacity; moderate drought = 50% field capacity, and severe drought 25% field capacity. To understand the gene expression under drought stress in potato genotypes, RT-qPCR analysis was performed and results showed that the genes most associated with drought tolerance were the StRD22 gene, MYB domain transcription factor, StERD7, Sucrose Synthase (SuSy), ABC Transporter, and StDHN1. The StHSP100 gene had the lowest genetic expression in all cultivars. Among the cultivars, the Orwell exhibited the highest expression of the StRD22 gene under drought stress. Overall, the cultivar with the highest gene expression was the Vr808, closely followed by the Brooke cultivar. As a result, it was determined that potato cultivars Orwell, Vr808, and Brooke could be used as parents in breeding programs to develop drought tolerant potato cultivars.
Collapse
Affiliation(s)
- Sadettin Çelik
- Genç Vocational School, Forestry Department, Bingol University, Bingol, Turkey
| |
Collapse
|
16
|
Xiong R, Peng Z, Zhou H, Xue G, He A, Yao X, Weng W, Wu W, Ma C, Bai Q, Ruan J. Genome-wide identification, structural characterization and gene expression analysis of the WRKY transcription factor family in pea (Pisum sativum L.). BMC PLANT BIOLOGY 2024; 24:113. [PMID: 38365619 PMCID: PMC10870581 DOI: 10.1186/s12870-024-04774-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND The WRKY gene family is one of the largest families of transcription factors in higher plants, and WRKY transcription factors play important roles in plant growth and development as well as in response to abiotic stresses; however, the WRKY gene family in pea has not been systematically reported. RESULTS In this study, 89 pea WRKY genes were identified and named according to the random distribution of PsWRKY genes on seven chromosomes. The gene family was found to have nine pairs of tandem duplicates and 19 pairs of segment duplicates. Phylogenetic analyses of the PsWRKY and 60 Arabidopsis WRKY proteins were performed to determine their homology, and the PsWRKYs were classified into seven subfamilies. Analysis of the physicochemical properties, motif composition, and gene structure of pea WRKYs revealed significant differences in the physicochemical properties within the PsWRKY family; however, their gene structure and protein-conserved motifs were highly conserved among the subfamilies. To further investigate the evolutionary relationships of the PsWRKY family, we constructed comparative syntenic maps of pea with representative monocotyledonous and dicotyledonous plants and found that it was most recently homologous to the dicotyledonous WRKY gene families. Cis-acting element analysis of PsWRKY genes revealed that this gene family can respond to hormones, such as abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin (GA), methyl jasmonate (MeJA), and salicylic acid (SA). Further analysis of the expression of 14 PsWRKY genes from different subfamilies in different tissues and fruit developmental stages, as well as under five different hormone treatments, revealed differences in their expression patterns in the different tissues and fruit developmental stages, as well as under hormone treatments, suggesting that PsWRKY genes may have different physiological functions and respond to hormones. CONCLUSIONS In this study, we systematically identified WRKY genes in pea for the first time and further investigated their physicochemical properties, evolution, and expression patterns, providing a theoretical basis for future studies on the functional characterization of pea WRKY genes during plant growth and development.
Collapse
Affiliation(s)
- Ruiqi Xiong
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Zhonghua Peng
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Hui Zhou
- Sichuan Province Seed Station, Chengdu, Sichuan, 610041, China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Ailing He
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Xin Yao
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Weijiao Wu
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Chao Ma
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Qing Bai
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, Guizhou Province, 550025, P R China.
| |
Collapse
|
17
|
He M, Geng G, Mei S, Wang G, Yu L, Xu Y, Wang Y. Melatonin modulates the tolerance of plants to water stress: morphological response of the molecular mechanism. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23199. [PMID: 38354692 DOI: 10.1071/fp23199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Water stress (drought and waterlogging) leads to an imbalance in plant water distribution, disrupts cell homeostasis, and severely inhibits plant growth. Melatonin is a growth hormone that plants synthesise and has been shown to resist adversity in many plants. This review discusses the biosynthesis and metabolism of melatonin, as well as the changes in plant morphology and physiological mechanisms caused by the molecular defence process. Melatonin induces the expression of related genes in the process of plant photosynthesis under stress and protects the structural integrity of chloroplasts. Exogenous melatonin can maintain the dynamic balance of root ion exchange under waterlogging stress. Melatonin can repair mitochondria and alleviate damage caused by reactive oxygen species and reactive nitrogen species; and has a wide range of uses in the regulation of stress-specific genes and the activation of antioxidant enzyme genes. Melatonin improves the stability of membrane lipids in plant cells and maintains osmotic balance by regulating water channels. There is crosstalk between melatonin and other hormones, which jointly improve the ability of the root system to absorb water and breathe and promote plant growth. Briefly, as a multifunctional molecule, melatonin improves the tolerance of plants under water stress and promotes plant growth and development.
Collapse
Affiliation(s)
- Minmin He
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Gui Geng
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Shuyang Mei
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Gang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Lihua Yu
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Yao Xu
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Yuguang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China; and Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150500, China; and Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
18
|
Bao Y, Zou Y, An X, Liao Y, Dai L, Liu L, Peng D, Huang X, Wang B. Overexpression of a Ramie ( Boehmaeria nivea L. Gaud) Group I WRKY Gene, BnWRKY49, Increases Drought Resistance in A rabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:379. [PMID: 38337912 PMCID: PMC10857251 DOI: 10.3390/plants13030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Plants face multiple stresses in their natural habitats. WRKY transcription factors (TFs) play an important regulatory role in plant stress signaling, regulating the expression of multiple stress-related genes to improve plant stress resistance. In this study, we analyzed the expression profiles of 25 BnWRKY genes in three stages of ramie growth (the seedling stage, the rapid-growth stage, and the fiber maturity stage) and response to abiotic stress through qRT-PCR. The results indicated that 25 BnWRKY genes play a role in different growth stages of ramie and were induced by salt and drought stress in the root and leaf. We selected BnWRKY49 as a candidate gene for overexpression in Arabidopsis. BnWRKY49 was localized in the nucleus. Overexpression of BnWRKY49 affected root elongation under drought and salt stress at the Arabidopsis seedling stage and exhibited increased tolerance to drought stress. Further research found that BnWRKY49-overexpressing lines showed decreased stomatal size and increased cuticular wax deposition under drought compared with wild type (WT). Antioxidant enzyme activities of SOD, POD, and CAT were higher in the BnWRKY49-overexpressing lines than the WT. These findings suggested that the BnWRKY49 gene played an important role in drought stress tolerance in Arabidopsis and laid the foundation for further research on the functional analysis of the BnWRKYs in ramie.
Collapse
Affiliation(s)
- Yaning Bao
- Guizhou Key Laboratory for Tobacco Quality Research, College of Tobacco Science, Guizhou University, Guiyang 550025, China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifei Zou
- Rapeseed Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China
| | - Xia An
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
| | - Yiwen Liao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lunjin Dai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dingxiang Peng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Sun S, Ma W, Mao P. Genomic identification and expression profiling of WRKY genes in alfalfa (Medicago sativa) elucidate their responsiveness to seed vigor. BMC PLANT BIOLOGY 2023; 23:568. [PMID: 37968658 PMCID: PMC10652462 DOI: 10.1186/s12870-023-04597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Seed aging is a critical factor contributing to vigor loss, leading to delayed forage seed germination and seedling growth. Numerous studies have revealed the regulatory role of WRKY transcription factors in seed development, germination, and seed vigor. However, a comprehensive genome-wide analysis of WRKY genes in Zhongmu No.1 alfalfa has not yet been conducted. RESULTS In this study, a total of 91 MsWRKY genes were identified from the genome of alfalfa. Phylogenetic analysis revealed that these MsWRKY genes could be categorized into seven distinct subgroups. Furthermore, 88 MsWRKY genes were unevenly mapped on eight chromosomes in alfalfa. Gene duplication analysis revealed segmental duplication as the principal driving force for the expansion of this gene family during the course of evolution. Expression analysis of the 91 MsWRKY genes across various tissues and during seed germination exhibited differential expression patterns. Subsequent RT-qPCR analysis highlighted significant induction of nine selected MsWRKY genes in response to seed aging treatment, suggesting their potential roles in regulating seed vigor. CONCLUSION This study investigated WRKY genes in alfalfa and identified nine candidate WRKY transcription factors involved in the regulation of seed vigor. While this finding provides valuable insights into understanding the molecular mechanisms underlying vigor loss and developing new strategies to enhance alfalfa seed germinability, further research is required to comprehensively elucidate the precise pathways through which the MsWRKY genes modulate seed vigor.
Collapse
Affiliation(s)
- Shoujiang Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wen Ma
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peisheng Mao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
20
|
Wang S, Liu Y, Hao X, Wang Z, Chen Y, Qu Y, Yao H, Shen Y. AnWRKY29 from the desert xerophytic evergreen Ammopiptanthus nanus improves drought tolerance through osmoregulation in transgenic plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111851. [PMID: 37648116 DOI: 10.1016/j.plantsci.2023.111851] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
As a significant transcription factor family in plants, WRKYs have a crucial role in responding to different adverse environments. They have been repeatedly demonstrated to contribute to drought resistance. However, no systematic exploration of the WRKY family has been reported in the evergreen shrub Ammopiptanthus nanus under drought conditions. Here, we showed that AnWRKY29 expression is strongly induced under drought stress. AnWRKY29 belongs to the group IIe of WRKY gene family. To characterize the function of AnWRKY29, we generated transgenic plants overexpressing this gene in Arabidopsis thaliana. We determined that AnWRKY29 overexpression of mainly improves the drought resistance of transgenic plants to water stress by reducing water loss, preventing electrolyte leakage, and increasing the absorption of inorganic ions. In addition, the AnWRKY29 transgenic plants synthesized more trehalose under water stress. The overexpression of AnWRKY29 also enhanced the antioxidant and osmoregulation capacity of transgenic plants by increasing the activities of catalase, peroxidase and superoxide dismutase, thus increasing the scavenging of reactive oxygen species and propylene glycol synthesis aldehyde oxidase. In summary, our study shows that AnWRKY29 plays an important role in the drought tolerance pathway in plants.
Collapse
Affiliation(s)
- Shuyao Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yahui Liu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xin Hao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhaoyuan Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Chen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yue Qu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongjun Yao
- National Engineering Research Center of Tree breeding and Ecological restoration, Beijing Forestry University, Beijing, China.
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
21
|
Zheng L, Chen Y, Ding L, Zhou Y, Xue S, Li B, Wei J, Wang H. The transcription factor MYB156 controls the polar stiffening of guard cell walls in poplar. THE PLANT CELL 2023; 35:3757-3781. [PMID: 37437118 PMCID: PMC10533337 DOI: 10.1093/plcell/koad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
The mechanical properties of guard cells have major effects on stomatal functioning. Reinforced stiffness in the stomatal polar regions was recently proposed to play an important role in stomatal function, but the underlying molecular mechanisms remain elusive. Here, we used genetic and biochemical approaches in poplar (Populus spp.) to show that the transcription factor MYB156 controls pectic homogalacturonan-based polar stiffening through the downregulation of the gene encoding pectin methylesterase 6 (PME6). Loss of MYB156 increased the polar stiffness of stomata, thereby enhancing stomatal dynamics and response speed to various stimuli. In contrast, overexpression of MYB156 resulted in decreased polar stiffness and impaired stomatal dynamics, accompanied by smaller leaves. Polar stiffening functions in guard cell dynamics in response to changing environmental conditions by maintaining normal stomatal morphology during stomatal movement. Our study revealed the structure-function relationship of the cell wall of guard cells in stomatal dynamics, providing an important means for improving the stomatal performance and drought tolerance of plants.
Collapse
Affiliation(s)
- Lin Zheng
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yajuan Chen
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Liping Ding
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ying Zhou
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shanshan Xue
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Biying Li
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jianhua Wei
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hongzhi Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
22
|
Wang D, Zhang Y, Chen C, Chen R, Bai X, Qiang Z, Fu J, Qin T. The genetic variation in drought resistance in eighteen perennial ryegrass varieties and the underlying adaptation mechanisms. BMC PLANT BIOLOGY 2023; 23:451. [PMID: 37749497 PMCID: PMC10521523 DOI: 10.1186/s12870-023-04460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Drought resistance is a complex characteristic closely related to the severity and duration of stress. Perennial ryegrass (Lolium perenne L.) has no distinct drought tolerance but often encounters drought stress seasonally. Although the response of perennial ryegrass to either extreme or moderate drought stress has been investigated, a comprehensive understanding of perennial ryegrass response to both conditions of drought stress is currently lacking. RESULTS In this study, we investigated the genetic variation in drought resistance in 18 perennial ryegrass varieties under both extreme and moderate drought conditions. The performance of these varieties exhibited obvious diversity, and the survival of perennial ryegrass under severe stress was not equal to good growth under moderate drought stress. 'Sopin', with superior performance under both stress conditions, was the best-performing variety. Transcriptome, physiological, and molecular analyses revealed that 'Sopin' adapted to drought stress through multiple sophisticated mechanisms. Under stress conditions, starch and sugar metabolic enzymes were highly expressed, while CslA was expressed at low levels in 'Sopin', promoting starch degradation and soluble sugar accumulation. The expression and activity of superoxide dismutase were significantly higher in 'Sopin', while the activity of peroxidase was lower, allowing for 'Sopin' to maintain a better balance between maintaining ROS signal transduction and alleviating oxidative damage. Furthermore, drought stress-related transcriptional and posttranscriptional regulatory mechanisms, including the upregulation of transcription factors, kinases, and E3 ubiquitin ligases, facilitate abscisic acid and stress signal transduction. CONCLUSION Our study provides insights into the resistance of perennial ryegrass to both extreme and moderate droughts and the underlying mechanisms by which perennial ryegrass adapts to drought conditions.
Collapse
Affiliation(s)
- Dan Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuting Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Chunyan Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Ruixin Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Xuechun Bai
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Zhiquan Qiang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Juanjuan Fu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Tao Qin
- College of Grassland Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|
23
|
Lv M, Hou D, Wan J, Ye T, Zhang L, Fan J, Li C, Dong Y, Chen W, Rong S, Sun Y, Xu J, Cai L, Gao X, Zhu J, Huang Z, Xu Z, Li L. OsWRKY97, an Abiotic Stress-Induced Gene of Rice, Plays a Key Role in Drought Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3338. [PMID: 37765501 PMCID: PMC10536077 DOI: 10.3390/plants12183338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Drought stress is one of the major causes of crop losses. The WRKY families play important roles in the regulation of many plant processes, including drought stress response. However, the function of individual WRKY genes in plants is still under investigation. Here, we identified a new member of the WRKY families, OsWRKY97, and analyzed its role in stress resistance by using a series of transgenic plant lines. OsWRKY97 positively regulates drought tolerance in rice. OsWRKY97 was expressed in all examined tissues and could be induced by various abiotic stresses and abscisic acid (ABA). OsWRKY97-GFP was localized to the nucleus. Various abiotic stress-related cis-acting elements were observed in the promoters of OsWRKY97. The results of OsWRKY97-overexpressing plant analyses revealed that OsWRKY97 plays a positive role in drought stress tolerance. In addition, physiological analyses revealed that OsWRKY97 improves drought stress tolerance by improving the osmotic adjustment ability, oxidative stress tolerance, and water retention capacity of the plant. Furthermore, OsWRKY97-overexpressing plants also showed higher sensitivity to exogenous ABA compared with that of wild-type rice (WT). Overexpression of OsWRKY97 also affected the transcript levels of ABA-responsive genes and the accumulation of ABA. These results indicate that OsWRKY97 plays a crucial role in the response to drought stress and may possess high potential value in improving drought tolerance in rice.
Collapse
Affiliation(s)
- Miaomiao Lv
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Dejia Hou
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jiale Wan
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Taozhi Ye
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Lin Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Jiangbo Fan
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Chunliu Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Yilun Dong
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Wenqian Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Songhao Rong
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Yihao Sun
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Jinghong Xu
- Crop Research Institute, Academy of Agricultural and Forestry Sciences, Chengdu 611130, China
| | - Liangjun Cai
- Crop Research Institute, Academy of Agricultural and Forestry Sciences, Chengdu 611130, China
| | - Xiaoling Gao
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Jianqing Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Zhengjian Huang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
| | - Zhengjun Xu
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Lihua Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China (S.R.); (Z.H.)
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
24
|
Zhang M, Lu W, Yang X, Li Q, Lin X, Liu K, Yin C, Xiong B, Liao L, Sun G, He S, He J, Wang X, Wang Z. Comprehensive analyses of the citrus WRKY gene family involved in the metabolism of fruit sugars and organic acids. FRONTIERS IN PLANT SCIENCE 2023; 14:1264283. [PMID: 37780491 PMCID: PMC10540311 DOI: 10.3389/fpls.2023.1264283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Sugars and organic acids are the main factors determining the flavor of citrus fruit. The WRKY transcription factor family plays a vital role in plant growth and development. However, there are still few studies about the regulation of citrus WRKY transcription factors (CsWRKYs) on sugars and organic acids in citrus fruit. In this work, a genome-wide analysis of CsWRKYs was carried out in the citrus genome, and a total of 81 CsWRKYs were identified, which contained conserved WRKY motifs. Cis-regulatory element analysis revealed that most of the CsWRKY promoters contained several kinds of hormone-responsive and abiotic-responsive cis-elements. Furthermore, gene expression analysis and fruit quality determination showed that multiple CsWRKYs were closely linked to fruit sugars and organic acids with the development of citrus fruit. Notably, transcriptome co-expression network analysis further indicated that three CsWRKYs, namely, CsWRKY3, CsWRKY47, and CsWRKY46, co-expressed with multiple genes involved in various pathways, such as Pyruvate metabolism and Citrate cycle. These CsWRKYs may participate in the metabolism of fruit sugars and organic acids by regulating carbohydrate metabolism genes in citrus fruit. These findings provide comprehensive knowledge of the CsWRKY family on the regulation of fruit quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Xun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Lee MB, Han H, Lee S. The role of WRKY transcription factors, FaWRKY29 and FaWRKY64, for regulating Botrytis fruit rot resistance in strawberry (Fragaria × ananassa Duch.). BMC PLANT BIOLOGY 2023; 23:420. [PMID: 37691125 PMCID: PMC10494375 DOI: 10.1186/s12870-023-04426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND The cultivated strawberry (Fragaria × ananassa Duch.) is one of the most economically important horticultural crops worldwide. Botrytis fruit rot (BFR) caused by the necrotrophic fungal pathogen Botrytis cinerea is the most devasting disease of cultivated strawberries. Most commercially grown strawberry varieties are susceptible to BFR, and controlling BFR relies on repeated applications of various fungicides. Despite extensive efforts, breeding for BFR resistance has been unsuccessful, primarily due to lack of information regarding the mechanisms of disease resistance and genetic resources available in strawberry. RESULTS Using a reverse genetics approach, we identified candidate genes associated with BFR resistance and screened Arabidopsis mutants using strawberry isolates of B. cinerea. Among the five Arabidopsis T-DNA knockout lines tested, the mutant line with AtWRKY53 showed the greatest reduction in disease symptoms of BFR against the pathogen. Two genes, FaWRKY29 and FaWRKY64, were identified as orthologs in the latest octoploid strawberry genome, 'Florida Brilliance'. We performed RNAi-mediated transient assay and found that the disease frequencies were significantly decreased in both FaWRKY29- and FaWRKY64-RNAi fruits of the strawberry cultivar, 'Florida Brilliance'. Furthermore, our transcriptomic data analysis revealed significant regulation of genes associated with ABA and JA signaling, plant cell wall composition, and ROS in FaWRKY29 or FaWRKY64 knockdown strawberry fruits in response to the pathogen. CONCLUSION Our study uncovered the foundational role of WRKY transcription factor genes, FaWRKY29 and FaWRKY64, in conferring resistance against B. cinerea. The discovery of susceptibility genes involved in BFR presents significant potential for developing resistance breeding strategies in cultivated strawberries, potentially leveraging CRISPR-based gene editing techniques.
Collapse
Affiliation(s)
- Man Bo Lee
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Korea
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA
| | - Hyeondae Han
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA.
| |
Collapse
|
26
|
Wang H, Chen W, Xu Z, Chen M, Yu D. Functions of WRKYs in plant growth and development. TRENDS IN PLANT SCIENCE 2023; 28:630-645. [PMID: 36628655 DOI: 10.1016/j.tplants.2022.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 05/13/2023]
Abstract
As sessile organisms, plants must overcome various stresses. Accordingly, they have evolved several plant-specific growth and developmental processes. These plant processes may be related to the evolution of plant-specific protein families. The WRKY transcription factors originated in eukaryotes and expanded in plants, but are not present in animals. Over the past two decades, there have been many studies on WRKYs in plants, with much of the research concentrated on their roles in stress responses. Nevertheless, recent findings have revealed that WRKYs are also required for seed dormancy and germination, postembryonic morphogenesis, flowering, gametophyte development, and seed production. Thus, WRKYs may be important for plant adaptations to a sessile lifestyle because they simultaneously regulate stress resistance and plant-specific growth and development.
Collapse
Affiliation(s)
- Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Mifen Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
27
|
Razi K, Muneer S. Grafting enhances drought tolerance by regulating and mobilizing proteome, transcriptome and molecular physiology in okra genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1178935. [PMID: 37251756 PMCID: PMC10214962 DOI: 10.3389/fpls.2023.1178935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023]
Abstract
Drought stress poses a serious concern to the growth, development, and quality of the okra crop due to factors including decreased yield, inadequate development of dietary fibre, increased mite infestation, and decreased seed viability. Grafting is one of the strategies that have been developed to increase the drought stress tolerance of crops. We conducted proteomics, transcriptomics and integrated it with molecular physiology to assess the response of sensitive okra genotypes; NS7772 (G1), Green gold (G2) and OH3312 (G3) (scion) grafted to NS7774 (rootstock). In our studies we observed that sensitive okra genotypes grafted to tolerant genotypes mitigated the deleterious effects of drought stress through an increase in physiochemical parameters, and lowered reactive oxygen species. A comparative proteomic analysis showed a stress responsive proteins related to Photosynthesis, energy and metabolism, defence response, protein and nucleic acid biosynthesis. A proteomic investigation demonstrated that scions grafted onto okra rootstocks increased more photosynthesis-related proteins during drought stress, indicating an increase in photosynthetic activity when plants were subjected to drought stress. Furthermore, transcriptome of RD2, PP2C, HAT22, WRKY and DREB increased significantly, specifically for grafted NS7772 genotype. Furthermore, our study also indicated that grafting improved the yield components such as number of pods and seeds per plant, maximum fruit diameter, and maximum plant height in all genotypes which directly contributed towards their high resistance towards drought stress.
Collapse
Affiliation(s)
- Kaukab Razi
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil Nadu, Vellore, India
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil Nadu, Vellore, India
| |
Collapse
|
28
|
Deng G, Sun H, Hu Y, Yang Y, Li P, Chen Y, Zhu Y, Zhou Y, Huang J, Neill SJ, Hu X. A transcription factor WRKY36 interacts with AFP2 to break primary seed dormancy by progressively silencing DOG1 in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:688-704. [PMID: 36653950 DOI: 10.1111/nph.18750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
The phytohormones abscisic acid (ABA) and gibberellic acid (GA) antagonistically control the shift between seed dormancy and its alleviation. DELAY OF GERMINATION1 (DOG1) is a critical regulator that determines the intensity of primary seed dormancy, but its underlying regulatory mechanism is unclear. In this study, we combined physiological, biochemical, and genetic approaches to reveal that a bHLH transcriptional factor WRKY36 progressively silenced DOG1 expression to break seed dormancy through ABI5-BINDING PROTEIN 2 (AFP2) as the negative regulator of ABA signal. AFP2 interacted with WRKY36, which recognizes the W-BOX in the DOG1 promoter to suppress its expression; Overexpressing WRKY36 broke primary seed dormancy, whereas wrky36 mutants showed strong primary seed dormancy. In addition, AFP2 recruited the transcriptional corepressor TOPLESS-RELATED PROTEIN2 (TPR2) to reduce histone acetylation at the DOG1 locus, ultimately mediating WRKY36-dependent inhibition of DOG1 expression to break primary seed dormancy. Our result proposes that the WRKY36-AFP2-TPR2 module progressively silences DOG1 expression epigenetically, thereby fine-tuning primary seed dormancy.
Collapse
Affiliation(s)
- Guoli Deng
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Haiqing Sun
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Yulan Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Yaru Yang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Ping Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Yilin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, Zhejiang, China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jinling Huang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Steven J Neill
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| |
Collapse
|
29
|
Zhang J, He L, Dong J, Zhao C, Wang Y, Tang R, Wang W, Ji Z, Cao Q, Xie H, Wu Z, Li R, Yuan L, Jia X. Integrated metabolic and transcriptional analysis reveals the role of carotenoid cleavage dioxygenase 4 (IbCCD4) in carotenoid accumulation in sweetpotato tuberous roots. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:45. [PMID: 36918944 PMCID: PMC10012543 DOI: 10.1186/s13068-023-02299-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Plant carotenoids are essential for human health, having wide uses in dietary supplements, food colorants, animal feed additives, and cosmetics. With the increasing demand for natural carotenoids, plant carotenoids have gained great interest in both academic and industry research worldwide. Orange-fleshed sweetpotato (Ipomoea batatas) enriched with carotenoids is an ideal feedstock for producing natural carotenoids. However, limited information is available regarding the molecular mechanism responsible for carotenoid metabolism in sweetpotato tuberous roots. RESULTS In this study, metabolic profiling of carotenoids and gene expression analysis were conducted at six tuberous root developmental stages of three sweetpotato varieties with different flesh colors. The correlations between the expression of carotenoid metabolic genes and carotenoid levels suggested that the carotenoid cleavage dioxygenase 4 (IbCCD4) and 9-cis-epoxycarotenoid cleavage dioxygenases 3 (IbNCED3) play important roles in the regulation of carotenoid contents in sweetpotato. Transgenic experiments confirmed that the total carotenoid content decreased in the tuberous roots of IbCCD4-overexpressing sweetpotato. In addition, IbCCD4 may be regulated by two stress-related transcription factors, IbWRKY20 and IbCBF2, implying that the carotenoid accumulation in sweeetpotato is possibly fine-tuned in responses to stress signals. CONCLUSIONS A set of key genes were revealed to be responsible for carotenoid accumulation in sweetpotato, with IbCCD4 acts as a crucial player. Our findings provided new insights into carotenoid metabolism in sweetpotato tuberous roots and insinuated IbCCD4 to be a target gene in the development of new sweetpotato varieties with high carotenoid production.
Collapse
Affiliation(s)
- Jie Zhang
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Liheng He
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Jingjing Dong
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China.,Department of Life Sciences, Changzhi University, Changzhi, China
| | - Cailiang Zhao
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Yujie Wang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Ruimin Tang
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Wenbin Wang
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Zhixian Ji
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qinghe Cao
- Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou, China
| | - Hong'e Xie
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Zongxin Wu
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Runzhi Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, USA
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, China.
| |
Collapse
|
30
|
Zhou Z, Wei X, Lan H. CgMYB1, an R2R3-MYB transcription factor, can alleviate abiotic stress in an annual halophyte Chenopodium glaucum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:484-496. [PMID: 36764264 DOI: 10.1016/j.plaphy.2023.01.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/03/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
MYB transcription factors (TFs) are important regulators of the stress response in plants. In the present study, we characterized the CgMYB1 gene in Chenopodium glaucum, a member of the R2R3-MYB TF family. CgMYB1 was located in the nucleus with an activating domain at the C terminus. The CgMYB1 gene could be induced by salt and cold stress in C. glaucum. Overexpressing CgMYB1 in Arabidopsis significantly enhanced salt and cold tolerance, probably by improving physiological performance and stress-related gene expression. Further analysis suggests that the positive response of CgMYB1 to abiotic stress may partially be attributed to the interaction between CgMYB1 and the CgbHLH001 promoter followed by activation of downstream stress-responsive genes, which mediates stress tolerance. Our findings should contribute to further understanding of the function of R2R3 MYB TF in response to abiotic stress.
Collapse
Affiliation(s)
- Zixin Zhou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Xinxin Wei
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
31
|
AbdElgawad H, Zinta G, Hornbacher J, Papenbrock J, Markakis MN, Asard H, Beemster GTS. Elevated CO 2 mitigates the impact of drought stress by upregulating glucosinolate metabolism in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2023; 46:812-830. [PMID: 36541032 DOI: 10.1111/pce.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Elevated CO2 (eCO2 ) reduces the impact of drought, but the mechanisms underlying this effect remain unclear. Therefore, we used a multidisciplinary approach to investigate the interaction of drought and eCO2 in Arabidopsis thaliana leaves. Transcriptome and subsequent metabolite analyses identified a strong induction of the aliphatic glucosinolate (GL) biosynthesis as a main effect of eCO2 in drought-stressed leaves. Transcriptome results highlighted the upregulation of ABI5 and downregulation of WRKY63 transcription factors (TF), known to enhance and inhibit the expression of genes regulating aliphatic GL biosynthesis (e.g., MYB28 and 29 TFs), respectively. In addition, eCO2 positively regulated aliphatic GL biosynthesis by MYB28/29 and increasing the accumulation of GL precursors. To test the role of GLs in the stress-mitigating effect of eCO2 , we investigated the effect of genetic perturbations of the GL biosynthesis. Overexpression of MYB28, 29 and 76 improved drought tolerance by inducing stomatal closure and maintaining plant turgor, whereas loss of cyp79f genes reduced the stress-mitigating effect of eCO2 and decreased drought tolerance. Overall, the crucial role of GL metabolism in drought stress mitigation by eCO2 could be a beneficial trait to overcome future climate challenges.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Botany and Microbiology, Science Faculty, Beni-Suef University, Beni-Suef, Egypt
| | - Gaurav Zinta
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh, Ghaziabad, India
| | | | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannove, Hannover, Germany
| | - Marios N Markakis
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Han Asard
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
32
|
Wei JT, Zhao SP, Zhang HY, Jin LG, Yu TF, Zheng L, Ma J, Chen J, Zhou YB, Chen M, Fu JD, Ma YZ, Xu ZS. GmDof41 regulated by the DREB1-type protein improves drought and salt tolerance by regulating the DREB2-type protein in soybean. Int J Biol Macromol 2023; 230:123255. [PMID: 36639088 DOI: 10.1016/j.ijbiomac.2023.123255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Despite their essential and multiple roles in biological processes, the molecular mechanism of Dof transcription factors (TFs) for responding to abiotic stresses is rarely reported in plants. We identified a soybean Dof gene GmDof41 which was involved in the responses to drought, salt, and exogenous ABA stresses. Overexpression of GmDof41 in soybean transgenic hairy roots attenuated H2O2 accumulation and regulated proline homeostasis, resulting in the drought and salt tolerance. Yeast one-hybrid and electrophoretic mobility shift assay (EMSA) illustrated that GmDof41 was regulated by the DREB1-type protein GmDREB1B;1 that could improve drought and salt tolerance in plants. Further studies illustrated GmDof41 can directly bind to the promoter of GmDREB2A which encodes a DREB2-type protein and affects abiotic stress tolerance in plants. Collectively, our results suggested that GmDof41 positively regulated drought and salt tolerance by correlating with GmDREB1B;1 and GmDREB2A. This study provides an important basis for further exploring the abiotic stress-tolerance mechanism of Dof TFs in soybean.
Collapse
Affiliation(s)
- Ji-Tong Wei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops/Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Shu-Ping Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops/Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Hui-Yuan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops/Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Long-Guo Jin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops/Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Tai-Fei Yu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops/Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Lei Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops/Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops/Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yong-Bin Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops/Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Ming Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops/Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jin-Dong Fu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops/Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - You-Zhi Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops/Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Zhao-Shi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops/Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; College of Agronomy, Jilin Agricultural University, Changchun 130118, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China.
| |
Collapse
|
33
|
Zhang Y, Li P, Niu Y, Zhang Y, Wen G, Zhao C, Jiang M. Evolution of the WRKY66 Gene Family and Its Mutations Generated by the CRISPR/Cas9 System Increase the Sensitivity to Salt Stress in Arabidopsis. Int J Mol Sci 2023; 24:3071. [PMID: 36834483 PMCID: PMC9959582 DOI: 10.3390/ijms24043071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Group Ⅲ WRKY transcription factors (TFs) play pivotal roles in responding to the diverse abiotic stress and secondary metabolism of plants. However, the evolution and function of WRKY66 remains unclear. Here, WRKY66 homologs were traced back to the origin of terrestrial plants and found to have been subjected to both motifs' gain and loss, and purifying selection. A phylogenetic analysis showed that 145 WRKY66 genes could be divided into three main clades (Clade A-C). The substitution rate tests indicated that the WRKY66 lineage was significantly different from others. A sequence analysis displayed that the WRKY66 homologs had conserved WRKY and C2HC motifs with higher proportions of crucial amino acid residues in the average abundance. The AtWRKY66 is a nuclear protein, salt- and ABA- inducible transcription activator. Simultaneously, under salt stress and ABA treatments, the superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities, as well as the seed germination rates of Atwrky66-knockdown plants generated by the clustered, regularly interspaced, short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system, were all lower than those of wild type (WT) plants, but the relative electrolyte leakage (REL) was higher, indicating the increased sensitivities of the knockdown plants to the salt stress and ABA treatments. Moreover, RNA-seq and qRT-PCR analyses revealed that several regulatory genes in the ABA-mediated signaling pathway involved in stress response of the knockdown plants were significantly regulated, being evidenced by the more moderate expressions of the genes. Therefore, the AtWRKY66 likely acts as a positive regulator in the salt stress response, which may be involved in an ABA-mediated signaling pathway.
Collapse
Affiliation(s)
- Youze Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yuqian Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuxin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guosong Wen
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Changling Zhao
- Research & Development Center for Heath Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| |
Collapse
|
34
|
Genome-Wide Identification, Evolutionary and Functional Analyses of WRKY Family Members in Ginkgo biloba. Genes (Basel) 2023; 14:genes14020343. [PMID: 36833270 PMCID: PMC9956969 DOI: 10.3390/genes14020343] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/07/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
WRKY transcription factors (TFs) are one of the largest families in plants which play essential roles in plant growth and stress response. Ginkgo biloba is a living fossil that has remained essentially unchanged for more than 200 million years, and now has become widespread worldwide due to the medicinal active ingredients in its leaves. Here, 37 WRKY genes were identified, which were distributed randomly in nine chromosomes of G. biloba. Results of the phylogenetic analysis indicated that the GbWRKY could be divided into three groups. Furthermore, the expression patterns of GbWRKY genes were analyzed. Gene expression profiling and qRT-PCR revealed that different members of GbWRKY have different spatiotemporal expression patterns in different abiotic stresses. Most of the GbWRKY genes can respond to UV-B radiation, drought, high temperature and salt treatment. Meanwhile, all GbWRKY members performed phylogenetic tree analyses with the WRKY proteins of other species which were known to be associated with abiotic stress. The result suggested that GbWRKY may play a crucial role in regulating multiple stress tolerances. Additionally, GbWRKY13 and GbWRKY37 were all located in the nucleus, while GbWRKY15 was located in the nucleus and cytomembrane.
Collapse
|
35
|
Wang N, Song G, Zhang F, Shu X, Cheng G, Zhuang W, Wang T, Li Y, Wang Z. Characterization of the WRKY Gene Family Related to Anthocyanin Biosynthesis and the Regulation Mechanism under Drought Stress and Methyl Jasmonate Treatment in Lycoris radiata. Int J Mol Sci 2023; 24:ijms24032423. [PMID: 36768747 PMCID: PMC9917153 DOI: 10.3390/ijms24032423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Lycoris radiata, belonging to the Amaryllidaceae family, is a well-known Chinese traditional medicinal plant and susceptible to many stresses. WRKY proteins are one of the largest families of transcription factors (TFs) in plants and play significant functions in regulating physiological metabolisms and abiotic stress responses. The WRKY TF family has been identified and investigated in many medicinal plants, but its members and functions are not identified in L. radiata. In this study, a total of 31 L. radiata WRKY (LrWRKY) genes were identified based on the transcriptome-sequencing data. Next, the LrWRKYs were divided into three major clades (Group I-III) based on the WRKY domains. A motif analysis showed the members within same group shared a similar motif component, indicating a conservational function. Furthermore, subcellular localization analysis exhibited that most LrWRKYs were localized in the nucleus. The expression pattern of the LrWRKY genes differed across tissues and might be important for Lycoris growth and flower development. There were large differences among the LrWRKYs based on the transcriptional levels under drought stress and MeJA treatments. Moreover, a total of 18 anthocyanin components were characterized using an ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis and pelargonidin-3-O-glucoside-5-O-arabinoside as well as cyanidin-3-O-sambubioside were identified as the major anthocyanin aglycones responsible for the coloration of the red petals in L. radiata. We further established a gene-to-metabolite correlation network and identified LrWRKY3 and LrWRKY27 significant association with the accumulation of pelargonidin-3-O-glucoside-5-O-arabinoside in the Lycoris red petals. These results provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in anthocyanin biosynthesis and in response to drought stress and MeJA treatment.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Guowei Song
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Guanghao Cheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Weibing Zhuang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Tao Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yuhang Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
36
|
Li J, Yu H, Liu M, Chen B, Dong N, Chang X, Wang J, Xing S, Peng H, Zha L, Gui S. Transcriptome-wide identification of WRKY transcription factors and their expression profiles in response to methyl jasmonate in Platycodon grandiflorus. PLANT SIGNALING & BEHAVIOR 2022; 17:2089473. [PMID: 35730590 PMCID: PMC9225661 DOI: 10.1080/15592324.2022.2089473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Platycodon grandiflorus, a perennial flowering plant widely distributed in China and South Korea, is an excellent resource for both food and medicine. The main active compounds of P. grandiflorus are triterpenoid saponins. WRKY transcription factors (TFs) are among the largest gene families in plants and play an important role in regulating plant terpenoid accumulation, physiological metabolism, and stress response. Numerous studies have been reported on other medicinal plants; however, little is known about WRKY genes in P. grandiflorus. In this study, 27 PgWRKYs were identified in the P. grandiflorus transcriptome. Phylogenetic analysis showed that PgWRKY genes were clustered into three main groups and five subgroups. Transcriptome analysis showed that the PgWRKY gene expression patterns in different tissues differed between those in Tongcheng City (Southern Anhui) and Taihe County (Northern Anhui). Gene expression analysis based on RNA sequencing and qRT-PCR analysis showed that most PgWRKY genes were expressed after induction with methyl jasmonate (MeJA). Co-expressing PgWRKY genes with triterpenoid biosynthesis pathway genes revealed four PgWRKY genes that may have functions in triterpenoid biosynthesis. Additionally, functional annotation and protein-protein interaction analysis of PgWRKY proteins were performed to predict their roles in potential regulatory networks. Thus, we systematically analyzed the structure, evolution, and expression patterns of PgWRKY genes to provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in triterpenoid biosynthesis.
Collapse
Affiliation(s)
- Jing Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Mengli Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Bowen Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Nan Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huasheng Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesState Key Laboratory of Dao-Di, Beijing, Hebei, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of traditional Chinese medicine resources, Anhui University of Chinese Medicine, Hefei, Anhui, China
- CONTACT Liangping Zha College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application Anhui University of Chinese Medicine, Hefei, Anhui, China
- Shuangying Gui College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, Chinai
| |
Collapse
|
37
|
Liu S, Zhang C, Guo F, Sun Q, Yu J, Dong T, Wang X, Song W, Li Z, Meng X, Zhu M. A systematical genome-wide analysis and screening of WRKY transcription factor family engaged in abiotic stress response in sweetpotato. BMC PLANT BIOLOGY 2022; 22:616. [PMID: 36575404 PMCID: PMC9795774 DOI: 10.1186/s12870-022-03970-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND WRKY transcription factors play pivotal roles in regulating plant multiple abiotic stress tolerance, however, a genome-wide systematical analysis of WRKY genes in sweetpotato is still missing. RESULTS Herein, 84 putative IbWRKYs with WRKY element sequence variants were identified in sweetpotato reference genomes. Fragment duplications, rather than tandem duplications, were shown to play prominent roles in IbWRKY gene expansion. The collinearity analysis between IbWRKYs and the related orthologs from other plants further depicted evolutionary insights into IbWRKYs. Phylogenetic relationships displayed that IbWRKYs were divided into three main groups (I, II and III), with the support of the characteristics of exon-intron structures and conserved protein motifs. The IbWRKY genes, mainly from the group Ib, displayed remarkable and diverse expression profiles under multiple abiotic stress (NaCl, PEG6000, cold and heat) and hormone (ABA, ACC, JA and SA) treatments, which were determined by RNA-seq and qRT-PCR assays, suggesting their potential roles in mediating particular stress responses. Moreover, IbWRKY58L could interact with IbWRKY82 as revealed by yeast two-hybrid based on the protein interaction network screening. And abiotic stress-remarkably induced IbWRKY21L and IbWRKY51 were shown to be localized in the nucleus and had no transactivation activities. CONCLUSION These results provide valuable insights into sweetpotato IbWRKYs and will lay a foundation for further exploring functions and possible regulatory mechanisms of IbWRKYs in abiotic stress tolerance.
Collapse
Affiliation(s)
- Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
| | - Chengbin Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
| | - Fen Guo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
| | - Qing Sun
- Agricultural Bureau of Linyi City, 276000, Linyi, Shandong Province, China
| | - Jing Yu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
- Jiangsu Key laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
| | - Xin Wang
- Jiangsu Xuzhou Sweetpotato Research Center, 221131, Xuzhou, Jiangsu Province, China
| | - Weihan Song
- Jiangsu Xuzhou Sweetpotato Research Center, 221131, Xuzhou, Jiangsu Province, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
- Jiangsu Key laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China
| | - Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China.
- Jiangsu Key laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China.
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China.
- Jiangsu Key laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
38
|
Meng Y, Huang J, Jing H, Wu Q, Shen R, Zhu X. Exogenous abscisic acid alleviates Cd toxicity in Arabidopsis thaliana by inhibiting Cd uptake, translocation and accumulation, and promoting Cd chelation and efflux. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111464. [PMID: 36130666 DOI: 10.1016/j.plantsci.2022.111464] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Exogenous abscisic acid (ABA) has been implicated in plant response to cadmium (Cd) stress, but the underlying mechanism remains unclear. In the present study, we found that exogenous ABA application decreased Cd fixation in wild type (WT) root cell wall through reducing the hemicelluloses content, in parallel with the decreased expression of IRT1, ZIP1, ZIP4, HMA2 and HMA4, which are related to Cd uptake and translocation, and the increased expression of PDF2.6, PDR8 and AIT1, which are related to Cd chelation, efflux, and accumulation inhibition. These changes might be associated with the reduced Cd accumulation in roots and shoots and the alleviated Cd toxicity. In contrast, the mutation of ABI4, a transcription factor in ABA signaling pathway, significantly increased the expression of IRT1, ZIP1, ZIP4, HMA2 and HMA4, while decreased the expression of AIT1, PDF2.6 and PDR8, enhancing Cd accumulation in roots and shoots of abi4. The enhanced Cd-sensitivity in abi4 mutant could not be rescued by exogenous ABA addition compared with WT. In a word, we conclude that exogenous ABA mitigates Cd toxicity in Arabidopsis thaliana via inhibiting Cd uptake, translocation and accumulation, promoting Cd chelation and efflux, a pathway that might be regulated by ABI4.
Collapse
Affiliation(s)
- Yuting Meng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaikang Jing
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
Khan K, Van Aken O. The colonization of land was a likely driving force for the evolution of mitochondrial retrograde signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7182-7197. [PMID: 36055768 PMCID: PMC9675596 DOI: 10.1093/jxb/erac351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Most retrograde signalling research in plants was performed using Arabidopsis, so an evolutionary perspective on mitochondrial retrograde regulation (MRR) is largely missing. Here, we used phylogenetics to track the evolutionary origins of factors involved in plant MRR. In all cases, the gene families can be traced to ancestral green algae or earlier. However, the specific subfamilies containing factors involved in plant MRR in many cases arose during the transition to land. NAC transcription factors with C-terminal transmembrane domains, as observed in the key regulator ANAC017, can first be observed in non-vascular mosses, and close homologs to ANAC017 can be found in seed plants. Cyclin-dependent kinases (CDKs) are common to eukaryotes, but E-type CDKs that control MRR also diverged in conjunction with plant colonization of land. AtWRKY15 can be traced to the earliest land plants, while AtWRKY40 only arose in angiosperms and AtWRKY63 even more recently in Brassicaceae. Apetala 2 (AP2) transcription factors are traceable to algae, but the ABI4 type again only appeared in seed plants. This strongly suggests that the transition to land was a major driver for developing plant MRR pathways, while additional fine-tuning events have appeared in seed plants or later. Finally, we discuss how MRR may have contributed to meeting the specific challenges that early land plants faced during terrestrialization.
Collapse
Affiliation(s)
- Kasim Khan
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
40
|
Liu X, Wei R, Tian M, Liu J, Ruan Y, Sun C, Liu C. Combined Transcriptome and Metabolome Profiling Provide Insights into Cold Responses in Rapeseed ( Brassica napus L.) Genotypes with Contrasting Cold-Stress Sensitivity. Int J Mol Sci 2022; 23:13546. [PMID: 36362332 PMCID: PMC9657917 DOI: 10.3390/ijms232113546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2023] Open
Abstract
Low temperature is a major environmental factor, which limits rapeseed (Brassica napus L.) growth, development, and productivity. So far, the physiological and molecular mechanisms of rapeseed responses to cold stress are not fully understood. Here, we explored the transcriptome and metabolome profiles of two rapeseed genotypes with contrasting cold responses, i.e., XY15 (cold-sensitive) and GX74 (cold-tolerant). The global metabolome profiling detected 545 metabolites in siliques of both genotypes before (CK) and after cold-stress treatment (LW). The contents of several sugar metabolites were affected by cold stress with the most accumulated saccharides being 3-dehydro-L-threonic acid, D-xylonic acid, inositol, D-mannose, D-fructose, D-glucose, and L-glucose. A total of 1943 and 5239 differentially expressed genes were identified from the transcriptome sequencing in XY15CK_vs_XY15LW and GX74CK_vs_GX74LW, respectively. We observed that genes enriched in sugar metabolism and biosynthesis-related pathways, photosynthesis, reactive oxygen species scavenging, phytohormone, and MAPK signaling were highly expressed in GX74LW. In addition, several genes associated with cold-tolerance-related pathways, e.g., the CBF-COR pathway and MAPK signaling, were specifically expressed in GX74LW. Contrarily, genes in the above-mentioned pathways were mostly downregulated in XY15LW. Thus, our results indicate the involvement of these pathways in the differential cold-stress responses in XY15 and GX74.
Collapse
Affiliation(s)
- Xinhong Liu
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ran Wei
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Minyu Tian
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Crop Physiology and Molecular Biology of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jinchu Liu
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Ying Ruan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Chuanxin Sun
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Liu
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Crop Physiology and Molecular Biology of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
41
|
Genome-Wide Identification and Characterization of the Oat ( Avena sativa L.) WRKY Transcription Factor Family. Genes (Basel) 2022; 13:genes13101918. [PMID: 36292803 PMCID: PMC9601435 DOI: 10.3390/genes13101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2022] Open
Abstract
The WRKY family is widely involved in the regulation of plant growth and stress response and is one of the largest gene families related to plant environmental adaptation. However, no systematic studies on the WRKY family in oat (Avena sativa L.) have been conducted to date. The recently published complete genome sequence of oat enables the systematic analysis of the AsWRKYs. Based on a genome-wide study of oat, we identified 162 AsWRKYs that were unevenly distributed across 21 chromosomes; a phylogenetic tree of WRKY domains divided these genes into three groups (I, II, and III). We also analyzed the gene duplication events and identified a total of 111 gene pairs that showed strong purifying selection during the evolutionary process. Surprisingly, almost all genes evolved after the completion of subgenomic differentiation of hexaploid oat. Further studies on the functional analysis indicated that AsWRKYs were widely involved in various biological processes. Notably, expression patterns of 16 AsWRKY genes revealed that the response of AsWRKYs were affected by stress level and time. In conclusion, this study provides a reference for further analysis of the role of WRKY transcription factors in species evolution and functional differentiation.
Collapse
|
42
|
Lv M, Luo W, Ge M, Guan Y, Tang Y, Chen W, Lv J. A Group I WRKY Gene, TaWRKY133, Negatively Regulates Drought Resistance in Transgenic Plants. Int J Mol Sci 2022; 23:ijms231912026. [PMID: 36233327 PMCID: PMC9569464 DOI: 10.3390/ijms231912026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
WRKYs are one of the largest transcription factor (TF) families and play an important role in plant resistance to various stresses. TaWRKY133, a group I WRKY protein, responds to a variety of abiotic stresses, including PEG treatment. The TaWRKY133 protein is located in the nucleus of tobacco epidermal cells, and both its N-terminal and C-terminal domains exhibit transcriptional activation activity. Overexpression of TaWRKY133 reduced drought tolerance in Arabidopsis thaliana, as reflected by a lower germination rate, shorter roots, higher stomatal aperture, poorer growth and lower antioxidant enzyme activities under drought treatment. Moreover, expression levels of stress-related genes (DREB2A, RD29A, RD29B, ABF1, ABA2, ABI1, SOD (Cu/Zn), POD1 and CAT1) were downregulated in transgenic Arabidopsis under drought stress. Gene silencing of TaWRKY133 enhanced the drought tolerance of wheat, as reflected in better growth, higher antioxidant enzyme activities, and higher expression levels of stress-related genes including DREB1, DREB3, ABF, ERF3, SOD (Fe), POD, CAT and P5CS. In conclusion, these results suggest that TaWRKY133 might reduce drought tolerance in plants by regulating the expression of stress-related genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Weimin Chen
- Correspondence: (W.C.); (J.L.); Tel.: +86-180-0924-4163 (W.C.); +86-135-7219-6187 (J.L.)
| | - Jinyin Lv
- Correspondence: (W.C.); (J.L.); Tel.: +86-180-0924-4163 (W.C.); +86-135-7219-6187 (J.L.)
| |
Collapse
|
43
|
Hung FY, Shih YH, Lin PY, Feng YR, Li C, Wu K. WRKY63 transcriptional activation of COOLAIR and COLDAIR regulates vernalization-induced flowering. PLANT PHYSIOLOGY 2022; 190:532-547. [PMID: 35708655 PMCID: PMC9434252 DOI: 10.1093/plphys/kiac295] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/21/2022] [Indexed: 05/10/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS C (FLC) acts as a key flowering regulator by repressing the expression of the floral integrator FLOWERING LOCUS T (FT). Prolonged exposure to cold (vernalization) induces flowering by reducing FLC expression. The long noncoding RNAs (lncRNAs) COOLAIR and COLDAIR, which are transcribed from the 3' end and the first intron of FLC, respectively, are important for FLC repression under vernalization. However, the molecular mechanism of how COOLAIR and COLDAIR are transcriptionally activated remains elusive. In this study, we found that the group-III WRKY transcription factor WRKY63 can directly activate FLC. wrky63 mutant plants display an early flowering phenotype and are insensitive to vernalization. Interestingly, we found that WRKY63 can activate the expression of COOLAIR and COLDAIR by binding to their promoters.WRKY63 therefore acts as a dual regulator that activates FLC directly under non-vernalization conditions but represses FLC indirectly during vernalization through inducing COOLAIR and COLDAIR. Furthermore, genome-wide occupancy profile analyses indicated that the binding of WRKY63 to vernalization-induced genes increases after vernalization. In addition, WRKY63 binding is associated with decreased levels of the repressive marker Histone H3 Lysine 27 trimethylation (H3K27me3). Collectively, our results indicate that WRKY63 is an important flowering regulator involved in vernalization-induced transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Pei-Yu Lin
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Ru Feng
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | |
Collapse
|
44
|
Chen M, She Z, Aslam M, Liu T, Wang Z, Qi J, Niu X. Genomic insights of the WRKY genes in kenaf ( Hibiscus cannabinus L.) reveal that HcWRKY44 improves the plant's tolerance to the salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:984233. [PMID: 36061791 PMCID: PMC9433988 DOI: 10.3389/fpls.2022.984233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The WRKY transcription factors (TFs) are among the most diverse TF families of plants. They are implicated in various processes related to plant growth and stress response. Kenaf (Hibiscus cannabinus L.), an important fiber crop, has many applications, including the phytoremediation of saline-alkaline soil. However, the roles of WRKY TFs in kenaf are rarely studied. In the present study, 46 kenaf WRKY genes were genome-widely identified and characterized by gene structure, phylogeny and expression pattern analysis. Furthermore, the HcWRKY44 gene was functionally characterized in Arabidopsis under salinity and drought stresses. HcWRKY44 is a nuclear-localized protein that is positively induced by salinity and drought, with roots showing maximum accumulation of its transcripts. Under NaCl and abscisic acid (ABA) stress conditions, plants overexpressing HcWRKY44 had higher germination rates, better root growth and increased survival than control plants; however, it did not improve the ability to withstand drought stress. Moreover, ABA signaling genes (ABI1, ABI2, and ABI5), ABA-responsive genes (ABF4, RD29B, COR15A, COR47, and RD22), stress-related genes (STZ, P5CS, and KIN1), and ionic homeostasis-related genes (SOS1, AHA1, AHA2, and HKT1) were positively induced in HcWRKY44 transgenic plants under NaCl treatment. These results suggest that HcWRKY44 improved plant's tolerance to salt stress but not osmotic stress through an ABA-mediated pathway. In summary, this study provides provided comprehensive information about HcWRKY genes and revealed that HcWRKY44 is involved in salinity tolerance and ABA signaling.
Collapse
Affiliation(s)
- Meixia Chen
- Industry and University Research Cooperation Demonstration Base in Fujian Province, College of Life Sciences, Ningde Normal University, Ningde, China
| | - Zeyuan She
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Mohammad Aslam
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Liu
- Industry and University Research Cooperation Demonstration Base in Fujian Province, College of Life Sciences, Ningde Normal University, Ningde, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zerong Wang
- Industry and University Research Cooperation Demonstration Base in Fujian Province, College of Life Sciences, Ningde Normal University, Ningde, China
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianmin Qi
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoping Niu
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
45
|
Zhang L, Zhang R, Ye X, Zheng X, Tan B, Wang W, Li Z, Li J, Cheng J, Feng J. Overexpressing VvWRKY18 from grapevine reduces the drought tolerance in Arabidopsis by increasing leaf stomatal density. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153741. [PMID: 35690029 DOI: 10.1016/j.jplph.2022.153741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The growth of grapevine [Vitis vinifera L.] is commonly limited by drought stress. The mechanisms by which grapevine copes with drought stress have not yet been extensively clarified. In this study, the drought and abscisic acid (ABA)-induced gene VvWRKY18 was demonstrated to decreased drought tolerance of Arabidopsis thaliana overexpression (VvWRKY18-OE) lines. Compared to wild-type plants, VvWRKY18-OE lines showed increased levels of malonaldehyde (MDA) and the reactive oxygen species (ROS) H2O2 and O2- decreased levels of proline, weakened activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and decreased sensitivity to ABA with respect to stomatal closure.VvWRKY18-OE lines also showed an increase in stomatal density and a higher water loss rate. Negative regulators of stomatal development including SDD1, YDA, TMM, and MPK6, were downregulated in VvWRKY18-OE lines. Transcript levels of the stress-related genes DREB1A and CBF2 were significantly reduced in VvWRKY18-OE lines under drought stress. Taken together, these findings demonstrate that VvWRKY18 reduced drought tolerance in Arabidopsis. Our results contribute to understanding of the roles that WRKY genes play in drought stress and stomatal development.
Collapse
Affiliation(s)
- Langlang Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Rui Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Zhiqian Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Jidong Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.
| |
Collapse
|
46
|
Han Z, Wang J, Wang X, Zhang X, Cheng Y, Cai Z, Nian H, Ma Q. GmWRKY21, a Soybean WRKY Transcription Factor Gene, Enhances the Tolerance to Aluminum Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:833326. [PMID: 35958220 PMCID: PMC9359102 DOI: 10.3389/fpls.2022.833326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The WRKY transcription factors (TFs) are one of the largest families of TFs in plants and play multiple roles in plant growth and development and stress response. In this study, GmWRKY21 encoding a WRKY transcription factor was functionally characterized in Arabidopsis and soybean. The GmWRKY21 protein containing a highly conserved WRKY domain and a C2H2 zinc-finger structure is located in the nucleus and has the characteristics of transcriptional activation ability. The GmWRKY21 gene presented a constitutive expression pattern rich in the roots, leaves, and flowers of soybean with over 6-fold of relative expression levels and could be substantially induced by aluminum stress. As compared to the control, overexpression of GmWRKY21 in Arabidopsis increased the root growth of seedlings in transgenic lines under the AlCl3 concentrations of 25, 50, and 100 μM with higher proline and lower MDA accumulation. The results of quantitative real-time polymerase chain reaction (qRT-PCR) showed that the marker genes relative to aluminum stress including ALMT, ALS3, MATE, and STOP1 were induced in GmWRKY21 transgenic plants under AlCl3 treatment. The stress-related genes, such as KIN1, COR15A, COR15B, COR47, GLOS3, and RD29A, were also upregulated in GmWRKY21 transgenic Arabidopsis under aluminum stress. Similarly, stress-related genes, such as GmCOR47, GmDREB2A, GmMYB84, GmKIN1, GmGST1, and GmLEA, were upregulated in hair roots of GmWRKY21 transgenic plants. In summary, these results suggested that the GmWRKY21 transcription factor may promote the tolerance to aluminum stress mediated by the pathways regulating the expression of the acidic aluminum stress-responsive genes and abiotic stress-responsive genes.
Collapse
Affiliation(s)
- Zhenzhen Han
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Jinyu Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Xinxin Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Xijia Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, China
| |
Collapse
|
47
|
Hu Y, Chen X, Shen X. Regulatory network established by transcription factors transmits drought stress signals in plant. STRESS BIOLOGY 2022; 2:26. [PMID: 37676542 PMCID: PMC10442052 DOI: 10.1007/s44154-022-00048-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 09/08/2023]
Abstract
Plants are sessile organisms that evolve with a flexible signal transduction system in order to rapidly respond to environmental changes. Drought, a common abiotic stress, affects multiple plant developmental processes especially growth. In response to drought stress, an intricate hierarchical regulatory network is established in plant to survive from the extreme environment. The transcriptional regulation carried out by transcription factors (TFs) is the most important step for the establishment of the network. In this review, we summarized almost all the TFs that have been reported to participate in drought tolerance (DT) in plant. Totally 466 TFs from 86 plant species that mostly belong to 11 families are collected here. This demonstrates that TFs in these 11 families are the main transcriptional regulators of plant DT. The regulatory network is built by direct protein-protein interaction or mutual regulation of TFs. TFs receive upstream signals possibly via post-transcriptional regulation and output signals to downstream targets via direct binding to their promoters to regulate gene expression.
Collapse
Affiliation(s)
- Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiaoliang Chen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiangling Shen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| |
Collapse
|
48
|
Muthuramalingam P, Jeyasri R, Rakkammal K, Satish L, Shamili S, Karthikeyan A, Valliammai A, Priya A, Selvaraj A, Gowri P, Wu QS, Karutha Pandian S, Shin H, Chen JT, Baskar V, Thiruvengadam M, Akilan M, Ramesh M. Multi-Omics and Integrative Approach towards Understanding Salinity Tolerance in Rice: A Review. BIOLOGY 2022; 11:biology11071022. [PMID: 36101403 PMCID: PMC9312129 DOI: 10.3390/biology11071022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Rice (Oryza sativa L.) plants are simultaneously encountered by environmental stressors, most importantly salinity stress. Salinity is the major hurdle that can negatively impact growth and crop yield. Understanding the salt stress and its associated complex trait mechanisms for enhancing salt tolerance in rice plants would ensure future food security. The main aim of this review is to provide insights and impacts of molecular-physiological responses, biochemical alterations, and plant hormonal signal transduction pathways in rice under saline stress. Furthermore, the review highlights the emerging breakthrough in multi-omics and computational biology in identifying the saline stress-responsive candidate genes and transcription factors (TFs). In addition, the review also summarizes the biotechnological tools, genetic engineering, breeding, and agricultural practicing factors that can be implemented to realize the bottlenecks and opportunities to enhance salt tolerance and develop salinity tolerant rice varieties. Future studies pinpointed the augmentation of powerful tools to dissect the salinity stress-related novel players, reveal in-depth mechanisms and ways to incorporate the available literature, and recent advancements to throw more light on salinity responsive transduction pathways in plants. Particularly, this review unravels the whole picture of salinity stress tolerance in rice by expanding knowledge that focuses on molecular aspects.
Collapse
Affiliation(s)
- Pandiyan Muthuramalingam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
- Department of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Korea
| | - Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Kasinathan Rakkammal
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Lakkakula Satish
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Sasanala Shamili
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Alaguvel Valliammai
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Arumugam Priya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Anthonymuthu Selvaraj
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Pandiyan Gowri
- Department of Botany, Science Campus, Alagappa University, Karaikudi 630 003, India;
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China;
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Hyunsuk Shin
- Department of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Korea
- Correspondence: (H.S.); (M.T.); (M.R.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan;
| | - Venkidasamy Baskar
- Department of Oral and Maxillofaciel Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, India;
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
- Correspondence: (H.S.); (M.T.); (M.R.)
| | - Manoharan Akilan
- Department of Plant Breeding and Genetics, Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University, Trichy 620 027, India;
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
- Correspondence: (H.S.); (M.T.); (M.R.)
| |
Collapse
|
49
|
Chen S, Cao H, Huang B, Zheng X, Liang K, Wang GL, Sun X. The WRKY10-VQ8 module safely and effectively regulates rice thermotolerance. PLANT, CELL & ENVIRONMENT 2022; 45:2126-2144. [PMID: 35394666 DOI: 10.1111/pce.14329] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
WRKY transcription factors (TFs) play crucial roles in biotic and abiotic stress responses. However, their roles in thermal response are still largely elusive, especially in rice. In this study, we revealed the functions of WRKY10 TF and VQ8 protein containing VQ motif in rice thermotolerance. Overexpression of WRKY10 or loss of VQ8 function increases thermosensitivity, whereas conversely, overexpression of VQ8 or loss of WRKY10 function enhances thermotolerance. Overexpression of WRKY10 accelerates reactive oxygen species (ROS) accumulation in chloroplasts and apoplasts, and it also induces the expression of heat shock TF and protein genes. We also found that WRKY10 regulates nuclear DNA fragmentation and hypersensitive response by modulating NAC4 TF expression. The balance between destructive and protective responses in WRKY10-overexpression plant is more fragile and more easily broken by heat stress compared with wild type. In vitro and in vivo assays revealed that VQ8 interacts with WRKY10 and inhibits the transcription activity via repressing its DNA-binding activity. Our study demonstrates that WRKY10 negatively regulates thermotolerance by modulating the ROS balance and the hypersensitive response and that VQ8 functions antagonistically to positively regulate thermotolerance. The functional module of WRKY10-VQ8 provides safe and effective regulatory mechanisms in the heat stress response.
Collapse
Affiliation(s)
- Sique Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Department of Plant Science and Technology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongrui Cao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Department of Plant Science and Technology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baolin Huang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Department of Plant Science and Technology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiujuan Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Department of Plant Science and Technology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kangjing Liang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Department of Plant Science and Technology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, USA
| | - Xinli Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Department of Plant Science and Technology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
50
|
Genome-wide identification and expression analysis response to GA 3 stresses of WRKY gene family in seed hemp (Cannabis sativa L). Gene 2022; 822:146290. [PMID: 35176429 DOI: 10.1016/j.gene.2022.146290] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 11/20/2022]
Abstract
WRKY transcription factor is one of the largest transcription factor families in higher plants. However, the investigations of the WRKY gene family have not yet been reported in seed hemp. In the present study, we identified 39 CasWRKYs at the genome-wide level and analyzed phylogenetic relationship, chromosome location, cis-acting elements, gene structure, conserved motif, and expression pattern. Based on the gene structure and phylogenetic analyses, CasWRKY proteins were divided into 3 groups and 7 subgroups. The gene duplication investigation revealed that 6 and 5 pairs of CasWRKY genes underwent tandem and segmental duplication events, respectively. These events may contribute to the diversity and expansion of the CasWRKY gene family. The regulatory elements in the promoter regions of CasWRKYs contained diverse cis-regulatory elements, among which P-box cis-regulatory elements showed high frequency, indicating that CasWRKYs can respond to the regulation of gibberellin. The expression profiles derived from RNA-seq and qRT-PCR showed that 13 CasWRKY genes could respond to GA3 stress and affect fiber development, as well as play significant roles in stem growth and development. This study will serve as molecular basis and practical reference for further exploring the genetic evolution and biological function of CasWRKY genes in seed hemp.
Collapse
|