1
|
Wang P, Novák J, Kopecká R, Čičmanec P, Černý M. Divergent Molecular Responses to Heavy Water in Arabidopsis thaliana Compared to Bacteria and Yeast. PLANTS (BASEL, SWITZERLAND) 2024; 13:3121. [PMID: 39599330 PMCID: PMC11597629 DOI: 10.3390/plants13223121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Heavy water (D2O) is scarce in nature, and despite its physical similarity to water, D2O disrupts cellular function due to the isotope effect. While microbes can survive in nearly pure D2O, eukaryotes such as Arabidopsis thaliana are more sensitive and are unable to survive higher concentrations of D2O. To explore the underlying molecular mechanisms for these differences, we conducted a comparative proteomic analysis of E. coli, S. cerevisiae, and Arabidopsis after 180 min of growth in a D2O-supplemented media. Shared adaptive mechanisms across these species were identified, including changes in ribosomal protein abundances, accumulation of chaperones, and altered metabolism of polyamines and amino acids. However, Arabidopsis exhibited unique vulnerabilities, such as a muted stress response, lack of rapid activation of reactive oxygen species metabolism, and depletion of stress phytohormone abscisic acid signaling components. Experiments with mutants show that modulating the HSP70 pool composition may promote D2O resilience. Additionally, Arabidopsis rapidly incorporated deuterium into sucrose, indicating that photosynthesis facilitates deuterium intake. These findings provide valuable insights into the molecular mechanisms that dictate differential tolerance to D2O across species and lay the groundwork for further studies on the biological effects of uncommon isotopes, with potential implications for biotechnology and environmental science.
Collapse
Affiliation(s)
| | | | | | | | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (P.W.); (J.N.); (P.Č.)
| |
Collapse
|
2
|
Bi S, Ao J, Jiang T, Zhu X, Zhu Y, Yang W, Zheng B, Ji M. Imaging Metabolic Flow of Water in Plants with Isotope-Traced Stimulated Raman Scattering Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407543. [PMID: 39301930 PMCID: PMC11558102 DOI: 10.1002/advs.202407543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Water plays a vital role in the life cycle of plants, participating in various critical biochemical reactions during both non-photosynthetic and photosynthetic processes. Direct visualization of the metabolic activities of water in plants with high spatiotemporal resolution is essential to reveal the functional utilization of water. Here, stimulated Raman scattering (SRS) microscopy is applied to monitor the metabolic processes of deuterated water (D2O) in model plant Arabidopsis thaliana (A. thaliana). The work shows that in plants uptaking D2O/water solution, proton-transfer from water to organic metabolites results in the formation of C-D bonds in newly synthesized biomolecules (lipid, protein, and polysaccharides, etc.) that allow high-resolution detection with SRS. Reversible metabolic pathways of oil-starch conversion between seed germination and seed development processes are verified. Spatial heterogeneity of metabolic activities along the vertical axis of plants (root, stem, and tip meristem), as well as the radial distributions of secondary growth on the horizontal cross-sections are quantified. Furthermore, metabolic flow of protons from plants to animals is visualized in aphids feeding on A. thaliana. Collectively, SRS microscopy has potential to trace a broad range of matter flows in plants, such as carbon storage and nutrition metabolism.
Collapse
Affiliation(s)
- Simin Bi
- State Key Laboratory of Surface Physics and Department of PhysicsAcademy for Engineering and TechnologyHuman Phenome InstituteKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Shanghai Key Laboratory of Metasurfaces for Light ManipulationFudan UniversityShanghai200433China
| | - Jianpeng Ao
- State Key Laboratory of Surface Physics and Department of PhysicsAcademy for Engineering and TechnologyHuman Phenome InstituteKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Shanghai Key Laboratory of Metasurfaces for Light ManipulationFudan UniversityShanghai200433China
| | - Ting Jiang
- State Key Laboratory of Genetic EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| | - Xianmiao Zhu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- CAS‐JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS)Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yimin Zhu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- CAS‐JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS)Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Weibing Yang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- CAS‐JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS)Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Binglian Zheng
- State Key Laboratory of Genetic EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of PhysicsAcademy for Engineering and TechnologyHuman Phenome InstituteKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Shanghai Key Laboratory of Metasurfaces for Light ManipulationFudan UniversityShanghai200433China
| |
Collapse
|
3
|
Tat VT, Lee YJ. Spatio-Temporal Study of Galactolipid Biosynthesis in Duckweed Using Mass Spectrometry Imaging and in vivo Isotope Labeling. PLANT & CELL PHYSIOLOGY 2024; 65:986-998. [PMID: 38590126 PMCID: PMC11758584 DOI: 10.1093/pcp/pcae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Isotope labeling coupled with mass spectrometry imaging (MSI) presents a potent strategy for elucidating the dynamics of metabolism at cellular resolution, yet its application to plant systems is scarce. It has the potential to reveal the spatio-temporal dynamics of lipid biosynthesis during plant development. In this study, we explore its application to galactolipid biosynthesis of an aquatic plant, Lemna minor, with D2O labeling. Specifically, matrix-assisted laser desorption/ionization-MSI data of two major galactolipids in L. minor, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, were studied after growing in 50% D2O media over a 15-day time period. When they were partially labeled after 5 d, three distinct binomial isotopologue distributions were observed corresponding to the labeling of partial structural moieties: galactose only, galactose and a fatty acyl chain and the entire molecule. The temporal change in the relative abundance of these distributions follows the expected linear pathway of galactolipid biosynthesis. Notably, their mass spectrometry images revealed the localization of each isotopologue group to the old parent frond, the intermediate tissues and the newly grown daughter fronds. Besides, two additional labeling experiments, (i) 13CO2 labeling and (ii) backward labeling of completely 50% D2O-labeled L. minor in H2O media, confirm the observations in forward labeling. Furthermore, these experiments unveiled hidden isotopologue distributions indicative of membrane lipid restructuring. This study suggests the potential of isotope labeling using MSI to provide spatio-temporal details in lipid biosynthesis in plant development.
Collapse
Affiliation(s)
- Vy T Tat
- Department of Chemistry, Iowa State
University, 2415 Osborn Drive, Ames, IA 50011, USA
| | - Young Jin Lee
- Department of Chemistry, Iowa State
University, 2415 Osborn Drive, Ames, IA 50011, USA
| |
Collapse
|
4
|
Fan KT, Xu Y, Hegeman AD. Elevated Temperature Effects on Protein Turnover Dynamics in Arabidopsis thaliana Seedlings Revealed by 15N-Stable Isotope Labeling and ProteinTurnover Algorithm. Int J Mol Sci 2024; 25:5882. [PMID: 38892074 PMCID: PMC11172382 DOI: 10.3390/ijms25115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Global warming poses a threat to plant survival, impacting growth and agricultural yield. Protein turnover, a critical regulatory mechanism balancing protein synthesis and degradation, is crucial for the cellular response to environmental changes. We investigated the effects of elevated temperature on proteome dynamics in Arabidopsis thaliana seedlings using 15N-stable isotope labeling and ultra-performance liquid chromatography-high resolution mass spectrometry, coupled with the ProteinTurnover algorithm. Analyzing different cellular fractions from plants grown under 22 °C and 30 °C growth conditions, we found significant changes in the turnover rates of 571 proteins, with a median 1.4-fold increase, indicating accelerated protein dynamics under thermal stress. Notably, soluble root fraction proteins exhibited smaller turnover changes, suggesting tissue-specific adaptations. Significant turnover alterations occurred with redox signaling, stress response, protein folding, secondary metabolism, and photorespiration, indicating complex responses enhancing plant thermal resilience. Conversely, proteins involved in carbohydrate metabolism and mitochondrial ATP synthesis showed minimal changes, highlighting their stability. This analysis highlights the intricate balance between proteome stability and adaptability, advancing our understanding of plant responses to heat stress and supporting the development of improved thermotolerant crops.
Collapse
Affiliation(s)
- Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Yuan Xu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Adrian D. Hegeman
- Departments of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, MN 55108, USA
| |
Collapse
|
5
|
Tang Q, Tillmann M, Cohen JD. Analytical methods for stable isotope labeling to elucidate rapid auxin kinetics in Arabidopsis thaliana. PLoS One 2024; 19:e0303992. [PMID: 38776314 PMCID: PMC11111016 DOI: 10.1371/journal.pone.0303992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
The phytohormone auxin plays a critical role in plant growth and development. Despite significant progress in elucidating metabolic pathways of the primary bioactive auxin, indole-3-acetic acid (IAA), over the past few decades, key components such as intermediates and enzymes have not been fully characterized, and the dynamic regulation of IAA metabolism in response to environmental signals has not been completely revealed. In this study, we established a protocol employing a highly sensitive liquid chromatography-mass spectrometry (LC-MS) instrumentation and a rapid stable isotope labeling approach. We treated Arabidopsis seedlings with two stable isotope labeled precursors ([13C6]anthranilate and [13C8, 15N1]indole) and monitored the label incorporation into proposed indolic compounds involved in IAA biosynthetic pathways. This Stable Isotope Labeled Kinetics (SILK) method allowed us to trace the turnover rates of IAA pathway precursors and product concurrently with a time scale of seconds to minutes. By measuring the entire pathways over time and using different isotopic tracer techniques, we demonstrated that these methods offer more detailed information about this complex interacting network of IAA biosynthesis, and should prove to be useful for studying auxin metabolic network in vivo in a variety of plant tissues and under different environmental conditions.
Collapse
Affiliation(s)
- Qian Tang
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Jerry D. Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
6
|
Xu Y, Koroma AA, Weise SE, Fu X, Sharkey TD, Shachar-Hill Y. Daylength variation affects growth, photosynthesis, leaf metabolism, partitioning, and metabolic fluxes. PLANT PHYSIOLOGY 2023; 194:475-490. [PMID: 37726946 PMCID: PMC10756764 DOI: 10.1093/plphys/kiad507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Daylength, a seasonal and latitudinal variable, exerts a substantial impact on plant growth. However, the relationship between daylength and growth is nonproportional, suggesting the existence of adaptive mechanisms. Thus, our study aimed to comprehensively investigate the adaptive strategies employed by plants in response to daylength variation. We grew false flax (Camelina sativa) plants, a model oilseed crop, under long-day (LD) and short-day (SD) conditions and used growth measurements, gas exchange measurements, and isotopic labeling techniques, including 13C, 14C, and 2H2O, to determine responses to different daylengths. Our findings revealed that daylength influences various growth parameters, photosynthetic physiology, carbon partitioning, metabolic fluxes, and metabolite levels. SD plants employed diverse mechanisms to compensate for reduced CO2 fixation in the shorter photoperiod. These mechanisms included enhanced photosynthetic rates and reduced respiration in the light (RL), leading to increased shoot investment. Additionally, SD plants exhibited reduced rates of the glucose 6-phosphate (G6P) shunt and greater partitioning of sugars into starch, thereby sustaining carbon availability during the longer night. Isotopic labeling results further demonstrated substantial alterations in the partitioning of amino acids and TCA cycle intermediates between rapidly and slowly turning over pools. Overall, the results point to multiple developmental, physiological, and metabolic ways in which plants adapt to different daylengths to maintain growth.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Abubakarr A Koroma
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329, USA
| | - Sean E Weise
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xinyu Fu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Davoudpour Y, Kümmel S, Musat N, Richnow HH, Schmidt M. Tracking deuterium uptake in hydroponically grown maize roots using correlative helium ion microscopy and Raman micro-spectroscopy. PLANT METHODS 2023; 19:71. [PMID: 37452400 PMCID: PMC10347822 DOI: 10.1186/s13007-023-01040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Investigations into the growth and self-organization of plant roots is subject to fundamental and applied research in various areas such as botany, agriculture, and soil science. The growth activity of the plant tissue can be investigated by isotope labeling experiments with heavy water and subsequent detection of the deuterium in non-exchangeable positions incorporated into the plant biomass. Commonly used analytical methods to detect deuterium in plants are based on mass-spectrometry or neutron-scattering and they either suffer from elaborated sample preparation, destruction of the sample during analysis, or low spatial resolution. Confocal Raman micro-spectroscopy (CRM) can be considered a promising method to overcome the aforementioned challenges. The substitution of hydrogen with deuterium results in the measurable shift of the CH-related Raman bands. By employing correlative approaches with a high-resolution technique, such as helium ion microscopy (HIM), additional structural information can be added to CRM isotope maps and spatial resolution can be further increased. For that, it is necessary to develop a comprehensive workflow from sample preparation to data processing. RESULTS A workflow to prepare and analyze roots of hydroponically grown and deuterium labeled Zea mays by correlative HIM-CRM micro-analysis was developed. The accuracy and linearity of deuterium detection by CRM were tested and confirmed with samples of deuterated glucose. A set of root samples taken from deuterated Zea mays in a time-series experiment was used to test the entire workflow. The deuterium content in the roots measured by CRM was close to the values obtained by isotope-ratio mass spectrometry. As expected, root tips being the most actively growing root zone had incorporated the highest amount of deuterium which increased with increasing time of labeling. Furthermore, correlative HIM-CRM analysis allowed for obtaining the spatial distribution pattern of deuterium and lignin in root cross-sections. Here, more active root zones with higher deuterium incorporation showed less lignification. CONCLUSIONS We demonstrated that CRM in combination with deuterium labeling can be an alternative and reliable tool for the analysis of plant growth. This approach together with the developed workflow has the potential to be extended to complex systems such as plant roots grown in soil.
Collapse
Affiliation(s)
- Yalda Davoudpour
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hans Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
8
|
Kim J, Seo S, Kim TY. Metabolic deuterium oxide (D 2O) labeling in quantitative omics studies: A tutorial review. Anal Chim Acta 2023; 1242:340722. [PMID: 36657897 DOI: 10.1016/j.aca.2022.340722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Mass spectrometry (MS) is an invaluable tool for sensitive detection and characterization of individual biomolecules in omics studies. MS combined with stable isotope labeling enables the accurate and precise determination of quantitative changes occurring in biological samples. Metabolic isotope labeling, wherein isotopes are introduced into biomolecules through biosynthetic metabolism, is one of the main labeling strategies. Among the precursors employed in metabolic isotope labeling, deuterium oxide (D2O) is cost-effective and easy to implement in any biological systems. This tutorial review aims to explain the basic principle of D2O labeling and its applications in omics research. D2O labeling incorporates D into stable C-H bonds in various biomolecules, including nucleotides, proteins, lipids, and carbohydrates. Typically, D2O labeling is performed at low enrichment of 1%-10% D2O, which causes subtle changes in the isotopic distribution of a biomolecule, instead of the complete separation between labeled and unlabeled samples in a mass spectrum. D2O labeling has been employed in various omics studies to determine the metabolic flux, turnover rate, and relative quantification. Moreover, the advantages and challenges of D2O labeling and its future prospects in quantitative omics are discussed. The economy, versatility, and convenience of D2O labeling will be beneficial for the long-term omics studies for higher organisms.
Collapse
Affiliation(s)
- Jonghyun Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Seungwoo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
9
|
Kim CY, Mitchell AJ, Kastner DW, Albright CE, Gutierrez MA, Glinkerman CM, Kulik HJ, Weng JK. Emergence of a proton exchange-based isomerization and lactonization mechanism in the plant coumarin synthase COSY. Nat Commun 2023; 14:597. [PMID: 36737607 PMCID: PMC9898226 DOI: 10.1038/s41467-023-36299-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Plants contain rapidly evolving specialized enzymes that support the biosynthesis of functionally diverse natural products. In coumarin biosynthesis, a BAHD acyltransferase-family enzyme COSY was recently discovered to accelerate coumarin formation as the only known BAHD enzyme to catalyze an intramolecular acyl transfer reaction. Here we investigate the structural and mechanistic basis for COSY's coumarin synthase activity. Our structural analyses reveal an unconventional active-site configuration adapted to COSY's specialized activity. Through mutagenesis studies and deuterium exchange experiments, we identify a unique proton exchange mechanism at the α-carbon of the o-hydroxylated trans-hydroxycinnamoyl-CoA substrates during the catalytic cycle of COSY. Quantum mechanical cluster modeling and molecular dynamics further support this key mechanism for lowering the activation energy of the rate-limiting trans-to-cis isomerization step in coumarin production. This study unveils an unconventional catalytic mechanism mediated by a BAHD-family enzyme, and sheds light on COSY's evolutionary origin and its recruitment to coumarin biosynthesis in eudicots.
Collapse
Affiliation(s)
- Colin Y Kim
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew J Mitchell
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - David W Kastner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Claire E Albright
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | | | | | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Tillmann M, Tang Q, Gardner G, Cohen JD. Complexity of the auxin biosynthetic network in Arabidopsis hypocotyls is revealed by multiple stable-labeled precursors. PHYTOCHEMISTRY 2022; 200:113219. [PMID: 35523282 DOI: 10.1016/j.phytochem.2022.113219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Auxin is a key regulator of plant development and in Arabidopsis thaliana can be synthesized through multiple pathways; however, the contributions of various biosynthetic pathways to specific developmental processes are largely unknown. To trace the involvement of various biosynthetic routes to indole-3-acetic acid (IAA) under conditions that induce adventitious root formation in Arabidopsis hypocotyls, we treated seedlings with three different stable isotope-labeled precursors ([13C6]anthranilate, [15N1]indole, and [13C3]serine) and monitored label incorporation into a number of proposed biosynthesis intermediates as well as IAA. We also employed inhibitors targeting tryptophan aminotransferases and flavin monooxygenases of the IPyA pathway, and treatment with these inhibitors differentially altered the labeling patterns from all three precursors into intermediate compounds and IAA. [13C3]Serine was used to trace utilization of tryptophan (Trp) and downstream intermediates by monitoring 13C incorporation into Trp, indole-3-pyruvic acid (IPyA), and IAA; most 13C incorporation into IAA was eliminated with inhibitor treatments, suggesting Trp-dependent IAA biosynthesis through the IPyA pathway is a dominant contributor to the auxin pool in de-etiolating hypocotyls that can be effectively blocked using chemical inhibitors. Labeling treatment with both [13C6]anthranilate and [15N1]indole simultaneously resulted in higher label incorporation into IAA through [15N1]indole than through [13C6]anthranilate; however, this trend was reversed in the proposed precursors that were monitored, with the majority of isotope label originating from [13C6]anthranilate. An even greater proportion of IAA became [15N1]-labeled compared to [13C6]-labeled in seedlings treated with IPyA pathway inhibitors, suggesting that, when the IPyA pathway is blocked, IAA biosynthesis from labeled indole may also come from an origin independent of the measured pool of Trp in these tissues.
Collapse
Affiliation(s)
- Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Alderman Hall, 1970 Folwell Ave, St. Paul, Minnesota, 55108, USA.
| | - Qian Tang
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Alderman Hall, 1970 Folwell Ave, St. Paul, Minnesota, 55108, USA.
| | - Gary Gardner
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Alderman Hall, 1970 Folwell Ave, St. Paul, Minnesota, 55108, USA.
| | - Jerry D Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Alderman Hall, 1970 Folwell Ave, St. Paul, Minnesota, 55108, USA.
| |
Collapse
|
11
|
Abstract
Proteins are intimately involved in executing and controlling virtually all cellular processes. To understand the molecular mechanisms that underlie plant phenotypes, it is essential to investigate protein expression, interactions, and modifications, to name a few. The proteome is highly dynamic in time and space, and a plethora of protein modifications, protein interactions, and network constellations are at play under specific conditions and developmental stages. Analysis of proteomes aims to characterize the entire protein complement of a particular cell type, tissue, or organism-a challenging task, given the dynamic nature of the proteome. Modern mass spectrometry-based proteomics technology can be used to address this complexity at a system-wide scale by the global identification and quantification of thousands of proteins. In this review, we present current methods and technologies employed in mass spectrometry-based proteomics and provide examples of dynamic changes in the plant proteome elucidated by proteomic approaches.
Collapse
Affiliation(s)
- Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany;
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany;
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany;
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| |
Collapse
|
12
|
Cao H, Duncan O, Millar AH. Protein turnover in the developing Triticum aestivum grain. THE NEW PHYTOLOGIST 2022; 233:1188-1201. [PMID: 34846755 PMCID: PMC9299694 DOI: 10.1111/nph.17756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Protein abundance in cereal grains is determined by the relative rates of protein synthesis and protein degradation during grain development but quantitation of these rates is lacking. Through combining in vivo stable isotope labelling and in-depth quantitative proteomics, we have measured the turnover of 1400 different types of proteins during wheat grain development. We demonstrate that there is a spatiotemporal pattern to protein turnover rates which explain part of the variation in protein abundances that is not attributable to differences in wheat gene expression. We show that c. 20% of total grain adenosine triphosphate (ATP) production is used for grain proteome biogenesis and maintenance, and nearly half of this budget is invested exclusively in storage protein synthesis. We calculate that 25% of newly synthesized storage proteins are turned over during grain development rather than stored. This approach to measure protein turnover rates at proteome scale reveals how different functional categories of grain proteins accumulate, calculates the costs of protein turnover during wheat grain development and identifies the most and the least stable proteins in the developing wheat grain.
Collapse
Affiliation(s)
- Hui Cao
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
- Western Australia Proteomics FacilityThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
- Western Australia Proteomics FacilityThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| |
Collapse
|
13
|
Verhage L. Isotope labeling to measure protein synthesis rates throughout the diurnal cycle - the technique explained. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:743-744. [PMID: 35188316 DOI: 10.1111/tpj.15696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
14
|
Duncan O, Millar AH. Day and night isotope labelling reveal metabolic pathway specific regulation of protein synthesis rates in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:745-763. [PMID: 34997626 DOI: 10.1111/tpj.15661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Plants have a diurnal separation of metabolic fluxes and a need for differential maintenance of protein machinery in the day and night. To directly assess the output of the translation process and to estimate the ATP investment involved, the individual rates of protein synthesis and degradation of hundreds of different proteins need to be measured simultaneously. We quantified protein synthesis and degradation through pulse labelling with heavy hydrogen in Arabidopsis thaliana rosettes to allow such an assessment of ATP investment in leaf proteome homeostasis on a gene-by-gene basis. Light-harvesting complex proteins were synthesised and degraded much faster in the day (approximately 10:1), while carbon metabolism and vesicle trafficking components were translated at similar rates day or night. Few leaf proteins changed in abundance between the day and the night despite reduced protein synthesis rates at night, indicating that protein degradation rates are tightly coordinated. The data reveal how the pausing of photosystem synthesis and degradation at night allows the redirection of a decreased energy budget to a selective night-time maintenance schedule.
Collapse
Affiliation(s)
- Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, Perth, WA, Australia
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, Perth, WA, Australia
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
15
|
Ishihara H, Moraes TA, Arrivault S, Stitt M. Assessing Protein Synthesis and Degradation Rates in Arabidopsis thaliana Using Amino Acid Analysis. Curr Protoc 2021; 1:e114. [PMID: 34000100 DOI: 10.1002/cpz1.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Plants continually synthesize and degrade proteins, for example, to adjust protein content during development or during adaptation to new environments. In order to estimate global protein synthesis and degradation rates in plants, we developed a relatively simple and inexpensive method using a combination of 13 CO2 labeling and mass spectrometry-based analyses. Arabidopsis thaliana plants are subjected to a 24-hr 13 CO2 pulse followed by a 4-day 12 CO2 chase. Soluble alanine and serine from total protein and glucose from cell wall material are analyzed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and their 13 C enrichment (%) is estimated. The rate of protein synthesis during the 13 CO2 pulse experiment is defined as the rate of incorporation of labeled amino acids into proteins normalized by a correction factor for incomplete enrichment in free amino acid pools. The rate of protein degradation is estimated as the difference between the rate of protein synthesis and the relative growth rate calculated using the 13 C enrichment of glucose from cell wall material. Degradation rates are also estimated from the 12 CO2 pulse experiment. The following method description includes setting up and performing labeling experiments, preparation and measurement of samples, and calculation steps. In addition, an R script is provided for the calculations. 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Setting up the 13 CO2 labeling system and stable isotope labeling of Arabidopsis thaliana rosette leaves Basic Protocol 2: Extraction of soluble amino acids for GC-TOF-MS analysis Basic Protocol 3: Preparation of amino acids from total protein for GC-TOF-MS analysis Basic Protocol 4: Preparation of sugars from cell wall material for GC-TOF-MS analysis Basis Protocol 5: GC-TOF-MS analysis of 13 C-labeled samples and estimation of 13 C enrichment (%) Basis Protocol 6: Estimation of protein synthesis and degradation rates.
Collapse
Affiliation(s)
- Hirofumi Ishihara
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Thiago A Moraes
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
16
|
Magnesium magnetic isotope effects in microbiology. Arch Microbiol 2021; 203:1853-1861. [PMID: 33611633 DOI: 10.1007/s00203-021-02219-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/15/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Two main properties of atomic nuclei-mass and nuclear magnetic moments-are origin of many biological effects. Mass-dependent isotope effects have been studied for a long time. The effect of magnetic isotopes having a magnetic moment and spin was first shown in the early twenty-first century for the magnetic isotope magnesium 25Mg on enzymatic ATP synthesis. This stimulated the search for experimental evidence and theoretical justification of magnetic nuclei influence on biological processes. This review contains the results of scientific research on the magnesium magnetic isotope effects in microbiology. Microorganisms have been found to be sensitive to the presence of nuclear magnetic moment of magnesium isotope 25Mg compared with non-magnetic 24,26Mg isotopes.
Collapse
|
17
|
Huang S, Li L, Petereit J, Millar AH. Protein turnover rates in plant mitochondria. Mitochondrion 2020; 53:57-65. [DOI: 10.1016/j.mito.2020.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
|
18
|
Bhagia S, Meng X, Evans BR, Dunlap JR, Bali G, Chen J, Reeves KS, Ho HC, Davison BH, Pu Y, Ragauskas AJ. Ultrastructure and Enzymatic Hydrolysis of Deuterated Switchgrass. Sci Rep 2018; 8:13226. [PMID: 30185812 PMCID: PMC6125453 DOI: 10.1038/s41598-018-31269-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/07/2018] [Indexed: 01/01/2023] Open
Abstract
Neutron scattering of deuterated plants can provide fundamental insight into the structure of lignocellulosics in plant cell walls and its deconstruction by pretreatment and enzymes. Such plants need to be characterized for any alterations to lignocellulosic structure caused by growth in deuterated media. Here we show that glucose yields from enzymatic hydrolysis at lower enzyme loading were 35% and 30% for untreated deuterated and protiated switchgrass, respectively. Lignin content was 4% higher in deuterated switchgrass but there were no significant lignin structural differences. Transmission electron microscopy showed differences in lignin distribution and packing of fibers in the cell walls that apparently increased surface area of cellulose in deuterated switchgrass, increasing cellulose accessibility and lowering its recalcitrance. These differences in lignification were likely caused by abiotic stress due to growth in deuterated media.
Collapse
Affiliation(s)
- Samarthya Bhagia
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Barbara R Evans
- Chemical Sciences Division, Oak Ridge National Laboratory**, Oak Ridge, TN, 37831, USA
| | - John R Dunlap
- Advanced Microscopy and Imaging Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Garima Bali
- Renewable Bioproducts Institute, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kimberly Shawn Reeves
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Hoi Chun Ho
- Carbon and Composite Group, Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Brian H Davison
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yunqiao Pu
- Joint Institute of Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- Joint Institute of Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.
| |
Collapse
|
19
|
Zhang L, Vertes A. Einzelzell‐Massenspektrometrie zur Untersuchung zellulärer Heterogenität. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709719] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Linwen Zhang
- Department of Chemistry The George Washington University Washington DC 20052 USA
| | - Akos Vertes
- Department of Chemistry The George Washington University Washington DC 20052 USA
| |
Collapse
|
20
|
Zhang L, Vertes A. Single‐Cell Mass Spectrometry Approaches to Explore Cellular Heterogeneity. Angew Chem Int Ed Engl 2018; 57:4466-4477. [DOI: 10.1002/anie.201709719] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/27/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Linwen Zhang
- Department of Chemistry The George Washington University Washington DC 20052 USA
| | - Akos Vertes
- Department of Chemistry The George Washington University Washington DC 20052 USA
| |
Collapse
|
21
|
Vergara F, Itouga M, Becerra RG, Hirai M, Ordaz-Ortiz JJ, Winkler R. Funaria hygrometrica Hedw. elevated tolerance to D 2O: its use for the production of highly deuterated metabolites. PLANTA 2018; 247:405-412. [PMID: 29030693 DOI: 10.1007/s00425-017-2794-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/08/2017] [Indexed: 06/07/2023]
Abstract
The method introduced here to grow F. hygrometrica in high concentrations of D 2 O is an excellent alternative to produce highly deuterated metabolites with broad applications in metabolic studies. Our mass spectrometry experiments strongly indicate the successful incorporation of deuterium into organic compounds. Deuterated metabolites are useful tracers for metabolic studies, yet their wide utilization in research is limited by the multi-step total synthesis required to produce them in the laboratory. Alternatively, deuterated metabolites can be obtained from organisms grown in D2O or deuterated nutrients. This approach also has limitations as D2O in high concentrations negatively affects the survival of most organisms. Here we report the moss Funaria hygrometrica as an unusual high tolerant to D2O in liquid culture. We found that this moss is able to grow in up to 90% D2O, a condition lethal for many eukaryotes. Mass spectrometric analyses of F. hygrometrica extracts showed a strong deuteration pattern. The ability to tolerate high concentrations of D2O together with the development of a rich molecular toolbox makes F. hygrometrica an ideal system for the production of valuable deuterated metabolites.
Collapse
Affiliation(s)
- Fredd Vergara
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Misao Itouga
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | - Roberto Gamboa Becerra
- National Laboratory of Genomics for Biodiversity, CINVESTAV Unidad Irapuato, Irapuato, Mexico
| | - Masami Hirai
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - José Juan Ordaz-Ortiz
- National Laboratory of Genomics for Biodiversity, CINVESTAV Unidad Irapuato, Irapuato, Mexico
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
22
|
Zachleder V, Vítová M, Hlavová M, Moudříková Š, Mojzeš P, Heumann H, Becher JR, Bišová K. Stable isotope compounds - production, detection, and application. Biotechnol Adv 2018; 36:784-797. [PMID: 29355599 DOI: 10.1016/j.biotechadv.2018.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
Stable isotopes are used in wide fields of application from natural tracers in biology, geology and archeology through studies of metabolic fluxes to their application as tracers in quantitative proteomics and structural biology. We review the use of stable isotopes of biogenic elements (H, C, N, O, S, Mg, Se) with the emphasis on hydrogen and its heavy isotope deuterium. We will discuss the limitations of enriching various compounds in stable isotopes when produced in living organisms. Finally, we overview methods for measuring stable isotopes, focusing on methods for detection in single cells in situ and their exploitation in modern biotechnologies.
Collapse
Affiliation(s)
- Vilém Zachleder
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Milada Vítová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Monika Hlavová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Šárka Moudříková
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
| | | | | | - Kateřina Bišová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic.
| |
Collapse
|
23
|
Roach M, Arrivault S, Mahboubi A, Krohn N, Sulpice R, Stitt M, Niittylä T. Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68. [PMID: 28645173 PMCID: PMC5853372 DOI: 10.1093/jxb/erx200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The contribution of transcriptional and post-transcriptional regulation to modifying carbon allocation to developing wood of trees is not well defined. To clarify the role of transcriptional regulation, the enzyme activity patterns of eight central primary metabolism enzymes across phloem, cambium, and developing wood of aspen (Populus tremula L.) were compared with transcript levels obtained by RNA sequencing of sequential stem sections from the same trees. Enzymes were selected on the basis of their importance in sugar metabolism and in linking primary metabolism to lignin biosynthesis. Existing enzyme assays were adapted to allow measurements from ~1 mm3 sections of dissected stem tissue. These experiments provided high spatial resolution of enzyme activity changes across different stages of wood development, and identified the gene transcripts probably responsible for these changes. In most cases, there was a clear positive relationship between transcripts and enzyme activity. During secondary cell wall formation, the increases in transcript levels and enzyme activities also matched with increased levels of glucose, fructose, hexose phosphates, and UDP-glucose, emphasizing an important role for transcriptional regulation in carbon allocation to developing aspen wood. These observations corroborate the efforts to increase carbon allocation to wood by engineering gene regulatory networks.
Collapse
Affiliation(s)
- Melissa Roach
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Amir Mahboubi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Nicole Krohn
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Ronan Sulpice
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
- Plant Systems Biology Laboratory, Plant AgriBiosciences Research Centre, School of Natural Science, Galway, Ireland
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Totte Niittylä
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Correspondence:
| |
Collapse
|
24
|
Li L, Nelson C, Fenske R, Trösch J, Pružinská A, Millar AH, Huang S. Changes in specific protein degradation rates in Arabidopsis thaliana reveal multiple roles of Lon1 in mitochondrial protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:458-471. [PMID: 27726214 DOI: 10.1111/tpj.13392] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 05/20/2023]
Abstract
Mitochondrial Lon1 loss impairs oxidative phosphorylation complexes and TCA enzymes and causes accumulation of specific mitochondrial proteins. Analysis of over 400 mitochondrial protein degradation rates using 15 N labelling showed that 205 were significantly different between wild type (WT) and lon1-1. Those proteins included ribosomal proteins, electron transport chain subunits and TCA enzymes. For respiratory complexes I and V, decreased protein abundance correlated with higher degradation rate of subunits in total mitochondrial extracts. After blue native separation, however, the assembled complexes had slow degradation, while smaller subcomplexes displayed rapid degradation in lon1-1. In insoluble fractions, a number of TCA enzymes were more abundant but the proteins degraded slowly in lon1-1. In soluble protein fractions, TCA enzymes were less abundant but degraded more rapidly. These observations are consistent with the reported roles of Lon1 as a chaperone aiding the proper folding of newly synthesized/imported proteins to stabilise them and as a protease to degrade mitochondrial protein aggregates. HSP70, prohibitin and enzymes of photorespiration accumulated in lon1-1 and degraded slowly in all fractions, indicating an important role of Lon1 in their clearance from the proteome.
Collapse
Affiliation(s)
- Lei Li
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Clark Nelson
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Josua Trösch
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Adriana Pružinská
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Western Australia, Australia
| |
Collapse
|
25
|
Freund DM, Hegeman AD. Recent advances in stable isotope-enabled mass spectrometry-based plant metabolomics. Curr Opin Biotechnol 2016; 43:41-48. [PMID: 27610928 DOI: 10.1016/j.copbio.2016.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/01/2023]
Abstract
Methods employing isotope labeled compounds have been an important part of the bioanalytical canon for many decades. The past fifteen years have seen the development of many new approaches using stable (non-radioactive) isotopes as labels for high-throughput bioanalytical, 'omics-scale' measurements of metabolites (metabolomics) and proteins (proteomics). This review examines stable isotopic labeling approaches that have been developed for labeling whole intact plants, plant tissues, or crude extracts of plant materials with stable isotopes (mainly using 2H, 13C, 15N, 18O or 34S). The application of metabolome-scale labeling for improving metabolite annotation, metabolic pathway elucidation, and relative quantification in mass spectrometry-based metabolomics of plants is also reviewed.
Collapse
Affiliation(s)
- Dana M Freund
- Department of Horticultural Science, Department of Plant Biology, and the Microbial and Plant Genomics Institute, University of Minnesota, Twin Cities, MN, USA
| | - Adrian D Hegeman
- Department of Horticultural Science, Department of Plant Biology, and the Microbial and Plant Genomics Institute, University of Minnesota, Twin Cities, MN, USA.
| |
Collapse
|
26
|
Batista Silva W, Daloso DM, Fernie AR, Nunes-Nesi A, Araújo WL. Can stable isotope mass spectrometry replace radiolabelled approaches in metabolic studies? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 249:59-69. [PMID: 27297990 DOI: 10.1016/j.plantsci.2016.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 05/03/2023]
Abstract
Metabolic pathways and the key regulatory points thereof can be deduced using isotopically labelled substrates. One prerequisite is the accurate measurement of the labeling pattern of targeted metabolites. The subsequent estimation of metabolic fluxes following incubation in radiolabelled substrates has been extensively used. Radiolabelling is a sensitive approach and allows determination of total label uptake since the total radiolabel content is easy to detect. However, the incubation of cells, tissues or the whole plant in a stable isotope enriched environment and the use of either mass spectrometry or nuclear magnetic resonance techniques to determine label incorporation within specific metabolites offers the possibility to readily obtain metabolic information with higher resolution. It additionally also offers an important complement to other post-genomic strategies such as metabolite profiling providing insights into the regulation of the metabolic network and thus allowing a more thorough description of plant cellular function. Thus, although safety concerns mean that stable isotope feeding is generally preferred, the techniques are in truth highly complementary and application of both approaches in tandem currently probably provides the best route towards a comprehensive understanding of plant cellular metabolism.
Collapse
Affiliation(s)
- Willian Batista Silva
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| | - Danilo M Daloso
- Max-Planck-Institute of Molecular Plant Physiology Am Mühlenberg 1, 14476,Golm Potsdam, Germany.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology Am Mühlenberg 1, 14476,Golm Potsdam, Germany.
| | - Adriano Nunes-Nesi
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| | - Wagner L Araújo
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| |
Collapse
|
27
|
Fan KT, Rendahl AK, Chen WP, Freund DM, Gray WM, Cohen JD, Hegeman AD. Proteome Scale-Protein Turnover Analysis Using High Resolution Mass Spectrometric Data from Stable-Isotope Labeled Plants. J Proteome Res 2016; 15:851-67. [PMID: 26824330 DOI: 10.1021/acs.jproteome.5b00772] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein turnover is an important aspect of the regulation of cellular processes for organisms when responding to developmental or environmental cues. The measurement of protein turnover in plants, in contrast to that of rapidly growing unicellular organismal cultures, is made more complicated by the high degree of amino acid recycling, resulting in significant transient isotope incorporation distributions that must be dealt with computationally for high throughput analysis to be practical. An algorithm in R, ProteinTurnover, was developed to calculate protein turnover with transient stable isotope incorporation distributions in a high throughput automated manner using high resolution MS and MS/MS proteomic analysis of stable isotopically labeled plant material. ProteinTurnover extracts isotopic distribution information from raw MS data for peptides identified by MS/MS from data sets of either isotopic label dilution or incorporation experiments. Variable isotopic incorporation distributions were modeled using binomial and beta-binomial distributions to deconvolute the natural abundance, newly synthesized/partial-labeled, and fully labeled peptide distributions. Maximum likelihood estimation was performed to calculate the distribution abundance proportion of old and newly synthesized peptides. The half-life or turnover rate of each peptide was calculated from changes in the distribution abundance proportions using nonlinear regression. We applied ProteinTurnover to obtain half-lives of proteins from enriched soluble and membrane fractions from Arabidopsis roots.
Collapse
Affiliation(s)
- Kai-Ting Fan
- Department of Horticultural Science, University of Minnesota , Twin Cities, Minnesota 55108, United States.,Department of Plant Biology, University of Minnesota , Twin Cities, Minnesota 55455, United States
| | - Aaron K Rendahl
- School of Statistics, University of Minnesota , Twin Cities, Minnesota 55108, United States
| | - Wen-Ping Chen
- Department of Horticultural Science, University of Minnesota , Twin Cities, Minnesota 55108, United States.,Microbial and Plant Genomics Institute, University of Minnesota , Twin Cities, Minnesota 55455, United States
| | - Dana M Freund
- Department of Horticultural Science, University of Minnesota , Twin Cities, Minnesota 55108, United States.,Microbial and Plant Genomics Institute, University of Minnesota , Twin Cities, Minnesota 55455, United States
| | - William M Gray
- Microbial and Plant Genomics Institute, University of Minnesota , Twin Cities, Minnesota 55455, United States.,Department of Plant Biology, University of Minnesota , Twin Cities, Minnesota 55455, United States
| | - Jerry D Cohen
- Department of Horticultural Science, University of Minnesota , Twin Cities, Minnesota 55108, United States.,Microbial and Plant Genomics Institute, University of Minnesota , Twin Cities, Minnesota 55455, United States
| | - Adrian D Hegeman
- Department of Horticultural Science, University of Minnesota , Twin Cities, Minnesota 55108, United States.,Microbial and Plant Genomics Institute, University of Minnesota , Twin Cities, Minnesota 55455, United States.,Department of Plant Biology, University of Minnesota , Twin Cities, Minnesota 55455, United States
| |
Collapse
|
28
|
Gilkerson J, Tam R, Zhang A, Dreher K, Callis J. Cycloheximide Assays to Measure Protein Degradation in vivo in Plants. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
29
|
Abstract
Soon after the discovery of deuterium, efforts to utilize this stable isotope of hydrogen for labeling of plants began and have proven successful for natural abundance to 20% enrichment. However, isotopic labeling with deuterium ((2)H) in higher plants at the level of 40% and higher is complicated by both physiological responses, particularly water exchange through transpiration, and inhibitory effects of D2O on germination, rooting, and growth. The highest incorporation of 40-50% had been reported for photoheterotrophic cultivation of the duckweed Lemna. Higher substitution is desirable for certain applications using neutron scattering and nuclear magnetic resonance (NMR) techniques. (1)H(2)H NMR and mass spectroscopy are standard methods frequently used for determination of location and amount of deuterium substitution. The changes in infrared (IR) absorption observed for H to D substitution in hydroxyl and alkyl groups provide rapid initial evaluation of incorporation. Short-term experiments with cold-tolerant annual grasses can be carried out in enclosed growth containers to evaluate incorporation. Growth in individual chambers under continuous air perfusion with dried sterile-filtered air enables long-term cultivation of multiple plants at different D2O concentrations. Vegetative propagation from cuttings extends capabilities to species with low germination rates. Cultivation in 50% D2O of annual ryegrass and switchgrass following establishment of roots by growth in H2O produces samples with normal morphology and 30-40% deuterium incorporation in the biomass. Winter grain rye (Secale cereale) was found to efficiently incorporate deuterium by photosynthetic fixation from 50% D2O but did not incorporate deuterated phenylalanine-d8 from the growth medium.
Collapse
Affiliation(s)
- Barbara R Evans
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
| | - Riddhi Shah
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, USA; Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
30
|
Abstract
The protein content of plant cells is constantly being updated. This process is driven by the opposing actions of protein degradation, which defines the half-life of each polypeptide, and protein synthesis. Our understanding of the processes that regulate protein synthesis and degradation in plants has advanced significantly over the past decade. Post-transcriptional modifications that influence features of the mRNA populations, such as poly(A) tail length and secondary structure, contribute to the regulation of protein synthesis. Post-translational modifications such as phosphorylation, ubiquitination and non-enzymatic processes such as nitrosylation and carbonylation, govern the rate of degradation. Regulators such as the plant TOR kinase, and effectors such as the E3 ligases, allow plants to balance protein synthesis and degradation under developmental and environmental change. Establishing an integrated understanding of the processes that underpin changes in protein abundance under various physiological and developmental scenarios will accelerate our ability to model and rationally engineer plants.
Collapse
Affiliation(s)
- Clark J Nelson
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Hwy, Crawley 6009, Perth, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Hwy, Crawley 6009, Perth, Western Australia, Australia
| |
Collapse
|
31
|
Nelson CJ, Alexova R, Jacoby RP, Millar AH. Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labeling. PLANT PHYSIOLOGY 2014; 166:91-108. [PMID: 25082890 PMCID: PMC4149734 DOI: 10.1104/pp.114.243014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Protein turnover is a key component in cellular homeostasis; however, there is little quantitative information on degradation kinetics for individual plant proteins. We have used (15)N labeling of barley (Hordeum vulgare) plants and gas chromatography-mass spectrometry analysis of free amino acids and liquid chromatography-mass spectrometry analysis of proteins to track the enrichment of (15)N into the amino acid pools in barley leaves and then into tryptic peptides derived from newly synthesized proteins. Using information on the rate of growth of barley leaves combined with the rate of degradation of (14)N-labeled proteins, we calculate the turnover rates of 508 different proteins in barley and show that they vary by more than 100-fold. There was approximately a 9-h lag from label application until (15)N incorporation could be reliably quantified in extracted peptides. Using this information and assuming constant translation rates for proteins during the time course, we were able to quantify degradation rates for several proteins that exhibit half-lives on the order of hours. Our workflow, involving a stringent series of mass spectrometry filtering steps, demonstrates that (15)N labeling can be used for large-scale liquid chromatography-mass spectrometry studies of protein turnover in plants. We identify a series of abundant proteins in photosynthesis, photorespiration, and specific subunits of chlorophyll biosynthesis that turn over significantly more rapidly than the average protein involved in these processes. We also highlight a series of proteins that turn over as rapidly as the well-known D1 subunit of photosystem II. While these proteins need further verification for rapid degradation in vivo, they cluster in chlorophyll and thiamine biosynthesis.
Collapse
Affiliation(s)
- Clark J Nelson
- Australian Research Council Centre of Excellence in Plant Energy Biology and Centre for Comparative Analysis of Biomolecular Networks, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Ralitza Alexova
- Australian Research Council Centre of Excellence in Plant Energy Biology and Centre for Comparative Analysis of Biomolecular Networks, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Richard P Jacoby
- Australian Research Council Centre of Excellence in Plant Energy Biology and Centre for Comparative Analysis of Biomolecular Networks, University of Western Australia, Perth, Western Australia 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology and Centre for Comparative Analysis of Biomolecular Networks, University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
32
|
Nelson CJ, Li L, Millar AH. Quantitative analysis of protein turnover in plants. Proteomics 2014; 14:579-92. [DOI: 10.1002/pmic.201300240] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/02/2013] [Accepted: 10/14/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Clark J. Nelson
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; WA Australia
- Centre for Comparative Analysis of Biomolecular Networks; University of Western Australia; WA Australia
| | - Lei Li
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; WA Australia
- Centre for Comparative Analysis of Biomolecular Networks; University of Western Australia; WA Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; WA Australia
- Centre for Comparative Analysis of Biomolecular Networks; University of Western Australia; WA Australia
| |
Collapse
|
33
|
Nelson CJ, Li L, Jacoby RP, Millar AH. Degradation Rate of Mitochondrial Proteins in Arabidopsis thaliana Cells. J Proteome Res 2013; 12:3449-59. [DOI: 10.1021/pr400304r] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Clark J. Nelson
- ARC Centre of Excellence in Plant Energy Biology & Centre for Comparative Analysis of Biomolecular Networks, M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Lei Li
- ARC Centre of Excellence in Plant Energy Biology & Centre for Comparative Analysis of Biomolecular Networks, M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - Richard P. Jacoby
- ARC Centre of Excellence in Plant Energy Biology & Centre for Comparative Analysis of Biomolecular Networks, M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology & Centre for Comparative Analysis of Biomolecular Networks, M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| |
Collapse
|
34
|
Boggess MV, Lippolis JD, Hurkman WJ, Fagerquist CK, Briggs SP, Gomes AV, Righetti PG, Bala K. The need for agriculture phenotyping: "moving from genotype to phenotype". J Proteomics 2013; 93:20-39. [PMID: 23563084 DOI: 10.1016/j.jprot.2013.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/12/2013] [Accepted: 03/19/2013] [Indexed: 11/28/2022]
Abstract
UNLABELLED Increase in the world population has called for the increased demand for agricultural productivity. Traditional methods to augment crop and animal production are facing exacerbating pressures in keeping up with population growth. This challenge has in turn led to the transformational change in the use of biotechnology tools to meet increased productivity for both plant and animal systems. Although many challenges exist, the use of proteomic techniques to understand agricultural problems is steadily increasing. This review discusses the impact of genomics, proteomics, metabolomics and phenotypes on plant, animal and bacterial systems to achieve global food security and safety and we highlight examples of intra and extra mural research work that is currently being done to increase agricultural productivity. BIOLOGICAL SIGNIFICANCE This review focuses on the global demand for increased agricultural productivity arising from population growth and how we can address this challenge using biotechnology. With a population well above seven billion humans, in a very unbalanced nutritional state (20% overweight, 20% risking starvation) drastic measures have to be taken at the political, infrastructure and scientific levels. While we cannot influence politics, it is our duty as scientists to see what can be done to feed humanity. Hence we highlight the transformational change in the use of biotechnology tools over traditional methods to increase agricultural productivity (plant and animal). Specifically, this review deals at length on how a three-pronged attack, namely combined genomics, proteomics and metabolomics, can help to ensure global food security and safety. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Mark V Boggess
- Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The comprehensive analysis of metabolites (metabolomics) and expressed proteins (proteomics) in any given biological system forms the center of modern efforts to define the critical functions of biological systems. Because amino acids play important roles in primary and secondary metabolic pathways as well as serving as the building blocks of proteins, they have been important targets for efforts at metabolic profiling. Amino acids have been analyzed using a number of procedures, including separation by high performance liquid chromatography (HPLC), gas chromatography (GC), liquid chromatography (LC), and capillary electrophoresis (CE). Mass spectrometry (MS) remains the primary analytical and detection system for metabolic profiling, including amino acid analysis, due to its accuracy and the information content obtained by such analyses, which facilitates the identification and measurement of large numbers of biomolecules. MS methods also add the capability of monitoring isotope distributions of molecules for metabolic flux analysis. Here we describe a GC-MS method that is suitable for analysis of amino acids in sub-milligram quantities of fresh plant material and that is easily adapted to high-throughput screening approaches.
Collapse
|
36
|
Li L, Nelson CJ, Solheim C, Whelan J, Millar AH. Determining degradation and synthesis rates of arabidopsis proteins using the kinetics of progressive 15N labeling of two-dimensional gel-separated protein spots. Mol Cell Proteomics 2012; 11:M111.010025. [PMID: 22215636 DOI: 10.1074/mcp.m111.010025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The growth and development of plant tissues is associated with an ordered succession of cellular processes that are reflected in the appearance and disappearance of proteins. The control of the kinetics of protein turnover is central to how plants can rapidly and specifically alter protein abundance and thus molecular function in response to environmental or developmental cues. However, the processes of turnover are largely hidden during periods of apparent steady-state protein abundance, and even when proteins accumulate it is unclear whether enhanced synthesis or decreased degradation is responsible. We have used a (15)N labeling strategy with inorganic nitrogen sources coupled to a two-dimensional fluorescence difference gel electrophoresis and mass spectrometry analysis of two-dimensional IEF/SDS-PAGE gel spots to define the rate of protein synthesis (K(S)) and degradation (K(D)) of Arabidopsis cell culture proteins. Through analysis of MALDI-TOF/TOF mass spectra from 120 protein spots, we were able to quantify K(S) and K(D) for 84 proteins across six functional groups and observe over 65-fold variation in protein degradation rates. K(S) and K(D) correlate with functional roles of the proteins in the cell and the time in the cell culture cycle. This approach is based on progressive (15)N labeling that is innocuous for the plant cells and, because it can be used to target analysis of proteins through the use of specific gel spots, it has broad applicability.
Collapse
Affiliation(s)
- Lei Li
- Australian Research Council Centre of Excellence in Plant Energy Biology & Centre for Comparative Analysis of Biomolecular Networks, M316, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | |
Collapse
|
37
|
Martin SF, Munagapati VS, Salvo-Chirnside E, Kerr LE, Le Bihan T. Proteome turnover in the green alga Ostreococcus tauri by time course 15N metabolic labeling mass spectrometry. J Proteome Res 2011; 11:476-86. [PMID: 22077659 DOI: 10.1021/pr2009302] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein synthesis and degradation determine the cellular levels of proteins, and their control hence enables organisms to respond to environmental change. Experimentally, these are little known proteome parameters; however, recently, SILAC-based mass spectrometry studies have begun to quantify turnover in the proteomes of cell lines, yeast, and animals. Here, we present a proteome-scale method to quantify turnover and calculate synthesis and degradation rate constants of individual proteins in autotrophic organisms such as algae and plants. The workflow is based on the automated analysis of partial stable isotope incorporation with (15)N. We applied it in a study of the unicellular pico-alga Ostreococcus tauri and observed high relative turnover in chloroplast-encoded ATPases (0.42-0.58% h(-1)), core photosystem II proteins (0.34-0.51% h(-1)), and RbcL (0.47% h(-1)), while nuclear-encoded RbcS2 is more stable (0.23% h(-1)). Mitochondrial targeted ATPases (0.14-0.16% h(-1)), photosystem antennae (0.09-0.14% h(-1)), and histones (0.07-0.1% h(-1)) were comparatively stable. The calculation of degradation and synthesis rate constants k(deg) and k(syn) confirms RbcL as the bulk contributor to overall protein turnover. This study performed over 144 h of incorporation reveals dynamics of protein complex subunits as well as isoforms targeted to different organelles.
Collapse
Affiliation(s)
- Sarah F Martin
- Centre for Systems Biology at Edinburgh, University of Edinburgh, CH Waddington Building, The Kings Buildings, Mayfield Road, EH9 3JD, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Doherty MK, Whitfield PD. Proteomics moves from expression to turnover: update and future perspective. Expert Rev Proteomics 2011; 8:325-34. [PMID: 21679114 DOI: 10.1586/epr.11.19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proteomics is a rapidly developing discipline that seeks to understand the role of proteins in the wider biological context. In order to take a holistic view of a biological system, it is vital that we can elucidate the dynamics of the proteome. In this article, we have outlined the recent advances in experimental strategies for measuring protein synthesis and degradation on a proteome-wide scale. The application of mass spectrometry and non-mass spectrometric-based approaches in this field of research has been discussed. The article also explores the challenges associated with these types of analyses and the development of appropriate bioinformatic resources for interrogating the complex datasets that are generated.
Collapse
Affiliation(s)
- Mary K Doherty
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK.
| | | |
Collapse
|
39
|
Chen WP, Yang XY, Harms GL, Gray WM, Hegeman AD, Cohen JD. An automated growth enclosure for metabolic labeling of Arabidopsis thaliana with 13C-carbon dioxide - an in vivo labeling system for proteomics and metabolomics research. Proteome Sci 2011; 9:9. [PMID: 21310072 PMCID: PMC3046907 DOI: 10.1186/1477-5956-9-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/10/2011] [Indexed: 12/26/2022] Open
Abstract
Background Labeling whole Arabidopsis (Arabidopsis thaliana) plants to high enrichment with 13C for proteomics and metabolomics applications would facilitate experimental approaches not possible by conventional methods. Such a system would use the plant's native capacity for carbon fixation to ubiquitously incorporate 13C from 13CO2 gas. Because of the high cost of 13CO2 it is critical that the design conserve the labeled gas. Results A fully enclosed automated plant growth enclosure has been designed and assembled where the system simultaneously monitors humidity, temperature, pressure and 13CO2 concentration with continuous adjustment of humidity, pressure and 13CO2 levels controlled by a computer running LabView software. The enclosure is mounted on a movable cart for mobility among growth environments. Arabidopsis was grown in the enclosure for up to 8 weeks and obtained on average >95 atom% enrichment for small metabolites, such as amino acids and >91 atom% for large metabolites, including proteins and peptides. Conclusion The capability of this labeling system for isotope dilution experiments was demonstrated by evaluation of amino acid turnover using GC-MS as well as protein turnover using LC-MS/MS. Because this 'open source' Arabidopsis 13C-labeling growth environment was built using readily available materials and software, it can be adapted easily to accommodate many different experimental designs.
Collapse
Affiliation(s)
- Wen-Ping Chen
- Department of Horticultural Science, University of Minnesota, Saint Paul, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Microscale analysis of amino acids using gas chromatography–mass spectrometry after methyl chloroformate derivatization. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2199-208. [DOI: 10.1016/j.jchromb.2010.06.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/18/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
|