1
|
Duque-Ortiz A, Rivera-Chávez J, Pastor-Palacios G, Lara-González S. The Nicotiana tabacum UGT89A2 enzyme catalyzes the glycosylation of di- and trihydroxylated benzoic acid derivatives. PHYTOCHEMISTRY 2024; 226:114203. [PMID: 38969251 DOI: 10.1016/j.phytochem.2024.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Glycosyltransferases catalyze the transfer of a glycoside group to a wide range of acceptor compounds to produce glycoconjugates with diverse biological and pharmacological activities. The present work reports the identification and biochemical characterization of Nicotiana tabacum UGT89A2 glycosyltransferase (NtUGT89A2). The enzyme is a monomer in solution that catalyzes the O-β-glucosylation of di- and tri-hydroxylated and chlorinated derivatives of benzoic acid. NtUGT89A2 has a preference for 2,5-dihydroxybenzoic acid (2,5-DHBA) over 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,4-dihydroxybenzoic acid (2,4-DHBA). Other substrates that can be used by NtUGT89A2 include 3,4,5-trihydroxybenzoic acid and chlorinated derivatives such as 2-chloro-5-hydroxybenzoic acid (2-Cl-5-HBA). The substrates of NtUGT89A2 were identified by thermal stability experiments, where we observed a maximum increase of the thermal denaturation midpoint (Tm) of 10 °C in the presence of 2,5-DHBA and UDP-glucose. On the other hand, the highest specific activity was obtained with 2,5-DHBA (225 ± 1.7 nkat/mg). Further characterization revealed that the enzyme has a micromolar affinity for its substrates. Notably, the enzyme retains full activity after incubation at 70 °C for 1 h. These results provide a basis for future functional and structural studies of NtUGT89A2.
Collapse
Affiliation(s)
- Arianna Duque-Ortiz
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, S.L.P., Mexico
| | - José Rivera-Chávez
- Departamento de Productos Naturales, Instituto de Química., UNAM, 04510, Ciudad de México, Mexico
| | - Guillermo Pastor-Palacios
- Unidad Profesional Interdisciplinaria de Ingeniería, Campus Guanajuato, Instituto Politécnico Nacional, 36275, Silao de la Victoria, Guanajuato, Mexico.
| | - Samuel Lara-González
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
2
|
Yang F, Zhang L, Zhang X, Guan J, Wang B, Wu X, Song M, Wei A, Liu Z, Huo D. Genome-wide investigation of UDP-Glycosyltransferase family in Tartary buckwheat (Fagopyrum tataricum). BMC PLANT BIOLOGY 2024; 24:249. [PMID: 38580941 PMCID: PMC10998406 DOI: 10.1186/s12870-024-04926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Tartary buckwheat (Fagopyrum tataricum) belongs to Polygonaceae family and has attracted increasing attention owing to its high nutritional value. UDP-glycosyltransferases (UGTs) glycosylate a variety of plant secondary metabolites to control many metabolic processes during plant growth and development. However, there have been no systematic reports of UGT superfamily in F. tataricum. RESULTS We identified 173 FtUGTs in F. tataricum based on their conserved UDPGT domain. Phylogenetic analysis of FtUGTs with 73 Arabidopsis UGTs clustered them into 21 families. FtUGTs from the same family usually had similar gene structure and motif compositions. Most of FtUGTs did not contain introns or had only one intron. Tandem repeats contributed more to FtUGTs amplification than segmental duplications. Expression analysis indicates that FtUGTs are widely expressed in various tissues and likely play important roles in plant growth and development. The gene expression analysis response to different abiotic stresses showed that some FtUGTs were involved in response to drought and cadmium stress. Our study provides useful information on the UGTs in F. tataricum, and will facilitate their further study to better understand their function. CONCLUSIONS Our results provide a theoretical basis for further exploration of the functional characteristics of FtUGTs and for understanding the growth, development, and metabolic model in F. tataricum.
Collapse
Affiliation(s)
- Fan Yang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Lei Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Jingru Guan
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Bo Wang
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoying Wu
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Minli Song
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Aili Wei
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Zhang Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Dongao Huo
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China.
| |
Collapse
|
3
|
Ono E, Murata J. Exploring the Evolvability of Plant Specialized Metabolism: Uniqueness Out Of Uniformity and Uniqueness Behind Uniformity. PLANT & CELL PHYSIOLOGY 2023; 64:1449-1465. [PMID: 37307423 PMCID: PMC10734894 DOI: 10.1093/pcp/pcad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
The huge structural diversity exhibited by plant specialized metabolites has primarily been considered to result from the catalytic specificity of their biosynthetic enzymes. Accordingly, enzyme gene multiplication and functional differentiation through spontaneous mutations have been established as the molecular mechanisms that drive metabolic evolution. Nevertheless, how plants have assembled and maintained such metabolic enzyme genes and the typical clusters that are observed in plant genomes, as well as why identical specialized metabolites often exist in phylogenetically remote lineages, is currently only poorly explained by a concept known as convergent evolution. Here, we compile recent knowledge on the co-presence of metabolic modules that are common in the plant kingdom but have evolved under specific historical and contextual constraints defined by the physicochemical properties of each plant specialized metabolite and the genetic presets of the biosynthetic genes. Furthermore, we discuss a common manner to generate uncommon metabolites (uniqueness out of uniformity) and an uncommon manner to generate common metabolites (uniqueness behind uniformity). This review describes the emerging aspects of the evolvability of plant specialized metabolism that underlie the vast structural diversity of plant specialized metabolites in nature.
Collapse
Affiliation(s)
- Eiichiro Ono
- Suntory Global Innovation Center Ltd. (SIC), 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Jun Murata
- Bioorganic Research Institute (SUNBOR), Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| |
Collapse
|
4
|
Ding Z, Fu L, Wang B, Ye J, Ou W, Yan Y, Li M, Zeng L, Dong X, Tie W, Ye X, Yang J, Xie Z, Wang Y, Guo J, Chen S, Xiao X, Wan Z, An F, Zhang J, Peng M, Luo J, Li K, Hu W. Metabolic GWAS-based dissection of genetic basis underlying nutrient quality variation and domestication of cassava storage root. Genome Biol 2023; 24:289. [PMID: 38098107 PMCID: PMC10722858 DOI: 10.1186/s13059-023-03137-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Metabolites play critical roles in regulating nutritional qualities of plants, thereby influencing their consumption and human health. However, the genetic basis underlying the metabolite-based nutrient quality and domestication of root and tuber crops remain largely unknown. RESULTS We report a comprehensive study combining metabolic and phenotypic genome-wide association studies to dissect the genetic basis of metabolites in the storage root (SR) of cassava. We quantify 2,980 metabolic features in 299 cultivated cassava accessions. We detect 18,218 significant marker-metabolite associations via metabolic genome-wide association mapping and identify 12 candidate genes responsible for the levels of metabolites that are of potential nutritional importance. Me3GT, MeMYB4, and UGT85K4/UGT85K5, which are involved in flavone, anthocyanin, and cyanogenic glucoside metabolism, respectively, are functionally validated through in vitro enzyme assays and in vivo gene silencing analyses. We identify a cluster of cyanogenic glucoside biosynthesis genes, among which CYP79D1, CYP71E7b, and UGT85K5 are highly co-expressed and their allelic combination contributes to low linamarin content. We find MeMYB4 is responsible for variations in cyanidin 3-O-glucoside and delphinidin 3-O-rutinoside contents, thus controlling SR endothelium color. We find human selection affects quercetin 3-O-glucoside content and SR weight per plant. The candidate gene MeFLS1 is subject to selection during cassava domestication, leading to decreased quercetin 3-O-glucoside content and thus increased SR weight per plant. CONCLUSIONS These findings reveal the genetic basis of cassava SR metabolome variation, establish a linkage between metabolites and agronomic traits, and offer useful resources for genetically improving the nutrition of cassava and other root crops.
Collapse
Affiliation(s)
- Zehong Ding
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lili Fu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bin Wang
- Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Jianqiu Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenjun Ou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yan Yan
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Meiying Li
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Liwang Zeng
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Institute of Scientific and Technical Information, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xuekui Dong
- Wuhan Healthcare Metabolic Biotechnology Co., Ltd, Wuhan, China
| | - Weiwei Tie
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Xiaoxue Ye
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jinghao Yang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhengnan Xie
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yu Wang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jianchun Guo
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xinhui Xiao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhongqing Wan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Feifei An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiaming Zhang
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ming Peng
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jie Luo
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
- Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China.
| | - Kaimian Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Wei Hu
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
5
|
Chen C, Zhang K, Liu F, Wang X, Yao Y, Niu X, He Y, Hong J, Liu F, Gao Q, Zhang Y, Li Y, Wang M, Lin J, Fan Y, Ren K, Shen L, Gao B, Ren X, Yang W, Georgiev MI, Zhang X, Zhou M. Resequencing of global Lotus corniculatus accessions reveals population distribution and genetic loci, associated with cyanogenic glycosides accumulation and growth traits. BMC Biol 2023; 21:176. [PMID: 37592232 PMCID: PMC10433565 DOI: 10.1186/s12915-023-01670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Lotus corniculatus is a widely distributed perennial legume whose great adaptability to different environments and resistance to barrenness make it an excellent forage and ecological restoration plant. However, its molecular genetics and genomic relationships among populations are yet to be uncovered. RESULT Here we report on a genomic variation map from worldwide 272 L. corniculatus accessions by genome resequencing. Our analysis suggests that L. corniculatus accessions have high genetic diversity and could be further divided into three subgroups, with the genetic diversity centers were located in Transcaucasia. Several candidate genes and SNP site associated with CNglcs content and growth traits were identified by genome-wide associated study (GWAS). A non-synonymous in LjMTR was responsible for the decreased expression of CNglcs synthesis genes and LjZCD was verified to positively regulate CNglcs synthesis gene CYP79D3. The LjZCB and an SNP in LjZCA promoter were confirmed to be involved in plant growth. CONCLUSION This study provided a large number of genomic resources and described genetic relationship and population structure among different accessions. Moreover, we attempt to provide insights into the molecular studies and breeding of CNglcs and growth traits in L. corniculatus.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fu Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xia Wang
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing, 100177, China
| | - Yang Yao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Hong
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Fang Liu
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Qiu Gao
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Yi Zhang
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Yurong Li
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Meijuan Wang
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Jizhen Lin
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kui Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lunhao Shen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xue Ren
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weifei Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| |
Collapse
|
6
|
Hansen CC, Sørensen M, Bellucci M, Brandt W, Olsen CE, Goodger JQD, Woodrow IE, Lindberg Møller B, Neilson EHJ. Recruitment of distinct UDP-glycosyltransferase families demonstrates dynamic evolution of chemical defense within Eucalyptus L'Hér. THE NEW PHYTOLOGIST 2023; 237:999-1013. [PMID: 36305250 PMCID: PMC10107851 DOI: 10.1111/nph.18581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The economic and ecologically important genus Eucalyptus is rich in structurally diverse specialized metabolites. While some specialized metabolite classes are highly prevalent across the genus, the cyanogenic glucoside prunasin is only produced by c. 3% of species. To investigate the evolutionary mechanisms behind prunasin biosynthesis in Eucalyptus, we compared de novo assembled transcriptomes, together with online resources between cyanogenic and acyanogenic species. Identified genes were characterized in vivo and in vitro. Pathway characterization of cyanogenic Eucalyptus camphora and Eucalyptus yarraensis showed for the first time that the final glucosylation step from mandelonitrile to prunasin is catalyzed by a novel UDP-glucosyltransferase UGT87. This step is typically catalyzed by a member of the UGT85 family, including in Eucalyptus cladocalyx. The upstream conversion of phenylalanine to mandelonitrile is catalyzed by three cytochrome P450 (CYP) enzymes from the CYP79, CYP706, and CYP71 families, as previously shown. Analysis of acyanogenic Eucalyptus species revealed the loss of different ortholog prunasin biosynthetic genes. The recruitment of UGTs from different families for prunasin biosynthesis in Eucalyptus demonstrates important pathway heterogeneities and unprecedented dynamic pathway evolution of chemical defense within a single genus. Overall, this study provides relevant insights into the tremendous adaptability of these long-lived trees.
Collapse
Affiliation(s)
- Cecilie Cetti Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Matteo Bellucci
- Novo Nordisk Foundation Center for Protein Research, Protein Production and Characterization PlatformUniversity of Copenhagen2200CopenhagenDenmark
| | - Wolfgang Brandt
- Department of Bioorganic ChemistryLeibniz‐Institute of Plant BiochemistryHalle06120Germany
| | - Carl Erik Olsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | | | - Ian E. Woodrow
- School of Ecosystem and Forest SciencesThe University of MelbourneParkvilleVic.3052Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Elizabeth H. J. Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| |
Collapse
|
7
|
Song J, Fan B, Shao X, Zang Y, Wang D, Min Y. Single-cell transcriptome sequencing atlas of cassava tuberous root. FRONTIERS IN PLANT SCIENCE 2023; 13:1053669. [PMID: 36684718 PMCID: PMC9848496 DOI: 10.3389/fpls.2022.1053669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Single-cell transcriptome sequencing (ScRNA-seq) has emerged as an effective method for examining cell differentiation and development. In non-model plants, it hasn't been employed very much, especially in sink organs that are abundant in secondary metabolites. RESULTS In this study, we sequenced the single-cell transcriptomes at two developmental phases of cassava tuberous roots using the technology known as 10x Genomics (S1, S2). In total, 14,566 cells were grouped into 15 different cell types, primarily based on the marker genes of model plants known to exist. In the pseudotime study, the cell differentiation trajectory was defined, and the difference in gene expression between the two stages on the pseudotime axis was compared. The differentiation process of the vascular tissue and cerebral tissue was identified by the trajectory. We discovered the rare cell type known as the casparian strip via the use of up-regulated genes and pseudotime analysis, and we explained how it differentiates from endodermis. The successful creation of a protoplast isolation technique for organs rich in starch was also described in our study. DISCUSSION Together, we created the first high-resolution single-cell transcriptome atlas of cassava tuberous roots, which made significant advancements in our understanding of how these roots differentiate and develop.
Collapse
Affiliation(s)
- Jinjia Song
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan, China
| | - Benji Fan
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan, China
| | - Xiaodie Shao
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan, China
| | - Yuwei Zang
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan, China
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Yi Min
- Department of Biotechnology, School of Life Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
8
|
Wu J, Zhu W, Shan X, Liu J, Zhao L, Zhao Q. Glycoside-specific metabolomics combined with precursor isotopic labeling for characterizing plant glycosyltransferases. MOLECULAR PLANT 2022; 15:1517-1532. [PMID: 35996753 DOI: 10.1016/j.molp.2022.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Glycosylation by uridine diphosphate-dependent glycosyltransferases (UGTs) in plants contributes to the complexity and diversity of secondary metabolites. UGTs are generally promiscuous in their use of acceptors, making it challenging to reveal the function of UGTs in vivo. Here, we described an approach that combined glycoside-specific metabolomics and precursor isotopic labeling analysis to characterize UGTs in Arabidopsis. We revisited the UGT72E cluster, which has been reported to catalyze the glycosylation of monolignols. Glycoside-specific metabolomics analysis reduced the number of differentially accumulated metabolites in the ugt72e1e2e3 mutant by at least 90% compared with that from traditional untargeted metabolomics analysis. In addition to the two previously reported monolignol glycosides, a total of 62 glycosides showed reduced accumulation in the ugt72e1e2e3 mutant, 22 of which were phenylalanine-derived glycosides, including 5-OH coniferyl alcohol-derived and lignan-derived glycosides, as confirmed by isotopic tracing of [13C6]-phenylalanine precursor. Our method revealed that UGT72Es could use coumarins as substrates, and genetic evidence showed that UGT72Es endowed plants with enhanced tolerance to low iron availability under alkaline conditions. Using the newly developed method, the function of UGT78D2 was also evaluated. These case studies suggest that this method can substantially contribute to the characterization of UGTs and efficiently investigate glycosylation processes, the complexity of which have been highly underestimated.
Collapse
Affiliation(s)
- Jie Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaotong Shan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinyue Liu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lingling Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiao Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
McMahon J, Sayre R, Zidenga T. Cyanogenesis in cassava and its molecular manipulation for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1853-1867. [PMID: 34905020 DOI: 10.1093/jxb/erab545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
While cassava is one of the most important staple crops worldwide, it has received the least investment per capita consumption of any of the major global crops. This is in part due to cassava being a crop of subsistence farmers that is grown in countries with limited resources for crop improvement. While its starchy roots are rich in calories, they are poor in protein and other essential nutrients. In addition, they contain potentially toxic levels of cyanogenic glycosides which must be reduced to safe levels before consumption. Furthermore, cyanogens compromise the shelf life of harvested roots due to cyanide-induced inhibition of mitochondrial respiration, and associated production of reactive oxygen species that accelerate root deterioration. Over the past two decades, the genetic, biochemical, and developmental factors that control cyanogen synthesis, transport, storage, and turnover have largely been elucidated. It is now apparent that cyanogens contribute substantially to whole-plant nitrogen metabolism and protein synthesis in roots. The essential role of cyanogens in root nitrogen metabolism, however, has confounded efforts to create acyanogenic varieties. This review proposes alternative molecular approaches that integrate accelerated cyanogen turnover with nitrogen reassimilation into root protein that may offer a solution to creating a safer, more nutritious cassava crop.
Collapse
|
10
|
Wu C, Dai J, Chen Z, Tie W, Yan Y, Yang H, Zeng J, Hu W. Comprehensive analysis and expression profiles of cassava UDP-glycosyltransferases (UGT) family reveal their involvement in development and stress responses in cassava. Genomics 2021; 113:3415-3429. [PMID: 34371100 DOI: 10.1016/j.ygeno.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022]
Abstract
UDP-glycosyltransferases (UGTs) are widely involved in plant growth and stress responses. However, UGT family are not well understood in cassava. Here, we identified 121 MeUGT genes and classified them into 14 subfamilies by phylogenetic analysis. All MeUGT proteins have typical feature of the UGTs family. Tandem duplications are the crucial driving force for the expansion of MeUGT family. Cis-Acting elements analysis uncovered those 14 kinds of cis-elements associated with biotic and abiotic stress responses. Transcriptomic and qRT-PCR analyses indicated that MeUGT genes participate in postharvest physiological deterioration of storage root and the responses of biotic and abiotic stresses. Of which, MeUGT-14/41 were significantly induced after Xam treatment. Silencing of MeUGT-14 or MeUGT-41 reduced cassava resistance to Xam, verifying the accuracy of transcriptomic data for function prediction. Together, this study characterized the MeUGTs family and revealed their potential functions, which build a solid foundation for MeUGTs associated genetic improvement of cassava.
Collapse
Affiliation(s)
- Chunlai Wu
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China; Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jing Dai
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhisheng Chen
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiwei Tie
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China,.
| | - Yan Yan
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Hai Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jian Zeng
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China.
| | - Wei Hu
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China,.
| |
Collapse
|
11
|
Sørensen M, Møller BL. Metabolic Engineering of Photosynthetic Cells – in Collaboration with Nature. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Thodberg S, Sørensen M, Bellucci M, Crocoll C, Bendtsen AK, Nelson DR, Motawia MS, Møller BL, Neilson EHJ. A flavin-dependent monooxygenase catalyzes the initial step in cyanogenic glycoside synthesis in ferns. Commun Biol 2020; 3:507. [PMID: 32917937 PMCID: PMC7486406 DOI: 10.1038/s42003-020-01224-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
Cyanogenic glycosides form part of a binary plant defense system that, upon catabolism, detonates a toxic hydrogen cyanide bomb. In seed plants, the initial step of cyanogenic glycoside biosynthesis-the conversion of an amino acid to the corresponding aldoxime-is catalyzed by a cytochrome P450 from the CYP79 family. An evolutionary conundrum arises, as no CYP79s have been identified in ferns, despite cyanogenic glycoside occurrence in several fern species. Here, we report that a flavin-dependent monooxygenase (fern oxime synthase; FOS1), catalyzes the first step of cyanogenic glycoside biosynthesis in two fern species (Phlebodium aureum and Pteridium aquilinum), demonstrating convergent evolution of biosynthesis across the plant kingdom. The FOS1 sequence from the two species is near identical (98%), despite diversifying 140 MYA. Recombinant FOS1 was isolated as a catalytic active dimer, and in planta, catalyzes formation of an N-hydroxylated primary amino acid; a class of metabolite not previously observed in plants.
Collapse
Affiliation(s)
- Sara Thodberg
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Matteo Bellucci
- Novo Nordisk Foundation Center for Protein Research, Protein Production and Characterization Platform, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - Christoph Crocoll
- Section for Plant Molecular Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Amalie Kofoed Bendtsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - David Ralph Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, 858 Madison Ave. Suite G01, Memphis, TN, 38163, USA
| | - Mohammed Saddik Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Elizabeth Heather Jakobsen Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark.
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
13
|
Kazachkov M, Li Q, Shen W, Wang L, Gao P, Xiang D, Datla R, Zou J. Molecular identification and functional characterization of a cyanogenic glucosyltransferase from flax (Linum unsitatissimum). PLoS One 2020; 15:e0227840. [PMID: 32023283 PMCID: PMC7001965 DOI: 10.1371/journal.pone.0227840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/30/2019] [Indexed: 11/18/2022] Open
Abstract
Flax seed has become consumers’ choice for not only polyunsaturated alpha-linolenic fatty acid but also nutraceuticals such as lignans and soluble fiber. There is, however, a major drawback of flax as a source of functional food since the seeds contain significant level of cyanogenic glucosides. The final step of cyanogenic glucoside biosynthesis is mediated by UDP-glucose dependent glucosyltransferase. To date, no flax cyanogenic glucosyl transferase genes have been reported with verified biochemical functionality. Here we present a study on the identification and enzymatic characterization of a first flax cyanogenic glucosyltransferase, LuCGT1. We show that LuCGT1 was highly active towards both aliphatic and aromatic substrates. The LuCGT1 gene is expressed in leaf tissues as well as in developing seeds, and its expression level was drastically reduced in flax mutant lines low in cyanogenic glucosides. Identification of LuCGT1 provides a molecular handle for developing gene specific markers for targeted breeding of low cyanogenic glucosides in flax.
Collapse
Affiliation(s)
| | - Qiang Li
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
- Department of Plant Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wenyun Shen
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Liping Wang
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Peng Gao
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Daoquan Xiang
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Raju Datla
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Jitao Zou
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
14
|
Louveau T, Osbourn A. The Sweet Side of Plant-Specialized Metabolism. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034744. [PMID: 31235546 DOI: 10.1101/cshperspect.a034744] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycosylation plays a major role in the structural diversification of plant natural products. It influences the properties of molecules by modifying the reactivity and solubility of the corresponding aglycones, so influencing cellular localization and bioactivity. Glycosylation of plant natural products is usually carried out by uridine diphosphate(UDP)-dependent glycosyltransferases (UGTs) belonging to the carbohydrate-active enzyme glycosyltransferase 1 (GT1) family. These enzymes transfer sugars from UDP-activated sugar moieties to small hydrophobic acceptor molecules. Plant GT1s generally show high specificity for their sugar donors and recognize a single UDP sugar as their substrate. In contrast, they are generally promiscuous with regard to acceptors, making them attractive biotechnological tools for small molecule glycodiversification. Although microbial hosts have traditionally been used for heterologous engineering of plant-derived glycosides, transient plant expression technology offers a potentially disruptive platform for rapid characterization of new plant glycosyltransferases and biosynthesis of complex glycosides.
Collapse
Affiliation(s)
- Thomas Louveau
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
15
|
Wilson AE, Tian L. Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1273-1288. [PMID: 31446648 DOI: 10.1111/tpj.14514] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 05/05/2023]
Abstract
Glycosylated metabolites generated by UDP-dependent glycosyltransferases (UGTs) play critical roles in plant interactions with the environment as well as human and animal nutrition. The evolution of plant UGTs has previously been explored, but with a limited taxon sampling. In this study, 65 fully sequenced plant genomes were analyzed, and stringent criteria for selection of candidate UGTs were applied to ensure a more comprehensive taxon sampling and reliable sequence inclusion. In addition to revealing the overall evolutionary landscape of plant UGTs, the phylogenomic analysis also resolved the phylogenetic association of UGTs from free-sporing plants and gymnosperms, and identified an additional UGT group (group R) in seed plants. Furthermore, lineage-specific expansions and contractions of UGT groups were detected in angiosperms, with the total number of UGTs per genome remaining constant generally. The loss of group Q UGTs in Poales and Brassicales, rather than functional convergence in the group Q containing species, was supported by a gene tree of group Q UGTs sampled from many species, and further corroborated by the absence of group Q homologs on the syntenic chromosomal regions in Arabidopsis thaliana (Brassicales). Branch-site analyses of the group Q UGT gene tree allowed for identification of branches and amino acid sites that experienced episodic positive selection. The positively selected sites are located on the surface of a representative group Q UGT (PgUGT95B2), away from the active site, suggesting their role in protein folding/stability or protein-protein interactions.
Collapse
Affiliation(s)
- Alexander E Wilson
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
16
|
Song C, Härtl K, McGraphery K, Hoffmann T, Schwab W. Attractive but Toxic: Emerging Roles of Glycosidically Bound Volatiles and Glycosyltransferases Involved in Their Formation. MOLECULAR PLANT 2018; 11:1225-1236. [PMID: 30223041 DOI: 10.1016/j.molp.2018.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 05/18/2023]
Abstract
Plants emit an overabundance of volatile compounds, which act in their producers either as appreciated attractants to lure beneficial animals or as repellent toxins to deter pests in a species-specific and concentration-dependent manner. Plants have evolved solutions to provide sufficient volatiles without poisoning themselves. Uridine-diphosphate sugar-dependent glycosyltransferases (UGTs) acting on volatiles is one important part of this sophisticated system, which balances the levels of bioactive metabolites and prepares them for cellular and long-distance transport and storage but enables the remobilization of disarmed toxins for the benefit of plant protection. This review provides an overview of the research history of glycosidically bound volatiles (GBVs), a relatively new group of plant secondary metabolites, and discusses the role of UGTs in the production of GBVs for plant protection.
Collapse
Affiliation(s)
- Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West Changjiang Road, Hefei, Anhui 230036, China
| | - Katja Härtl
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | - Kate McGraphery
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West Changjiang Road, Hefei, Anhui 230036, China; Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, Freising 85354, Germany.
| |
Collapse
|
17
|
Yamada A, Ishiuchi K, Makino T, Mizukami H, Terasaka K. A glucosyltransferase specific for 4-hydroxy-2,5-dimethyl-3(2H)-furanone in strawberry. Biosci Biotechnol Biochem 2018; 83:1-8. [PMID: 30269657 DOI: 10.1080/09168451.2018.1524706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
4-Hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) is a key aroma compound in Fragaria × ananassa (strawberry). A considerable amount of HDMF is converted into HDMF β-D-glucoside and accumulated in mature strawberry fruits. Here we isolated a novel UDP-glucose: HDMF glucosyltransferase, UGT85K16 from Fragaria × ananassa. UGT85K16 preferentially glucosylated the hydroxyl group of HDMF and its structural analogs. Although UGT85K16 also catalyzed the glucosylation of vanillin, its affinity and efficiency toward HDMF was higher. The expression of UGT85K16 mRNA correlated with the accumulation of HDMF and its glucoside in Fragaria × ananassa plants. These results suggest that UGT85K16 might be UDP-glucose: HDMF glucosyltransferase in strawberries. ABBREVIATIONS DMMF: 2,5-dimethyl-4-methoxy-3(2H)-furanone; EHMF: 2(5)-ethyl-4-hydroxy-5(2)-methyl-3(2H)-furanone; GBV: glycosidically bound volatile; HDMF: 4-hydroxy-2,5-dimethyl-3(2H)-furanone; HMF: 4-hydroxy-5-methyl-3(2H)-furanone; HMMF: 4-hydroxy-5-methyl-2-methylene-3(2H)-furanone; PSPG: Plant secondary product glycosyltransferase; RT-PCR: reverse transcription-PCR; OMT: O-methyltransferase; UGT: UDP-glycosyltransferase.
Collapse
Affiliation(s)
- Aki Yamada
- a Graduate School of Pharmaceutical Sciences , Nagoya City University , Nagoya City , Japan
| | - Kan'ichiro Ishiuchi
- a Graduate School of Pharmaceutical Sciences , Nagoya City University , Nagoya City , Japan
| | - Toshiaki Makino
- a Graduate School of Pharmaceutical Sciences , Nagoya City University , Nagoya City , Japan
| | - Hajime Mizukami
- b The Kochi Prefectural Makino Botanical Garden , Kochi , Japan
| | - Kazuyoshi Terasaka
- a Graduate School of Pharmaceutical Sciences , Nagoya City University , Nagoya City , Japan
| |
Collapse
|
18
|
Yamaguchi T, Asano Y. Prunasin production using engineered Escherichia coli expressing UGT85A47 from Japanese apricot and UDP-glucose biosynthetic enzyme genes. Biosci Biotechnol Biochem 2018; 82:2021-2029. [PMID: 30027801 DOI: 10.1080/09168451.2018.1497942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Japanese apricot, Prunus mume Sieb. et Zucc., biosynthesizes the l-phenylalanine-derived cyanogenic glucosides prunasin and amygdalin. Prunasin has biological properties such as anti-inflammation, but plant extraction and chemical synthesis are impractical. In this study, we identified and characterized UGT85A47 from Japanese apricot. Further, UGT85A47 was utilized for prunasin microbial production. Full-length cDNA encoding UGT85A47 was isolated from Japanese apricot after 5'- and 3'-RACE. Recombinant UGT85A47 stoichiometrically catalyzed UDP-glucose consumption and synthesis of prunasin and UDP from mandelonitrile. Escherichia coli C41(DE3) cells expressing UGT85A47 produced prunasin (0.64 g/L) from racemic mandelonitrile and glucose. In addition, co-expression of genes encoding UDP-glucose biosynthetic enzymes (phosphoglucomutase and UTP-glucose 1-phosphate uridiltransferase) and polyphosphate kinase clearly improved prunasin production up to 2.3 g/L. These results showed that our whole-cell biocatalytic system is significantly more efficient than the existing prunasin production systems, such as chemical synthesis.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Toyama Japan.,b Asano Active Enzyme Molecule Project , JST ERATO , Toyama , Japan.,c Faculty of Life and Environmental Sciences , University of Tsukuba , Ibaraki , Japan
| | - Yasuhisa Asano
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Toyama Japan.,b Asano Active Enzyme Molecule Project , JST ERATO , Toyama , Japan
| |
Collapse
|
19
|
Schmidt FB, Cho SK, Olsen CE, Yang SW, Møller BL, Jørgensen K. Diurnal regulation of cyanogenic glucoside biosynthesis and endogenous turnover in cassava. PLANT DIRECT 2018; 2:e00038. [PMID: 31245705 PMCID: PMC6508492 DOI: 10.1002/pld3.38] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/06/2017] [Accepted: 01/04/2018] [Indexed: 05/14/2023]
Abstract
Cyanogenic glucosides are present in many plants, including eudicots, monocots, and ferns and function as defence compounds based on their ability to release hydrogen cyanide. In this study, the diurnal rhythm of cyanogenic glucoside content and of transcripts and enzymes involved in their biosynthesis was monitored in cassava plants grown in a glasshouse under natural light conditions. Transcripts of CYP79D1, CYP79D2, CYP71E7/11, and UGT85K5 were at minimal levels around 9 p.m., increased during the night and decreased following onset of early morning light. Transcripts of UGT85K4 and HNL10 showed more subtle variations with a maximum reached in the afternoon. Western blots showed that the protein levels of CYP71E7/11 and UGT85K4/5 decreased during the light period to a near absence around 4 p.m. and then recovered during the dark period. Transcript and protein levels of linamarase were stable throughout the 24-hr cycle. The linamarin content increased during the dark period. In the light period, spikes in the incoming solar radiation were found to result in concomitantly reduced linamarin levels. In silico studies of the promoter regions of the biosynthetic genes revealed a high frequency of light, abiotic stress, and development-related transcription factor binding motifs. The synthesis and endogenous turnover of linamarin are controlled both at the transcript and protein levels. The observed endogenous turnover of linamarin in the light period may offer a source of reduced nitrogen to balance photosynthetic carbon fixation. The rapid decrease in linamarin content following light spikes suggests an additional function of linamarin as a ROS scavenger.
Collapse
Affiliation(s)
- Frederik Bøgeskov Schmidt
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
- VILLUM Research Center “Plant Plasticity”CopenhagenDenmark
- Center for Synthetic Biology “bioSYNergy”CopenhagenDenmark
| | - Seok Keun Cho
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
- Center for Synthetic Biology “bioSYNergy”CopenhagenDenmark
| | - Carl Erik Olsen
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
- VILLUM Research Center “Plant Plasticity”CopenhagenDenmark
- Center for Synthetic Biology “bioSYNergy”CopenhagenDenmark
| | - Seong Wook Yang
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
- VILLUM Research Center “Plant Plasticity”CopenhagenDenmark
- Center for Synthetic Biology “bioSYNergy”CopenhagenDenmark
| | - Birger Lindberg Møller
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
- VILLUM Research Center “Plant Plasticity”CopenhagenDenmark
- Center for Synthetic Biology “bioSYNergy”CopenhagenDenmark
| | - Kirsten Jørgensen
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
- VILLUM Research Center “Plant Plasticity”CopenhagenDenmark
- Center for Synthetic Biology “bioSYNergy”CopenhagenDenmark
| |
Collapse
|
20
|
Gallage NJ, JØrgensen K, Janfelt C, Nielsen AJZ, Naake T, Duński E, Dalsten L, Grisoni M, MØller BL. The Intracellular Localization of the Vanillin Biosynthetic Machinery in Pods of Vanilla planifolia. PLANT & CELL PHYSIOLOGY 2018; 59:304-318. [PMID: 29186560 PMCID: PMC5921504 DOI: 10.1093/pcp/pcx185] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 11/20/2017] [Indexed: 05/07/2023]
Abstract
Vanillin is the most important flavor compound in the vanilla pod. Vanilla planifolia vanillin synthase (VpVAN) catalyzes the conversion of ferulic acid and ferulic acid glucoside into vanillin and vanillin glucoside, respectively. Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) of vanilla pod sections demonstrates that vanillin glucoside is preferentially localized within the mesocarp and placental laminae whereas vanillin is preferentially localized within the mesocarp. VpVAN is present as the mature form (25 kDa) but, depending on the tissue and isolation procedure, small amounts of the immature unprocessed form (40 kDa) and putative oligomers (50, 75 and 100 kDa) may be observed by immunoblotting using an antibody specific to the C-terminal sequence of VpVAN. The VpVAN protein is localized within chloroplasts and re-differentiated chloroplasts termed phenyloplasts, as monitored during the process of pod development. Isolated chloroplasts were shown to convert [14C]phenylalanine and [14C]cinnamic acid into [14C]vanillin glucoside, indicating that the entire vanillin de novo biosynthetic machinery converting phenylalanine to vanillin glucoside is present in the chloroplast.
Collapse
Affiliation(s)
- Nethaji J Gallage
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center of Excellence ‘Plant Plasticity’, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- Center for Synthetic Biology ‘bioSYNergy’, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Kirsten JØrgensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center of Excellence ‘Plant Plasticity’, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- Center for Synthetic Biology ‘bioSYNergy’, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Christian Janfelt
- Section for Analytical Biosciences, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Agnieszka J Z Nielsen
- Center for Synthetic Biology ‘bioSYNergy’, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Thomas Naake
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Eryk Duński
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Lene Dalsten
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center of Excellence ‘Plant Plasticity’, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- Center for Synthetic Biology ‘bioSYNergy’, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Michel Grisoni
- Centre de Coopération Internationale en Recherche Agronomique pour le Dévelopement, UMR PVBMT, 97410 Saint Pierre, La Réunion, France
| | - Birger Lindberg MØller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center of Excellence ‘Plant Plasticity’, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- Center for Synthetic Biology ‘bioSYNergy’, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-1799 Copenhagen V, Denmark
| |
Collapse
|
21
|
Bøgeskov Schmidt F, Heskes AM, Thinagaran D, Lindberg Møller B, Jørgensen K, Boughton BA. Mass Spectrometry Based Imaging of Labile Glucosides in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:892. [PMID: 30002667 PMCID: PMC6031732 DOI: 10.3389/fpls.2018.00892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/07/2018] [Indexed: 05/19/2023]
Abstract
Mass spectrometry based imaging is a powerful tool to investigate the spatial distribution of a broad range of metabolites across a variety of sample types. The recent developments in instrumentation and computing capabilities have increased the mass range, sensitivity and resolution and rendered sample preparation the limiting step for further improvements. Sample preparation involves sectioning and mounting followed by selection and application of matrix. In plant tissues, labile small molecules and specialized metabolites are subject to degradation upon mechanical disruption of plant tissues. In this study, the benefits of cryo-sectioning, stabilization of fragile tissues and optimal application of the matrix to improve the results from MALDI mass spectrometry imaging (MSI) is investigated with hydroxynitrile glucosides as the main experimental system. Denatured albumin proved an excellent agent for stabilizing fragile tissues such as Lotus japonicus leaves. In stem cross sections of Manihot esculenta, maintaining the samples frozen throughout the sectioning process and preparation of the samples by freeze drying enhanced the obtained signal intensity by twofold to fourfold. Deposition of the matrix by sublimation improved the spatial information obtained compared to spray. The imaging demonstrated that the cyanogenic glucosides (CNglcs) were localized in the vascular tissues in old stems of M. esculenta and in the periderm and vascular tissues of tubers. In MALDI mass spectrometry, the imaged compounds are solely identified by their m/z ratio. L. japonicus MG20 and the mutant cyd1 that is devoid of hydroxynitrile glucosides were used as negative controls to verify the assignment of the observed masses to linamarin, lotaustralin, and linamarin acid.
Collapse
Affiliation(s)
- Frederik Bøgeskov Schmidt
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
| | - Allison M. Heskes
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dinaiz Thinagaran
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Birger Lindberg Møller,
| | - Kirsten Jørgensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
| | - Berin A. Boughton
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Characterization of a membrane-bound C-glucosyltransferase responsible for carminic acid biosynthesis in Dactylopius coccus Costa. Nat Commun 2017; 8:1987. [PMID: 29215010 PMCID: PMC5719414 DOI: 10.1038/s41467-017-02031-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/02/2017] [Indexed: 11/09/2022] Open
Abstract
Carminic acid, a glucosylated anthraquinone found in scale insects like Dactylopius coccus, has since ancient times been used as a red colorant in various applications. Here we show that a membrane-bound C-glucosyltransferase, isolated from D. coccus and designated DcUGT2, catalyzes the glucosylation of flavokermesic acid and kermesic acid into their respective C-glucosides dcII and carminic acid. DcUGT2 is predicted to be a type I integral endoplasmic reticulum (ER) membrane protein, containing a cleavable N-terminal signal peptide and a C-terminal transmembrane helix that anchors the protein to the ER, followed by a short cytoplasmic tail. DcUGT2 is found to be heavily glycosylated. Truncated DcUGT2 proteins synthesized in yeast indicate the presence of an internal ER-targeting signal. The cleavable N-terminal signal peptide is shown to be essential for the activity of DcUGT2, whereas the transmembrane helix/cytoplasmic domains, although important, are not crucial for its catalytic function. Carminic acid is a widely applied red colorant that is still harvested from insects because its biosynthesis is not fully understood. Here, the authors identify and characterize a membrane-bound C-glucosyltransferase catalyzing the final step during carminic acid biosynthesis.
Collapse
|
23
|
Luck K, Jia Q, Huber M, Handrick V, Wong GKS, Nelson DR, Chen F, Gershenzon J, Köllner TG. CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata. PLANT MOLECULAR BIOLOGY 2017; 95:169-180. [PMID: 28795267 PMCID: PMC5594043 DOI: 10.1007/s11103-017-0646-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/02/2017] [Indexed: 05/19/2023]
Abstract
Conifers contain P450 enzymes from the CYP79 family that are involved in cyanogenic glycoside biosynthesis. Cyanogenic glycosides are secondary plant compounds that are widespread in the plant kingdom. Their biosynthesis starts with the conversion of aromatic or aliphatic amino acids into their respective aldoximes, catalysed by N-hydroxylating cytochrome P450 monooxygenases (CYP) of the CYP79 family. While CYP79s are well known in angiosperms, their occurrence in gymnosperms and other plant divisions containing cyanogenic glycoside-producing plants has not been reported so far. We screened the transcriptomes of 72 conifer species to identify putative CYP79 genes in this plant division. From the seven resulting full-length genes, CYP79A118 from European yew (Taxus baccata) was chosen for further characterization. Recombinant CYP79A118 produced in yeast was able to convert L-tyrosine, L-tryptophan, and L-phenylalanine into p-hydroxyphenylacetaldoxime, indole-3-acetaldoxime, and phenylacetaldoxime, respectively. However, the kinetic parameters of the enzyme and transient expression of CYP79A118 in Nicotiana benthamiana indicate that L-tyrosine is the preferred substrate in vivo. Consistent with these findings, taxiphyllin, which is derived from L-tyrosine, was the only cyanogenic glycoside found in the different organs of T. baccata. Taxiphyllin showed highest accumulation in leaves and twigs, moderate accumulation in roots, and only trace accumulation in seeds and the aril. Quantitative real-time PCR revealed that CYP79A118 was expressed in plant organs rich in taxiphyllin. Our data show that CYP79s represent an ancient family of plant P450s that evolved prior to the separation of gymnosperms and angiosperms. CYP79A118 from T. baccata has typical CYP79 properties and its substrate specificity and spatial gene expression pattern suggest that the enzyme contributes to the formation of taxiphyllin in this plant species.
Collapse
Affiliation(s)
- Katrin Luck
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Qidong Jia
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | - Meret Huber
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Vinzenz Handrick
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
- Present Address: John Innes Centre, Norwich Research Park, Colney Ln, Norwich, NR4 7UH UK
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9 Canada
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1 Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083 China
| | - David R. Nelson
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Feng Chen
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Tobias G. Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| |
Collapse
|
24
|
Østerberg JT, Xiang W, Olsen LI, Edenbrandt AK, Vedel SE, Christiansen A, Landes X, Andersen MM, Pagh P, Sandøe P, Nielsen J, Christensen SB, Thorsen BJ, Kappel K, Gamborg C, Palmgren M. Accelerating the Domestication of New Crops: Feasibility and Approaches. TRENDS IN PLANT SCIENCE 2017; 22:373-384. [PMID: 28262427 DOI: 10.1016/j.tplants.2017.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/09/2016] [Accepted: 01/16/2017] [Indexed: 05/19/2023]
Abstract
The domestication of new crops would promote agricultural diversity and could provide a solution to many of the problems associated with intensive agriculture. We suggest here that genome editing can be used as a new tool by breeders to accelerate the domestication of semi-domesticated or even wild plants, building a more varied foundation for the sustainable provision of food and fodder in the future. We examine the feasibility of such plants from biological, social, ethical, economic, and legal perspectives.
Collapse
Affiliation(s)
- Jeppe Thulin Østerberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Wen Xiang
- Center for Public Regulation and Administration, Faculty of Law, University of Copenhagen, Studiestræde 6, 1455 Copenhagen K, Denmark
| | - Lene Irene Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Anna Kristina Edenbrandt
- Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Suzanne Elizabeth Vedel
- Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Andreas Christiansen
- Department of Media, Cognition, and Communication, University of Copenhagen, Karen Blixens Vej 4, 2300 Copenhagen S, Denmark
| | - Xavier Landes
- Department of Media, Cognition, and Communication, University of Copenhagen, Karen Blixens Vej 4, 2300 Copenhagen S, Denmark
| | - Martin Marchman Andersen
- Department of Media, Cognition, and Communication, University of Copenhagen, Karen Blixens Vej 4, 2300 Copenhagen S, Denmark
| | - Peter Pagh
- Center for Public Regulation and Administration, Faculty of Law, University of Copenhagen, Studiestræde 6, 1455 Copenhagen K, Denmark
| | - Peter Sandøe
- Department of Large Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - John Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Østerbro, Denmark
| | - Søren Brøgger Christensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Østerbro, Denmark
| | - Bo Jellesmark Thorsen
- Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Klemens Kappel
- Department of Media, Cognition, and Communication, University of Copenhagen, Karen Blixens Vej 4, 2300 Copenhagen S, Denmark
| | - Christian Gamborg
- Department of Food and Resource Economics, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
25
|
Yamaguchi T, Kuwahara Y, Asano Y. A novel cytochrome P450, CYP3201B1, is involved in ( R)-mandelonitrile biosynthesis in a cyanogenic millipede. FEBS Open Bio 2017; 7:335-347. [PMID: 28286729 PMCID: PMC5337904 DOI: 10.1002/2211-5463.12170] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022] Open
Abstract
Specialized arthropods and more than 2500 plant species biosynthesize hydroxynitriles and release hydrogen cyanide as a defensive mechanism. The millipede Chamberlinius hualienensis accumulates (R)-mandelonitrile as a cyanide precursor. Although biosynthesis of hydroxynitriles in cyanogenic plants and in an insect are extensively studied, (R)-mandelonitrile biosynthesis in cyanogenic millipedes has remained unclear. In this study, we identified the biosynthetic precursors of (R)-mandelonitrile and an enzyme involved in (R)-mandelonitrile biosynthesis. Using deuterium-labelled compounds, we revealed that (E/Z)-phenylacetaldoxime and phenylacetonitrile are the biosynthetic precursors of (R)-mandelonitrile in the millipede as well as other cyanogenic organisms. To identify the enzymes involved in (R)-mandelonitrile biosynthesis, 50 cDNAs encoding cytochrome P450s were cloned and coexpressed with yeast cytochrome P450 reductase in yeast, as cytochrome P450s are involved in the biosynthesis of hydroxynitriles in other cyanogenic organisms. Among the 50 cytochrome P450s from the millipede, CYP3201B1 produced (R)-mandelonitrile from phenylacetonitrile but not from (E/Z)-phenylacetaldoxime, whereas plant and insect cytochrome P450s catalysed the dehydration of aldoximes and hydroxylation of nitriles. CYP3201B1 is not phylogenetically related to cytochrome P450s from other cyanogenic organisms, indicating that hydroxynitrile biosynthetic cytochrome P450s have independently evolved in distant species. Our study will shed light on the evolution of cyanogenesis among plants, insects and millipedes. DATABASE Nucleotide sequence data are available in the DDBJ/EMBL/GenBank databases under the accession numbers LC125356-LC125405.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Biotechnology Research Center and Department of BiotechnologyToyama Prefectural UniversityImizuJapan
- JSTERATOAsano Active Enzyme Molecule ProjectImizuJapan
| | - Yasumasa Kuwahara
- Biotechnology Research Center and Department of BiotechnologyToyama Prefectural UniversityImizuJapan
- JSTERATOAsano Active Enzyme Molecule ProjectImizuJapan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of BiotechnologyToyama Prefectural UniversityImizuJapan
- JSTERATOAsano Active Enzyme Molecule ProjectImizuJapan
| |
Collapse
|
26
|
Yin Q, Shen G, Chang Z, Tang Y, Gao H, Pang Y. Involvement of three putative glucosyltransferases from the UGT72 family in flavonol glucoside/rhamnoside biosynthesis in Lotus japonicus seeds. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:597-612. [PMID: 28204516 PMCID: PMC5444469 DOI: 10.1093/jxb/erw420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flavonols are one of the largest groups of flavonoids that confer benefits for the health of plants and animals. Flavonol glycosides are the predominant flavonoids present in the model legume Lotus japonicus. The molecular mechanisms underlying the biosynthesis of flavonol glycosides as yet remain unknown in L. japonicus. In the present study, we identified a total of 188 UDP-glycosyltransferases (UGTs) in L. japonicus by genome-wide searching. Notably, 12 UGTs from the UGT72 family were distributed widely among L. japonicus chromosomes, expressed in all tissues, and showed different docking scores in an in silico bioinformatics docking analysis. Further enzymatic assays showed that five recombinant UGTs (UGT72AD1, UGT72AF1, UGT72AH1, UGT72V3, and UGT72Z2) exhibit activity toward flavonol, flavone, and isoflavone aglycones. In particular, UGT72AD1, UGT72AH1, and UGT72Z2 are flavonol-specific UGTs with different kinetic properties. In addition, the overexpression of UGT72AD1 and UGT72Z2 led to increased accumulation of flavonol rhamnosides in L. japonicus and Arabidopsis thaliana. Moreover, the increase of kaempferol 3-O-rhamnoside-7-O-rhamnoside in transgenic A. thaliana inhibited root growth as compared with the wild-type control. These results highlight the significance of the UGT72 family in flavonol glycosylation and the role of flavonol rhamnosides in plant growth.
Collapse
Affiliation(s)
- Qinggang Yin
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoan Shen
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhenzhan Chang
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuhong Tang
- Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | - Hongwen Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongzhen Pang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Knoch E, Motawie MS, Olsen CE, Møller BL, Lyngkjaer MF. Biosynthesis of the leucine derived α-, β- and γ-hydroxynitrile glucosides in barley (Hordeum vulgare L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:247-256. [PMID: 27337134 DOI: 10.1111/tpj.13247] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 05/02/2023]
Abstract
Barley (Hordeum vulgare L.) produces five leucine-derived hydroxynitrile glucosides (HNGs), of which only epiheterodendrin is a cyanogenic glucoside. The four non-cyanogenic HNGs are the β-HNG epidermin and the γ-HNGs osmaronin, dihydroosmaronin and sutherlandin. By analyzing 247 spring barley lines including landraces and old and modern cultivars, we demonstrated that the HNG level varies notably between lines whereas the overall ratio between the compounds is constant. Based on sequence similarity to the sorghum (Sorghum bicolor) genes involved in dhurrin biosynthesis, we identified a gene cluster on barley chromosome 1 putatively harboring genes that encode enzymes in HNG biosynthesis. Candidate genes were functionally characterized by transient expression in Nicotiana benthamiana. Five multifunctional P450s, including two CYP79 family enzymes and three CYP71 family enzymes, and a single UDP-glucosyltransferase were found to catalyze the reactions required for biosynthesis of all five barley HNGs. Two of the CYP71 enzymes needed to be co-expressed for the last hydroxylation step in sutherlandin synthesis to proceed. This observation, together with the constant ratio between the different HNGs, suggested that HNG synthesis in barley is organized within a single multi-enzyme complex.
Collapse
Affiliation(s)
- Eva Knoch
- Department of Plant and Environmental Sciences, Plant Biochemistry Laboratory, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Mohammed Saddik Motawie
- Department of Plant and Environmental Sciences, Plant Biochemistry Laboratory, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, Plant Biochemistry Laboratory, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Department of Plant and Environmental Sciences, Plant Biochemistry Laboratory, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, Copenhagen V, 1799, Denmark
| | - Michael Foged Lyngkjaer
- Department of Plant and Environmental Sciences, Plant Biochemistry Laboratory, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Tiwari P, Sangwan RS, Sangwan NS. Plant secondary metabolism linked glycosyltransferases: An update on expanding knowledge and scopes. Biotechnol Adv 2016; 34:714-739. [PMID: 27131396 DOI: 10.1016/j.biotechadv.2016.03.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/06/2016] [Accepted: 03/19/2016] [Indexed: 02/04/2023]
Abstract
The multigene family of enzymes known as glycosyltransferases or popularly known as GTs catalyze the addition of carbohydrate moiety to a variety of synthetic as well as natural compounds. Glycosylation of plant secondary metabolites is an emerging area of research in drug designing and development. The unsurpassing complexity and diversity among natural products arising due to glycosylation type of alterations including glycodiversification and glycorandomization are emerging as the promising approaches in pharmacological studies. While, some GTs with broad spectrum of substrate specificity are promising candidates for glycoengineering while others with stringent specificity pose limitations in accepting molecules and performing catalysis. With the rising trends in diseases and the efficacy/potential of natural products in their treatment, glycosylation of plant secondary metabolites constitutes a key mechanism in biogeneration of their glycoconjugates possessing medicinal properties. The present review highlights the role of glycosyltransferases in plant secondary metabolism with an overview of their identification strategies, catalytic mechanism and structural studies on plant GTs. Furthermore, the article discusses the biotechnological and biomedical application of GTs ranging from detoxification of xenobiotics and hormone homeostasis to the synthesis of glycoconjugates and crop engineering. The future directions in glycosyltransferase research should focus on the synthesis of bioactive glycoconjugates via metabolic engineering and manipulation of enzyme's active site leading to improved/desirable catalytic properties. The multiple advantages of glycosylation in plant secondary metabolomics highlight the increasing significance of the GTs, and in near future, the enzyme superfamily may serve as promising path for progress in expanding drug targets for pharmacophore discovery and development.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India
| | - Rajender Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India; Center of Innovative and Applied Bioprocessing (CIAB), A National Institute under Department of Biotechnology, Government of India, C-127, Phase-8, Industrial Area, S.A.S. Nagar, Mohali 160071, Punjab, India
| | - Neelam S Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India.
| |
Collapse
|
29
|
Harvesting the biosynthetic machineries that cultivate a variety of indispensable plant natural products. Curr Opin Chem Biol 2016; 31:66-73. [PMID: 26851514 DOI: 10.1016/j.cbpa.2016.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/24/2023]
Abstract
Plants are a sustainable resource for valuable natural chemicals best illustrated by large-scale farming centered on specific products. Here, we review recent discoveries of plant metabolic pathways producing natural products with unconventional biomolecular structures. Prenylation of polyketides by aromatic prenyltransferases (aPTases) ties together two of the major groups of plant specialized chemicals, terpenoids and polyketides, providing a core modification leading to new bioactivities and downstream metabolic processing. Moreover, PTases that biosynthesize Z-terpenoid precursors for small molecules such as lycosantalene have recently been found in the tomato family. Gaps in our understanding of how economically important compounds such as cannabinoids are produced are being identified using next-generation 'omics' to rapidly advance biochemical breakthroughs at an unprecedented rate. For instance, olivetolic acid cyclase, a polyketide synthase (PKS) co-factor from Cannabis sativa, directs the proper cyclization of a polyketide intermediate. Elucidations of spatial and temporal arrangements of biosynthetic enzymes into metabolons, such as those used to control the efficient production of natural polymers such as rubber and defensive small molecules such as linamarin and lotaustralin, provide blueprints for engineering streamlined production of plant products.
Collapse
|
30
|
Blomstedt CK, O'Donnell NH, Bjarnholt N, Neale AD, Hamill JD, Møller BL, Gleadow RM. Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench). PLANT & CELL PHYSIOLOGY 2016; 57:373-86. [PMID: 26493517 DOI: 10.1093/pcp/pcv153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/12/2015] [Indexed: 05/03/2023]
Abstract
Many important food crops produce cyanogenic glucosides as natural defense compounds to protect against herbivory or pathogen attack. It has also been suggested that these nitrogen-based secondary metabolites act as storage reserves of nitrogen. In sorghum, three key genes, CYP79A1, CYP71E1 and UGT85B1, encode two Cytochrome P450s and a glycosyltransferase, respectively, the enzymes essential for synthesis of the cyanogenic glucoside dhurrin. Here, we report the use of targeted induced local lesions in genomes (TILLING) to identify a line with a mutation resulting in a premature stop codon in the N-terminal region of UGT85B1. Plants homozygous for this mutation do not produce dhurrin and are designated tcd2 (totally cyanide deficient 2) mutants. They have reduced vigor, being dwarfed, with poor root development and low fertility. Analysis using liquid chromatography-mass spectrometry (LC-MS) shows that tcd2 mutants accumulate numerous dhurrin pathway-derived metabolites, some of which are similar to those observed in transgenic Arabidopsis expressing the CYP79A1 and CYP71E1 genes. Our results demonstrate that UGT85B1 is essential for formation of dhurrin in sorghum with no co-expressed endogenous UDP-glucosyltransferases able to replace it. The tcd2 mutant suffers from self-intoxication because sorghum does not have a feedback mechanism to inhibit the initial steps of dhurrin biosynthesis when the glucosyltransferase activity required to complete the synthesis of dhurrin is lacking. The LC-MS analyses also revealed the presence of metabolites in the tcd2 mutant which have been suggested to be derived from dhurrin via endogenous pathways for nitrogen recovery, thus indicating which enzymes may be involved in such pathways.
Collapse
Affiliation(s)
- Cecilia K Blomstedt
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, 3800 Australia
| | - Natalie H O'Donnell
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, 3800 Australia Present address: Plant Health Australia, level 1, 1 Phipps Close, Deakin, 2600 Australia
| | - Nanna Bjarnholt
- Plant Biochemistry Laboratory and VILLUM research center for 'Plant Plasticity', Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Alan D Neale
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, 3800 Australia
| | - John D Hamill
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, 3800 Australia Present address: Centre for Regional and Rural Futures (CeRRF), Deakin University, 75 Pigdons Rd, Waurn Ponds, 3216, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory and VILLUM research center for 'Plant Plasticity', Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-1799 Copenhagen V, Denmark
| | - Roslyn M Gleadow
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, 3800 Australia
| |
Collapse
|
31
|
Hu M, Hu W, Xia Z, Zhou X, Wang W. Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR. FRONTIERS IN PLANT SCIENCE 2016. [PMID: 27242878 DOI: 10.3389/2016.00680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Reverse transcription quantitative real-time polymerase chain reaction (real-time PCR, also referred to as quantitative RT-PCR or RT-qPCR) is a highly sensitive and high-throughput method used to study gene expression. Despite the numerous advantages of RT-qPCR, its accuracy is strongly influenced by the stability of internal reference genes used for normalizations. To date, few studies on the identification of reference genes have been performed on cassava (Manihot esculenta Crantz). Therefore, we selected 26 candidate reference genes mainly via the three following channels: reference genes used in previous studies on cassava, the orthologs of the most stable Arabidopsis genes, and the sequences obtained from 32 cassava transcriptome sequence data. Then, we employed ABI 7900 HT and SYBR Green PCR mix to assess the expression of these genes in 21 materials obtained from various cassava samples under different developmental and environmental conditions. The stability of gene expression was analyzed using two statistical algorithms, namely geNorm and NormFinder. geNorm software suggests the combination of cassava4.1_017977 and cassava4.1_006391 as sufficient reference genes for major cassava samples, the union of cassava4.1_014335 and cassava4.1_006884 as best choice for drought stressed samples, and the association of cassava4.1_012496 and cassava4.1_006391 as optimal choice for normally grown samples. NormFinder software recommends cassava4.1_006884 or cassava4.1_006776 as superior reference for qPCR analysis of different materials and organs of drought stressed or normally grown cassava, respectively. Results provide an important resource for cassava reference genes under specific conditions. The limitations of these findings were also discussed. Furthermore, we suggested some strategies that may be used to select candidate reference genes.
Collapse
Affiliation(s)
- Meizhen Hu
- College of Agriculture, Hainan UniversityHaikou, China; The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of AgricultureHaikou, China
| | - Wenbin Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences Danzhou, China
| | - Zhiqiang Xia
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences Haikou, China
| | - Xincheng Zhou
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences Haikou, China
| | - Wenquan Wang
- College of Agriculture, Hainan UniversityHaikou, China; The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of AgricultureHaikou, China
| |
Collapse
|
32
|
Hu M, Hu W, Xia Z, Zhou X, Wang W. Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR. FRONTIERS IN PLANT SCIENCE 2016; 7:680. [PMID: 27242878 PMCID: PMC4871855 DOI: 10.3389/fpls.2016.00680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/02/2016] [Indexed: 05/11/2023]
Abstract
Reverse transcription quantitative real-time polymerase chain reaction (real-time PCR, also referred to as quantitative RT-PCR or RT-qPCR) is a highly sensitive and high-throughput method used to study gene expression. Despite the numerous advantages of RT-qPCR, its accuracy is strongly influenced by the stability of internal reference genes used for normalizations. To date, few studies on the identification of reference genes have been performed on cassava (Manihot esculenta Crantz). Therefore, we selected 26 candidate reference genes mainly via the three following channels: reference genes used in previous studies on cassava, the orthologs of the most stable Arabidopsis genes, and the sequences obtained from 32 cassava transcriptome sequence data. Then, we employed ABI 7900 HT and SYBR Green PCR mix to assess the expression of these genes in 21 materials obtained from various cassava samples under different developmental and environmental conditions. The stability of gene expression was analyzed using two statistical algorithms, namely geNorm and NormFinder. geNorm software suggests the combination of cassava4.1_017977 and cassava4.1_006391 as sufficient reference genes for major cassava samples, the union of cassava4.1_014335 and cassava4.1_006884 as best choice for drought stressed samples, and the association of cassava4.1_012496 and cassava4.1_006391 as optimal choice for normally grown samples. NormFinder software recommends cassava4.1_006884 or cassava4.1_006776 as superior reference for qPCR analysis of different materials and organs of drought stressed or normally grown cassava, respectively. Results provide an important resource for cassava reference genes under specific conditions. The limitations of these findings were also discussed. Furthermore, we suggested some strategies that may be used to select candidate reference genes.
Collapse
Affiliation(s)
- Meizhen Hu
- College of Agriculture, Hainan UniversityHaikou, China
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of AgricultureHaikou, China
| | - Wenbin Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
| | - Zhiqiang Xia
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xincheng Zhou
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Wenquan Wang
- College of Agriculture, Hainan UniversityHaikou, China
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of AgricultureHaikou, China
- *Correspondence: Wenquan Wang,
| |
Collapse
|
33
|
Sasaki K, Takase H, Kobayashi H, Matsuo H, Takata R. Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from grapevine cultivar Muscat Bailey A (Vitis labrusca × V. vinifera). JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6167-6174. [PMID: 26160581 DOI: 10.1093/jxb/erv335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
2,5-Dimethyl-4-hydroxy-3(2H)-furanone (furaneol) is an important aroma compound in fruits, such as pineapple and strawberry, and is reported to contribute to the strawberry-like note in some wines. Several grapevine species are used in winemaking, and furaneol is one of the characteristic aroma compounds in wines made from American grape (Vitis labrusca) and its hybrid grape. Furaneol glucoside was recently isolated as an important furaneol derivative from the hybrid grapevine cultivar, Muscat Bailey A (V. labrusca × V. vinifera), and this was followed by its isolation from some fruits such as strawberry and tomato. Furaneol glucoside is a significant 'aroma precursor of wine' because furaneol is liberated from it during alcoholic fermentation. In this study, a glucosyltransferase gene from Muscat Bailey A (UGT85K14), which is responsible for the glucosylation of furaneol was identified. UGT85K14 was expressed in the representative grape cultivars regardless of species, indicating that furaneol glucoside content is regulated by the biosynthesis of furaneol. On the other hand, furaneol glucoside content in Muscat Bailey A berry during maturation might be controlled by the expression of UGT85K14 along with the biosynthesis of furaneol. Recombinant UGT85K14 expressed in Escherichia coli is able to transfer a glucose moiety from UDP-glucose to the hydroxy group of furaneol, indicating that this gene might be UDP-glucose: furaneol glucosyltransferase in Muscat Bailey A.
Collapse
Affiliation(s)
- Kanako Sasaki
- Laboratory, New Product & Process Developments, Mercian Corporation, 4-9-1 Johnan, Fujisawa, Kanagawa 251-0057, Japan
| | - Hideki Takase
- Laboratory, New Product & Process Developments, Mercian Corporation, 4-9-1 Johnan, Fujisawa, Kanagawa 251-0057, Japan
| | - Hironori Kobayashi
- Château Mercian,1425-1 Shimoiwasaki, Katsunuma, Koshu, Yamanashi 409-1313, Japan
| | - Hironori Matsuo
- Château Mercian,1425-1 Shimoiwasaki, Katsunuma, Koshu, Yamanashi 409-1313, Japan
| | - Ryoji Takata
- Laboratory, New Product & Process Developments, Mercian Corporation, 4-9-1 Johnan, Fujisawa, Kanagawa 251-0057, Japan
| |
Collapse
|
34
|
Dalisay DS, Kim KW, Lee C, Yang H, Rübel O, Bowen BP, Davin LB, Lewis NG. Dirigent Protein-Mediated Lignan and Cyanogenic Glucoside Formation in Flax Seed: Integrated Omics and MALDI Mass Spectrometry Imaging. JOURNAL OF NATURAL PRODUCTS 2015; 78:1231-42. [PMID: 25981198 DOI: 10.1021/acs.jnatprod.5b00023] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An integrated omics approach using genomics, transcriptomics, metabolomics (MALDI mass spectrometry imaging, MSI), and bioinformatics was employed to study spatiotemporal formation and deposition of health-protecting polymeric lignans and plant defense cyanogenic glucosides. Intact flax (Linum usitatissimum) capsules and seed tissues at different development stages were analyzed. Transcriptome analyses indicated distinct expression patterns of dirigent protein (DP) gene family members encoding (-)- and (+)-pinoresinol-forming DPs and their associated downstream metabolic processes, respectively, with the former expressed at early seed coat development stages. Genes encoding (+)-pinoresinol-forming DPs were, in contrast, expressed at later development stages. Recombinant DP expression and DP assays also unequivocally established their distinct stereoselective biochemical functions. Using MALDI MSI and ion mobility separation analyses, the pinoresinol downstream derivatives, secoisolariciresinol diglucoside (SDG) and SDG hydroxymethylglutaryl ester, were localized and detectable only in early seed coat development stages. SDG derivatives were then converted into higher molecular weight phenolics during seed coat maturation. By contrast, the plant defense cyanogenic glucosides, the monoglucosides linamarin/lotaustralin, were detected throughout the flax capsule, whereas diglucosides linustatin/neolinustatin only accumulated in endosperm and embryo tissues. A putative biosynthetic pathway to the cyanogens is proposed on the basis of transcriptome coexpression data. Localization of all metabolites was at ca. 20 μm resolution, with the web based tool OpenMSI enabling not only resolution enhancement but also an interactive system for real-time searching for any ion in the tissue under analysis.
Collapse
Affiliation(s)
- Doralyn S Dalisay
- †Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Kye Won Kim
- †Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Choonseok Lee
- †Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Hong Yang
- †Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Oliver Rübel
- ‡Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| | - Benjamin P Bowen
- §Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| | - Laurence B Davin
- †Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Norman G Lewis
- †Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| |
Collapse
|
35
|
A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochem J 2015. [PMID: 26205491 DOI: 10.1042/bj20150390] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyanogenic glycosides are phytoanticipins involved in plant defence against herbivores by virtue of their ability to release toxic hydrogen cyanide (HCN) upon tissue disruption. In addition, endogenous turnover of cyanogenic glycosides without the liberation of HCN may offer plants an important source of reduced nitrogen at specific developmental stages. To investigate the presence of putative turnover products of cyanogenic glycosides, comparative metabolic profiling using LC-MS/MS and high resolution MS (HR-MS) complemented by ion-mobility MS was carried out in three cyanogenic plant species: cassava, almond and sorghum. In total, the endogenous formation of 36 different chemical structures related to the cyanogenic glucosides linamarin, lotaustralin, prunasin, amygdalin and dhurrin was discovered, including di- and tri-glycosides derived from these compounds. The relative abundance of the compounds was assessed in different tissues and developmental stages. Based on results common to the three phylogenetically unrelated species, a potential recycling endogenous turnover pathway for cyanogenic glycosides is described in which reduced nitrogen and carbon are recovered for primary metabolism without the liberation of free HCN. Glycosides of amides, carboxylic acids and 'anitriles' derived from cyanogenic glycosides appear as common intermediates in this pathway and may also have individual functions in the plant. The recycling of cyanogenic glycosides and the biological significance of the presence of the turnover products in cyanogenic plants open entirely new insights into the multiplicity of biological roles cyanogenic glycosides may play in plants.
Collapse
|
36
|
Ahrazem O, Rubio-Moraga A, Trapero-Mozos A, Climent MFL, Gómez-Cadenas A, Gómez-Gómez L. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:60-73. [PMID: 25804810 DOI: 10.1016/j.plantsci.2015.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 05/03/2023]
Abstract
Glycosyltransferases play diverse roles in cellular metabolism by modifying the activities of regulatory metabolites. Three stress-regulated UDP-glucosyltransferase-encoding genes have been isolated from the stigmas of saffron, UGT85U1, UGT85U2 and UGT85V1, which belong to the UGT85 family that includes members associated with stress responses and cell cycle regulation. Arabidopsis constitutively expressing UGT85U1 exhibited and increased anchor root development. No differences were observed in the timing of root emergence, in leaf, stem and flower morphology or flowering time. However, salt and oxidative stress tolerance was enhanced in these plants. Levels of glycosylated compounds were measured in these plants and showed changes in the composition of several indole-derivatives. Moreover, auxin levels in the roots were higher compared to wild type. The expression of several key genes related to root development and auxin homeostasis, including CDKB2.1, CDKB2.2, PIN2, 3 and 4; TIR1, SHR, and CYCD6, were differentially regulated with an increase of expression level of SHR, CYCD6, CDKB2.1 and PIN2. The obtained results showed that UGT85U1 takes part in root growth regulation via auxin signal alteration and the modified expression of cell cycle-related genes, resulting in significantly improved survival during oxidative and salt stress treatments.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Fundación Parque Científico y Tecnológico de Albacete, Spain
| | - Angela Rubio-Moraga
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Almudena Trapero-Mozos
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | | | - Aurelio Gómez-Cadenas
- Universitat Jaume I, Department of Agricultural and Environmental Sciences, 12071 Castelló de la Plana, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| |
Collapse
|
37
|
Zhao P, Liu P, Shao J, Li C, Wang B, Guo X, Yan B, Xia Y, Peng M. Analysis of different strategies adapted by two cassava cultivars in response to drought stress: ensuring survival or continuing growth. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1477-88. [PMID: 25547914 PMCID: PMC4438449 DOI: 10.1093/jxb/eru507] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cassava is one of the most drought-tolerant crops, however, the underlying mechanism for its ability to survive and produce under drought remains obscure. In this study, two cassava cultivars, SC124 and Arg7, were treated by gradually reducing the soil water content. Their responses to the drought stress were examined through their morphological and physiological traits and isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis. SC124 plants adapted a 'survival' mode under mild drought stress as evidenced by early stomatal closure and a reduction in the levels of various photosynthetic proteins and photosynthetic capacity, resulting in early growth quiescence. In contrast, Arg7 plants underwent senescence of older leaves but continued to grow, although at a reduced rate, under mild drought. SC124 plants were more capable of surviving prolonged severe drought than Arg7. The iTRAQ analysis identified over 5000 cassava proteins. Among the drought-responsive proteins identified in the study were an aquaporin, myo-inositol 1-phosphate synthases, and a number of proteins involved in the antioxidant systems and secondary metabolism. Many proteins that might play a role in signalling or gene regulation were also identified as drought-responsive proteins, which included several protein kinases, two 14-3-3 proteins, several RNA-binding proteins and transcription factors, and two histone deacetylases. Our study also supports the notion that linamarin might play a role in nitrogen reallocation in cassava under drought.
Collapse
Affiliation(s)
- Pingjuan Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China College of Agronomy, Hainan University, Haikou, PR China
| | - Pei Liu
- Department of Biology, Hong Kong Baptist University, Hong Kong, PR China
| | - Jiaofang Shao
- Department of Biology, Hong Kong Baptist University, Hong Kong, PR China
| | - Chunqiang Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Bin Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Xin Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Bin Yan
- Department of Biology, Hong Kong Baptist University, Hong Kong, PR China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, PR China Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, PR China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| |
Collapse
|
38
|
Uchechukwu-Agua AD, Caleb OJ, Opara UL. Postharvest Handling and Storage of Fresh Cassava Root and Products: a Review. FOOD BIOPROCESS TECH 2015. [DOI: 10.1007/s11947-015-1478-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Laursen T, Møller BL, Bassard JE. Plasticity of specialized metabolism as mediated by dynamic metabolons. TRENDS IN PLANT SCIENCE 2015; 20:20-32. [PMID: 25435320 DOI: 10.1016/j.tplants.2014.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/24/2014] [Accepted: 11/07/2014] [Indexed: 05/02/2023]
Abstract
The formation of specialized metabolites enables plants to respond to biotic and abiotic stresses, but requires the sequential action of multiple enzymes. To facilitate swift production and to avoid leakage of potentially toxic and labile intermediates, many of the biosynthetic pathways are thought to organize in multienzyme clusters termed metabolons. Dynamic assembly and disassembly enable the plant to rapidly switch the product profile and thereby prioritize its resources. The lifetime of metabolons is largely unknown mainly due to technological limitations. This review focuses on the factors that facilitate and stimulate the dynamic assembly of metabolons, including microenvironments, noncatalytic proteins, and allosteric regulation. Understanding how plants organize carbon fluxes within their metabolic grids would enable targeted bioengineering of high-value specialized metabolites.
Collapse
Affiliation(s)
- Tomas Laursen
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark; Carlsberg Laboratory, 10 Gamle Carlsberg Vej, DK-1799 Copenhagen V, Denmark.
| | - Jean-Etienne Bassard
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
40
|
Wang W, Feng B, Xiao J, Xia Z, Zhou X, Li P, Zhang W, Wang Y, Møller BL, Zhang P, Luo MC, Xiao G, Liu J, Yang J, Chen S, Rabinowicz PD, Chen X, Zhang HB, Ceballos H, Lou Q, Zou M, Carvalho LJCB, Zeng C, Xia J, Sun S, Fu Y, Wang H, Lu C, Ruan M, Zhou S, Wu Z, Liu H, Kannangara RM, Jørgensen K, Neale RL, Bonde M, Heinz N, Zhu W, Wang S, Zhang Y, Pan K, Wen M, Ma PA, Li Z, Hu M, Liao W, Hu W, Zhang S, Pei J, Guo A, Guo J, Zhang J, Zhang Z, Ye J, Ou W, Ma Y, Liu X, Tallon LJ, Galens K, Ott S, Huang J, Xue J, An F, Yao Q, Lu X, Fregene M, López-Lavalle LAB, Wu J, You FM, Chen M, Hu S, Wu G, Zhong S, Ling P, Chen Y, Wang Q, Liu G, Liu B, Li K, Peng M. Cassava genome from a wild ancestor to cultivated varieties. Nat Commun 2014; 5:5110. [PMID: 25300236 PMCID: PMC4214410 DOI: 10.1038/ncomms6110] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology.
Collapse
Affiliation(s)
- Wenquan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Binxiao Feng
- 1] Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China [2] Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Jingfa Xiao
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Zhiqiang Xia
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Xincheng Zhou
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Pinghua Li
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Weixiong Zhang
- 1] Department of Computer Science and Engineering and Department of Genetics, Washington University, Saint Louis, Missouri 63130, USA [2] Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Ying Wang
- South China Botanical Garden, CAS, Guangzhou 510650, China
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Peng Zhang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences of CAS, Shanghai 200032, China
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Gong Xiao
- South China Botanical Garden, CAS, Guangzhou 510650, China
| | - Jingxing Liu
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Jun Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences of CAS, Shanghai 200032, China
| | - Songbi Chen
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Pablo D Rabinowicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Xin Chen
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Hong-Bin Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Henan Ceballos
- International Center for Tropical Agriculture (CIAT), Cali 6713, Colombia
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiling Zou
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Luiz J C B Carvalho
- Brazilian Enterprise for Agricultural Research (EMBRAPA), Genetic Resources and Biotechnology, Brasilia 70770, Brazil
| | - Changying Zeng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Jing Xia
- 1] Department of Computer Science and Engineering and Department of Genetics, Washington University, Saint Louis, Missouri 63130, USA [2] Institute for Systems Biology, Jianghan University, Wuhan 430056, China
| | - Shixiang Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yuhua Fu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Haiyan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Cheng Lu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Mengbin Ruan
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Shuigeng Zhou
- Shanghai Key Lab of Intelligent Information Processing, and School of Computer Science, Fudan University, Shanghai 200433, China
| | - Zhicheng Wu
- Shanghai Key Lab of Intelligent Information Processing, and School of Computer Science, Fudan University, Shanghai 200433, China
| | - Hui Liu
- Shanghai Key Lab of Intelligent Information Processing, and School of Computer Science, Fudan University, Shanghai 200433, China
| | - Rubini Maya Kannangara
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Kirsten Jørgensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Rebecca Louise Neale
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Maya Bonde
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Nanna Heinz
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Wenli Zhu
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Shujuan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Yang Zhang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Kun Pan
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Mingfu Wen
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Ping-An Ma
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Zhengxu Li
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Meizhen Hu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Wenbin Liao
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Wenbin Hu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Shengkui Zhang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Jinli Pei
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Anping Guo
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Jianchun Guo
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Jiaming Zhang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Zhengwen Zhang
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Jianqiu Ye
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Wenjun Ou
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Yaqin Ma
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Xinyue Liu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Luke J Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Kevin Galens
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Sandra Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jie Huang
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Jingjing Xue
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Feifei An
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Qingqun Yao
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Xiaojing Lu
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Martin Fregene
- International Center for Tropical Agriculture (CIAT), Cali 6713, Colombia
| | | | - Jiajie Wu
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Frank M You
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Meili Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Songnian Hu
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Guojiang Wu
- South China Botanical Garden, CAS, Guangzhou 510650, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Peng Ling
- Citrus Research and Education Center (CREC), University of Florida, Gainesville, Florida 32611, USA
| | - Yeyuan Chen
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Qinghuang Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| | - Guodao Liu
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Bin Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Biogeography and Bioresources in Arid Land, Center of Systematic Genomics, Xinjiang Institute of Ecology and Geography, Urumqi 830011, China
| | - Kaimian Li
- Tropical Crop Genetic Resources Institute, CATAS, Danzhou 571700, China
| | - Ming Peng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China
| |
Collapse
|
41
|
Yamaguchi T, Yamamoto K, Asano Y. Identification and characterization of CYP79D16 and CYP71AN24 catalyzing the first and second steps in L-phenylalanine-derived cyanogenic glycoside biosynthesis in the Japanese apricot, Prunus mume Sieb. et Zucc. PLANT MOLECULAR BIOLOGY 2014; 86:215-23. [PMID: 25015725 DOI: 10.1007/s11103-014-0225-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/04/2014] [Indexed: 05/21/2023]
Abstract
Japanese apricot, Prunus mume Sieb. et Zucc., belonging to the Rosaceae family, produces as defensive agents the cyanogenic glycosides prunasin and amygdalin, which are presumably derived from L-phenylalanine. In this study, we identified and characterized cytochrome P450s catalyzing the conversion of L-phenylalanine into mandelonitrile via phenylacetaldoxime. Full-length cDNAs encoding CYP79D16, CYP79A68, CYP71AN24, CYP71AP13, CYP71AU50, and CYP736A117 were cloned from P. mume ‘Nanko’ using publicly available P. mume RNA-sequencing data, followed by 5′- and 3′-RACE. CYP79D16 was expressed in seedlings, whereas CYP71AN24 was expressed in seedlings and leaves. Enzyme activity of these cytochrome P450s expressed in Saccharomyces cerevisiae was evaluated by liquid and gas chromatography–mass spectrometry. CYP79D16, but not CYP79A68, catalyzed the conversion of L-phenylalanine into phenylacetaldoxime. CYP79D16 showed no activity toward other amino acids. CYP71AN24, but not CYP71AP13, CYP71AU50, and CYP736A117, catalyzed the conversion of phenylacetaldoxime into mandelonitrile. CYP71AN24 also showed lower conversions of various aromatic aldoximes and nitriles. The K m value and turnover rate of CYP71AN24 for phenylacetaldoxime were 3.9 µM and 46.3 min(−1), respectively. The K m value and turnover of CYP71AN24 may cause the efficient metabolism of phenylacetaldoxime, avoiding the release of the toxic intermediate to the cytosol. These results suggest that cyanogenic glycoside biosynthesis in P. mume is regulated in concert with catalysis by CYP79D16 in the parental and sequential reaction of CYP71AN24 in the seedling.
Collapse
|
42
|
Gleadow RM, Møller BL. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:155-85. [PMID: 24579992 DOI: 10.1146/annurev-arplant-050213-040027] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cyanogenic glycosides (CNglcs) are bioactive plant products derived from amino acids. Structurally, these specialized plant compounds are characterized as α-hydroxynitriles (cyanohydrins) that are stabilized by glucosylation. In recent years, improved tools within analytical chemistry have greatly increased the number of known CNglcs by enabling the discovery of less abundant CNglcs formed by additional hydroxylation, glycosylation, and acylation reactions. Cyanogenesis--the release of toxic hydrogen cyanide from endogenous CNglcs--is an effective defense against generalist herbivores but less effective against fungal pathogens. In the course of evolution, CNglcs have acquired additional roles to improve plant plasticity, i.e., establishment, robustness, and viability in response to environmental challenges. CNglc concentration is usually higher in young plants, when nitrogen is in ready supply, or when growth is constrained by nonoptimal growth conditions. Efforts are under way to engineer CNglcs into some crops as a pest control measure, whereas in other crops efforts are directed toward their removal to improve food safety. Given that many food crops are cyanogenic, it is important to understand the molecular mechanisms regulating cyanogenesis so that the impact of future environmental challenges can be anticipated.
Collapse
Affiliation(s)
- Roslyn M Gleadow
- School of Biological Sciences, Monash University, 3800 Victoria, Australia;
| | | |
Collapse
|
43
|
Thuan NH, Sohng JK. Recent biotechnological progress in enzymatic synthesis of glycosides. J Ind Microbiol Biotechnol 2013; 40:1329-56. [PMID: 24005992 DOI: 10.1007/s10295-013-1332-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
Glycosylation is one of the most important post-modification processes of small molecules and enables the parent molecule to have increased solubility, stability, and bioactivity. Enzyme-based glycosylation has achieved significant progress due to advances in protein engineering, DNA recombinant techniques, exploitation of biosynthetic gene clusters of natural products, and computer-based modeling programs. Our report summarizes glycosylation data that have been published within the past five years to provide an overall review of current progress. We also present the future trends and perspectives for glycosylation.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, #100, Kalsan-ri, Tangjeong-myeon, Asan-si, Chungnam, 336-708, Republic of Korea
| | | |
Collapse
|
44
|
Nielsen AZ, Ziersen B, Jensen K, Lassen LM, Olsen CE, Møller BL, Jensen PE. Redirecting photosynthetic reducing power toward bioactive natural product synthesis. ACS Synth Biol 2013; 2:308-15. [PMID: 23654276 DOI: 10.1021/sb300128r] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In addition to the products of photosynthesis, the chloroplast provides the energy and carbon building blocks required for synthesis of a wealth of bioactive natural products of which many have potential uses as pharmaceuticals. In the course of plant evolution, energy generation and biosynthetic capacities have been compartmentalized. Chloroplast photosynthesis provides ATP and NADPH as well as carbon sources for primary metabolism. Cytochrome P450 monooxygenases (P450s) in the endoplasmic reticulum (ER) synthesize a wide spectrum of bioactive natural products, powered by single electron transfers from NADPH. P450s are present in low amounts, and the reactions proceed relatively slowly due to limiting concentrations of NADPH. Here we demonstrate that it is possible to break the evolutionary compartmentalization of energy generation and P450-catalyzed biosynthesis, by relocating an entire P450-dependent pathway to the chloroplast and driving the pathway by direct use of the reducing power generated by photosystem I in a light-dependent manner. The study demonstrates the potential of transferring pathways for structurally complex high-value natural products to the chloroplast and directly tapping into the reducing power generated by photosynthesis to drive the P450s using water as the primary electron donor.
Collapse
Affiliation(s)
- Agnieszka Zygadlo Nielsen
- Center for Synthetic Biology and Villum Research Centre "Pro-Active Plants", †Section for Molecular Plant Biology, ‡Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen , Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
45
|
Shuai P, Liang D, Zhang Z, Yin W, Xia X. Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genomics 2013; 14:233. [PMID: 23570526 PMCID: PMC3630063 DOI: 10.1186/1471-2164-14-233] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 03/27/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous small RNAs (sRNAs) with a wide range of regulatory functions in plant development and stress responses. Although miRNAs associated with plant drought stress tolerance have been studied, the use of high-throughput sequencing can provide a much deeper understanding of miRNAs. Drought is a common stress that limits the growth of plants. To obtain more insight into the role of miRNAs in drought stress, Illumina sequencing of Populus trichocarpa sRNAs was implemented. RESULTS Two sRNA libraries were constructed by sequencing data of control and drought stress treatments of poplar leaves. In total, 207 P. trichocarpa conserved miRNAs were detected from the two sRNA libraries. In addition, 274 potential candidate miRNAs were found; among them, 65 candidates with star sequences were chosen as novel miRNAs. The expression of nine conserved miRNA and three novel miRNAs showed notable changes in response to drought stress. This was also confirmed by quantitative real time polymerase chain reaction experiments. To confirm the targets of miRNAs experimentally, two degradome libraries from the two treatments were constructed. According to degradome sequencing results, 53 and 19 genes were identified as targets of conserved and new miRNAs, respectively. Functional analysis of these miRNA targets indicated that they are involved in important activities such as the regulation of transcription factors, the stress response, and lipid metabolism. CONCLUSIONS We discovered five upregulated miRNAs and seven downregulated miRNAs in response to drought stress. A total of 72 related target genes were detected by degradome sequencing. These findings reveal important information about the regulation mechanism of miRNAs in P. trichocarpa and promote the understanding of miRNA functions during the drought response.
Collapse
Affiliation(s)
- Peng Shuai
- College of Biological Sciences and Biotechnology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing 100083, P.R. China
| | - Dan Liang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing 100083, P.R. China
| | - Zhoujia Zhang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing 100083, P.R. China
| | - Weilun Yin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing 100083, P.R. China
| | - Xinli Xia
- College of Biological Sciences and Biotechnology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing 100083, P.R. China
| |
Collapse
|
46
|
Saito S, Motawia MS, Olsen CE, Møller BL, Bak S. Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile. PHYTOCHEMISTRY 2012; 77:260-7. [PMID: 22385904 DOI: 10.1016/j.phytochem.2012.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 12/29/2011] [Accepted: 01/24/2012] [Indexed: 05/22/2023]
Abstract
Lotus japonicus contains the two cyanogenic glucosides, linamarin and lotaustralin, and the non cyanogenic hydroxynitriles, rhodiocyanoside A and D, with rhodiocyanoside A as the major rhodiocyanoside. Rhodiocyanosides are structurally related to cyanogenic glucosides but are not cyanogenic. In vitro administration of intermediates of the lotaustralin pathway to microsomes prepared from selected L. japonicus accessions identified 2-methyl-2-butenenitrile as an intermediate in the rhodiocyanoside biosynthetic pathway. In vitro inhibitory studies with carbon monoxide and tetcyclacis indicate that the conversion of (Z)-2-methylbutanal oxime to 2-methyl-2-butenenitrile is catalyzed by cytochrome P450(s). Carbon monoxide inhibited cyanogenic glucosides as well as rhodiocyanosides synthesis, but inhibition of the latter pathway was much stronger. These results demonstrate that the cyanogenic glucoside and rhodiocyanosides pathways share CYP79Ds to obtain (Z)-2-methylbutanaloxime from l-isoleucine, whereas the subsequent conversions are catalyzed by different P450s. The aglycon of rhodiocyanoside A forms the cyclic product 3-methyl-2(5H)-furanone. Furanones are known to possess antimicrobial properties indicating that rhodiocyanoside A may have evolved to serve as a phytoanticipin that following β-glucosidase activation and cyclization of the aglycone formed, give rise to a potent defense compound.
Collapse
Affiliation(s)
- Shigeki Saito
- Plant Biochemistry Laboratory, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
47
|
Frisch T, Møller BL. Possible evolution of alliarinoside biosynthesis from the glucosinolate pathway in Alliaria petiolata. FEBS J 2012; 279:1545-62. [PMID: 22212644 DOI: 10.1111/j.1742-4658.2011.08469.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrile formation in plants involves the activity of cytochrome P450s. Hydroxynitrile glucosides are widespread among plants but generally do not occur in glucosinolate producing species. Alliaria petiolata (garlic mustard, Brassicaceae) is the only species known to produce glucosinolates as well as a γ-hydroxynitrile glucoside. Furthermore, A. petiolata has been described to release diffusible cyanide, which indicates the presence of unidentified cyanogenic glucoside(s). Our research on A. petiolata addresses the molecular evolution of P450s. By integrating current knowledge about glucosinolate and hydroxynitrile glucoside biosynthesis in other species and new visions on recurrent evolution of hydroxynitrile glucoside biosynthesis, we propose a pathway for biosynthesis of the γ-hydroxynitrile glucoside, alliarinoside. Homomethionine and the corresponding oxime are suggested as shared intermediates in the biosynthesis of alliarinoside and 2-propenyl glucosinolate. The first committed step in the alliarinoside pathway is envisioned to be catalysed by a P450, which has been recruited to metabolize the oxime. Furthermore, alliarinoside biosynthesis is suggested to involve enzyme activities common to secondary modification of glucosinolates. Thus, we argue that biosynthesis of alliarinoside may be the first known case of a hydroxynitrile glucoside pathway having evolved from the glucosinolate pathway. An intriguing question is whether the proposed hydroxynitrile intermediate may also be converted to novel homomethionine-derived cyanogenic glucoside(s), which could release cyanide. Elucidation of the pathway for biosynthesis of alliarinoside and other putative hydroxynitrile glucosides in A. petiolata is envisioned to offer significant new knowledge on the emerging picture of P450 functional dynamics as a basis for recurrent evolution of pathways for bioactive natural product biosynthesis.
Collapse
Affiliation(s)
- Tina Frisch
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
48
|
Takos AM, Knudsen C, Lai D, Kannangara R, Mikkelsen L, Motawia MS, Olsen CE, Sato S, Tabata S, Jørgensen K, Møller BL, Rook F. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:273-86. [PMID: 21707799 DOI: 10.1111/j.1365-313x.2011.04685.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascular plants. Their hydrolysis by specific β-glucosidases following tissue damage results in the release of hydrogen cyanide. The cyanogenesis deficient1 (cyd1) mutant of Lotus japonicus carries a partial deletion of the CYP79D3 gene, which encodes a cytochrome P450 enzyme that is responsible for the first step in cyanogenic glucoside biosynthesis. The genomic region surrounding CYP79D3 contains genes encoding the CYP736A2 protein and the UDP-glycosyltransferase UGT85K3. In combination with CYP79D3, these genes encode the enzymes that constitute the entire pathway for cyanogenic glucoside biosynthesis. The biosynthetic genes for cyanogenic glucoside biosynthesis are also co-localized in cassava (Manihot esculenta) and sorghum (Sorghum bicolor), but the three gene clusters show no other similarities. Although the individual enzymes encoded by the biosynthetic genes in these three plant species are related, they are not necessarily orthologous. The independent evolution of cyanogenic glucoside biosynthesis in several higher plant lineages by the repeated recruitment of members from similar gene families, such as the CYP79s, is a likely scenario.
Collapse
Affiliation(s)
- Adam M Takos
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|