1
|
Aguila AMA, Boonnak K, Tongthainan D, Reamtong O, Suthisawat S, Likhit O, Fungfuang W, Hii J, Sriwichai P. Prevalence of culicine salivary antibodies in non-human primates living in national parks in Thailand. MEDICAL AND VETERINARY ENTOMOLOGY 2024. [PMID: 39585182 DOI: 10.1111/mve.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
Macaques are widely distributed in Thailand with remarkable adaptation to living close to humans in residential, religious sites, markets and tourist areas. They play an essential role in the persistence of pathogens in the environment. As reservoir hosts, they are exposed to hematophagous vectors that secrete saliva, a cocktail of bioactive molecules including antigenic components stimulating host antibody production. Subsequent to the detection of mosquito-borne pathogens in macaques living in national parks, we aimed to determine the seroprevalence of antibodies to crude salivary gland extracts (SGEs) from culicine mosquitoes (Aedes aegypti [Linnaeus, 1762], Ae. albopictus [Skuse, 1895] and Culex quinquefasciatus [Say, 1823]) and compare individual titres between macaque species/national parks (33, Macaca arctoides [I. Geoffroy Saint-Hilaire, 1831] [Primates: Cercopithecidae] from Kaeng Krachan, 23 M. leonina leonina [Blyth, 1863] [Primates: Cercopithecidae] from Khao Yai and four M. fascicularis [Raffles, 1821] [Primates: Cercopithecidae] from Mu Ko Ranong). The anti-mosquito SGE antibodies found in 60 macaques from three national parks indicate varying levels of host-vector exposure. Macaque antibody titres were high against culicine mosquitoes. However, the significant difference among national parks (or macaque species) was only observed against Cx. quinquefasciatus. Correlation analysis of titres between Aedes SGE and arboviruses revealed a significantly more intense immune response against Ae. albopictus in DENV3-positive M. arctoides. Current findings support the concept of salivary biomarkers using accessible SGE, available from mosquito colonies of interest. However, we observed cross-reactivity between Aedes species because of crude SGE containing species-shared proteins. Nevertheless, a potential risk of pathogen transmission is emphasised between national park visitors and macaques via mosquitoes as bridge vectors. This information contributes to preventive measures against mosquito bites, including those implemented in tourist areas.
Collapse
Affiliation(s)
- Ariza Minelle A Aguila
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Chonburi, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sarocha Suthisawat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Oranit Likhit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wirasak Fungfuang
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Jeffrey Hii
- College of Public Health, Medical and Veterinary Sciences, James Cook University, North Queensland, Queensland, Australia
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Nguetsa GC, Elanga-Ndille E, Essangui Same EG, Nganso Keptchouang T, Mandeng SE, Ekoko Eyisap W, Binyang JA, Fogang B, Nouage L, Piameu M, Ayong L, Etang J, Wanji S, Eboumbou Moukoko CE. Utility of plasma anti-gSG6-P1 IgG levels in determining changes in Anopheles gambiae bite rates in a rural area of Cameroon. Sci Rep 2024; 14:14294. [PMID: 38906949 PMCID: PMC11192751 DOI: 10.1038/s41598-024-58337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/27/2024] [Indexed: 06/23/2024] Open
Abstract
The applicability of the specific human IgG antibody response to Anopheles gambiae salivary Gland Protein-6 peptide 1 (gSG6-P1 salivary peptide) as a biomarker able to distinguish the level of exposure to mosquito bites according to seasonal variations has not yet been evaluated in Central African regions. The study aimed to provide the first reliable data on the IgG anti-gSG6-P1 response in rural area in Cameroon according to the dry- and rainy-season. Between May and December 2020, dry blood samples were collected from people living in the Bankeng village in the forest area of the Centre region of Cameroon. Malaria infection was determined by thick-blood smear microscopy and multiplex PCR. The level of IgG anti-gSG6-P1 response, was assessed by enzyme-linked immunosorbent assay. Anopheles density and aggressiveness were assessed using human landing catches. The prevalence of malaria infection remains significantly higher in the rainy season than in the dry season (77.57% vs 61.44%; p = 0.0001). The specific anti-gSG6-P1 IgG response could be detected in individuals exposed to few mosquito bites and showed inter-individual heterogeneity even when living in the same exposure area. In both seasons, the level of anti-gSG6-P1 IgG response was not significantly different between Plasmodium infected and non-infected individuals. Mosquito bites were more aggressive in the rainy season compared to the dry season (human biting rate-HBR of 15.05 b/p/n vs 1.5 b/p/n) where mosquito density was very low. Infected mosquitoes were found only during the rainy season (sporozoite rate = 10.63% and entomological inoculation rate-EIR = 1.42 ib/p/n). The level of IgG anti-gSG6-P1 response was significantly higher in the rainy season and correlated with HBR (p ˂ 0.0001). This study highlights the high heterogeneity of individual's exposure to the Anopheles gambiae s.l vector bites depending on the transmission season in the same area. These findings reinforce the usefulness of the anti-gSG6-P1 IgG response as an accurate immunological biomarker for detecting individual exposure to Anopheles gambiae s.l. bites during the low risk period of malaria transmission in rural areas and for the differentiating the level of exposure to mosquitoes.
Collapse
Affiliation(s)
- Glwadys Cheteug Nguetsa
- Malaria Research Unit, Centre Pasteur Cameroon, P.O. Box 1274, Yaoundé, Cameroon.
- Department of Microbiology and Parasitology, Faculty of Sciences, The University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Emmanuel Elanga-Ndille
- Department of Animal Biology, Faculty of Sciences, The University of Dschang, P.O. Box 96, Dschang, Cameroon
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
| | - Estelle Géraldine Essangui Same
- Malaria Research Unit, Centre Pasteur Cameroon, P.O. Box 1274, Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, P.O. Box 2701, Douala, Cameroon
| | - Tatiana Nganso Keptchouang
- Malaria Research Unit, Centre Pasteur Cameroon, P.O. Box 1274, Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, P.O. Box 2701, Douala, Cameroon
| | - Stanilas Elysée Mandeng
- Department of Animal Biology and Physiology, Faculty of Sciences, The University of Yaoundé, P.O. Box 337, Yaounde 1, Cameroon
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Wolfgang Ekoko Eyisap
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Jérome Achille Binyang
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Sciences, The University of Yaoundé, P.O. Box 337, Yaounde 1, Cameroon
| | - Balotin Fogang
- Malaria Research Unit, Centre Pasteur Cameroon, P.O. Box 1274, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Sciences, The University of Yaoundé, P.O. Box 337, Yaounde 1, Cameroon
| | - Lynda Nouage
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Sciences, The University of Yaoundé, P.O. Box 337, Yaounde 1, Cameroon
| | - Micheal Piameu
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Ecole des Sciences de La Santé, Université Catholique d'Afrique Centrale, P.O. Box 1110, Yaoundé, Cameroon
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur Cameroon, P.O. Box 1274, Yaoundé, Cameroon
| | - Josiane Etang
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, P.O. Box 2701, Douala, Cameroon
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Samuel Wanji
- Department of Microbiology and Parasitology, Faculty of Sciences, The University of Buea, P.O. Box 63, Buea, Cameroon
| | - Carole Else Eboumbou Moukoko
- Malaria Research Unit, Centre Pasteur Cameroon, P.O. Box 1274, Yaoundé, Cameroon.
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, P.O. Box 2701, Douala, Cameroon.
- Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, The University of Douala, P.O. Box 2701, Douala, Cameroon.
| |
Collapse
|
3
|
IgG antibody responses to Anopheles gambiae gSG6-P1 salivary peptide are induced in human populations exposed to secondary malaria vectors in forest areas in Cameroon. PLoS One 2022; 17:e0276991. [PMID: 36355922 PMCID: PMC9648791 DOI: 10.1371/journal.pone.0276991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Human IgG antibody response to Anopheles gambiae gSG6-P1 salivary peptide was reported to be a pertinent indicator for assessing human exposure to mosquito bites and evaluating the risk of malaria transmission as well as the effectiveness of vector control strategies. However, the applicability of this marker to measure malaria transmission risk where human populations are mostly bitten by secondary vectors in Africa has not yet been evaluated. In this study, we aimed to investigate whether anti-gSG6-P1 antibodies response could be induced in humans living in forest areas in Cameroon where An. gambiae s.l is not predominant. In October 2019 at the pick of the rainy season, blood samples were collected from people living in the Nyabessang in the forest area in the South region of Cameroon. Malaria infection was determined using thick blood smear microscopy and Rapid Diagnostic Test. The level of IgG Anti-gSG6-P1 response as a biomarker of human exposure to Anopheles bite, was assessed using enzyme-linked immunosorbent assay. Mosquitoes were collected using the human landing catches to assess Anopheles density and for the identification of Anopheles species present in that area. IgG antibody response to the gSG6-P1 salivary peptide was detected in inhabitants of Nyabessang with high inter-individual heterogeneity. No significant variation in the level of this immune response was observed according to age and gender. The concentration of gSG6-P1 antibodies was significantly correlated with the malaria infection status and, Plasmodium falciparum-infected individuals presented a significantly higher level of IgG response than uninfected individuals (p = 0.0087). No significant difference was observed according to the use of insecticide treated nets. Out of the 1,442 Anopheles mosquitoes species collected, 849 (58.9%) were identified as An. paludis, 489 (33.91%) as An. moucheti, 28 (4.44%) as An. nili, 22 (2.08%) as An. gambiae s.l and 10 (0.69%) as An. marshallii. Our findings show that IgG response to An. gambiae gSG6-P1 peptide could be detected in humans exposed predominantly to An. moucheti and An. paludis bites. Taken together, the data revealed the potential of the Anti-gSG6-P1 IgG antibody response to serve as a universal marker to assess human exposure to any Anopheles species.
Collapse
|
4
|
Kassam NA, Laswai D, Kulaya N, Kaaya RD, Kajeguka DC, Schmiegelow C, Wang CW, Alifrangis M, Kavishe RA. Human IgG responses to Aedes mosquito salivary peptide Nterm-34kDa and its comparison to Anopheles salivary antigen (gSG6-P1) IgG responses measured among individuals living in Lower Moshi, Tanzania. PLoS One 2022; 17:e0276437. [PMID: 36301860 PMCID: PMC9612500 DOI: 10.1371/journal.pone.0276437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The level of human exposure to arbovirus vectors, the Aedes mosquitoes, is mainly assessed by entomological methods which are labour intensive, difficult to sustain at a large scale and are affected if transmission and exposure levels are low. Alternatively, serological biomarkers which detect levels of human exposure to mosquito bites may complement the existing epidemiologic tools as they seem cost-effective, simple, rapid, and sensitive. This study explored human IgG responses to an Aedes mosquito salivary gland peptide Nterm-34kDa in Lower Moshi, a highland area with evidence of circulating arboviruses and compared the Aedes IgG responses to Anopheles mosquitoes' salivary antigen (GSG6-P1) IgG responses. METHODS Three cross-sectional surveys were conducted in 2019: during the first dry season in March, at the end of the rainy season in June and during the second dry season in September in five villages located in Lower Moshi. Blood samples were collected from enrolled participants above six months of age (age span: 7 months to 94 years) and analysed for the presence of anti-Nterm-34kDa IgG antibodies. Possible associations between Nterm-34kDa seroprevalence and participants' characteristics were determined. Levels of IgG responses and seroprevalence were correlated and compared to the already measured IgG responses and seroprevalence of Anopheles mosquitoes' salivary antigen, GSG6-P1. RESULTS During the first dry season, Nterm-34kDa seroprevalence was 34.1% and significantly increased at the end of the rainy season to 45.3% (Chi square (χ2) = 6.42 p = 0.011). During the second dry season, the seroprevalence significantly declined to 26.5% (χ2 = 15.12 p<0.001). During the rainy season, seroprevalence was significantly higher among residents of Oria village (adjusted odds ratio (AOR) = 2.86; 95% CI = 1.0-7.8; p = 0.041) compared to Newland. Moreover, during the rainy season, the risk of exposure was significantly lower among individuals aged between 16 and 30 years (AOR = 0.25; 95% CI = 0.1 = 0.9; p = 0.036) compared to individuals aged between 0 and 5 years. There was weak to moderate negative correlation between N-term 34kDa IgG and gSG6-P1 antigens. N-term 34kDa seroprevalence were higher compared to gSG6-P1 seroprevalence. CONCLUSION The findings of this study support that IgG antibody responses towards the Aedes mosquito salivary peptide Nterm-34kDa are detectable among individuals living in lower Moshi and vary with season and geographical area. More individuals are exposed to Aedes mosquito bites than Anopheles mosquito and those exposed to Aedes bites are not necessarily exposed to Anopheles mosquitoes.
Collapse
Affiliation(s)
- Nancy A. Kassam
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- * E-mail:
| | - Daniel Laswai
- Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Neema Kulaya
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Robert D. Kaaya
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- Pan-African Malaria Vector Research Consortium, Moshi, Tanzania
| | - Debora C. Kajeguka
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Christentze Schmiegelow
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Christian W. Wang
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | |
Collapse
|
5
|
Kearney EA, Agius PA, Chaumeau V, Cutts JC, Simpson JA, Fowkes FJI. Anopheles salivary antigens as serological biomarkers of vector exposure and malaria transmission: A systematic review with multilevel modelling. eLife 2021; 10:e73080. [PMID: 34939933 PMCID: PMC8860437 DOI: 10.7554/elife.73080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Background Entomological surveillance for malaria is inherently resource-intensive and produces crude population-level measures of vector exposure which are insensitive in low-transmission settings. Antibodies against Anopheles salivary proteins measured at the individual level may serve as proxy biomarkers for vector exposure and malaria transmission, but their relationship is yet to be quantified. Methods A systematic review of studies measuring antibodies against Anopheles salivary antigens (PROSPERO: CRD42020185449). Multilevel modelling (to account for multiple study-specific observations [level 1], nested within study [level 2], and study nested within country [level 3]) estimated associations between seroprevalence with Anopheles human biting rate (HBR) and malaria transmission measures. Results From 3981 studies identified in literature searches, 42 studies across 16 countries were included contributing 393 study-specific observations of anti-Anopheles salivary antibodies determined in 42,764 samples. A positive association between HBR (log transformed) and seroprevalence was found; overall a twofold (100% relative) increase in HBR was associated with a 23% increase in odds of seropositivity (OR: 1.23, 95% CI: 1.10-1.37; p<0.001). The association between HBR and Anopheles salivary antibodies was strongest with concordant, rather than discordant, Anopheles species. Seroprevalence was also significantly positively associated with established epidemiological measures of malaria transmission: entomological inoculation rate, Plasmodium spp. prevalence, and malarial endemicity class. Conclusions Anopheles salivary antibody biomarkers can serve as a proxy measure for HBR and malaria transmission, and could monitor malaria receptivity of a population to sustain malaria transmission. Validation of Anopheles species-specific biomarkers is important given the global heterogeneity in the distribution of Anopheles species. Salivary biomarkers have the potential to transform surveillance by replacing impractical, inaccurate entomological investigations, especially in areas progressing towards malaria elimination. Funding Australian National Health and Medical Research Council, Wellcome Trust.
Collapse
Affiliation(s)
- Ellen A Kearney
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
| | - Paul A Agius
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourneAustralia
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityMae SotThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Julia C Cutts
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Department of Medicine at the Doherty Institute, The University of MelbourneMelbourneAustralia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
| | - Freya JI Fowkes
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourneAustralia
| |
Collapse
|
6
|
Use of anti-gSG6-P1 IgG as a serological biomarker to assess temporal exposure to Anopheles' mosquito bites in Lower Moshi. PLoS One 2021; 16:e0259131. [PMID: 34705869 PMCID: PMC8550589 DOI: 10.1371/journal.pone.0259131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/13/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Malaria prevalence in the highlands of Northern Tanzania is currently below 1% making this an elimination prone setting. As climate changes may facilitate increasing distribution of Anopheles mosquitoes in such settings, there is a need to monitor changes in risks of exposure to ensure that established control tools meet the required needs. This study explored the use of human antibodies against gambiae salivary gland protein 6 peptide 1 (gSG6-P1) as a biomarker of Anopheles exposure and assessed temporal exposure to mosquito bites in populations living in Lower Moshi, Northern Tanzania. METHODS Three cross-sectional surveys were conducted in 2019: during the dry season in March, at the end of the rainy season in June and during the dry season in September. Blood samples were collected from enrolled participants and analysed for the presence of anti-gSG6-P1 IgG. Mosquitoes were sampled from 10% of the participants' households, quantified and identified to species level. Possible associations between gSG6-P1 seroprevalence and participants' characteristics were determined. RESULTS The total number of Anopheles mosquitoes collected was highest during the rainy season (n = 1364) when compared to the two dry seasons (n = 360 and n = 1075, respectively). The gSG6-P1 seroprevalence increased from 18.8% during the dry season to 25.0% during the rainy season (χ2 = 2.66; p = 0.103) followed by a significant decline to 11.0% during the next dry season (χ2 = 12.56; p = 0.001). The largest number of mosquitoes were collected in one village (Oria), but the seroprevalence was significantly lower among the residents as compared to the rest of the villages (p = 0.039), explained by Oria having the highest number of participants owning and using bed nets. Both individual and household gSG6-P1 IgG levels had no correlation with numbers of Anopheles mosquitoes collected. CONCLUSION Anti-gSG6-P1 IgG is a potential tool in detecting and distinguishing temporal and spatial variations in exposure to Anopheles mosquito bites in settings of extremely low malaria transmission where entomological tools may be obsolete. However studies with larger sample size and extensive mosquito sampling are warranted to further explore the association between this serological marker and abundance of Anopheles mosquito.
Collapse
|
7
|
Cheteug G, Elanga-Ndille E, Donkeu C, Ekoko W, Oloume M, Essangui E, Nwane P, NSango SE, Etang J, Wanji S, Ayong L, Eboumbou Moukoko CE. Preliminary validation of the use of IgG antibody response to Anopheles gSG6-p1 salivary peptide to assess human exposure to malaria vector bites in two endemic areas of Cameroon in Central Africa. PLoS One 2020; 15:e0242510. [PMID: 33382730 PMCID: PMC7774847 DOI: 10.1371/journal.pone.0242510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/03/2020] [Indexed: 11/25/2022] Open
Abstract
The specific immune response to the Anopheles salivary peptide could be a pertinent and complementary tool to assess the risk of malaria transmission and the effectiveness of vector control strategies. This study aimed to obtain first reliable data on the current state of the Anopheles gSG6-P1 biomarker for assess the level of exposure to Anopheles bites in high malaria endemic areas in Cameroon. Blood smears were collected from people living in the neighborhoods of Youpwe (suburban area, continental) and Manoka (rural area, Island), both areas in the coastal region of Cameroon. Malaria infection was determined using thick blood smear microscopy, whereas the level of specific IgG response to gSG-P1 peptide was assessed by enzyme-linked immunosorbent assay from the dried blood spots. Of 266 (153 from Youpwe, 113 from Manoka) malaria endemic residents (mean age: 22.8±19.8 years, age range: 6 months–94 years, male/female sex ratio: 1/1.2, with Manoka mean age: 23.71±20.53, male/female sex ratio:1/1.13 and Youpwe mean age: 22.12±19.22, male/female sex ratio 1/0.67) randomly included in the study, Plasmodium infection prevalence was significantly higher in Manoka than in Youpwe (64.6% vs 12,4%, p = 0.0001). The anti-gSG6-P1 IgG response showed a high inter-individual heterogeneity and was significantly higher among individuals from Manoka than those from Youpwe (p = 0.023). Malaria infected individuals presented a higher anti-gSG6-P1 IgG antibody response than non-infected (p = 0.0004). No significant difference in the level of specific IgG response to gSG-P1 was observed according to long lasting insecticidal nets use. Taken together, the data revealed that human IgG antibody response to Anopheles gSG-P1 salivary peptide could be also used to assess human exposure to malaria vectors in Central African region. This finding strengthens the relevance of this candidate biomarker to be used for measuring human exposure to malaria vectors worldwide.
Collapse
Affiliation(s)
- Glwadys Cheteug
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
- Department of Microbiology and Parasitology, Faculty of Sciences, University of Buea, Buea, Cameroon
| | | | - Christiane Donkeu
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaounde, Yaounde, Cameroon
| | - Wolfgang Ekoko
- Parasitology and Entomology Research Unit, Department of Animal Biology and Organisms, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Martine Oloume
- Department of hematology, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | - Estelle Essangui
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
- Parasitology and Entomology Research Unit, Department of Animal Biology and Organisms, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Philippe Nwane
- Biological Sciences Department, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Sandrine Eveline NSango
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
- Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, University of Douala, Douala, Cameroon
| | - Josiane Etang
- Biological Sciences Department, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Organisation de Coordination pour la Lutte contre les Endemies en Afrique Central, Yaounde, Cameroon
| | - Samuel Wanji
- Department of Microbiology and Parasitology, Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
| | - Carole Else Eboumbou Moukoko
- Malaria Research Unit, Centre Pasteur Cameroon, Yaounde, Cameroon
- Biological Sciences Department, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, University of Douala, Douala, Cameroon
- * E-mail: ,
| |
Collapse
|
8
|
Sagna AB, Kibria MG, Naher S, Islam S, Aktaruzzaman MM, Alam MS, Koepfli C. Stratifying malaria receptivity in Bangladesh using archived rapid diagnostic tests. Malar J 2020; 19:345. [PMID: 32967671 PMCID: PMC7513508 DOI: 10.1186/s12936-020-03418-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/15/2020] [Indexed: 01/31/2023] Open
Abstract
Background Surveillance of low-density infections and of exposure to vectors is crucial to understand where malaria elimination might be feasible, and where the risk of outbreaks is high. Archived rapid diagnostic tests (RDTs), used by national malaria control and elimination programs for clinical diagnosis, present a valuable, yet rarely used resource for in-depth studies on malaria epidemiology. Methods 1022 RDTs from two sub-Districts in Bangladesh (Alikadam and Kamalganj) were screened by qPCR for low-density Plasmodium falciparum and Plasmodium vivax infections, and by ELISA for Anopheles salivary gland antibodies as a marker for exposure to vectors. Results Concordance between RDT and qPCR was moderate. qPCR detected 31/1022 infections compared to 36/1022 diagnosed by RDT. Exposure to Anopheles was significantly higher in Kamalganj despite low transmission, which could be explained by low bed net use. Conclusions Archived RDTs present a valuable source of antibodies for serological studies on exposure to vectors. In contrast, the benefit of screening archived RDTs to obtain a better estimate of clinical case numbers is moderate. Kamalganj could be prone to outbreaks.
Collapse
Affiliation(s)
- André Barembaye Sagna
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556-0369, USA
| | - Mohammad Golam Kibria
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Shamsun Naher
- Communicable Diseases Programme (Malaria), BRAC, BRAC Centre, 75 Mohakhali, Dhaka, 1212, Bangladesh
| | - Shayla Islam
- Communicable Diseases Programme (Malaria), BRAC, BRAC Centre, 75 Mohakhali, Dhaka, 1212, Bangladesh
| | - M M Aktaruzzaman
- National Malaria Elimination Program, Communicable Disease Control, Directorate General of Health Services, Dhaka, Bangladesh
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr, b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556-0369, USA.
| |
Collapse
|
9
|
Sadia-Kacou CAM, Yobo CM, Adja MA, Sagna AB, Ndille EE, Poinsignon A, Tano Y, Koudou BG, Remoue F. Use of Anopheles salivary biomarker to assess seasonal variation of human exposure to Anopheles bites in children living near rubber and oil palm cultivations in Côte d'Ivoire. Parasite Epidemiol Control 2019; 5:e00102. [PMID: 30923754 PMCID: PMC6423992 DOI: 10.1016/j.parepi.2019.e00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 10/31/2022] Open
Abstract
Environmental changes related to agricultural practices and activities can impact malaria transmission. In the objective to evaluate this impact on the human-vector contact, the level of human exposure to Anopheles vector bites was assess by an immuno-epidemiological indicator based on the assessment of the human IgG antibody response to the Anopheles gambiae gSG6-P1 salivary peptide, previously validated as a pertinent biomarker. Two cross-sectional surveys were carried out in the dry and rainy season in three villages with intensive agricultural plantations (N'Zikro with rubber cultivation, Ehania-V5 and Ehania-V1 with palm oil exploitation) and in a control village without plantations (Ayébo). Overall, 775 blood samples were collected in filter papers from children aged 1 to 14 years-old for immunological analysis by ELISA. The IgG levels to the gSG6-P1 salivary peptide significantly differed between studied villages both in the dry and the rainy seasons (P < 0.0001) and were higher in agricultural villages compared to the control area. In particular, the level of specific IgG in Ehania-V5, located in the heart of palm oil plantations, was higher compared to other agricultural villages. Interestingly, the level of specific IgG levels classically increased between the dry and the rainy season in the control village (P < 0.0001) whereas it remained high in the dry season as observed in the rainy season in agricultural villages. The present study indicated that rubber and oil palm plantations could maintain a high level of human exposure to Anopheles bites during both the dry and rainy seasons. These agricultural activities could therefore represent a permanent factor of malaria transmission risk.
Collapse
Affiliation(s)
- Cécile Agnimou Malanfoua Sadia-Kacou
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), 01 BP 1500, Bouaké 01, Côte d'Ivoire.,UFR Biosciences, Université Félix Houphouët Boigny, 08 3800, Abidjan 08, Côte d'Ivoire
| | - Céline Mabot Yobo
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), 01 BP 1500, Bouaké 01, Côte d'Ivoire.,UFR Science de la Nature, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Maurice Akré Adja
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), 01 BP 1500, Bouaké 01, Côte d'Ivoire.,UFR Biosciences, Université Félix Houphouët Boigny, 08 3800, Abidjan 08, Côte d'Ivoire
| | - André Barembaye Sagna
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), 01 BP 1500, Bouaké 01, Côte d'Ivoire.,MIVEGEC (University of Montpellier, CNRS, IRD): Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Montpellier, France
| | - Emmanuel Elanga Ndille
- MIVEGEC (University of Montpellier, CNRS, IRD): Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Montpellier, France
| | - Anne Poinsignon
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), 01 BP 1500, Bouaké 01, Côte d'Ivoire.,MIVEGEC (University of Montpellier, CNRS, IRD): Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Montpellier, France
| | - Yao Tano
- UFR Biosciences, Université Félix Houphouët Boigny, 08 3800, Abidjan 08, Côte d'Ivoire.,UFR Science de la Nature, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Benjamin Guibehi Koudou
- UFR Science de la Nature, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire.,Filariasis Programme Support Unit from Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire
| | - Franck Remoue
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), 01 BP 1500, Bouaké 01, Côte d'Ivoire.,MIVEGEC (University of Montpellier, CNRS, IRD): Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Montpellier, France
| |
Collapse
|
10
|
Sagna AB, Yobo MC, Elanga Ndille E, Remoue F. New Immuno-Epidemiological Biomarker of Human Exposure to Aedes Vector Bites: From Concept to Applications. Trop Med Infect Dis 2018; 3:E80. [PMID: 30274476 PMCID: PMC6161005 DOI: 10.3390/tropicalmed3030080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) such as dengue virus (DENV), chikungunya virus (CHIKV), Zika virus (ZIKV), and yellow fever virus (YFV) are the most important 'emerging pathogens' because of their geographic spread and their increasing impact on vulnerable human populations. To fight against these arboviruses, vector control strategies (VCS) remain one of the most valuable means. However, their implementation and monitoring are labour intensive and difficult to sustain on large scales, especially when transmission and Aedes mosquito densities are low. To increase the efficacy of VCS, current entomological methods should be improved by new complementary tools which measure the risk of arthropod-borne diseases' transmission. The study of human⁻Aedes immunological relationships can provide new promising serological tools, namely antibody-based biomarkers, allowing to accurately estimate the human⁻Aedes contact and consequently, the risk of transmission of arboviruses and the effectiveness of VCS. This review focuses on studies highlighting the concept, techniques, and methods used to develop and validate specific candidate biomarkers of human exposure to Aedes bites. Potential applications of such antibody-based biomarkers of exposure to Aedes vector bites in the field of operational research are also discussed.
Collapse
Affiliation(s)
- André B Sagna
- MIVEGEC, IRD, CNRS, Univ. Montpellier, BP 64501, 34394 Montpellier, France.
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), BP 1500 Bouaké, Côte d'Ivoire.
| | - Mabo C Yobo
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), BP 1500 Bouaké, Côte d'Ivoire
- UFR Sciences de la Nature, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire, BP 801 Abidjan, Côte d'Ivoire
| | - Emmanuel Elanga Ndille
- MIVEGEC, IRD, CNRS, Univ. Montpellier, BP 64501, 34394 Montpellier, France.
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroun.
| | - Franck Remoue
- MIVEGEC, IRD, CNRS, Univ. Montpellier, BP 64501, 34394 Montpellier, France.
| |
Collapse
|
11
|
Traoré DF, Sagna AB, Adja AM, Zoh DD, Lingué KN, Coulibaly I, N’Cho Tchiekoi B, Assi SB, Poinsignon A, Dagnogo M, Remoue F. Evaluation of Malaria Urban Risk Using an Immuno-Epidemiological Biomarker of Human Exposure to Anopheles Bites. Am J Trop Med Hyg 2018; 98:1353-1359. [PMID: 29512479 PMCID: PMC5953354 DOI: 10.4269/ajtmh.17-0231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/22/2017] [Indexed: 11/07/2022] Open
Abstract
Urban malaria is an underestimated serious health concern in African countries. This study aimed to evaluate the risk of malaria transmission in an urban area by evaluating the level of human exposure to Anopheles bites using an Anopheles salivary biomarker (gambiae Salivary Gland Protein-6 peptide 1 [gSG6-P1] peptide). Two multidisciplinary cross-sectional studies were undertaken in five sites of Bouaké city (three urban districts and two surrounding villages, used as control; Côte d'Ivoire) during the rainy season and the dry season. Blood samples were obtained from children 6 months to 14 years of age for immunological tests. The level of anti-gSG6-P1 immunoglobulin G (IgG) antibodies was significantly higher in the rainy season than the dry season in both urban and rural sites (P < 0.0001). Interestingly, children with the highest anti-gSG6-P1 IgG responses in the rainy season were infected by Plasmodium falciparum. Surprisingly, no difference of anti-gSG6-P1 IgG level was observed between urban and rural areas, for either season. The current data suggest that children in the urban city of Bouaké could be as highly exposed to Anopheles bites as children living in surrounding villages. The immunological biomarker of human exposure to Anopheles bites may be used to accurately assess the potential risk of malaria transmission in African urban settings.
Collapse
Affiliation(s)
- Dipomin F. Traoré
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD.224-CNRS.5290, Université de Montpellier, Montpellier, France
- Unité de Formation et de Recherche des Sciences de la nature (UFR SN) Université Nangui Abrogoua, Abidjan, Côte d’Ivoire
| | - André B. Sagna
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD.224-CNRS.5290, Université de Montpellier, Montpellier, France
| | - Akré M. Adja
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
- Unité de Formation et de Recherche Biosciences (UFR Biosciences), Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Dounin D. Zoh
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
- Unité de Formation et de Recherche Biosciences (UFR Biosciences), Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Kouassi N. Lingué
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
| | - Issa Coulibaly
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
| | - Bertin N’Cho Tchiekoi
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
| | - Serge B. Assi
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
| | - Anne Poinsignon
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD.224-CNRS.5290, Université de Montpellier, Montpellier, France
| | - Mamadou Dagnogo
- Unité de Formation et de Recherche des Sciences de la nature (UFR SN) Université Nangui Abrogoua, Abidjan, Côte d’Ivoire
| | - Franck Remoue
- Institut Pierre Richet (IPR), Institut Nationale de la Santé Publique (INSP), Bouaké, Côte d’Ivoire
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD.224-CNRS.5290, Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis 2017; 11:e0005600. [PMID: 28704370 PMCID: PMC5509103 DOI: 10.1371/journal.pntd.0005600] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Leishmaniases are parasitic diseases present worldwide that are transmitted to the vertebrate host by the bite of an infected sand fly during a blood feeding. Phlebotomine sand flies inoculate into the mammalian host Leishmania parasites embedded in promastigote secretory gel (PSG) with saliva, which is composed of a diverse group of molecules with pharmacological and immunomodulatory properties. Methods and findings In this review, we focus on 3 main aspects of sand fly salivary molecules: (1) structure and composition of salivary glands, including the properties of salivary molecules related to hemostasis and blood feeding, (2) immunomodulatory properties of salivary molecules and the diverse impacts of these molecules on leishmaniasis, ranging from disease exacerbation to vaccine development, and (3) use of salivary molecules for field applications, including monitoring host exposure to sand flies and the risk of Leishmania transmission. Studies showed interesting differences between salivary proteins of Phlebotomus and Lutzomyia species, however, no data were ever published on salivary proteins of Sergentomyia species. Conclusions In the last 15 years, numerous studies have characterized sand fly salivary proteins and, in parallel, have addressed the impact of such molecules on the biology of the host–sand fly–parasite interaction. The results obtained shall pave the way for the development of field-application tools that could contribute to the management of leishmaniasis in endemic areas.
Collapse
Affiliation(s)
- Tereza Lestinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| | - Iva Rohousova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Sima
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Perraut R, Varela ML, Loucoubar C, Niass O, Sidibé A, Tall A, Trape JF, Wotodjo AN, Mbengue B, Sokhna C, Vigan-Womas I, Touré A, Richard V, Mercereau-Puijalon O. Serological signatures of declining exposure following intensification of integrated malaria control in two rural Senegalese communities. PLoS One 2017; 12:e0179146. [PMID: 28609450 PMCID: PMC5469466 DOI: 10.1371/journal.pone.0179146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/24/2017] [Indexed: 01/26/2023] Open
Abstract
Recent control scale-up has reduced malaria in many areas but new tools are needed to monitor further progress, including indicators of decreasing exposure to parasite infection. Although serology is considered a promising approach in this regard, the serological impact of control interventions has been so far studied using indirect quantification of exposure. Cohort surveys concomitantly recording entomological and malariometric indices have been conducted in two Senegalese settings where supervised control intensification implemented in 2006 shifted malaria from historically holoendemic in Dielmo and mesoendemic in Ndiop to hypoendemic in both settings by 2013. We analyse here serological signatures of declining transmission using archived blood samples. Responses against ten pre-erythrocytic and erythrocytic antigens from Plasmodium falciparum and P. malariae alongside an Anopheles gambiae salivary gland antigen were analysed. Cross-sectional surveys conducted before (2002) and after (2013) control intensification showed a major impact of control intensification in both settings. The age-associated prevalence, magnitude and breadth of the IgG responses to all antigens were village-specific in 2002. In 2013, remarkably similar patterns were observed in both villages, with marginal responses against all parasite antigens in the 0-5y children and reduced responses in all previously seropositive age groups. Waning of humoral responses of individuals who were immune at the time of control intensification was studied from 2006 to 2013 using yearly samplings. Longitudinal data were analysed using the Cochran-Armittage trend test and an age-related reversible catalytic conversion model. This showed that the antigen-specific antibody declines were more rapid in older children than adults. There was a strong association of antibody decline with the declining entomological inoculation rate. We thus identified serological markers of declining exposure to malaria parasites that should help future monitoring of progress towards malaria elimination.
Collapse
Affiliation(s)
- Ronald Perraut
- Institut Pasteur de Dakar, Unité d’Immunologie, Dakar, Sénégal
- * E-mail:
| | - Marie-Louise Varela
- Institut Pasteur de Dakar, G4 Biostatistiques Bioinformatique et Modélisation, Dakar, Sénégal
| | - Cheikh Loucoubar
- Institut Pasteur de Dakar, G4 Biostatistiques Bioinformatique et Modélisation, Dakar, Sénégal
| | - Oumy Niass
- Institut Pasteur de Dakar, Unité d’Immunologie, Dakar, Sénégal
| | - Awa Sidibé
- Institut Pasteur de Dakar, Unité d’Immunologie, Dakar, Sénégal
| | - Adama Tall
- Institut Pasteur de Dakar, Unité d’Epidémiologie, Dakar, Sénégal
| | | | | | - Babacar Mbengue
- Institut Pasteur de Dakar, Unité d’Immunogénétique, Dakar, Sénégal
| | - Cheikh Sokhna
- Institut de Recherche pour le Développement (IRD), URMITE, Dakar, Sénégal
| | - Inès Vigan-Womas
- Institut Pasteur de Madagascar, Unité d’Immunologie des Maladies Infectieuses, Antanarivo, Madagascar
- Institut Pasteur, Department of Parasitology and Insect Vectors, 25 Rue du Dr Roux, Paris, France
| | - Aissatou Touré
- Institut Pasteur de Dakar, Unité d’Immunologie, Dakar, Sénégal
| | - Vincent Richard
- Institut Pasteur de Dakar, Unité d’Epidémiologie, Dakar, Sénégal
| | - Odile Mercereau-Puijalon
- Institut Pasteur, Department of Parasitology and Insect Vectors, 25 Rue du Dr Roux, Paris, France
| |
Collapse
|
14
|
Arcà B, Lombardo F, Struchiner CJ, Ribeiro JMC. Anopheline salivary protein genes and gene families: an evolutionary overview after the whole genome sequence of sixteen Anopheles species. BMC Genomics 2017; 18:153. [PMID: 28193177 PMCID: PMC5307786 DOI: 10.1186/s12864-017-3579-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquito saliva is a complex cocktail whose pharmacological properties play an essential role in blood feeding by counteracting host physiological response to tissue injury. Moreover, vector borne pathogens are transmitted to vertebrates and exposed to their immune system in the context of mosquito saliva which, in virtue of its immunomodulatory properties, can modify the local environment at the feeding site and eventually affect pathogen transmission. In addition, the host antibody response to salivary proteins may be used to assess human exposure to mosquito vectors. Even though the role of quite a few mosquito salivary proteins has been clarified in the last decade, we still completely ignore the physiological role of many of them as well as the extent of their involvement in the complex interactions taking place between the mosquito vectors, the pathogens they transmit and the vertebrate host. The recent release of the genomes of 16 Anopheles species offered the opportunity to get insights into function and evolution of salivary protein families in anopheline mosquitoes. RESULTS Orthologues of fifty three Anopheles gambiae salivary proteins were retrieved and annotated from 18 additional anopheline species belonging to the three subgenera Cellia, Anopheles, and Nyssorhynchus. Our analysis included 824 full-length salivary proteins from 24 different families and allowed the identification of 79 novel salivary genes and re-annotation of 379 wrong predictions. The comparative, structural and phylogenetic analyses yielded an unprecedented view of the anopheline salivary repertoires and of their evolution over 100 million years of anopheline radiation shedding light on mechanisms and evolutionary forces that contributed shaping the anopheline sialomes. CONCLUSIONS We provide here a comprehensive description, classification and evolutionary overview of the main anopheline salivary protein families and identify two novel candidate markers of human exposure to malaria vectors worldwide. This anopheline sialome catalogue, which is easily accessible as hyperlinked spreadsheet, is expected to be useful to the vector biology community and to improve the capacity to gain a deeper understanding of mosquito salivary proteins facilitating their possible exploitation for epidemiological and/or pathogen-vector-host interaction studies.
Collapse
Affiliation(s)
- Bruno Arcà
- Department of Public Health and Infectious Diseases - Division of Parasitology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases - Division of Parasitology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Claudio J Struchiner
- Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, Brazil.,Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| |
Collapse
|
15
|
Ya-Umphan P, Cerqueira D, Parker DM, Cottrell G, Poinsignon A, Remoue F, Brengues C, Chareonviriyaphap T, Nosten F, Corbel V. Use of an Anopheles Salivary Biomarker to Assess Malaria Transmission Risk Along the Thailand-Myanmar Border. J Infect Dis 2017; 215:396-404. [PMID: 27932615 PMCID: PMC5853934 DOI: 10.1093/infdis/jiw543] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/15/2016] [Indexed: 11/13/2022] Open
Abstract
Background The modalities of malaria transmission along the Thailand-Myanmar border are poorly understood. Here we address the relevance of using a specific Anopheles salivary biomarker to measure the risk among humans of exposure to Anopheles bites. Methods Serologic surveys were conducted from May 2013 to December 2014 in 4 sentinel villages. More than 9400 blood specimens were collected in filter papers from all inhabitants at baseline and then every 3 months thereafter, for up to 18 months, for analysis by enzyme-linked immunosorbent assay. The relationship between the intensity of the human antibody response and entomological indicators of transmission (human biting rates and entomological inoculation rates [EIRs]) was studied using a multivariate 3-level mixed model analysis. Heat maps for human immunoglobulin G (IgG) responses for each village and survey time point were created using QGIS 2.4. Results The levels of IgG response among participants varied significantly according to village, season, and age (P<.001) and were positively associated with the abundance of total Anopheles species and primary malaria vectors and the EIR (P<.001). Spatial clusters of high-IgG responders were identified across space and time within study villages. Conclusions The gSG6-P1 biomarker has great potential to address the risk of transmission along the Thailand-Myanmar border and represents a promising tool to guide malaria interventions.
Collapse
Affiliation(s)
- Phubeth Ya-Umphan
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Montpellier, and
- Department of Entomology, Faculty of Agriculture, and
| | - Dominique Cerqueira
- Department of Entomology, Faculty of Agriculture, and
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; and
| | - Daniel M Parker
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; and
| | - Gilles Cottrell
- Institut de Recherche pour le Développement, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Poinsignon
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Montpellier, and
| | - Franck Remoue
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Montpellier, and
| | - Cecile Brengues
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Montpellier, and
| | - Theeraphap Chareonviriyaphap
- Department of Entomology, Faculty of Agriculture, and
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, and
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; and
- Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, United Kingdom
| | - Vincent Corbel
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Montpellier, and
- Institut de Recherche pour le Développement, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
16
|
Elanga Ndille E, Doucoure S, Poinsignon A, Mouchet F, Cornelie S, D’Ortenzio E, DeHecq JS, Remoue F. Human IgG Antibody Response to Aedes Nterm-34kDa Salivary Peptide, an Epidemiological Tool to Assess Vector Control in Chikungunya and Dengue Transmission Area. PLoS Negl Trop Dis 2016; 10:e0005109. [PMID: 27906987 PMCID: PMC5131890 DOI: 10.1371/journal.pntd.0005109] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/14/2016] [Indexed: 11/18/2022] Open
Abstract
Background Arboviral diseases are an important public health concerns. Vector control remains the sole strategy to fight against these diseases. Because of the important limits of methods currently used to assess human exposure to Aedes mosquito bites, much effort is being devoted to develop new indicators. Recent studies have reported that human antibody (Ab) responses to Aedes aegypti Nterm-34kDa salivary peptide represent a promising biomarker tool to evaluate the human-Aedes contact. The present study aims investigate whether such biomarker could be used for assessing the efficacy of vector control against Aedes. Methodology/Principal findings Specific human IgG response to the Nterm-34kDa peptide was assessed from 102 individuals living in urban area of Saint-Denis at La Reunion Island, Indian Ocean, before and after the implementation of vector control against Aedes mosquitoes. IgG response decreased after 2 weeks (P < 0.0001), and remained low for 4 weeks post-intervention (P = 0.0002). The specific IgG decrease was associated with the decline of Aedes mosquito density, as estimated by entomological parameters and closely correlated to vector control implementation and was not associated with the use of individual protection, daily commuting outside of the house, sex and age. Our findings indicate a probable short-term decrease of human exposure to Aedes bites just after vector control implementation. Conclusion/Significance Results provided in the present study indicate that IgG Ab response to Aedes aegypti Nterm-34kDa salivary peptide could be a relevant short-time indicator for evaluating the efficacy of vector control interventions against Aedes species. In absence of effective treatment and vaccine, vector control is the main strategy against arboviral diseases such as dengue, Zika and chikungunya. Given the limitation of entomologic tool currently used, news tools are urgently needed to assess the efficacy of vector control against arboviral diseases. The present study aimed to investigate whether human IgG antibody specific response to only one Aedes salivary peptide could be useful for assessing the efficacy of vector control against arboviral diseases. For this purpose, IgG response to Nterm-34kDa peptide was assessed from 102 individuals living in urban area at La Reunion Island, Indian Ocean, before and after the implementation of vector control against Aedes albopictus mosquito species. A significant decrease of this specific IgG level was noticed after vector control implementation. The decrease was associated to the decline in Aedes mosquito density estimated by entomological parameters, such as adult mosquito density, House and Breteau indices. The results of the present study indicated that human IgG response to the Aedes Nterm-34kDa salivary peptide could be a useful tool to evaluate the efficacy of vector control strategies against arboviruses.
Collapse
Affiliation(s)
- Emmanuel Elanga Ndille
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier, FRANCE
- * E-mail: (FR); (EEN); (SD); (AP); (FM); (SC); (EDO); (JSD)
| | - Souleymane Doucoure
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier, FRANCE
- * E-mail: (FR); (EEN); (SD); (AP); (FM); (SC); (EDO); (JSD)
| | - Anne Poinsignon
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier, FRANCE
- * E-mail: (FR); (EEN); (SD); (AP); (FM); (SC); (EDO); (JSD)
| | - François Mouchet
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier, FRANCE
- * E-mail: (FR); (EEN); (SD); (AP); (FM); (SC); (EDO); (JSD)
| | - Sylvie Cornelie
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier, FRANCE
- * E-mail: (FR); (EEN); (SD); (AP); (FM); (SC); (EDO); (JSD)
| | - Eric D’Ortenzio
- Institut de Veille Sanitaire, Cire Océan Indien, Saint-Denis, La Réunion
- * E-mail: (FR); (EEN); (SD); (AP); (FM); (SC); (EDO); (JSD)
| | - Jean Sébastien DeHecq
- Agence Régionale de Santé, Océan Indien, Saint Denis, La Réunion
- * E-mail: (FR); (EEN); (SD); (AP); (FM); (SC); (EDO); (JSD)
| | - Franck Remoue
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier, FRANCE
- * E-mail: (FR); (EEN); (SD); (AP); (FM); (SC); (EDO); (JSD)
| |
Collapse
|
17
|
Armiyanti Y, Arifianto RP, Riana EN, Senjarini K, Widodo W, Fitri LE, Sardjono TW. Identification of antigenic proteins from salivary glands of female Anopheles maculatus by proteomic analysis. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Drame PM, Poinsignon A, Dechavanne C, Cottrell G, Farce M, Ladekpo R, Massougbodji A, Cornélie S, Courtin D, Migot-Nabias F, Garcia A, Remoué F. Specific antibodies to Anopheles gSG6-P1 salivary peptide to assess early childhood exposure to malaria vector bites. Malar J 2015. [PMID: 26198354 PMCID: PMC4511589 DOI: 10.1186/s12936-015-0800-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background The estimates of risk of malaria in early childhood are imprecise given the current entomologic and parasitological tools. Thus, the utility of anti-Anopheles salivary gSG6-P1 peptide antibody responses in measuring exposure to Anopheles bites during early infancy has been assessed. Methods Anti-gSG6-P1 IgG and IgM levels were evaluated in 133 infants (in Benin) at three (M3), six (M6), nine (M9) and 12 (M12) months of age. Specific IgG levels were also assessed in their respective umbilical cord blood (IUCB) and maternal blood (MPB). Results At M3, 93.98 and 41.35% of infants had anti-gSG6-P1 IgG and IgM Ab, respectively. Specific median IgG and IgM levels gradually increased between M3 and M6 (p < 0.0001 and p < 0.001), M6–M9 (p < 0.0001 and p = 0.085) and M9–M12 (p = 0.002 and p = 0.03). These levels were positively associated with the Plasmodium falciparum infection intensity (p = 0.006 and 0.003), and inversely with the use of insecticide-treated bed nets (p = 0.003 and 0.3). Levels of specific IgG in the MPB were positively correlated to those in the IUCB (R = 0.73; p < 0.0001) and those at M3 (R = 0.34; p < 0.0001). Conclusion The exposure level to Anopheles bites, and then the risk of malaria infection, can be evaluated in young infants by assessing anti-gSG6-P1 IgM and IgG responses before and after 6-months of age, respectively. This tool can be useful in epidemiological evaluation and surveillance of malaria risk during the first year of life.
Collapse
Affiliation(s)
- Papa M Drame
- UMR MIVEGEC (IRD224-CNRS5290-Universités Montpellier 1 et 2), Institut de Recherche pour le Développement (IRD), BP64501, 34394, Montpellier, France. .,IRD-UMR MIVEGEC (IRD224-CNRS5290-Universités Montpellier 1 et 2), Centre de Recherche Entomologique de Cotonou (CREC), 01 BP 4414RP, Cotonou, Benin. .,Laboratory of Parasitic Diseases, NIAID, NIH, 4 Center Dr, Bethesda, MD, 20892-0425, USA.
| | - Anne Poinsignon
- UMR MIVEGEC (IRD224-CNRS5290-Universités Montpellier 1 et 2), Institut de Recherche pour le Développement (IRD), BP64501, 34394, Montpellier, France.
| | - Célia Dechavanne
- IRD UMR 216 Mère et enfant face aux infections tropicales, 75006, Paris, France. .,Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
| | - Gilles Cottrell
- IRD UMR 216 Mère et enfant face aux infections tropicales, 75006, Paris, France. .,Laboratoire de Mathématiques Appliquées, Université Paris Descartes, 75006, Paris, France.
| | - Manon Farce
- UMR MIVEGEC (IRD224-CNRS5290-Universités Montpellier 1 et 2), Institut de Recherche pour le Développement (IRD), BP64501, 34394, Montpellier, France.
| | - Rodolphe Ladekpo
- Centre d'Etudes et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfant (CERPAGE), Cotonou, Benin.
| | - Achille Massougbodji
- Centre d'Etudes et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfant (CERPAGE), Cotonou, Benin. .,Faculté des Sciences de la Santé, Université d'Abomey-Calavi, 01 BP 188, Cotonou, Benin.
| | - Sylvie Cornélie
- UMR MIVEGEC (IRD224-CNRS5290-Universités Montpellier 1 et 2), Institut de Recherche pour le Développement (IRD), BP64501, 34394, Montpellier, France.
| | - David Courtin
- IRD UMR 216 Mère et enfant face aux infections tropicales, 75006, Paris, France. .,Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France. .,Centre d'Etudes et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfant (CERPAGE), Cotonou, Benin.
| | - Florence Migot-Nabias
- IRD UMR 216 Mère et enfant face aux infections tropicales, 75006, Paris, France. .,Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
| | - André Garcia
- IRD UMR 216 Mère et enfant face aux infections tropicales, 75006, Paris, France. .,Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
| | - Franck Remoué
- UMR MIVEGEC (IRD224-CNRS5290-Universités Montpellier 1 et 2), Institut de Recherche pour le Développement (IRD), BP64501, 34394, Montpellier, France. .,IRD-UMR MIVEGEC (IRD224-CNRS5290-Universités Montpellier 1 et 2), Centre de Recherche Entomologique de Cotonou (CREC), 01 BP 4414RP, Cotonou, Benin.
| |
Collapse
|
19
|
Londono-Renteria B, Patel JC, Vaughn M, Funkhauser S, Ponnusamy L, Grippin C, Jameson SB, Apperson C, Mores CN, Wesson DM, Colpitts TM, Meshnick SR. Long-Lasting Permethrin-Impregnated Clothing Protects Against Mosquito Bites in Outdoor Workers. Am J Trop Med Hyg 2015. [PMID: 26195460 DOI: 10.4269/ajtmh.15-0130] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Outdoor exposure to mosquitoes is a risk factor for many diseases, including malaria and dengue. We have previously shown that long-lasting permethrin-impregnated clothing protects against tick and chigger bites in a double-blind randomized controlled trial in North Carolina outdoor workers. Here, we evaluated whether this clothing is protective against mosquito bites by measuring changes in antibody titers to mosquito salivary gland extracts. On average, there was a 10-fold increase in titer during the spring and summer when mosquito exposure was likely to be the highest. During the first year of the study, the increase in titer in subjects wearing treated uniforms was 2- to 2.5-fold lower than that of control subjects. This finding suggests that long-lasting permethrin-impregnated clothing provided protection against mosquito bites.
Collapse
Affiliation(s)
- Berlin Londono-Renteria
- Department of Pathology, Immunology and Microbiology, University of South Carolina, Columbia, South Carolina; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina; Department of Entomology, North Carolina State University, Raleigh, North Carolina; Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Jaymin C Patel
- Department of Pathology, Immunology and Microbiology, University of South Carolina, Columbia, South Carolina; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina; Department of Entomology, North Carolina State University, Raleigh, North Carolina; Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Meagan Vaughn
- Department of Pathology, Immunology and Microbiology, University of South Carolina, Columbia, South Carolina; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina; Department of Entomology, North Carolina State University, Raleigh, North Carolina; Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Sheana Funkhauser
- Department of Pathology, Immunology and Microbiology, University of South Carolina, Columbia, South Carolina; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina; Department of Entomology, North Carolina State University, Raleigh, North Carolina; Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Loganathan Ponnusamy
- Department of Pathology, Immunology and Microbiology, University of South Carolina, Columbia, South Carolina; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina; Department of Entomology, North Carolina State University, Raleigh, North Carolina; Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Crystal Grippin
- Department of Pathology, Immunology and Microbiology, University of South Carolina, Columbia, South Carolina; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina; Department of Entomology, North Carolina State University, Raleigh, North Carolina; Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Sam B Jameson
- Department of Pathology, Immunology and Microbiology, University of South Carolina, Columbia, South Carolina; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina; Department of Entomology, North Carolina State University, Raleigh, North Carolina; Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Charles Apperson
- Department of Pathology, Immunology and Microbiology, University of South Carolina, Columbia, South Carolina; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina; Department of Entomology, North Carolina State University, Raleigh, North Carolina; Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Christopher N Mores
- Department of Pathology, Immunology and Microbiology, University of South Carolina, Columbia, South Carolina; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina; Department of Entomology, North Carolina State University, Raleigh, North Carolina; Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Dawn M Wesson
- Department of Pathology, Immunology and Microbiology, University of South Carolina, Columbia, South Carolina; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina; Department of Entomology, North Carolina State University, Raleigh, North Carolina; Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Tonya M Colpitts
- Department of Pathology, Immunology and Microbiology, University of South Carolina, Columbia, South Carolina; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina; Department of Entomology, North Carolina State University, Raleigh, North Carolina; Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Steven R Meshnick
- Department of Pathology, Immunology and Microbiology, University of South Carolina, Columbia, South Carolina; Department of Tropical Medicine, Tulane University, New Orleans, Louisiana; Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina; Department of Entomology, North Carolina State University, Raleigh, North Carolina; Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
20
|
Marie A, Ronca R, Poinsignon A, Lombardo F, Drame PM, Cornelie S, Besnard P, Le Mire J, Fiorentino G, Fortes F, Carnevale P, Remoue F, Arcà B. The Anopheles gambiae cE5 salivary protein: a sensitive biomarker to evaluate the efficacy of insecticide-treated nets in malaria vector control. Microbes Infect 2015; 17:409-16. [PMID: 25637950 DOI: 10.1016/j.micinf.2015.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 11/26/2022]
Abstract
Evaluation of vector control is crucial for improving malaria containment and, according to World Health Organization, new complementary indicators would be very valuable. In this study the IgG response to the Anopheles-specific cE5 salivary protein was tested as a tool to evaluate the efficacy of insecticide-treated nets in reducing human exposure to malaria vectors. Sera collected during a longitudinal study carried out in Angola, and including entomological and parasitological data, were used to assess the IgG response to the Anopheles gambiae cE5 in both children and adults, before and after the application of insecticide-treated nets. Seasonal fluctuation of specific IgG antibody levels according to exposure was only found in children (up to ≈ 14 years old) whose anti-cE5 IgG response dropped after bed nets installation. These results were fully consistent with previous findings obtained with the same set of sera and indicating a substantial reduction of human-vector contact shortly after nets implementation. Overall, children IgG response to the cE5 protein appeared a very sensitive biomarker, which allowed for the detection of even weak exposure to Anopheles bites, indicating it may represent a reliable additional tool to evaluate the efficacy of vector control interventions.
Collapse
Affiliation(s)
- Alexandra Marie
- MIVEGEC, UMR IRD-224 CNRS-5290 UM1-UM2, 911 Av. Agropolis, 34394 Montpellier Cedex 5, France.
| | - Raffaele Ronca
- Department of Biology, "Federico II" University, Via Cinthia, 80126 Naples, Italy
| | - Anne Poinsignon
- MIVEGEC, UMR IRD-224 CNRS-5290 UM1-UM2, 911 Av. Agropolis, 34394 Montpellier Cedex 5, France
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, Parasitology Section, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Papa M Drame
- MIVEGEC, UMR IRD-224 CNRS-5290 UM1-UM2, 911 Av. Agropolis, 34394 Montpellier Cedex 5, France
| | - Sylvie Cornelie
- MIVEGEC, UMR IRD-224 CNRS-5290 UM1-UM2, 911 Av. Agropolis, 34394 Montpellier Cedex 5, France; MIVEGEC-IRD-CREC, 01 BP44 RP Cotonou, Benin
| | | | | | - Gabriella Fiorentino
- Department of Biology, "Federico II" University, Via Cinthia, 80126 Naples, Italy
| | - Filomeno Fortes
- Malaria Control Program, Ministry of Public Health, Luanda, Angola
| | | | - Franck Remoue
- MIVEGEC, UMR IRD-224 CNRS-5290 UM1-UM2, 911 Av. Agropolis, 34394 Montpellier Cedex 5, France
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Parasitology Section, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
21
|
Marie A, Holzmuller P, Tchioffo MT, Rossignol M, Demettre E, Seveno M, Corbel V, Awono-Ambéné P, Morlais I, Remoue F, Cornelie S. Anopheles gambiae salivary protein expression modulated by wild Plasmodium falciparum infection: highlighting of new antigenic peptides as candidates of An. gambiae bites. Parasit Vectors 2014; 7:599. [PMID: 25526764 PMCID: PMC4287575 DOI: 10.1186/s13071-014-0599-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/10/2014] [Indexed: 12/24/2022] Open
Abstract
Background Malaria is the major parasitic disease worldwide caused by Plasmodium infection. The objective of integrated malaria control programs is to decrease malaria transmission, which needs specific tools to be accurately assessed. In areas where the transmission is low or has been substantially reduced, new complementary tools have to be developed to improve surveillance. A recent approach, based on the human antibody response to Anopheles salivary proteins, has been shown to be efficient in evaluating human exposure to Anopheles bites. The aim of the present study was to identify new An. gambiae salivary proteins as potential candidate biomarkers of human exposure to P. falciparum-infective bites. Methods Experimental infections of An. gambiae by wild P. falciparum were carried out in semi-field conditions. Then a proteomic approach, combining 2D-DIGE and mass spectrometry, was used to identify the overexpressed salivary proteins in infected salivary glands compared to uninfected An. gambiae controls. Subsequently, a peptide design of each potential candidate was performed in silico and their antigenicity was tested by an epitope-mapping technique using blood from individuals exposed to Anopheles bites. Results Five salivary proteins (gSG6, gSG1b, TRIO, SG5 and long form D7) were overexpressed in the infected salivary glands. Eighteen peptides were designed from these proteins and were found antigenic in children exposed to the Anopheles bites. Moreover, the results showed that the presence of wild P. falciparum in salivary glands modulates the expression of several salivary proteins and also appeared to induce post-translational modifications. Conclusions This study is, to our knowledge, the first that compares the sialome of An. gambiae both infected and not infected by wild P. falciparum, making it possible to mimic the natural conditions of infection. This is a first step toward a better understanding of the close interactions between the parasite and the salivary gland of mosquitoes. In addition, these results open the way to define biomarkers of infective bites of Anopheles, which could, in the future, improve the estimation of malaria transmission and the evaluation of malaria vector control tools. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0599-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Marie
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France.
| | - Philippe Holzmuller
- CIRAD Département Systèmes Biologiques BIOS UMR 15 CMAEE "Contrôle des Maladies Exotiques et Emergentes", Campus International de Baillarguet, TA A-15/G, Montpellier cedex 5, 34398, France.
| | - Majoline T Tchioffo
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France.
| | - Marie Rossignol
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France.
| | - Edith Demettre
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, UM1, UM2, Plate-forme de Protéomique Fonctionnelle CNRS UMS BioCampus 3426, Montpellier, 34094, France.
| | - Martial Seveno
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, UM1, UM2, Plate-forme de Protéomique Fonctionnelle CNRS UMS BioCampus 3426, Montpellier, 34094, France.
| | - Vincent Corbel
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France. .,Department of Entomology, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow Chatuchak, Bangkok, 10900, Thailand.
| | - Parfait Awono-Ambéné
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, BP 288, Cameroun.
| | - Isabelle Morlais
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France. .,Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, BP 288, Cameroun.
| | - Franck Remoue
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France.
| | - Sylvie Cornelie
- MIVEGEC (UMR IRD224 CNRS 5290 UM1-UM2), Institut de Recherche pour le développement (IRD), 911 avenue Agropolis, Montpellier cedex 5, 34394, France. .,MIVEGEC- IRD- CREC, Cotonou, 01 BP4414 RP, Bénin.
| |
Collapse
|
22
|
Rizzo C, Lombardo F, Ronca R, Mangano V, Sirima SB, Nèbiè I, Fiorentino G, Modiano D, Arcà B. Differential antibody response to the Anopheles gambiae gSG6 and cE5 salivary proteins in individuals naturally exposed to bites of malaria vectors. Parasit Vectors 2014; 7:549. [PMID: 25428638 PMCID: PMC4253619 DOI: 10.1186/s13071-014-0549-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/20/2014] [Indexed: 12/05/2022] Open
Abstract
Background Mosquito saliva plays crucial roles in blood feeding but also evokes in hosts an anti-saliva antibody response. The IgG response to the Anopheles gambiae salivary protein gSG6 was previously shown to be a reliable indicator of human exposure to Afrotropical malaria vectors. We analyzed here the humoral response to the salivary anti-thrombin cE5 in a group of individuals from a malaria hyperendemic area of Burkina Faso. Methods ELISA was used to measure the anti-cE5 IgG, IgG1 and IgG4 antibody levels in plasma samples collected in the village of Barkoumbilen (Burkina Faso) among individuals of the Rimaibé ethnic group. Anti-gSG6 IgG levels were also determined for comparison. Anopheles vector density in the study area was evaluated by indoor pyrethrum spray catches. Results The cE5 protein was highly immunogenic and triggered in exposed individuals a relatively long-lasting antibody response, as shown by its unchanged persistence after a few months of absent or very low exposure (dry season). In addition cE5 did not induce immune tolerance, as previously suggested for the gSG6 antigen. Finally, IgG subclass analysis suggested that exposed individuals may mount a Th1-type immune response against the cE5 protein. Conclusions The anti-cE5 IgG response is shown here to be a sensitive indicator of human exposure to anopheline vectors and to represent an additional tool for malaria epidemiological studies. It may be especially useful in conditions of low vector density, to monitor transiently exposed individuals (i.e. travellers/workers/soldiers spending a few months in tropical Africa) and to evaluate the impact of insecticide treated nets on vector control. Moreover, the gSG6 and cE5 salivary proteins were shown to trigger in exposed individuals a strikingly different immune response with (i) gSG6 evoking a short-lived IgG response, characterized by high IgG4 levels and most likely induction of immune tolerance, and (ii) cE5 eliciting a longer-living IgG response, dominated by anti-cE5 IgG1 antibodies and not inducing tolerance mechanisms. We believe that these two antigens may represent useful reagents to further investigate the so far overlooked role of Anopheles saliva and salivary proteins in host early immune response to Plasmodium parasites. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0549-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cinzia Rizzo
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Raffaele Ronca
- Department of Biology, "Federico II" University, Naples, Italy.
| | - Valentina Mangano
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | | | - Issa Nèbiè
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.
| | | | - David Modiano
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
23
|
Human antibody response to Aedes albopictus salivary proteins: a potential biomarker to evaluate the efficacy of vector control in an area of Chikungunya and Dengue Virus transmission. BIOMED RESEARCH INTERNATIONAL 2014; 2014:746509. [PMID: 24822216 PMCID: PMC4005104 DOI: 10.1155/2014/746509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 03/06/2014] [Accepted: 03/19/2014] [Indexed: 11/17/2022]
Abstract
Aedes borne viruses represent public health problems in southern countries and threat to emerge in the developed world. Their control is currently based on vector population control. Much effort is being devoted to develop new tools to control such arbovirus. Recent findings suggest that the evaluation of human antibody (Ab) response to arthropod salivary proteins is relevant to measuring the level of human exposure to mosquito bites. Using an immunoepidemiological approach, the present study aimed to assess the usefulness of the salivary biomarker for measuring the efficacy of Ae. albopictus control strategies in La Reunion urban area. The antisaliva Ab response of adult humans exposed to Ae. albopictus was evaluated before and after vector control measures. Our results showed a significant correlation between antisaliva Ab response and the level of exposure to vectors bites. The decrease of Ae. albopictus density has been detected by this biomarker two weeks after the implementation of control measures, suggesting its potential usefulness for evaluating control strategies in a short time period. The identification of species specific salivary proteins/peptides should improve the use of this biomarker.
Collapse
|
24
|
Dorňáková V, Salazar-Sanchez R, Borrini-Mayori K, Carrion-Navarro O, Levy MZ, Schaub GA, Schwarz A. Characterization of guinea pig antibody responses to salivary proteins of Triatoma infestans for the development of a triatomine exposure marker. PLoS Negl Trop Dis 2014; 8:e2783. [PMID: 24699441 PMCID: PMC3974673 DOI: 10.1371/journal.pntd.0002783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/24/2014] [Indexed: 11/22/2022] Open
Abstract
Background Salivary proteins of Triatoma infestans elicit humoral immune responses in their vertebrate hosts. These immune responses indicate exposure to triatomines and thus can be a useful epidemiological tool to estimate triatomine infestation. In the present study, we analyzed antibody responses of guinea pigs to salivary antigens of different developmental stages of four T. infestans strains originating from domestic and/or peridomestic habitats in Argentina, Bolivia, Chile and Peru. We aimed to identify developmental stage- and strain-specific salivary antigens as potential markers of T. infestans exposure. Methodology and Principal Findings In SDS-PAGE analysis of salivary proteins of T. infestans the banding pattern differed between developmental stages and strains of triatomines. Phenograms constructed from the salivary profiles separated nymphal instars, especially the 5th instar, from adults. To analyze the influence of stage- and strain-specific differences in T. infestans saliva on the antibody response of guinea pigs, twenty-one guinea pigs were exposed to 5th instar nymphs and/or adults of different T. infestans strains. Western blot analyses using sera of exposed guinea pigs revealed stage- and strain-specific variations in the humoral response of animals. In total, 27 and 17 different salivary proteins reacted with guinea pig sera using IgG and IgM antibodies, respectively. Despite all variations of recognized salivary antigens, an antigen of 35 kDa reacted with sera of almost all challenged guinea pigs. Conclusion Salivary antigens are increasingly considered as an epidemiological tool to measure exposure to hematophagous arthropods, but developmental stage- and strain-specific variations in the saliva composition and the respective differences of immunogenicity are often neglected. Thus, the development of a triatomine exposure marker for surveillance studies after triatomine control campaigns requires detailed investigations. Our study resulted in the identification of a potential antigen as useful marker of T. infestans exposure. Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, and currently affects approximately 8 million people in Latin American countries. Although vector control campaigns against the most effective Chagas disease vector, Triatoma infestans, have been highly successful, T. infestans is re-establishing in once-endemic regions. To monitor re-establishing triatomines, new epidemiological tools are needed. Antibody responses of hosts to triatomine salivary proteins represent a promising tool to detect biting bugs, and highly immunogenic salivary antigens may be used as markers of triatomine exposure. Therefore, we analyzed the antibody response of guinea pigs, common peridomestic hosts of T. infestans, to salivary proteins of nymphs and adults of four different T. infestans strains from Argentina, Bolivia, Chile and Peru. Developmental stage- and strain-specific proteins in the saliva of T. infestans influenced the antibody response of guinea pigs, and different salivary antigens were recognized by guinea pig sera. Despite the variations of immunogenic salivary antigens, a 35 kDa antigen was recognized by almost all guinea pig sera and this antigen may be a useful marker of T. infestans exposure.
Collapse
Affiliation(s)
- Veronika Dorňáková
- Institute of Parasitology, Biology Centre of the Academy of Sciences of Czech Republic, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | | | | | - Michael Z. Levy
- Universidad Peruana Cayetano Heredia, Sede de Arequipa, Arequipa, Peru
- Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Günter A. Schaub
- Zoology/Parasitology Group, Ruhr-University Bochum, Bochum, Germany
| | - Alexandra Schwarz
- Institute of Parasitology, Biology Centre of the Academy of Sciences of Czech Republic, Ceske Budejovice, Czech Republic
- * E-mail:
| |
Collapse
|
25
|
Sor-suwan S, Jariyapan N, Roytrakul S, Paemanee A, Phumee A, Phattanawiboon B, Intakhan N, Chanmol W, Bates PA, Saeung A, Choochote W. Identification of salivary gland proteins depleted after blood feeding in the malaria vector Anopheles campestris-like mosquitoes (Diptera: Culicidae). PLoS One 2014; 9:e90809. [PMID: 24599352 PMCID: PMC3944739 DOI: 10.1371/journal.pone.0090809] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/04/2014] [Indexed: 12/31/2022] Open
Abstract
Malaria sporozoites must invade the salivary glands of mosquitoes for maturation before transmission to vertebrate hosts. The duration of the sporogonic cycle within the mosquitoes ranges from 10 to 21 days depending on the parasite species and temperature. During blood feeding salivary gland proteins are injected into the vertebrate host, along with malaria sporozoites in the case of an infected mosquito. To identify salivary gland proteins depleted after blood feeding of female Anopheles campestris-like, a potential malaria vector of Plasmodium vivax in Thailand, two-dimensional gel electrophoresis and nano-liquid chromatography-mass spectrometry techniques were used. Results showed that 19 major proteins were significantly depleted in three to four day-old mosquitoes fed on a first blood meal. For the mosquitoes fed the second blood meal on day 14 after the first blood meal, 14 major proteins were significantly decreased in amount. The significantly depleted proteins in both groups included apyrase, 5′-nucleotidase/apyrase, D7, D7-related 1, short form D7r1, gSG6, anti-platelet protein, serine/threonine-protein kinase rio3, putative sil1, cyclophilin A, hypothetical protein Phum_PHUM512530, AGAP007618-PA, and two non-significant hit proteins. To our knowledge, this study presents for the first time the salivary gland proteins that are involved in the second blood feeding on the day corresponding to the transmission period of the sporozoites to new mammalian hosts. This information serves as a basis for future work concerning the possible role of these proteins in the parasite transmission and the physiological processes that occur during the blood feeding.
Collapse
Affiliation(s)
- Sriwatapron Sor-suwan
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Narissara Jariyapan
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Atchara Paemanee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Atchara Phumee
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Benjarat Phattanawiboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nuchpicha Intakhan
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wetpisit Chanmol
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Paul A. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Atiporn Saeung
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wej Choochote
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
26
|
Ndille EE, Dubot-Pérès A, Doucoure S, Mouchet F, Cornelie S, Sidavong B, Fournet F, Remoue F. Human IgG antibody response to Aedes aegypti Nterm-34 kDa salivary peptide as an indicator to identify areas at high risk for dengue transmission: a retrospective study in urban settings of Vientiane city, Lao PDR. Trop Med Int Health 2014; 19:576-80. [PMID: 24641205 DOI: 10.1111/tmi.12280] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Using human IgG antibody response to the Aedes Nterm-34 kDa salivary peptide as an indicator of human exposure to Aedes bites in surveying exposed populations from areas at risk of dengue virus (DENV) transmission in urban settings of Vientiane city, Lao PDR. METHODS Enzyme-linked immunosorbent assay tests were performed to measure the IgG response to Nterm-34 kDa peptide in blood samples collected within a flavivirus seroprevalence survey carried out in 2006 including 3558 randomly selected individuals. The level of IgG response to the Nterm-34 kDa peptide in individuals was analysed in relation to the level of urbanisation of the individual's residence, areas that presented significant differences in the prevalence of recent DENV infection. RESULTS No differences were observed in the anti-Nterm-34 kDa IgG level between DENV-positive and DENV-negative individuals. However, the level of specific IgG response was higher among individuals living in slightly urbanised neighbourhoods than among those in more highly urbanised areas (P < 0.0001). Interestingly, a similar pattern had already been observed concerning the prevalence of recent DENV infection in the same populations. CONCLUSION The results of this retrospective study indicate that the evaluation of human IgG response to the Aedes Nterm-34 kDa salivary peptide could be a useful indicator to identify places with risk of dengue virus transmission in urban endemic areas.
Collapse
Affiliation(s)
- Emmanuel Elanga Ndille
- Institut de recherche pour le développement (IRD), UMR Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, UMR IRD 224 - CNRS 5290 - Universities of Montpellier 1 and 2, Cotonou, Bénin; Centre de Recherche Entomologique de Cotonou, Ministère de la Santé Publique, Cotonou, Bénin
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Challenges and prospects for dengue and malaria control in Thailand, Southeast Asia. Trends Parasitol 2013; 29:623-33. [PMID: 24215776 DOI: 10.1016/j.pt.2013.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/28/2013] [Accepted: 09/28/2013] [Indexed: 01/12/2023]
Abstract
Despite significant advances in the search for potential dengue vaccines and new therapeutic schemes for malaria, the control of these diseases remains difficult. In Thailand, malaria incidence is falling whereas that of dengue is rising, with an increase in the proportion of reported severe cases. In the absence of antiviral therapeutic options for acute dengue, appropriate case management reduces mortality. However, the interruption of transmission still relies on vector control measures that are currently insufficient to curtail the cycle of epidemics. Drug resistance in malaria parasites is increasing, compromising malaria control and elimination. Deficiencies in our knowledge of vector biology and vectorial capacity also hinder public health efforts for vector control. Challenges to dengue and malaria control are discussed, and research priorities identified.
Collapse
|
28
|
Sagna AB, Gaayeb L, Sarr JB, Senghor S, Poinsignon A, Boutouaba-Combe S, Schacht AM, Hermann E, Faye N, Remoue F, Riveau G. Plasmodium falciparum infection during dry season: IgG responses to Anopheles gambiae salivary gSG6-P1 peptide as sensitive biomarker for malaria risk in Northern Senegal. Malar J 2013; 12:301. [PMID: 23988032 PMCID: PMC3766161 DOI: 10.1186/1475-2875-12-301] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/27/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The Northern part of Senegal is characterized by a low and seasonal transmission of malaria. However, some Plasmodium falciparum infections and malaria clinical cases are reported during the dry season. This study aims to assess the relationship between IgG antibody (Ab) responses to gSG6-P1 mosquito salivary peptide and the prevalence of P. falciparum infection in children during the dry season in the Senegal River Valley. The positive association of the Ab response to gSG6-P1, as biomarker of human exposure to Anopheles vector bite, and P. falciparum infectious status (uninfected, infected-asymptomatic or infected-symptomatic) will allow considering this biomarker as a potential indicator of P. falciparum infection risk during the dry season. METHODS Microscopic examination of thick blood smears was performed in 371 and 310 children at the start (January) and at the end (June) of the dry season, respectively, in order to assess the prevalence of P. falciparum infection. Collected sera were used to evaluate IgG response to gSG6-P1 by ELISA. Association between parasitological and clinical data (infected-asymptomatic or infected-symptomatic) and the anti-gSG6-P1 IgG levels were evaluated during this period. RESULTS The prevalence of P. falciparum infection was very low to moderate according to the studied period and was higher in January (23.5%) compared to June (3.5%). Specific IgG response was also different between uninfected children and asymptomatic carriers of the parasite. Children with P. falciparum infection in the dry season showed higher IgG Ab levels to gSG6-P1 than uninfected children. CONCLUSIONS The results strengthen the hypothesis that malaria transmission is maintained during the dry season in an area of low and seasonal transmission. The measurement of IgG responses to gSG6-P1 salivary peptide could be a pertinent indicator of human malaria reservoir or infection risk in this particular epidemiological context. This promising immunological marker could be useful for the evaluation of the risk of P. falciparum exposure observed during dry season and, by consequences, could be used for the survey of potential pre-elimination situation.
Collapse
Affiliation(s)
- André B Sagna
- Centre de Recherche Biomédicale Espoir Pour La Santé, 269 Route de la corniche, Sor, BP: 226, Saint-Louis, Sénégal
- Département de Biologie Animale, Laboratoire de parasitologie générale, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Lobna Gaayeb
- Centre de Recherche Biomédicale Espoir Pour La Santé, 269 Route de la corniche, Sor, BP: 226, Saint-Louis, Sénégal
- CIIL, Inserm U1019, CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019 Lille cedex, France
| | - Jean B Sarr
- Centre de Recherche Biomédicale Espoir Pour La Santé, 269 Route de la corniche, Sor, BP: 226, Saint-Louis, Sénégal
- Institut de Recherche pour le Développement, UMR 224 MIVEGEC, 911 avenue Agropolis, BP: 64501F-34394 Montpellier, France
| | - Simon Senghor
- Centre de Recherche Biomédicale Espoir Pour La Santé, 269 Route de la corniche, Sor, BP: 226, Saint-Louis, Sénégal
| | - Anne Poinsignon
- Institut de Recherche pour le Développement, UMR 224 MIVEGEC, 911 avenue Agropolis, BP: 64501F-34394 Montpellier, France
| | - Samy Boutouaba-Combe
- Centre de Recherche Biomédicale Espoir Pour La Santé, 269 Route de la corniche, Sor, BP: 226, Saint-Louis, Sénégal
| | - Anne-Marie Schacht
- Centre de Recherche Biomédicale Espoir Pour La Santé, 269 Route de la corniche, Sor, BP: 226, Saint-Louis, Sénégal
- CIIL, Inserm U1019, CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019 Lille cedex, France
| | - Emmanuel Hermann
- CIIL, Inserm U1019, CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019 Lille cedex, France
| | - Ngor Faye
- Département de Biologie Animale, Laboratoire de parasitologie générale, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Franck Remoue
- Institut de Recherche pour le Développement, UMR 224 MIVEGEC, 911 avenue Agropolis, BP: 64501F-34394 Montpellier, France
- Centre de Recherche Entomologique de Cotonou, BP: 4414, Cotonou RP 01, Bénin
| | - Gilles Riveau
- Centre de Recherche Biomédicale Espoir Pour La Santé, 269 Route de la corniche, Sor, BP: 226, Saint-Louis, Sénégal
- CIIL, Inserm U1019, CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, 1 rue du Pr. Calmette, 59019 Lille cedex, France
| |
Collapse
|
29
|
Doucoure S, Cornelie S, Patramool S, Mouchet F, Demettre E, Seveno M, Dehecq JS, Rutee H, Herve JP, Favier F, Missé D, Gasque P, Remoue F. First screening of Aedes albopictus immunogenic salivary proteins. INSECT MOLECULAR BIOLOGY 2013; 22:411-423. [PMID: 23714164 DOI: 10.1111/imb.12032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Study of the human antibody (Ab) response to Aedes salivary proteins can provide new biomarkers to evaluate human exposure to vector bites. The identification of genus- and/or species-specific proteins is necessary to improve the accuracy of biomarkers. We analysed Aedes albopictus immunogenic salivary proteins by 2D immunoproteomic technology and compared the profiles according to human individual exposure to Ae. albopictus or Ae. aegypti bites. Strong antigenicity to Ae. albopictus salivary proteins was detected in all individuals whatever the nature of Aedes exposure. Amongst these antigenic proteins, 68% are involved in blood feeding, including D7 protein family, adenosine deaminase, serpin and apyrase. This study provides an insight into the repertoire of Ae. albopictus immunogenic salivary proteins for the first time.
Collapse
Affiliation(s)
- S Doucoure
- MIVEGEC: Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, , Universities of Montpellier 1 and 2., Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Drame PM, Diallo A, Poinsignon A, Boussari O, Dos Santos S, Machault V, Lalou R, Cornelie S, LeHesran JY, Remoue F. Evaluation of the effectiveness of malaria vector control measures in urban settings of Dakar by a specific anopheles salivary biomarker. PLoS One 2013; 8:e66354. [PMID: 23840448 PMCID: PMC3688790 DOI: 10.1371/journal.pone.0066354] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 05/09/2013] [Indexed: 11/24/2022] Open
Abstract
Standard entomological methods for evaluating the impact of vector control lack sensitivity in low-malaria-risk areas. The detection of human IgG specific to Anopheles gSG6-P1 salivary antigen reflects a direct measure of human–vector contact. This study aimed to assess the effectiveness of a range of vector control measures (VCMs) in urban settings by using this biomarker approach. The study was conducted from October to December 2008 on 2,774 residents of 45 districts of urban Dakar. IgG responses to gSG6-P1 and the use of malaria VCMs highly varied between districts. At the district level, specific IgG levels significantly increased with age and decreased with season and with VCM use. The use of insecticide-treated nets, by drastically reducing specific IgG levels, was by far the most efficient VCM regardless of age, season or exposure level to mosquito bites. The use of spray bombs was also associated with a significant reduction of specific IgG levels, whereas the use of mosquito coils or electric fans/air conditioning did not show a significant effect. Human IgG response to gSG6-P1 as biomarker of vector exposure represents a reliable alternative for accurately assessing the effectiveness of malaria VCM in low-malaria-risk areas. This biomarker tool could be especially relevant for malaria control monitoring and surveillance programmes in low-exposure/low-transmission settings.
Collapse
Affiliation(s)
- Papa Makhtar Drame
- Institut de Recherche pour le Développement (IRD), UMR-MIVEGEC (IRD224-CNRS5290- Universites Montpellier 1 et 2), Montpellier, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sagna AB, Sarr JB, Gaayeb L, Drame PM, Ndiath MO, Senghor S, Sow CS, Poinsignon A, Seck M, Hermann E, Schacht AM, Faye N, Sokhna C, Remoue F, Riveau G. gSG6-P1 salivary biomarker discriminates micro-geographical heterogeneity of human exposure to Anopheles bites in low and seasonal malaria areas. Parasit Vectors 2013; 6:68. [PMID: 23497646 PMCID: PMC3631127 DOI: 10.1186/1756-3305-6-68] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the past decade, a sharp decline of malaria burden has been observed in several countries. Consequently, the conventional entomological methods have become insufficiently sensitive and probably under-estimate micro-geographical heterogeneity of exposure and subsequent risk of malaria transmission. In this study, we investigated whether the human antibody (Ab) response to Anopheles salivary gSG6-P1 peptide, known as a biomarker of Anopheles exposure, could be a sensitive and reliable tool for discriminating human exposure to Anopheles bites in area of low and seasonal malaria transmission. METHODS A multi-disciplinary survey was performed in Northern Senegal where An. gambiae s.l. is the main malaria vector. Human IgG Ab response to gSG6-P1 salivary peptide was compared according to the season and villages in children from five villages in the middle Senegal River valley, known as a low malaria transmission area. RESULTS IgG levels to gSG6-P1 varied considerably according to the villages, discriminating the heterogeneity of Anopheles exposure between villages. Significant increase of IgG levels to gSG6-P1 was observed during the peak of exposure to Anopheles bites, and decreased immediately after the end of the exposure season. In addition, differences in the season-dependent specific IgG levels between villages were observed after the implementation of Long-Lasting Insecticidal Nets by The National Malaria Control Program in this area. CONCLUSION The gSG6-P1 salivary peptide seems to be a reliable tool to discriminate the micro-geographical heterogeneity of human exposure to Anopheles bites in areas of very low and seasonal malaria transmission. A biomarker such as this could also be used to monitor and evaluate the possible heterogeneous effectiveness of operational vector control programs in low-exposure areas.
Collapse
Affiliation(s)
- André Barembaye Sagna
- Centre de Recherche Biomédicale (CRB) Espoir Pour La Santé, 269 Route de la corniche, Sor - BP: 226, Saint-Louis, Sénégal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ali ZMI, Bakli M, Fontaine A, Bakkali N, Vu Hai V, Audebert S, Boublik Y, Pagès F, Remoué F, Rogier C, Fraisier C, Almeras L. Assessment of Anopheles salivary antigens as individual exposure biomarkers to species-specific malaria vector bites. Malar J 2012; 11:439. [PMID: 23276246 PMCID: PMC3547717 DOI: 10.1186/1475-2875-11-439] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/19/2012] [Indexed: 01/08/2023] Open
Abstract
Background Malaria transmission occurs during the blood feeding of infected anopheline mosquitoes concomitant with a saliva injection into the vertebrate host. In sub-Saharan Africa, most malaria transmission is due to Anopheles funestus s.s and to Anopheles gambiae s.l. (mainly Anopheles gambiae s.s. and Anopheles arabiensis). Several studies have demonstrated that the immune response against salivary antigens could be used to evaluate individual exposure to mosquito bites. The aim of this study was to assess the use of secreted salivary proteins as specific biomarkers of exposure to An. gambiae and/or An. funestus bites. Methods For this purpose, salivary gland proteins 6 (SG6) and 5′nucleotidases (5′nuc) from An. gambiae (gSG6 and g-5′nuc) and An. funestus (fSG6 and f-5′nuc) were selected and produced in recombinant form. The specificity of the IgG response against these salivary proteins was tested using an ELISA with sera from individuals living in three Senegalese villages (NDiop, n = 50; Dielmo, n = 38; and Diama, n = 46) that had been exposed to distinct densities and proportions of the Anopheles species. Individuals who had not been exposed to these tropical mosquitoes were used as controls (Marseille, n = 45). Results The IgG responses against SG6 recombinant proteins from these two Anopheles species and against g-5′nucleotidase from An. gambiae, were significantly higher in Senegalese individuals compared with controls who were not exposed to specific Anopheles species. Conversely, an association was observed between the level of An. funestus exposure and the serological immune response levels against the f-5′nucleotidase protein. Conclusion This study revealed an Anopheles salivary antigenic protein that could be considered to be a promising antigenic marker to distinguish malaria vector exposure at the species level. The epidemiological interest of such species-specific antigenic markers is discussed.
Collapse
Affiliation(s)
- Zakia M I Ali
- Unité de recherche en biologie et épidémiologie parasitaires, Armed Forces Biomedical Research Institute, antenne Marseille, GSBdD de Marseille Aubagne, 111 avenue de la corse, Marseille cedex 02, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Elanga Ndille E, Doucoure S, Damien G, Mouchet F, Drame PM, Cornelie S, Noukpo H, Yamadjako S, Djenontin A, Moiroux N, Misse D, Akogbeto M, Corbel V, Henry MC, Chandre F, Baldet T, Remoue F. First attempt to validate human IgG antibody response to Nterm-34kDa salivary peptide as biomarker for evaluating exposure to Aedes aegypti bites. PLoS Negl Trop Dis 2012; 6:e1905. [PMID: 23166852 PMCID: PMC3499371 DOI: 10.1371/journal.pntd.0001905] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
Background Much effort is being devoted for developing new indicators to evaluate the human exposure to Aedes mosquito bites and the risk of arbovirus transmission. Human antibody (Ab) responses to mosquito salivary components could represent a promising tool for evaluating the human-vector contact. Methodology/Principal findings To develop a specific biomarker of human exposure to Aedes aegypti bites, we measured IgG Ab response to Ae. aegypti Nterm-34 kDa salivary peptide in exposed children in 7 villages of Southern Benin (West Africa). Results showed that specific IgG response presented high inter-individual heterogeneity between villages. IgG response was associated with rainfall and IgG level increased from dry (low exposure) to rainy (high exposure) seasons. These findings indicate that IgG Ab to Nterm-34 kDa salivary peptide may represent a reliable biomarker to detect variation in human exposure to Ae. aegypti bites. Conclusion/Significance This preliminary study highlights the potential use of Ab response to this salivary peptide for evaluating human exposure to Ae. aegypti. This biomarker could represent a new promising tool for assessing the risk of arbovirus transmission and for evaluating the efficacy of vector control interventions. Aedes aegypti mosquito is the primary vector of major (re)-emerging human arboviruses, such as Dengue and Chikungunya. In absence of effective treatment and vaccine, the evaluation of human exposure to vector bites is crucial to estimate the risk of the viruses' transmission. Currently, exposure to Aedes aegypti bites is mainly evaluated by entomological methods which are indirect and fastidious to apply on a large scale. Human antibody (Ab) responses to arthropod salivary proteins were shown as a useful indicator of exposure to arthropod vector bites. Nevertheless, the whole saliva could not be a specific tool because some families of salivary proteins are common between many arthropod vectors. To develop a specific biomarker of exposure to Aedes aegypti bites, we assessed the evolution of IgG Ab response to Ae. aegypti Nterm-34 kDa salivary peptide in exposed children. The results indicate that children exposed to the bites of Ae. aegypti could develop specific Ab response to Nterm-34 kDa salivary peptide. This specific IgG response presented high inter-individual heterogeneity and increased significantly during the Ae. aegypti exposure season. Taken together, these preliminary results suggest that Ab responses to Nterm-34 kDa salivary could constitute a relevant immuno-epidemiological indicator for evaluating human exposure to the Ae. aegypti vector and by consequence the risk of arbovirus transmission.
Collapse
Affiliation(s)
- Emmanuel Elanga Ndille
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD 224 - CNRS 5290 - Universities of Montpellier 1, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fontaine A, Fusaï T, Briolant S, Buffet S, Villard C, Baudelet E, Pophillat M, Granjeaud S, Rogier C, Almeras L. Anopheles salivary gland proteomes from major malaria vectors. BMC Genomics 2012; 13:614. [PMID: 23148599 PMCID: PMC3542285 DOI: 10.1186/1471-2164-13-614] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 10/29/2012] [Indexed: 01/29/2023] Open
Abstract
Background Antibody responses against Anopheles salivary proteins can indicate individual exposure to bites of malaria vectors. The extent to which these salivary proteins are species-specific is not entirely resolved. Thus, a better knowledge of the diversity among salivary protein repertoires from various malaria vector species is necessary to select relevant genus-, subgenus- and/or species-specific salivary antigens. Such antigens could be used for quantitative (mosquito density) and qualitative (mosquito species) immunological evaluation of malaria vectors/host contact. In this study, salivary gland protein repertoires (sialomes) from several Anopheles species were compared using in silico analysis and proteomics. The antigenic diversity of salivary gland proteins among different Anopheles species was also examined. Results In silico analysis of secreted salivary gland protein sequences retrieved from an NCBInr database of six Anopheles species belonging to the Cellia subgenus (An. gambiae, An. arabiensis, An. stephensi and An. funestus) and Nyssorhynchus subgenus (An. albimanus and An. darlingi) displayed a higher degree of similarity compared to salivary proteins from closely related Anopheles species. Additionally, computational hierarchical clustering allowed identification of genus-, subgenus- and species-specific salivary proteins. Proteomic and immunoblot analyses performed on salivary gland extracts from four Anopheles species (An. gambiae, An. arabiensis, An. stephensi and An. albimanus) indicated that heterogeneity of the salivary proteome and antigenic proteins was lower among closely related anopheline species and increased with phylogenetic distance. Conclusion This is the first report on the diversity of the salivary protein repertoire among species from the Anopheles genus at the protein level. This work demonstrates that a molecular diversity is exhibited among salivary proteins from closely related species despite their common pharmacological activities. The involvement of these proteins as antigenic candidates for genus-, subgenus- or species-specific immunological evaluation of individual exposure to Anopheles bites is discussed.
Collapse
Affiliation(s)
- Albin Fontaine
- Unité de Parasitologie - UMR6236, URMITE - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), BP 60109, Marseille Cedex 07, 13 262, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brosseau L, Drame PM, Besnard P, Toto JC, Foumane V, Le Mire J, Mouchet F, Remoue F, Allan R, Fortes F, Carnevale P, Manguin S. Human antibody response to Anopheles saliva for comparing the efficacy of three malaria vector control methods in Balombo, Angola. PLoS One 2012; 7:e44189. [PMID: 23028499 PMCID: PMC3454387 DOI: 10.1371/journal.pone.0044189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/30/2012] [Indexed: 12/04/2022] Open
Abstract
Human antibody (Ab) response to Anopheles whole saliva, used as biomarker of Anopheles exposure, was investigated over a period of two years (2008–2009), in children between 2 to 9 years old, before and after the introduction of three different malaria vector control methods; deltamethrin treated long lasting impregnated nets (LLIN) and insecticide treated plastic sheeting (ITPS) - Zero Fly®) (ITPS-ZF), deltamethrin impregnated Durable (Wall) Lining (ITPS-DL – Zerovector®) alone, and indoor residual spraying (IRS) with lambdacyhalothrin alone. These different vector control methods resulted in considerable decreases in all three entomological (82.4%), parasitological (54.8%) and immunological criteria analyzed. The highest reductions in the number of Anopheles collected and number of positive blood smears, respectively 82.1% and 58.3%, were found in Capango and Canjala where LLIN and ITPS-ZF were implemented. The immunological data based on the level of anti-saliva IgG Ab in children of all villages dropped significantly from 2008 to 2009, except in Chissequele. These results indicated that these three vector control methods significantly reduced malaria infections amongst the children studied and IRS significantly reduced the human-Anopheles contact. The number of Anopheles, positive blood smears, and the levels of anti-saliva IgG Ab were most reduced when LLIN and ITPS-ZF were used in combination, compared to the use of one vector control method alone, either ITPS-DL or IRS. Therefore, as a combination of two vector control methods is significantly more effective than one control method only, this control strategy should be further developed at a more global scale.
Collapse
Affiliation(s)
- Laura Brosseau
- UMR-MD3, Institut de Recherche pour le Développement, Montpellier, France
| | - Papa Makhtar Drame
- UMR-MIVEGEC, Institut de Recherche pour le Développement, Montpellier, France
| | | | - Jean-Claude Toto
- Laboratoire de Recherche pour le Paludisme, Organisation de Coordination pour la lutte contre les Endémioes en Afrique Centrale, Yaoundé, Cameroun
| | - Vincent Foumane
- Laboratoire de Recherche pour le Paludisme, Organisation de Coordination pour la lutte contre les Endémioes en Afrique Centrale, Yaoundé, Cameroun
| | | | - François Mouchet
- UMR-MIVEGEC, Institut de Recherche pour le Développement, Montpellier, France
| | - Franck Remoue
- UMR-MIVEGEC, Institut de Recherche pour le Développement, Montpellier, France
| | | | | | - Pierre Carnevale
- Institut de Recherche pour le Développement, Montpellier, France
| | - Sylvie Manguin
- UMR-MD3, Institut de Recherche pour le Développement, Montpellier, France
- * E-mail:
| |
Collapse
|
36
|
Badu K, Siangla J, Larbi J, Lawson BW, Afrane Y, Ong'echa J, Remoue F, Zhou G, Githeko AK, Yan G. Variation in exposure to Anopheles gambiae salivary gland peptide (gSG6-P1) across different malaria transmission settings in the western Kenya highlands. Malar J 2012; 11:318. [PMID: 22963464 PMCID: PMC3541077 DOI: 10.1186/1475-2875-11-318] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/06/2012] [Indexed: 11/21/2022] Open
Abstract
Background The existing metrics of malaria transmission are limited in sensitivity under low transmission intensity. Robust surveillance systems are needed as interventions to monitor reduced transmission and prevention of rapid reintroduction. Serological tools based on antibody responses to parasite and vector antigens are potential tools for transmission measurements. The current study sought to evaluate antibody responses to Anopheles gambiae salivary gland peptide (gSG6- P1), as a biomarker of human exposure to Anopheles bites, in different transmission settings and seasons. The comparison between anti-MSP-119 IgG immune responders and non-responders allowed exploring the robustness of the gSG6-P1 peptide as a surveillance tool in an area of decreasing malaria transmission. Methods Total IgG levels to gSG6-P1 were measured in an age-stratified cohort (< 5, 5–14 and ≥ 15 years) in a total of 1,366 participants from three localities in western Kenya [Kisii (hypoendemic), Kakamega (mesoendemic), and Kombewa (hyperendemic)] including 607 sera that were additionally tested for MSP-119 specific responses during a low and a high malaria transmission seasons. Antibody prevalence and levels were compared between localities with different transmission intensities. Regression analysis was performed to examine the association between gSG6-P1 and MSP-119 seroprevalence and parasite prevalence. Result Seroprevalence of gSG6-P1 in the uphill population was 36% while it was 50% valley bottom (χ2 = 13.2, df = 1, p < 0.001). Median gSG6-P1 antibody levels in the Valley bottom were twice as high as that observed in the uphill population [4.50 vs. 2.05, p < 0.001] and showed seasonal variation. The odds of gSG6-P1 seropositives having MSP-119 antibodies were almost three times higher than the odds of seronegatives (OR = 2.87, 95% CI [1.977, 4.176]). The observed parasite prevalence for Kisii, Kakamega and Kombewa were 4%, 19.7% and 44.6% whilst the equivalent gSG6-P1 seroprevalence were 28%, 34% and 54%, respectively. Conclusion The seroprevalence of IgG to gSG6-P1 was sensitive and robust in distinguishing between hypo, meso and hyper transmission settings and seasonal fluctuations.
Collapse
Affiliation(s)
- Kingsley Badu
- Department of Theoretical and Applied Biology, College of Sciences, Kwame Nkrumah, University of Science & Technology, Kumasi, Ghana.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Drame PM, Machault V, Diallo A, Cornélie S, Poinsignon A, Lalou R, Sembène M, Dos Santos S, Rogier C, Pagès F, Le Hesran JY, Remoué F. IgG responses to the gSG6-P1 salivary peptide for evaluating human exposure to Anopheles bites in urban areas of Dakar region, Sénégal. Malar J 2012; 11:72. [PMID: 22424570 PMCID: PMC3337805 DOI: 10.1186/1475-2875-11-72] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 03/16/2012] [Indexed: 11/28/2022] Open
Abstract
Background Urban malaria can be a serious public health problem in Africa. Human-landing catches of mosquitoes, a standard entomological method to assess human exposure to malaria vector bites, can lack sensitivity in areas where exposure is low. A simple and highly sensitive tool could be a complementary indicator for evaluating malaria exposure in such epidemiological contexts. The human antibody response to the specific Anopheles gSG6-P1 salivary peptide have been described as an adequate tool biomarker for a reliable assessment of human exposure level to Anopheles bites. The aim of this study was to use this biomarker to evaluate the human exposure to Anopheles mosquito bites in urban settings of Dakar (Senegal), one of the largest cities in West Africa, where Anopheles biting rates and malaria transmission are supposed to be low. Methods One cross-sectional study concerning 1,010 (505 households) children (n = 505) and adults (n = 505) living in 16 districts of downtown Dakar and its suburbs was performed from October to December 2008. The IgG responses to gSG6-P1 peptide have been assessed and compared to entomological data obtained in or near the same district. Results Considerable individual variations in anti-gSG6-P1 IgG levels were observed between and within districts. In spite of this individual heterogeneity, the median level of specific IgG and the percentage of immune responders differed significantly between districts. A positive and significant association was observed between the exposure levels to Anopheles gambiae bites, estimated by classical entomological methods, and the median IgG levels or the percentage of immune responders measuring the contact between human populations and Anopheles mosquitoes. Interestingly, immunological parameters seemed to better discriminate the exposure level to Anopheles bites between different exposure groups of districts. Conclusions Specific human IgG responses to gSG6-P1 peptide biomarker represent, at the population and individual levels, a credible new alternative tool to assess accurately the heterogeneity of exposure level to Anopheles bites and malaria risk in low urban transmission areas. The development of such biomarker tool would be particularly relevant for mapping and monitoring malaria risk and for measuring the efficiency of vector control strategies in these specific settings.
Collapse
Affiliation(s)
- Papa M Drame
- Unité Mixte de Recherche MIVEGEC (IRD 224-CNRS 5290-UM1), Institut de Recherche pour le Développement, 34394, Montpellier Cedex 8, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Evaluation of the human IgG antibody response to Aedes albopictus saliva as a new specific biomarker of exposure to vector bites. PLoS Negl Trop Dis 2012; 6:e1487. [PMID: 22363823 PMCID: PMC3283547 DOI: 10.1371/journal.pntd.0001487] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 11/30/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The spread of Aedes albopictus, a vector for re-emergent arbovirus diseases like chikungunya and dengue, points up the need for better control strategies and new tools to evaluate transmission risk. Human antibody (Ab) responses to mosquito salivary proteins could represent a reliable biomarker for evaluating human-vector contact and the efficacy of control programs. METHODOLOGY/PRINCIPAL FINDINGS We used ELISA tests to evaluate specific immunoglobulin G (IgG) responses to salivary gland extracts (SGE) in adults exposed to Aedes albopictus in Reunion Island. The percentage of immune responders (88%) and levels of anti-SGE IgG Abs were high in exposed individuals. At an individual level, our results indicate heterogeneity of the exposure to Aedes albopictus bites. In addition, low-level immune cross-reactivity between Aedes albopictus and Aedes aegypti SGEs was observed, mainly in the highest responders. CONCLUSION/SIGNIFICANCE Ab responses to saliva could be used as an immuno-epidemiological tool for evaluating exposure to Aedes albopictus bites. Combined with entomological and epidemiological methods, a "salivary" biomarker of exposure to Aedes albopictus could enhance surveillance of its spread and the risk of arbovirus transmission, and could be used as a direct tool for the evaluation of Aedes albopictus control strategies.
Collapse
|
39
|
Fontaine A, Diouf I, Bakkali N, Missé D, Pagès F, Fusai T, Rogier C, Almeras L. Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasit Vectors 2011; 4:187. [PMID: 21951834 PMCID: PMC3197560 DOI: 10.1186/1756-3305-4-187] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 09/28/2011] [Indexed: 01/25/2023] Open
Abstract
The saliva of haematophagous arthropods contains an array of anti-haemostatic, anti-inflammatory and immunomodulatory molecules that contribute to the success of the blood meal. The saliva of haematophagous arthropods is also involved in the transmission and the establishment of pathogens in the host and in allergic responses. This survey provides a comprehensive overview of the pharmacological activity and immunogenic properties of the main salivary proteins characterised in various haematophagous arthropod species. The potential biological and epidemiological applications of these immunogenic salivary molecules will be discussed with an emphasis on their use as biomarkers of exposure to haematophagous arthropod bites or vaccine candidates that are liable to improve host protection against vector-borne diseases.
Collapse
Affiliation(s)
- Albin Fontaine
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | - Ibrahima Diouf
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | - Nawal Bakkali
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | - Dorothée Missé
- Laboratoire de Génétique et Evolution des Maladies infectieuses, UMR 2724 CNRS/IRD, Montpellier, France
| | - Frédéric Pagès
- Unité d'Entomologie Médicale, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | - Thierry Fusai
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | - Christophe Rogier
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
- Institut Pasteur de Madagascar, B.P. 1274, Ambohitrakely, 101 Antananarivo, Madagascar
| | - Lionel Almeras
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| |
Collapse
|
40
|
Gidwani K, Picado A, Rijal S, Singh SP, Roy L, Volfova V, Andersen EW, Uranw S, Ostyn B, Sudarshan M, Chakravarty J, Volf P, Sundar S, Boelaert M, Rogers ME. Serological markers of sand fly exposure to evaluate insecticidal nets against visceral leishmaniasis in India and Nepal: a cluster-randomized trial. PLoS Negl Trop Dis 2011; 5:e1296. [PMID: 21931871 PMCID: PMC3172194 DOI: 10.1371/journal.pntd.0001296] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 07/16/2011] [Indexed: 12/02/2022] Open
Abstract
Background Visceral leishmaniasis is the world' second largest vector-borne parasitic killer and a neglected tropical disease, prevalent in poor communities. Long-lasting insecticidal nets (LNs) are a low cost proven vector intervention method for malaria control; however, their effectiveness against visceral leishmaniasis (VL) is unknown. This study quantified the effect of LNs on exposure to the sand fly vector of VL in India and Nepal during a two year community intervention trial. Methods As part of a paired-cluster randomized controlled clinical trial in VL-endemic regions of India and Nepal we tested the effect of LNs on sand fly biting by measuring the antibody response of subjects to the saliva of Leishmania donovani vector Phlebotomus argentipes and the sympatric (non-vector) Phlebotomus papatasi. Fifteen to 20 individuals above 15 years of age from 26 VL endemic clusters were asked to provide a blood sample at baseline, 12 and 24 months post-intervention. Results A total of 305 individuals were included in the study, 68 participants provided two blood samples and 237 gave three samples. A random effect linear regression model showed that cluster-wide distribution of LNs reduced exposure to P. argentipes by 12% at 12 months (effect 0.88; 95% CI 0.83–0.94) and 9% at 24 months (effect 0.91; 95% CI 0.80–1.02) in the intervention group compared to control adjusting for baseline values and pair. Similar results were obtained for P. papatasi. Conclusions This trial provides evidence that LNs have a limited effect on sand fly exposure in VL endemic communities in India and Nepal and supports the use of sand fly saliva antibodies as a marker to evaluate vector control interventions. Visceral leishmaniasis (VL), also known as kala azar, is one of the major public health concerns of the Indian subcontinent, caused by Leishmania donovani transmitted by the bite of the sand fly Phlebotomus argentipes. To date, Indoor Residual Spraying (IRS) campaigns have been unable to control the disease. This makes Long-lasting insecticidal nets (LNs) an attractive alternative or complement to IRS. Therefore, it is important to assess the extent that LNs reduce bites from P. argentipes. When female sand flies bite they require their saliva to efficiently bloodfeed. For humans and animals alike, the host' immune response against components of sand fly saliva can be used as a marker of exposure to the vector. Here we describe how comprehensive coverage of LNs in trial communities over two years reduced antibody levels to the saliva of P. argentipes and P. papatasi (a man-biting sand fly that co-exists with P. argentipes but does not transmit VL) sand flies by 9–12% compared to communities without LNs. Our results demonstrate that the large-scale distribution of LNs did not confer significant additional protection against sand fly bites in VL-endemic regions of India and Nepal and questions the indoor transmission of L. donovani in these regions.
Collapse
Affiliation(s)
| | - Albert Picado
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Institute of Tropical Medicine, Antwerp, Belgium
| | - Suman Rijal
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - Lalita Roy
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - Elisabeth Wreford Andersen
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- University of Copenhagen, Copenhagen, Denmark
| | | | - Bart Ostyn
- Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Petr Volf
- Charles University, Prague, Czech Republic
| | | | | | | |
Collapse
|
41
|
Rizzo C, Ronca R, Fiorentino G, Mangano VD, Sirima SB, Nèbiè I, Petrarca V, Modiano D, Arcà B. Wide cross-reactivity between Anopheles gambiae and Anopheles funestus SG6 salivary proteins supports exploitation of gSG6 as a marker of human exposure to major malaria vectors in tropical Africa. Malar J 2011; 10:206. [PMID: 21794142 PMCID: PMC3160432 DOI: 10.1186/1475-2875-10-206] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/27/2011] [Indexed: 11/21/2022] Open
Abstract
Background The Anopheles gambiae gSG6 is an anopheline-specific salivary protein which helps female mosquitoes to efficiently feed on blood. Besides its role in haematophagy, gSG6 is immunogenic and elicits in exposed individuals an IgG response, which may be used as indicator of exposure to the main African malaria vector A. gambiae. However, malaria transmission in tropical Africa is sustained by three main vectors (A. gambiae, Anopheles arabiensis and Anopheles funestus) and a general marker, reflecting exposure to at least these three species, would be especially valuable. The SG6 protein is highly conserved within the A. gambiae species complex whereas the A. funestus homologue, fSG6, is more divergent (80% identity with gSG6). The aim of this study was to evaluate cross-reactivity of human sera to gSG6 and fSG6. Methods The A. funestus SG6 protein was expressed/purified and the humoral response to gSG6, fSG6 and a combination of the two antigens was compared in a population from a malaria hyperendemic area of Burkina Faso where both vectors were present, although with a large A. gambiae prevalence (>75%). Sera collected at the beginning and at the end of the high transmission/rainy season, as well as during the following low transmission/dry season, were analysed. Results According to previous observations, both anti-SG6 IgG level and prevalence decreased during the low transmission/dry season and showed a typical age-dependent pattern. No significant difference in the response to the two antigens was found, although their combined use yielded in most cases higher IgG level. Conclusions Comparative analysis of gSG6 and fSG6 immunogenicity to humans suggests the occurrence of a wide cross-reactivity, even though the two proteins carry species-specific epitopes. This study supports the use of gSG6 as reliable indicator of exposure to the three main African malaria vectors, a marker which may be useful to monitor malaria transmission and evaluate vector control measures, especially in conditions of low malaria transmission and/or reduced vector density. The Anopheles stephensi SG6 protein also shares 80% identity with gSG6, suggesting the attractive possibility that the A. gambiae protein may also be useful to assess human exposure to several Asian malaria vectors.
Collapse
Affiliation(s)
- Cinzia Rizzo
- Department of Public Health and Infectious Diseases, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Boulanger D, Doucoure S, Grout L, Ngom A, Rogerie F, Cornelie S, Sokhna C, Mouchet F, Riveau G, Simondon F, Remoue FJ. Immunoglobulin G antibody profiles against Anopheles salivary proteins in domestic animals in Senegal. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:691-693. [PMID: 21661332 DOI: 10.1603/me10183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Although domestic animals may not be permissive for Plasmodium, they could nevertheless play a role in the epidemiology of malaria by attracting Anopheles away from humans. To investigate interactions between domestic animals and mosquitoes, we assayed immunoglobulin G (IgG) antibodies directed against the salivary proteins of Anopheles gambiae in domestic animals living in Senegalese villages where malaria is endemic. By Western blotting, sera from bovines (n=6), ovines (n=36), and caprines (n=36) did not react with Anopheles whole saliva. In contrast, equine sera recognized proteins in both saliva and salivary gland extracts. Two of the major immunogens (32 and 72 kDa) were also reactive in extracts from other major mosquito genera (Aedes and Culex), but reactions toAnopheles-specific antigens were detected in 12 of 17 horses. These data suggest that horses strongly react to Anopheles bites, and further experiments on horses are warranted to investigate the impact of this domestic animal species on the transmission of human malaria.
Collapse
Affiliation(s)
- Denis Boulanger
- Institut de Recherche pour le Développement, UMR 145, 911 avenue Agropolis, BP64501, 34394 Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Drame PM, Poinsignon A, Besnard P, Cornelie S, Le Mire J, Toto JC, Foumane V, Dos-Santos MA, Sembène M, Fortes F, Simondon F, Carnevale P, Remoue F. Human antibody responses to the Anopheles salivary gSG6-P1 peptide: a novel tool for evaluating the efficacy of ITNs in malaria vector control. PLoS One 2010; 5:e15596. [PMID: 21179476 PMCID: PMC3001874 DOI: 10.1371/journal.pone.0015596] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/15/2010] [Indexed: 11/23/2022] Open
Abstract
To optimize malaria control, WHO has prioritised the need for new indicators to evaluate the efficacy of malaria vector control strategies. The gSG6-P1 peptide from gSG6 protein of Anopheles gambiae salivary glands was previously designed as a specific salivary sequence of malaria vector species. It was shown that the quantification of human antibody (Ab) responses to Anopheles salivary proteins in general and especially to the gSG6-P1 peptide was a pertinent biomarker of human exposure to Anopheles. The present objective was to validate this indicator in the evaluation of the efficacy of Insecticide Treated Nets (ITNs). A longitudinal evaluation, including parasitological, entomological and immunological assessments, was conducted on children and adults from a malaria-endemic area before and after the introduction of ITNs. Significant decrease of anti-gSG6-P1 IgG response was observed just after the efficient ITNs use. Interestingly, specific IgG Ab level was especially pertinent to evaluate a short-time period of ITNs efficacy and at individual level. However, specific IgG rose back up within four months as correct ITN use waned. IgG responses to one salivary peptide could constitute a reliable biomarker for the evaluation of ITN efficacy, at short- and long-term use, and provide a valuable tool in malaria vector control based on a real measurement of human-vector contact.
Collapse
Affiliation(s)
- Papa Makhtar Drame
- UR016 Contrôle et Caractérisation des Populations de Vecteurs, Institut de Recherche pour le Développement, Cotonou, Benin.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|