1
|
Zanirati G, Dos Santos PG, Alcará AM, Bruzzo F, Ghilardi IM, Wietholter V, Xavier FAC, Gonçalves JIB, Marinowic D, Shetty AK, da Costa JC. Extracellular Vesicles: The Next Generation of Biomarkers and Treatment for Central Nervous System Diseases. Int J Mol Sci 2024; 25:7371. [PMID: 39000479 PMCID: PMC11242541 DOI: 10.3390/ijms25137371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024] Open
Abstract
It has been widely established that the characterization of extracellular vesicles (EVs), particularly small EVs (sEVs), shed by different cell types into biofluids, helps to identify biomarkers and therapeutic targets in neurological and neurodegenerative diseases. Recent studies are also exploring the efficacy of mesenchymal stem cell-derived extracellular vesicles naturally enriched with therapeutic microRNAs and proteins for treating various diseases. In addition, EVs released by various neural cells play a crucial function in the modulation of signal transmission in the brain in physiological conditions. However, in pathological conditions, such EVs can facilitate the spread of pathological proteins from one brain region to the other. On the other hand, the analysis of EVs in biofluids can identify sensitive biomarkers for diagnosis, prognosis, and disease progression. This review discusses the potential therapeutic use of stem cell-derived EVs in several central nervous system diseases. It lists their differences and similarities and confers various studies exploring EVs as biomarkers. Further advances in EV research in the coming years will likely lead to the routine use of EVs in therapeutic settings.
Collapse
Affiliation(s)
- Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Paula Gabrielli Dos Santos
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Allan Marinho Alcará
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Fernanda Bruzzo
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Isadora Machado Ghilardi
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Vinicius Wietholter
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Fernando Antônio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Daniel Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX 77807, USA
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
| |
Collapse
|
2
|
Zhou Y, Nomigni MT, Gaigneaux A, Tolle F, Wright HL, Bueb JL, Bréchard S. miRNA-132-5p mediates a negative feedback regulation of IL-8 secretion through S100A8/A9 downregulation in neutrophil-like HL-60 cells. Front Immunol 2024; 14:1274378. [PMID: 38292491 PMCID: PMC10824955 DOI: 10.3389/fimmu.2023.1274378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Background Neutrophils are an important source of pro-inflammatory and immunomodulatory cytokines. This makes neutrophils efficient drivers of interactions with immune and non-immune cells to maintain homeostasis and modulate the inflammatory process by notably regulating the release of cytokines. Ca2+-dependent regulatory mechanism encompassing cytokine secretion by neutrophils are not still identified. In this context, we propose to define new insights on the role of Ca2+-binding proteins S100A8/A9 and on the regulatory role of miRNA-132-5p, which was identified as a regulator of S100A8/A9 expression, on IL-8 secretion. Methods Differentiated HL-60 cells, a human promyelocytic leukemia cell line that can be induced to differentiate into neutrophil-like cells, were used as a model of human neutrophils and treated with N- formyl-methionyl-leucyl-phenylalanine (fMLF), a bacterial peptide that activates neutrophils. shRNA knockdown was used to define the role of selected targets (S100A8/A9 and miRNA-132-5p) on IL-8 secretion. Results and discussion Different types of cytokines engage different signaling pathways in the secretion process. IL-8 release is tightly regulated by Ca2+ binding proteins S100A8/A9. miRNA-132-5p is up-regulated over time upon fMLF stimulation and decreases S100A8/A9 expression and IL-8 secretion. Conclusion These findings reveal a novel regulatory loop involving S100A8/A9 and miRNA-132-5p that modulates IL-8 secretion by neutrophils in inflammatory conditions. This loop could be a potential target for therapeutic intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Milène Tetsi Nomigni
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anthoula Gaigneaux
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Fabrice Tolle
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Helen L. Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jean-Luc Bueb
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sabrina Bréchard
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
3
|
Jesenak M, Diamant Z, Simon D, Tufvesson E, Seys SF, Mukherjee M, Lacy P, Vijverberg S, Slisz T, Sediva A, Simon HU, Striz I, Plevkova J, Schwarze J, Kosturiak R, Alexis NE, Untersmayr E, Vasakova MK, Knol E, Koenderman L. Eosinophils-from cradle to grave: An EAACI task force paper on new molecular insights and clinical functions of eosinophils and the clinical effects of targeted eosinophil depletion. Allergy 2023; 78:3077-3102. [PMID: 37702095 DOI: 10.1111/all.15884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Over the past years, eosinophils have become a focus of scientific interest, especially in the context of their recently uncovered functions (e.g. antiviral, anti-inflammatory, regulatory). These versatile cells display both beneficial and detrimental activities under various physiological and pathological conditions. Eosinophils are involved in the pathogenesis of many diseases which can be classified into primary (clonal) and secondary (reactive) disorders and idiopathic (hyper)eosinophilic syndromes. Depending on the biological specimen, the eosinophil count in different body compartments may serve as a biomarker reflecting the underlying pathophysiology and/or activity of distinct diseases and as a therapy-driving (predictive) and monitoring tool. Personalized selection of an appropriate therapeutic strategy directly or indirectly targeting the increased number and/or activity of eosinophils should be based on the understanding of eosinophil homeostasis including their interactions with other immune and non-immune cells within different body compartments. Hence, restoring as well as maintaining homeostasis within an individual's eosinophil pool is a goal of both specific and non-specific eosinophil-targeting therapies. Despite the overall favourable safety profile of the currently available anti-eosinophil biologics, the effect of eosinophil depletion should be monitored from the perspective of possible unwanted consequences.
Collapse
Affiliation(s)
- Milos Jesenak
- Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
| | - Zuzana Diamant
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
- Department Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Sven F Seys
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Manali Mukherjee
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- The Firestone Institute for Respiratory Health, Research Institute of St. Joe's Hamilton, Hamilton, Ontario, Canada
| | - Paige Lacy
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Susanne Vijverberg
- Amsterdam UMC Location University of Amsterdam, Pulmonary Diseases, Amsterdam, The Netherlands
| | - Tomas Slisz
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jana Plevkova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Jurgen Schwarze
- Child Life and Health and Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Radovan Kosturiak
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Outpatient Clinic for Clinical Immunology and Allergology, Nitra, Slovak Republic
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, Department of Paediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martina Koziar Vasakova
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Edward Knol
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Pulmonary Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Identification of Toxocara canis Antigen-Interacting Partners by Yeast Two-Hybrid Assay and a Putative Mechanism of These Host-Parasite Interactions. Pathogens 2021; 10:pathogens10080949. [PMID: 34451413 PMCID: PMC8398310 DOI: 10.3390/pathogens10080949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 01/11/2023] Open
Abstract
Toxocara canis is a zoonotic roundworm that infects humans and dogs all over the world. Upon infection, larvae migrate to various tissues leading to different clinical syndromes. The host–parasite interactions underlying the process of infection remain poorly understood. Here, we describe the application of a yeast two-hybrid assay to screen a human cDNA library and analyse the interactome of T. canis larval molecules. Our data identifies 16 human proteins that putatively interact with the parasite. These molecules were associated with major biological processes, such as protein processing, transport, cellular component organisation, immune response and cell signalling. Some of these identified interactions are associated with the development of a Th2 response, neutrophil activity and signalling in immune cells. Other interactions may be linked to neurodegenerative processes observed during neurotoxocariasis, and some are associated with lung pathology found in infected hosts. Our results should open new areas of research and provide further data to enable a better understanding of this complex and underestimated disease.
Collapse
|
5
|
Zarei A, Ballard A, Cox L, Bayguinov P, Harris T, Davis JL, Roper P, Fitzpatrick J, Faccio R, Veis DJ. Osteolineage depletion of mitofusin2 enhances cortical bone formation in female mice. Bone 2021; 148:115941. [PMID: 33813068 PMCID: PMC8162829 DOI: 10.1016/j.bone.2021.115941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022]
Abstract
Mitochondria are essential organelles that form highly complex, interconnected dynamic networks inside cells. The GTPase mitofusin 2 (MFN2) is a highly conserved outer mitochondrial membrane protein involved in the regulation of mitochondrial morphology, which can affect various metabolic and signaling functions. The role of mitochondria in bone formation remains unclear. Since MFN2 levels increase during osteoblast (OB) differentiation, we investigated the role of MFN2 in the osteolineage by crossing mice bearing floxed Mfn2 alleles with those bearing Prx-cre to generate cohorts of conditional knock out (cKO) animals. By ex vivo microCT, cKO female mice, but not males, display an increase in cortical thickness at 8, 18, and 30 weeks, compared to wild-type (WT) littermate controls. However, the cortical anabolic response to mechanical loading was not different between genotypes. To address how Mfn2 deficiency affects OB differentiation, bone marrow-derived mesenchymal stromal cells (MSCs) from both wild-type and cKO mice were cultured in osteogenic media with different levels of β-glycerophosphate. cKO MSCs show increased mineralization and expression of multiple markers of OB differentiation only at the lower dose. Interestingly, despite showing the expected mitochondrial rounding and fragmentation due to loss of MFN2, cKO MSCs have an increase in oxygen consumption during the first 7 days of OB differentiation. Thus, in the early phases of osteogenesis, MFN2 restrains oxygen consumption thereby limiting differentiation and cortical bone accrual during homeostasis in vivo.
Collapse
Affiliation(s)
- Allahdad Zarei
- Musculoskeletal Research Center, Division of Bone and Mineral Disease, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anna Ballard
- Musculoskeletal Research Center, Division of Bone and Mineral Disease, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Linda Cox
- Musculoskeletal Research Center, Division of Bone and Mineral Disease, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Taylor Harris
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jennifer L Davis
- Musculoskeletal Research Center, Division of Bone and Mineral Disease, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip Roper
- Musculoskeletal Research Center, Division of Bone and Mineral Disease, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Departments of Neuroscience and Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Roberta Faccio
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA
| | - Deborah J Veis
- Musculoskeletal Research Center, Division of Bone and Mineral Disease, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Fettrelet T, Gigon L, Karaulov A, Yousefi S, Simon HU. The Enigma of Eosinophil Degranulation. Int J Mol Sci 2021; 22:ijms22137091. [PMID: 34209362 PMCID: PMC8268949 DOI: 10.3390/ijms22137091] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Eosinophils are specialized white blood cells, which are involved in the pathology of diverse allergic and nonallergic inflammatory diseases. Eosinophils are traditionally known as cytotoxic effector cells but have been suggested to additionally play a role in immunomodulation and maintenance of homeostasis. The exact role of these granule-containing leukocytes in health and diseases is still a matter of debate. Degranulation is one of the key effector functions of eosinophils in response to diverse stimuli. The different degranulation patterns occurring in eosinophils (piecemeal degranulation, exocytosis and cytolysis) have been extensively studied in the last few years. However, the exact mechanism of the diverse degranulation types remains unknown and is still under investigation. In this review, we focus on recent findings and highlight the diversity of stimulation and methods used to evaluate eosinophil degranulation.
Collapse
Affiliation(s)
- Timothée Fettrelet
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lea Gigon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, 119991 Moscow, Russia;
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
- Department of Clinical Immunology and Allergology, Sechenov University, 119991 Moscow, Russia;
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420012 Kazan, Russia
- Institute of Biochemistry, Medical School Brandenburg, D-16816 Neuruppin, Germany
- Correspondence: ; Tel.: +41-31-632-3281
| |
Collapse
|
7
|
Ibata K, Yuzaki M. Destroy the old to build the new: Activity-dependent lysosomal exocytosis in neurons. Neurosci Res 2021; 167:38-46. [PMID: 33845090 DOI: 10.1016/j.neures.2021.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
Lysosomes are organelles that support diverse cellular functions such as terminal degradation of macromolecules and nutrient recycling. Additionally, lysosomes can fuse with the plasma membrane, a phenomenon referred to as lysosomal exocytosis, to release their contents, including hydrolytic enzymes and cargo proteins. Recently, neuronal activity has been shown to induce lysosomal exocytosis in dendrites and axons. Secreted lysosomal enzyme cathepsin B induces and stabilizes synaptic structural changes by degrading the local extracellular matrix. Extracellular matrix reorganization could also enhance the lateral diffusion of the co-released synaptic organizer Cbln1 along the surface of axons to facilitate new synapse formation. Similarly, lateral diffusion of dendritic AMPA-type glutamate receptors could be facilitated to enhance functional synaptic plasticity. Therefore, lysosomal exocytosis is a powerful way of building new cellular structures through the coordinated destruction of the old environment. Understanding the mechanisms by which lysosomal exocytosis is regulated in neurons is expected to lead to the development of new therapeutics for neuronal plasticity following spinal cord injury or neurodegenerative disease.
Collapse
Affiliation(s)
- Keiji Ibata
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Physiology, St. Marianna University School of Medicine, 216-8511, Kanagawa, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
8
|
Abstract
The analysis of eosinophil shape change and mediator secretion is a useful tool in understanding how eosinophils respond to immunological stimuli and chemotactic factors. Eosinophils undergo dramatic shape changes, along with secretion of the granule-derived enzyme eosinophil peroxidase (EPX) in response to chemotactic stimuli including platelet-activating factor (PAF) and CCL11 (eotaxin-1). Here, we describe the analysis of eosinophil shape change by confocal microscopy analysis and provide an experimental approach for comparing unstimulated cells with those that have been stimulated to undergo chemotaxis. In addition, we illustrate two different degranulation assays for EPX using OPD and an ELISA technique and show how eosinophil degranulation may be assessed from in vitro as well as ex vivo stimulation.
Collapse
|
9
|
Abstract
The eosinophil is an enigmatic cell with a continuing ability to fascinate. A considerable history of research endeavor on eosinophil biology stretches from the present time back to the nineteenth century. Perhaps one of the most fascinating aspects of the eosinophil is how accumulating knowledge has changed the perception of its function from passive bystander, modulator of inflammation, to potent effector cell loaded with histotoxic substances through to more recent recognition that it can act as both a positive and negative regulator of complex events in both innate and adaptive immunity. This book consists of chapters written by experts in the field of eosinophil biology that provide comprehensive clearly written protocols for techniques designed to underpin research into the function of the eosinophil in health and disease.
Collapse
Affiliation(s)
- Paige Lacy
- Alberta Respiratory Centre (ARC) Research, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Garry M Walsh
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
10
|
Almas S, Fayad N, Srivastava O, Siddique M, Touret N, Lacy P. Cytokine trafficking of IL-9 and IL-13 through TfnRc + vesicles in activated human eosinophils. J Leukoc Biol 2020; 109:753-762. [PMID: 32911568 DOI: 10.1002/jlb.2ma0820-320rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Eosinophils are granulocytes that are elevated in lung mucosa in approximately half of patients with allergic asthma. These highly granulated cells can synthesize and secrete many cytokines, including IL-9 and IL-13. We hypothesized that IL-9 and IL-13 are found as preformed mediators in crystalloid granules and secreted using distinct trafficking pathways. Human eosinophils were purified from peripheral venous blood, adhered to coverslips, and stimulated with platelet activating factor (PAF). Cells were immunolabeled with antibodies to IL-9 or IL-13 and colocalized with markers for secretory organelles, using CD63 for crystalloid granules and transferrin receptor (TfnRc) for vesicles. Fixed cells were imaged using super-resolution microscopy and quantified by colocalization using Pearson's correlation coefficient. IL-9 immunofluorescence increased in a time-dependent manner to PAF, whereas colocalization of IL-9 and CD63 significantly increased from 0.52 to 0.67 after 5 min PAF. Colocalization of IL-9 with TfnRc significantly increased at 60 min of stimulation with PAF (0.54 at 0 min to 0.60 at 60 min). IL-13 showed lower colocalization with CD63 (0.55) than TfnRc (0.63) in unstimulated cells. Upon PAF stimulation, IL-13 intensity transiently decreased at 5 and 60 min, whereas colocalization of IL-13 with CD63 decreased throughout stimulation to 0.43. While colocalization of IL-13 with TfnRc transiently increased to 0.66 at 5 min PAF, it returned to near baseline levels (0.64) after 15 min PAF. Our results suggest that IL-9 and IL-13 are stored in crystalloid granules as well as endosomal structures, and that IL-9 is primarily trafficked to the cell surface via TfnRc+ endosome-like vesicles.
Collapse
Affiliation(s)
- Sarah Almas
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Nawell Fayad
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ojas Srivastava
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mujtaba Siddique
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paige Lacy
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Tahir M, Arshid S, Fontes B, S. Castro M, Sidoli S, Schwämmle V, Luz IS, Roepstorff P, Fontes W. Phosphoproteomic Analysis of Rat Neutrophils Shows the Effect of Intestinal Ischemia/Reperfusion and Preconditioning on Kinases and Phosphatases. Int J Mol Sci 2020; 21:ijms21165799. [PMID: 32823483 PMCID: PMC7460855 DOI: 10.3390/ijms21165799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Intestinal ischemia reperfusion injury (iIRI) is a severe clinical condition presenting high morbidity and mortality worldwide. Some of the systemic consequences of IRI can be prevented by applying ischemic preconditioning (IPC), a series of short ischemia/reperfusion events preceding the major ischemia. Although neutrophils are key players in the pathophysiology of ischemic injuries, neither the dysregulation presented by these cells in iIRI nor the protective effect of iIPC have their regulation mechanisms fully understood. Protein phosphorylation, as well as the regulation of the respective phosphatases and kinases are responsible for regulating a large number of cellular functions in the inflammatory response. Moreover, in previous work we found hydrolases and transferases to be modulated in iIR and iIPC, suggesting the possible involvement of phosphatases and kinases in the process. Therefore, in the present study, we analyzed the phosphoproteome of neutrophils from rats submitted to mesenteric ischemia and reperfusion, either submitted or not to IPC, compared to quiescent controls and sham laparotomy. Proteomic analysis was performed by multi-step enrichment of phosphopeptides, isobaric labeling, and LC-MS/MS analysis. Bioinformatics was used to determine phosphosite and phosphopeptide abundance and clustering, as well as kinases and phosphatases sites and domains. We found that most of the phosphorylation-regulated proteins are involved in apoptosis and migration, and most of the regulatory kinases belong to CAMK and CMGC families. An interesting finding revealed groups of proteins that are modulated by iIR, but such modulation can be prevented by iIPC. Among the regulated proteins related to the iIPC protective effect, Vamp8 and Inpp5d/Ship are discussed as possible candidates for control of the iIR damage.
Collapse
Affiliation(s)
- Muhammad Tahir
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
| | - Samina Arshid
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
- Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo 01246903, Brazil;
| | - Belchor Fontes
- Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo 01246903, Brazil;
| | - Mariana S. Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
| | - Simone Sidoli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
| | - Isabelle S. Luz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
- Correspondence:
| |
Collapse
|
12
|
Catz SD, McLeish KR. Therapeutic targeting of neutrophil exocytosis. J Leukoc Biol 2020; 107:393-408. [PMID: 31990103 PMCID: PMC7044074 DOI: 10.1002/jlb.3ri0120-645r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of neutrophil activation causes disease in humans. Neither global inhibition of neutrophil functions nor neutrophil depletion provides safe and/or effective therapeutic approaches. The role of neutrophil granule exocytosis in multiple steps leading to recruitment and cell injury led each of our laboratories to develop molecular inhibitors that interfere with specific molecular regulators of secretion. This review summarizes neutrophil granule formation and contents, the role granule cargo plays in neutrophil functional responses and neutrophil-mediated diseases, and the mechanisms of granule release that provide the rationale for development of our exocytosis inhibitors. We present evidence for the inhibition of granule exocytosis in vitro and in vivo by those inhibitors and summarize animal data indicating that inhibition of neutrophil exocytosis is a viable therapeutic strategy.
Collapse
Affiliation(s)
- Sergio D. Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
13
|
Jadli AS, Ballasy N, Edalat P, Patel VB. Inside(sight) of tiny communicator: exosome biogenesis, secretion, and uptake. Mol Cell Biochem 2020; 467:77-94. [PMID: 32088833 DOI: 10.1007/s11010-020-03703-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/14/2020] [Indexed: 01/07/2023]
Abstract
Discovered in the late 1980s as an extracellular vesicle of endosomal origin secreted from reticulocytes, exosomes recently gained scientific attention due to its role in intercellular communication. Exosomes have now been identified to carry cell-specific cargo of nucleic acids, proteins, lipids, and other biologically active molecules. Exosomes can be selectively taken up by neighboring or distant cells, which has shown to result in structural and functional responses in the recipient cells. Recent advances indicate the regulation of exosomes at various steps, including their biogenesis, selection of their cargo, as well as cell-specific uptake. This review will shed light on the differences between the type of extracellular vesicles. In this review, we discuss the recent progress in our understanding of the regulation of exosome biogenesis, secretion, and uptake.
Collapse
Affiliation(s)
- Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Noura Ballasy
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Pariya Edalat
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada. .,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
14
|
Grozdanovic MM, Doyle CB, Liu L, Maybruck BT, Kwatia MA, Thiyagarajan N, Acharya KR, Ackerman SJ. Charcot-Leyden crystal protein/galectin-10 interacts with cationic ribonucleases and is required for eosinophil granulogenesis. J Allergy Clin Immunol 2020; 146:377-389.e10. [PMID: 31982451 DOI: 10.1016/j.jaci.2020.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/28/2019] [Accepted: 01/03/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The human eosinophil Charcot-Leyden crystal (CLC) protein is a member of the Galectin superfamily and is also known as galectin-10 (Gal-10). CLC/Gal-10 forms the distinctive hexagonal bipyramidal crystals that are considered hallmarks of eosinophil participation in allergic responses and related inflammatory reactions; however, the glycan-containing ligands of CLC/Gal-10, its cellular function(s), and its role(s) in allergic diseases are unknown. OBJECTIVE We sought to determine the binding partners of CLC/Gal-10 and elucidate its role in eosinophil biology. METHODS Intracellular binding partners were determined by ligand blotting with CLC/Gal-10, followed by coimmunoprecipitation and coaffinity purifications. The role of CLC/Gal-10 in eosinophil function was determined by using enzyme activity assays, confocal microscopy, and short hairpin RNA knockout of CLC/Gal-10 expression in human CD34+ cord blood hematopoietic progenitors differentiated to eosinophils. RESULTS CLC/Gal-10 interacts with both human eosinophil granule cationic ribonucleases (RNases), namely, eosinophil-derived neurotoxin (RNS2) and eosinophil cationic protein (RNS3), and with murine eosinophil-associated RNases. The interaction is independent of glycosylation and is not inhibitory toward endoRNase activity. Activation of eosinophils with INF-γ induces the rapid colocalization of CLC/Gal-10 with eosinophil-derived neurotoxin/RNS2 and CD63. Short hairpin RNA knockdown of CLC/Gal-10 in human cord blood-derived CD34+ progenitor cells impairs eosinophil granulogenesis. CONCLUSIONS CLC/Gal-10 functions as a carrier for the sequestration and vesicular transport of the potent eosinophil granule cationic RNases during both differentiation and degranulation, enabling their intracellular packaging and extracellular functions in allergic inflammation.
Collapse
Affiliation(s)
- Milica M Grozdanovic
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Christine B Doyle
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Li Liu
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Brian T Maybruck
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Mark A Kwatia
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Nethaji Thiyagarajan
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Ill.
| |
Collapse
|
15
|
Xia X, Wang Y, Huang Y, Zhang H, Lu H, Zheng JC. Exosomal miRNAs in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents. Prog Neurobiol 2019; 183:101694. [PMID: 31542363 PMCID: PMC7323939 DOI: 10.1016/j.pneurobio.2019.101694] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are small bilipid layer-enclosed extracellular vesicles that can be found in tissues and biological fluids. As a key cell-to-cell and distant communication mediator, exosomes are involved in various central nervous system (CNS) diseases, potentially through transferring their contents such as proteins, lipids and nucleic acids to the target cells. Exosomal miRNAs, which are small non-coding RNAs in the exosomes, are known to be more stable than free miRNAs and therefore have lasting effects on disease-related gene expressions. There are distinct profiles of exosomal miRNAs in different types of CNS diseases even before the onset of irreversible neurological damages, indicating that exosomal miRNAs within tissues and biological fluids could serve as promising biomarkers. Emerging evidence has also demonstrated the pathological effects of several exosomal miRNAs in CNS diseases via specific modulation of disease-related factors. Moreover, exosomes carry therapeutically beneficial miRNAs across the blood-brain-barrier, which can be exploited as a powerful drug delivery tool to help alleviating multiple CNS diseases. In this review, we summarize the recent progress made in understanding the biological roles of exosomal miRNAs as potential diagnostic biomarkers, pathological regulators, and therapeutic targets/drugs for CNS diseases. A comprehensive discussion of the main concerns and challenges for the applications of exosomal miRNAs in the clinical setting is also provided.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA
| | - Han Zhang
- Second Military Medical University, Shanghai 200433, China
| | - Hongfang Lu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|
16
|
Chitirala P, Ravichandran K, Galgano D, Sleiman M, Krause E, Bryceson YT, Rettig J. Cytotoxic Granule Exocytosis From Human Cytotoxic T Lymphocytes Is Mediated by VAMP7. Front Immunol 2019; 10:1855. [PMID: 31447853 PMCID: PMC6692471 DOI: 10.3389/fimmu.2019.01855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
Cytotoxic T lymphocytes kill infected or malignant cells through the directed release of cytotoxic substances at the site of target cell contact, the immunological synapse. While genetic association studies of genes predisposing to early-onset life-threatening hemophagocytic lymphohistiocytosis has identified components of the plasma membrane fusion machinery, the identity of the vesicular components remain enigmatic. Here, we identify VAMP7 as an essential component of the vesicular fusion machinery of primary, human T cells. VAMP7 co-localizes with granule markers throughout all stages of T cell maturation and simultaneously fuses with granule markers at the IS. Knock-down of VAMP7 expression significantly decreased the killing efficiency of T cells, without diminishing early T cell receptor signaling. VAMP7 exerts its function in a SNARE complex with Syntaxin11 and SNAP-23 on the plasma membrane. The identification of the minimal fusion machinery in T cells provides a starting point for the development of potential drugs in immunotherapy.
Collapse
Affiliation(s)
- Praneeth Chitirala
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Keerthana Ravichandran
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Donatella Galgano
- Center for Hematology and Regenerative Medicine (HERM), Karolinska Institute, Stockholm, Sweden
| | - Marwa Sleiman
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Yenan T. Bryceson
- Center for Hematology and Regenerative Medicine (HERM), Karolinska Institute, Stockholm, Sweden
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| |
Collapse
|
17
|
Vesicle-associated membrane protein 7-mediated eosinophil degranulation promotes allergic airway inflammation in mice. Commun Biol 2018; 1:83. [PMID: 30271964 PMCID: PMC6123774 DOI: 10.1038/s42003-018-0081-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/03/2018] [Indexed: 01/05/2023] Open
Abstract
Eosinophil degranulation is a determining factor in allergy-mediated airway pathology. Receptor-mediated degranulation in eosinophils requires vesicle-associated membrane protein 7 (VAMP-7), a principal component of the SNARE fusion machinery. The specific contribution of eosinophil degranulation to allergen-induced airway responses remains poorly understood. We generated mice with VAMP-7 gene deficiency exclusively in eosinophils (eoCRE/V7) from a cross using eosinophil-specific Cre recombinase-expressing mice crossed with VAMP-7f/f mice. Eosinophils from eoCRE/V7 mice showed deficient degranulation responses in vitro, and responses continued to be decreased following ex vivo intratracheal adoptive transfer of eoCRE/V7 eosinophils into IL-5/hE2/EPX−/− mice. Consistent with diminished degranulation responses, reduced airway hyperresponsiveness was observed in ovalbumin-sensitized and challenged eoCRE/V7 mice following methacholine inhalation. Therefore, VAMP-7 mediates eosinophil degranulation both in vitro and ex vivo, and this event augments airway hyperresponsiveness. Lian Willetts et al. demonstrate that vesicle-associated membrane protein 7 (VAMP 7), a principal component of the membrane fusion machinery, promotes eosinophil degranulation in allergic airway inflammation. This study suggests VAMP7 as a therapeutic target for ameliorating asthma.
Collapse
|
18
|
Melo RCN, Weller PF. Contemporary understanding of the secretory granules in human eosinophils. J Leukoc Biol 2018; 104:85-93. [PMID: 29749658 DOI: 10.1002/jlb.3mr1217-476r] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
Eosinophil secretory (specific) granules have a unique morphology and are both a morphologic hallmark of eosinophils and fundamental to eosinophil-mediated responses. Eosinophil mediators with multiple functional activities are presynthesized and stored within these granules, poised for very rapid, stimulus-induced secretion. The structural organization and changes of eosinophil specific granules are revealing in demonstrating the complex and diverse secretory activities of this cell. Here, we review our current knowledge on the architecture, composition, and function of eosinophil specific granules as highly elaborated organelles able to produce vesiculotubular carriers and to interplay with the intracellular vesicular trafficking. We reconsider prior identifications of eosinophil cytoplasmic granules, including "primary," "secondary," "microgranules," and "small granules"; and consonant with advances, we provide a contemporary recognition that human eosinophils contain a single population of specific granules and their developmental precursors and derived secretory vesicles.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Rua José Lourenço Kelmer, Juiz de Fora, Brazil.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter F Weller
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| |
Collapse
|
19
|
Armed for destruction: formation, function and trafficking of neutrophil granules. Cell Tissue Res 2017; 371:455-471. [PMID: 29185068 DOI: 10.1007/s00441-017-2731-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
Neutrophils respond nearly instantly to infection, rapidly deploying a potent enzymatic and chemical arsenal immediately upon entering an infected site. This capacity for rapid and potent responses is endowed by stores of antimicrobial proteins contained in readily mobilizable granules. These granules contain the proteins necessary to mediate the recruitment, chemotaxis, antimicrobial function and NET formation of neutrophils. Four granule types exist, and are sequentially deployed as neutrophils enter infected sites. Secretory vesicles are released first, enabling recruitment of neutrophils out of the blood. Next, specific and gelatinase granules are released to enable neutrophil migration and begin the formation of an antimicrobial environment. Finally, azurophilic granules release potent antimicrobial proteins at the site of infection and into phagosomes. The step-wise mobilization of these granules is regulated by calcium signaling, while specific trafficking regulators and membrane fusion complexes ensure the delivery of granules to the correct subcellular site. In this review, we describe neutrophil granules from their formation through to their deployment at the site of infection, focusing on recent developments in our understanding of the signaling pathways and vesicular trafficking mechanisms which mediate neutrophil degranulation.
Collapse
|
20
|
Ramadass M, Catz SD. Molecular mechanisms regulating secretory organelles and endosomes in neutrophils and their implications for inflammation. Immunol Rev 2017; 273:249-65. [PMID: 27558339 DOI: 10.1111/imr.12452] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neutrophils constitute the first line of cellular defense against invading microorganisms and modulate the subsequent innate and adaptive immune responses. In order to execute a rapid and precise response to infections, neutrophils rely on preformed effector molecules stored in a variety of intracellular granules. Neutrophil granules contain microbicidal factors, the membrane-bound components of the respiratory burst oxidase, membrane-bound adhesion molecules, and receptors that facilitate the execution of all neutrophil functions including adhesion, transmigration, phagocytosis, degranulation, and neutrophil extracellular trap formation. The rapid mobilization of intracellular organelles is regulated by vesicular trafficking mechanisms controlled by effector molecules that include small GTPases and their interacting proteins. In this review, we focus on recent discoveries of mechanistic processes that are at center stage of the regulation of neutrophil function, highlighting the discrete and selective pathways controlled by trafficking modulators. In particular, we describe novel pathways controlled by the Rab27a effectors JFC1 and Munc13-4 in the regulation of degranulation, reactive oxygen species and neutrophil extracellular trap production, and endolysosomal signaling. Finally, we discuss the importance of understanding these molecular mechanisms in order to design novel approaches to modulate neutrophil-mediated inflammatory processes in a targeted fashion.
Collapse
Affiliation(s)
- Mahalakshmi Ramadass
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sergio D Catz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
21
|
Cuajungco MP, Kiselyov K. The mucolipin-1 (TRPML1) ion channel, transmembrane-163 (TMEM163) protein, and lysosomal zinc handling. Front Biosci (Landmark Ed) 2017; 22:1330-1343. [PMID: 28199205 DOI: 10.2741/4546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lysosomes are emerging as important players in cellular zinc ion (Zn2+) homeostasis. The series of work on Zn2+ accumulation in the neuronal lysosomes and the mounting evidence on the role of lysosomal Zn2+ in cell death during mammary gland involution set a biological precedent for the central role of the lysosomes in cellular Zn2+ handling. Such a role appears to involve cytoprotection on the one hand, and cell death on the other. The recent series of work began to identify the molecular determinants of the lysosomal Zn2+ handling. In addition to zinc transporters (ZnT) of the solute-carrier family type 30A (SLC30A), the lysosomal ion channel TRPML1 and the poorly understood novel transporter TMEM163 have been shown to play a role in the Zn2+ uptake by the lysosomes. In this review, we summarize the current knowledge on molecular determinants of the lysosomal Zn2+ handling, uptake, and release pathways, as well as discuss their possible roles in health and disease.
Collapse
Affiliation(s)
- Math P Cuajungco
- Department of Biological Science, and Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, 92831, USA
| | - Kirill Kiselyov
- Dept. of Biological Sciences, University of Pittsburgh, 519 Langley Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA,
| |
Collapse
|
22
|
SNAP23-Dependent Surface Translocation of Leukotriene B4 (LTB4) Receptor 1 Is Essential for NOX2-Mediated Exocytotic Degranulation in Human Mast Cells Induced by Trichomonas vaginalis-Secreted LTB4. Infect Immun 2016; 85:IAI.00526-16. [PMID: 27795355 DOI: 10.1128/iai.00526-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/16/2016] [Indexed: 11/20/2022] Open
Abstract
Trichomonas vaginalis is a sexually transmitted parasite that causes vaginitis in women and itself secretes lipid mediator leukotriene B4 (LTB4). Mast cells are important effector cells of tissue inflammation during infection with parasites. Membrane-bridging SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes are critical for fusion during exocytosis. Although T. vaginalis-derived secretory products (TvSP) have been shown to induce exocytosis in mast cells, information regarding the signaling mechanisms between mast cell activation and TvSP is limited. In this study, we found that SNAP23-dependent surface trafficking of LTB4 receptor 1 (BLT1) is required for nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2)-mediated exocytotic degranulation of mast cells induced by TvSP. First, stimulation with TvSP induced exocytotic degranulation and reactive oxygen species (ROS) generation in HMC-1 cells. Next, TvSP-induced ROS generation and exocytosis were strongly inhibited by transfection of BLT1 small interfering RNA (siRNA). TvSP induced trafficking of BLT1 from the cytosol to the plasma membrane. We also found that knockdown of SNAP23 abrogated TvSP-induced ROS generation, exocytosis, and surface trafficking of BLT1 in HMC-1 cells. By coimmunoprecipitation, there was a physical interaction between BLT1 and SNAP23 in TvSP-stimulated HMC-1 cells. Taken together, our results suggest that SNAP23-dependent surface trafficking of BLT1 is essential for exocytosis in human mast cells induced by T. vaginalis-secreted LTB4 Our data collectively demonstrate a novel regulatory mechanism for SNAP23-dependent mast cell activation of T. vaginalis-secreted LTB4 involving surface trafficking of BLT1. These results can help to explain how the cross talk mechanism between parasite and host can govern deliberately tissue inflammatory responses.
Collapse
|
23
|
Gangwar RS, Landolina N, Arpinati L, Levi-Schaffer F. Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. Pharmacol Ther 2016; 170:37-63. [PMID: 27773785 DOI: 10.1016/j.pharmthera.2016.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Roopesh Singh Gangwar
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Nadine Landolina
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ludovica Arpinati
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
24
|
VAMP2 is implicated in the secretion of antibodies by human plasma cells and can be replaced by other synaptobrevins. Cell Mol Immunol 2016; 15:353-366. [PMID: 27616736 DOI: 10.1038/cmi.2016.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 11/08/2022] Open
Abstract
The production and secretion of antibodies by human plasma cells (PCs) are two essential processes of humoral immunity. The secretion process relies on a group of proteins known as soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which are located in the plasma membrane (t-SNAREs) and in the antibody-carrying vesicle membrane (v-SNARE), and mediate the fusion of both membranes. We have previously shown that SNAP23 and STX4 are the t-SNAREs responsible for antibody secretion. Here, using human PCs and antibody-secreting cell lines, we studied and characterized the expression and subcellular distribution of vesicle associated membrane protein (VAMP) isoforms, demonstrating that all isoforms (with the exception of VAMP1) are expressed by the referenced cells. Furthermore, the functional role in antibody secretion of each expressed VAMP isoform was tested using siRNA. Our results show that VAMP2 may be the v-SNARE involved in vesicular antibody release. To further support this conclusion, we used tetanus toxin light chain to cleave VAMP2, conducted experiments to verify co-localization of VAMP2 in antibody-carrying vesicles, and demonstrated the coimmunoprecipitation of VAMP2 with STX4 and SNAP23 and the in situ interaction of VAMP2 with STX4. Taken together, these findings implicate VAMP2 as the main VAMP isoform functionally involved in antibody secretion.
Collapse
|
25
|
Bhat R, Bhattacharyya PK, Ratech H. An Immunohistochemical Survey of SNARE Proteins Shows Distinct Patterns of Expression in Hematolymphoid Neoplasia. Am J Clin Pathol 2016; 145:604-16. [PMID: 27247366 DOI: 10.1093/ajcp/aqw022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Five proteins from the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) complex family were studied in normal hematopoietic cells in bone marrow; normal lymphocytes at different stages of maturation and differentiation in bone marrow, thymus, tonsil, and lymph node; malignant lymphomas; and leukemias. METHODS Sixty-eight reactive and 380 hematopoietic and lymphoid neoplasms were immunohistochemically stained for syntaxin 7 (STX7), vesicle-associated membrane proteins (VAMP2, VAMP7, VAMP8), and synaptosomal-associated protein 23 (SNAP23). RESULTS STX7 has potential for being a useful marker for distinguishing between normal B precursors (hematogones) vs B lymphoblasts, as well as between the "popcorn" cells of nodular lymphocyte-predominant Hodgkin lymphoma vs the Reed-Sternberg cells of classic Hodgkin lymphoma or the B cells of T-cell, histiocyte-rich B-cell lymphoma. VAMP2 is uniquely expressed by both reactive and malignant plasma cells, in contrast to B-cell non-Hodgkin lymphoma. There is differential expression of SNARE proteins in normal and neoplastic lymphoid tissue depending on lymphocyte maturation stage. CONCLUSIONS Differential SNARE protein expression in the lymphoid system may have potential use in diagnosis and may offer clues to lymphoma biology. VAMP2 is a promising new plasma cell marker.
Collapse
Affiliation(s)
- Rekha Bhat
- From the Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | | | - Howard Ratech
- From the Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
26
|
Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol 2016; 36:301-12. [PMID: 27053351 DOI: 10.1007/s10571-016-0366-z] [Citation(s) in RCA: 1161] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles are a heterogeneous group of membrane-limited vesicles loaded with various proteins, lipids, and nucleic acids. Release of extracellular vesicles from its cell of origin occurs either through the outward budding of the plasma membrane or through the inward budding of the endosomal membrane, resulting in the formation of multivesicular bodies, which release vesicles upon fusion with the plasma membrane. The release of vesicles can facilitate intercellular communication by contact with or by internalization of contents, either by fusion with the plasma membrane or by endocytosis into "recipient" cells. Although the interest in extracellular vesicle research is increasing, there are still no real standards in place to separate or classify the different types of vesicles. This review provides an introduction into this expanding and complex field of research focusing on the biogenesis, nucleic acid cargo loading, content, release, and uptake of extracellular vesicles.
Collapse
Affiliation(s)
- Erik R Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA. .,Department of Neurosurgery, Neuro-Oncology Research Group, VU University Medical Center, 1007MB, Amsterdam, The Netherlands.
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
27
|
He J, Johnson JL, Monfregola J, Ramadass M, Pestonjamasp K, Napolitano G, Zhang J, Catz SD. Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses. Mol Biol Cell 2015; 27:572-87. [PMID: 26680738 PMCID: PMC4751605 DOI: 10.1091/mbc.e15-05-0283] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/08/2015] [Indexed: 12/23/2022] Open
Abstract
The molecular mechanisms that regulate late endosomal maturation and function are not completely elucidated, and direct evidence of a calcium sensor is lacking. Here we identify a novel mechanism of late endosomal maturation that involves a new molecular interaction between the tethering factor Munc13-4, syntaxin 7, and VAMP8. Munc13-4 binding to syntaxin 7 was significantly increased by calcium. Colocalization of Munc13-4 and syntaxin 7 at late endosomes was demonstrated by high-resolution and live-cell microscopy. Munc13-4-deficient cells show increased numbers of significantly enlarged late endosomes, a phenotype that was mimicked by the fusion inhibitor chloroquine in wild-type cells and rescued by expression of Munc13-4 but not by a syntaxin 7-binding-deficient mutant. Late endosomes from Munc13-4-KO neutrophils show decreased degradative capacity. Munc13-4-knockout neutrophils show impaired endosomal-initiated, TLR9-dependent signaling and deficient TLR9-specific CD11b up-regulation. Thus we present a novel mechanism of late endosomal maturation and propose that Munc13-4 regulates the late endocytic machinery and late endosomal-associated innate immune cellular functions.
Collapse
Affiliation(s)
- Jing He
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Jennifer L Johnson
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Jlenia Monfregola
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Mahalakshmi Ramadass
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Kersi Pestonjamasp
- Cancer Center Microscopy Shared Resource, University of California, San Diego, La Jolla, CA 92093
| | - Gennaro Napolitano
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Jinzhong Zhang
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Sergio D Catz
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
28
|
Expression and subcellular localization of the Qa-SNARE syntaxin17 in human eosinophils. Exp Cell Res 2015; 337:129-135. [PMID: 26254897 DOI: 10.1016/j.yexcr.2015.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND SNARE members mediate membrane fusion during intracellular trafficking underlying innate and adaptive immune responses by different cells. However, little is known about the expression and function of these proteins in human eosinophils, cells involved in allergic, inflammatory and immunoregulatory responses. Here, we investigate the expression and distribution of the Qa-SNARE syntaxin17 (STX17) within human eosinophils isolated from the peripheral blood. METHODS Flow cytometry and a pre-embedding immunonanogold electron microscopy (EM) technique that combines optimal epitope preservation and secondary Fab-fragments of antibodies linked to 1.4 nm gold particles for optimal access to microdomains, were used to investigate STX17. RESULTS STX17 was detected within unstimulated eosinophils. Immunogold EM revealed STX17 on secretory granules and on granule-derived vesiculotubular transport carriers (Eosinophil Sombrero Vesicles-EoSVs). Quantitative EM analyses showed that 77.7% of the granules were positive for STX17 with a mean±SEM of 3.9±0.2 gold particles/granule. Labeling was present on both granule outer membranes and matrices while EoSVs showed clear membrane-associated labeling. STX17 was also present in secretory granules in eosinophils stimulated with the cytokine tumor necrosis factor alpha (TNF-α) or the CC-chemokine ligand 11 CCL11 (eotaxin-1), stimuli that induce eosinophil degranulation. The number of secretory granules labeled for STX17 was significantly higher in CCL11 compared with the unstimulated group. The level of cell labeling did not change when unstimulated cells were compared with TNF-α-stimulated eosinophils. CONCLUSIONS The present study clearly shows by immunanonogold EM that STX17 is localized in eosinophil secretory granules and transport vesicles and might be involved in the transport of granule-derived cargos.
Collapse
|
29
|
Odemuyiwa SO, Ilarraza R, Davoine F, Logan MR, Shayeganpour A, Wu Y, Majaesic C, Adamko DJ, Moqbel R, Lacy P. Cyclin-dependent kinase 5 regulates degranulation in human eosinophils. Immunology 2015; 144:641-8. [PMID: 25346443 DOI: 10.1111/imm.12416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 10/03/2014] [Accepted: 10/17/2014] [Indexed: 12/19/2022] Open
Abstract
Degranulation from eosinophils in response to secretagogue stimulation is a regulated process that involves exocytosis of granule proteins through specific signalling pathways. One potential pathway is dependent on cyclin-dependent kinase 5 (Cdk5) and its effector molecules, p35 and p39, which play a central role in neuronal cell exocytosis by phosphorylating Munc18, a regulator of SNARE binding. Emerging evidence suggests a role for Cdk5 in exocytosis in immune cells, although its role in eosinophils is not known. We sought to examine the expression of Cdk5 and its activators in human eosinophils, and to assess the role of Cdk5 in eosinophil degranulation. We used freshly isolated human eosinophils and analysed the expression of Cdk5, p35, p39 and Munc18c by Western blot, RT-PCR, flow cytometry and immunoprecipitation. Cdk5 kinase activity was determined following eosinophil activation. Cdk5 inhibitors were used (roscovitine, AT7519 and small interfering RNA) to determine its role in eosinophil peroxidase (EPX) secretion. Cdk5 was expressed in association with Munc18c, p35 and p39, and phosphorylated following human eosinophil activation with eotaxin/CCL11, platelet-activating factor, and secretory IgA-Sepharose. Cdk5 inhibitors (roscovitine, AT7519) reduced EPX release when cells were stimulated by PMA or secretory IgA. In assays using small interfering RNA knock-down of Cdk5 expression in human eosinophils, we observed inhibition of EPX release. Our findings suggest that in activated eosinophils, Cdk5 is phosphorylated and binds to Munc18c, resulting in Munc18c release from syntaxin-4, allowing SNARE binding and vesicle fusion, with subsequent eosinophil degranulation. Our work identifies a novel role for Cdk5 in eosinophil mediator release by agonist-induced degranulation.
Collapse
Affiliation(s)
- Solomon O Odemuyiwa
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Department of Paediatrics, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Davoine F, Lacy P. Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol 2014; 5:570. [PMID: 25426119 PMCID: PMC4225839 DOI: 10.3389/fimmu.2014.00570] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/24/2014] [Indexed: 12/30/2022] Open
Abstract
Eosinophils derive from the bone marrow and circulate at low levels in the blood in healthy individuals. These granulated cells preferentially leave the circulation and marginate to tissues, where they are implicated in the regulation of innate and adaptive immunity. In diseases such as allergic inflammation, eosinophil numbers escalate markedly in the blood and tissues where inflammatory foci are located. Eosinophils possess a range of immunomodulatory factors that are released upon cell activation, including over 35 cytokines, growth factors, and chemokines. Unlike T and B cells, eosinophils can rapidly release cytokines within minutes in response to stimulation. While some cytokines are stored as pre-formed mediators in crystalloid granules and secretory vesicles, eosinophils are also capable of undergoing de novo synthesis and secretion of these immunological factors. Some of the molecular mechanisms that coordinate the final steps of cytokine secretion are hypothesized to involve binding of membrane fusion complexes comprised of soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs). These intracellular receptors regulate the release of granules and vesicles containing a range of secreted proteins, among which are cytokines and chemokines. Emerging evidence from both human and animal model-based research has suggested an active participation of eosinophils in several physiological/pathological processes such as immunomodulation and tissue remodeling. The observed eosinophil effector functions in health and disease implicate eosinophil cytokine secretion as a fundamental immunoregulatory process. The focus of this review is to describe the cytokines, growth factors, and chemokines that are elaborated by eosinophils, and to illustrate some of the intracellular events leading to the release of eosinophil-derived cytokines.
Collapse
Affiliation(s)
- Francis Davoine
- Pulmonary Research Group, Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Paige Lacy
- Pulmonary Research Group, Department of Medicine, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
31
|
Colombo M, Raposo G, Théry C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu Rev Cell Dev Biol 2014; 30:255-89. [DOI: 10.1146/annurev-cellbio-101512-122326] [Citation(s) in RCA: 3537] [Impact Index Per Article: 321.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marina Colombo
- Institut Curie, Centre de Recherche, Paris, F-75248 France; ,
- Structure and Membrane Compartments CNRS, UMR144, Paris F-75248, France
- INSERM U932, Paris F-75248, France
- Paris Sciences et Lettres, Paris F-75005, France
| | - Graça Raposo
- Institut Curie, Centre de Recherche, Paris, F-75248 France; ,
- Structure and Membrane Compartments CNRS, UMR144, Paris F-75248, France
- Paris Sciences et Lettres, Paris F-75005, France
| | - Clotilde Théry
- Institut Curie, Centre de Recherche, Paris, F-75248 France; ,
- INSERM U932, Paris F-75248, France
- Paris Sciences et Lettres, Paris F-75005, France
| |
Collapse
|
32
|
Sheshachalam A, Srivastava N, Mitchell T, Lacy P, Eitzen G. Granule protein processing and regulated secretion in neutrophils. Front Immunol 2014; 5:448. [PMID: 25285096 PMCID: PMC4168738 DOI: 10.3389/fimmu.2014.00448] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are part of a family of granulocytes that, together with eosinophils and basophils, play an essential role in innate immunity. Neutrophils are the most abundant circulating leukocytes and are vital for rapid immune responses, being recruited to sites of injury or infection within minutes, where they can act as specialized phagocytic cells. However, another prominent function of neutrophils is the release of pro-inflammatory compounds, including cytokines, chemokines, and digestive enzymes, which are stored in intracellular compartments and released through regulated exocytosis. Hence, an important feature that contributes to rapid immune responses is capacity of neutrophils to synthesize and store pre-formed pro-inflammatory mediators in specialized intracellular vesicles and thus no new synthesis is required. This review will focus on advancement in three topics relevant to neutrophil secretion. First, we will examine what is known about basal level pro-inflammatory mediator synthesis, trafficking, and storage in secretory compartments. Second, we will review recent advancements in the mechanisms that control vesicle mobilization and the release of pre-formed mediators. Third, we will examine the upregulation and de novo synthesis of pro-inflammatory mediators by neutrophils engaged at sites of infection.
Collapse
Affiliation(s)
| | - Nutan Srivastava
- Pulmonary Research Group, University of Alberta , Edmonton, AB , Canada ; Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Troy Mitchell
- Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Paige Lacy
- Pulmonary Research Group, University of Alberta , Edmonton, AB , Canada ; Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
33
|
Epstein J, Warner JO. Recent advances in the pathophysiology and management of eosinophilic oesophagitis. Clin Exp Allergy 2014; 44:802-12. [DOI: 10.1111/cea.12316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- J. Epstein
- Department of Paediatric Gastroenterology; Chelsea and Westminster Hospital; London UK
| | - J. O. Warner
- Paediatric Section; Faculty of Medicine; Imperial College; Wright Fleming Institute; London UK
| |
Collapse
|
34
|
Kukic I, Kelleher SL, Kiselyov K. Zn2+ efflux through lysosomal exocytosis prevents Zn2+-induced toxicity. J Cell Sci 2014; 127:3094-103. [PMID: 24829149 DOI: 10.1242/jcs.145318] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Zn(2+) is an essential micronutrient and an important ionic signal whose excess, as well as scarcity, is detrimental to cells. Free cytoplasmic Zn(2+) is controlled by a network of Zn(2+) transporters and chelating proteins. Recently, lysosomes became the focus of studies in Zn(2+) transport, as they were shown to play a role in Zn(2+)-induced toxicity by serving as Zn(2+) sinks that absorb Zn(2+) from the cytoplasm. Here, we investigated the impact of the lysosomal Zn(2+) sink on the net cellular Zn(2+) distribution and its role in cell death. We found that lysosomes played a cytoprotective role during exposure to extracellular Zn(2+). Such a role required lysosomal acidification and exocytosis. Specifically, we found that the inhibition of lysosomal acidification using Bafilomycin A1 (Baf) led to a redistribution of Zn(2+) pools and increased apoptosis. Additionally, the inhibition of lysosomal exocytosis through knockdown (KD) of the lysosomal SNARE proteins VAMP7 and synaptotagmin VII (SYT7) suppressed Zn(2+) secretion and VAMP7 KD cells had increased apoptosis. These data show that lysosomes play a central role in Zn(2+) handling, suggesting that there is a new Zn(2+) detoxification pathway.
Collapse
Affiliation(s)
- Ira Kukic
- The Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Shannon L Kelleher
- The Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, University Park, PA 16802, USA Department of Surgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA Department of Cellular and Molecular Physiology, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Kirill Kiselyov
- The Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
35
|
Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 2014; 5:491. [PMID: 25339958 PMCID: PMC4188125 DOI: 10.3389/fimmu.2014.00491] [Citation(s) in RCA: 1478] [Impact Index Per Article: 134.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022] Open
Abstract
The evolution of macrophages has made them primordial for both development and immunity. Their functions range from the shaping of body plans to the ingestion and elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that confer instructions and mediate communication among immune and non-immune cells. A portfolio of cytokines is central to the role of macrophages as sentries of the innate immune system that mediate the transition from innate to adaptive immunity. In concert with other mediators, cytokines bias the fate of macrophages into a spectrum of inflammation-promoting "classically activated," to anti-inflammatory or "alternatively activated" macrophages. Deregulated cytokine secretion is implicated in several disease states ranging from chronic inflammation to allergy. Macrophages release cytokines via a series of beautifully orchestrated pathways that are spatiotemporally regulated. At the molecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein complexes that guide cytokines from their point of synthesis to their ports of exit into the extracellular milieu. These trafficking proteins, many of which were discovered in yeast and commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle fusion steps that are responsible for cytokine release. This review discusses the functions of cytokines secreted by macrophages, and summarizes what is known about their release mechanisms. This information will be used to delve into how selected pathogens subvert cytokine release for their own survival.
Collapse
Affiliation(s)
- Guillermo Arango Duque
- INRS-Institut Armand-Frappier, Laval, QC, Canada
- Centre for Host-Parasite Interactions, Laval, QC, Canada
- *Correspondence: Guillermo Arango Duque and Albert Descoteaux, Institut National de la Recherche Scientifique–Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada e-mail: , ;
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier, Laval, QC, Canada
- Centre for Host-Parasite Interactions, Laval, QC, Canada
- *Correspondence: Guillermo Arango Duque and Albert Descoteaux, Institut National de la Recherche Scientifique–Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada e-mail: , ;
| |
Collapse
|
36
|
Kim JD, Willetts L, Ochkur S, Srivastava N, Hamburg R, Shayeganpour A, Seabra MC, Lee JJ, Moqbel R, Lacy P. An essential role for Rab27a GTPase in eosinophil exocytosis. J Leukoc Biol 2013; 94:1265-74. [PMID: 23986549 DOI: 10.1189/jlb.0812431] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophil degranulation has been implicated in inflammatory processes associated with allergic asthma. Rab27a, a Rab-related GTPase, is a regulatory intracellular signaling molecule expressed in human eosinophils. We postulated that Rab27a regulates eosinophil degranulation. We investigated the role of Rab27a in eosinophil degranulation within the context of airway inflammation. Rab27a expression and localization in eosinophils were investigated by using subcellular fractionation combined with Western blot analysis, and the results were confirmed by immunofluorescence analysis of Rab27a and the granule membrane marker CD63. To determine the function of eosinophil Rab27a, we used Ashen mice, a strain of Rab27a-deficient animals. Ashen eosinophils were tested for degranulation in response to PAF and calcium ionophore by measuring released EPX activity. Airway EPX release was also determined by intratracheal injection of eosinophils into mice lacking EPX. Rab27a immunoreactivity colocalized with eosinophil crystalloid granules, as determined by subcellular fractionation and immunofluorescence analysis. PAF induced eosinophil degranulation in correlation with redistribution of Rab27a(+) structures, some of which colocalized with CD63(+) crystalloid granules at the cell membrane. Eosinophils from mice had significantly reduced EPX release compared with normal WT eosinophils, both in vitro and in vivo. In mouse models, Ashen mice demonstrated reduced EPX release in BAL fluid. These findings suggest that Rab27a has a key role in eosinophil degranulation. Furthermore, these findings have implications for Rab27a-dependent eosinophil degranulation in airway inflammation.
Collapse
Affiliation(s)
- John Dongil Kim
- 2.559 HMRC, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Stow JL, Murray RZ. Intracellular trafficking and secretion of inflammatory cytokines. Cytokine Growth Factor Rev 2013; 24:227-39. [PMID: 23647915 DOI: 10.1016/j.cytogfr.2013.04.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The secretion of cytokines by immune cells plays a significant role in determining the course of an inflammatory response. The levels and timing of each cytokine released are critical for mounting an effective but confined response, whereas excessive or dysregulated inflammation contributes to many diseases. Cytokines are both culprits and targets for effective treatments in some diseases. The multiple points and mechanisms that have evolved for cellular control of cytokine secretion highlight the potency of these mediators and the fine tuning required to manage inflammation. Cytokine production in cells is regulated by cell signaling, and at mRNA and protein synthesis levels. Thereafter, the intracellular transport pathways and molecular trafficking machinery have intricate and essential roles in dictating the release and activity of cytokines. The trafficking machinery and secretory (exocytic) pathways are complex and highly regulated in many cells, involving specialized membranes, molecules and organelles that enable these cells to deliver cytokines to often-distinct areas of the cell surface, in a timely manner. This review provides an overview of secretory pathways - both conventional and unconventional - and key families of trafficking machinery. The prevailing knowledge about the trafficking and secretion of a number of individual cytokines is also summarized. In conclusion, we present emerging concepts about the functional plasticity of secretory pathways and their modulation for controlling cytokines and inflammation.
Collapse
Affiliation(s)
- Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | | |
Collapse
|
38
|
Melo RCN, Liu L, Xenakis JJ, Spencer LA. Eosinophil-derived cytokines in health and disease: unraveling novel mechanisms of selective secretion. Allergy 2013; 68:274-84. [PMID: 23347072 DOI: 10.1111/all.12103] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2012] [Indexed: 12/13/2022]
Abstract
Over the past two decades, our understanding of eosinophils has evolved from that of categorically destructive effector cells to include active participation in immune modulation, tissue repair processes, and normal organ development, in both health and disease. At the core of their newly appreciated functions is the capacity of eosinophils to synthesize, store within intracellular granules, and very rapidly secrete a highly diverse repertoire of cytokines. Mechanisms governing the selective secretion of preformed cytokines from eosinophils are attractive therapeutic targets and may well be more broadly applicable to other immune cells. Here, we discuss recent advances in deciphering pathways of cytokine secretion, both from intact eosinophils and from tissue-deposited cell-free eosinophil granules, extruded from eosinophils undergoing a lytic cell death.
Collapse
Affiliation(s)
| | - L. Liu
- Division of Allergy and Inflammation; Department of Medicine; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston; MA; USA
| | - J. J. Xenakis
- Division of Allergy and Inflammation; Department of Medicine; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston; MA; USA
| | - L. A. Spencer
- Division of Allergy and Inflammation; Department of Medicine; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston; MA; USA
| |
Collapse
|
39
|
Pols MS, ten Brink C, Gosavi P, Oorschot V, Klumperman J. The HOPS proteins hVps41 and hVps39 are required for homotypic and heterotypic late endosome fusion. Traffic 2012; 14:219-32. [PMID: 23167963 DOI: 10.1111/tra.12027] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 11/14/2012] [Accepted: 11/21/2012] [Indexed: 12/11/2022]
Abstract
The homotypic fusion and protein sorting (HOPS) complex is a multisubunit tethering complex that in yeast regulates membrane fusion events with the vacuole, the yeast lysosome. Mammalian homologs of all HOPS components have been found, but little is known about their function. Here, we studied the role of hVps41 and hVps39, two components of the putative human HOPS complex, in the endo-lysosomal pathway of human cells. By expressing hemagglutinin (HA)-tagged constructs, we show by immunoelectron microscopy (immunoEM) that both hVps41 and hVps39 associate with the limiting membrane of late endosomes as well as lysosomes. Small interference RNA (siRNA)-mediated knockdown of hVps41 or hVps39 resulted in an accumulation of late endosomes, a depletion in the number of lysosomes and a block in the degradation of endocytosed cargo. Lysosomal pH and cathepsin B activity remained unaltered in these conditions. By immunoEM we found that hVps41 or hVps39 knockdown impairs homotypic fusion between late endosomes as well as heterotypic fusion between late endosomes and lysosomes. Thus, our data show that both hVps41 and hVps39 are required for late endosomal-lysosomal fusion events and the delivery of endocytic cargo to lysosomes in human cells.
Collapse
Affiliation(s)
- Maaike S Pols
- Department of Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Krzewski K, Coligan JE. Human NK cell lytic granules and regulation of their exocytosis. Front Immunol 2012; 3:335. [PMID: 23162553 PMCID: PMC3494098 DOI: 10.3389/fimmu.2012.00335] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/22/2012] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells form a subset of lymphocytes that play a key role in immuno-surveillance and host defense against cancer and viral infections. They recognize stressed cells through a variety of germline-encoded activating cell surface receptors and utilize their cytotoxic ability to eliminate abnormal cells. Killing of target cells is a complex, multi-stage process that concludes in the directed secretion of lytic granules, containing perforin and granzymes, at the immunological synapse. Upon delivery to a target cell, perforin mediates generation of pores in membranes of target cells, allowing granzymes to access target cell cytoplasm and induce apoptosis. Therefore, lytic granules of NK cells are indispensable for normal NK cell cytolytic function. Indeed, defects in lytic granule secretion lead or are related to serious and often fatal diseases, such as familial hemophagocytic lymphohistiocytosis (FHL) type 2–5 or Griscelli syndrome type 2. A number of reports highlight the role of several proteins involved in lytic granule release and NK cell-mediated killing of tumor cells. This review focuses on lytic granules of human NK cells and the advancements in understanding the mechanisms controlling their exocytosis.
Collapse
Affiliation(s)
- Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health Rockville, MD, USA
| | | |
Collapse
|
41
|
Lee JJ, Jacobsen EA, Ochkur SI, McGarry MP, Condjella RM, Doyle AD, Luo H, Zellner KR, Protheroe CA, Willetts L, Lesuer WE, Colbert DC, Helmers RA, Lacy P, Moqbel R, Lee NA. Human versus mouse eosinophils: "that which we call an eosinophil, by any other name would stain as red". J Allergy Clin Immunol 2012; 130:572-84. [PMID: 22935586 DOI: 10.1016/j.jaci.2012.07.025] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
The respective life histories of human subjects and mice are well defined and describe a unique story of evolutionary conservation extending from sequence identity within the genome to the underpinnings of biochemical, cellular, and physiologic pathways. As a consequence, the hematopoietic lineages of both species are invariantly maintained, each with identifiable eosinophils. This canonical presence nonetheless does not preclude disparities between human and mouse eosinophils, their effector functions, or both. Indeed, many books and reviews dogmatically highlight differences, providing a rationale to discount the use of mouse models of human eosinophilic diseases. We suggest that this perspective is parochial and ignores the wealth of available studies and the consensus of the literature that overwhelming similarities (and not differences) exist between human and mouse eosinophils. The goal of this review is to summarize this literature and in some cases provide experimental details comparing and contrasting eosinophils and eosinophil effector functions in human subjects versus mice. In particular, our review will provide a summation and an easy-to-use reference guide to important studies demonstrating that although differences exist, more often than not, their consequences are unknown and do not necessarily reflect inherent disparities in eosinophil function but instead species-specific variations. The conclusion from this overview is that despite nominal differences, the vast similarities between human and mouse eosinophils provide important insights as to their roles in health and disease and, in turn, demonstrate the unique utility of mouse-based studies with an expectation of valid extrapolation to the understanding and treatment of patients.
Collapse
Affiliation(s)
- James J Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Intracellular membrane trafficking along endocytic and secretory transport pathways plays a critical role in diverse cellular functions including both developmental and pathological processes. Briefly, proteins and lipids destined for transport to distinct locations are collectively assembled into vesicles and delivered to their target site by vesicular fusion. SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins are required for these events, during which v-SNAREs (vesicle SNAREs) interact with t-SNAREs (target SNAREs) to allow transfer of cargo from donor vesicle to target membrane. Recently, the t-SNARE family member, syntaxin-6, has been shown to play an important role in the transport of proteins that are key to diverse cellular dynamic processes. In this paper, we briefly discuss the specific role of SNAREs in various mammalian cell types and comprehensively review the various roles of the Golgi- and endosome-localized t-SNARE, syntaxin-6, in membrane trafficking during physiological as well as pathological conditions.
Collapse
|
43
|
Tian Y, Stamova B, Jickling GC, Xu H, Liu D, Ander BP, Bushnell C, Zhan X, Turner RJ, Davis RR, Verro P, Pevec WC, Hedayati N, Dawson DL, Khoury J, Jauch EC, Pancioli A, Broderick JP, Sharp FR. Y chromosome gene expression in the blood of male patients with ischemic stroke compared with male controls. ACTA ACUST UNITED AC 2012; 9:68-75.e3. [PMID: 22365286 DOI: 10.1016/j.genm.2012.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/04/2012] [Accepted: 01/09/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Sex is suggested to be an important determinant of ischemic stroke risk factors, etiology, and outcome. However, the basis for this remains unclear. The Y chromosome is unique in males. Genes expressed in males on the Y chromosome that are associated with stroke may be important genetic contributors to the unique features of males with ischemic stroke, which would be helpful for explaining sex differences observed between men and women. OBJECTIVE We compared Y chromosome gene expression in males with ischemic stroke and male controls. METHODS Blood samples were obtained from 40 male patients ≤3, 5, and 24 hours after ischemic stroke and from 41 male controls (July 2003-April 2007). RNA was isolated from blood and was processed using Affymetrix Human U133 Plus 2.0 expression arrays (Affymetrix Inc., Santa Clara, California). Y chromosome genes differentially expressed between male patients with stroke and male control subjects were identified using an ANCOVA adjusted for age and batch. A P < 0.05 and a fold change >1.2 were considered significant. RESULTS Seven genes on the Y chromosome were differentially expressed in males with ischemic stroke compared with controls. Five of these genes (VAMP7, CSF2RA, SPRY3, DHRSX, and PLCXD1) are located on pseudoautosomal regions of the human Y chromosome. The other 2 genes (EIF1AY and DDX3Y) are located on the nonrecombining region of the human Y chromosome. The identified genes were associated with immunology, RNA metabolism, vesicle fusion, and angiogenesis. CONCLUSIONS Specific genes on the Y chromosome are differentially expressed in blood after ischemic stroke. These genes provide insight into potential molecular contributors to sex differences in ischemic stroke.
Collapse
Affiliation(s)
- Yingfang Tian
- Department of Neurology and the MIND Institute, University of California at Davis, Sacramento, California 95817, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rodríguez-Piñeiro AM, van der Post S, Johansson MEV, Thomsson KA, Nesvizhskii AI, Hansson GC. Proteomic study of the mucin granulae in an intestinal goblet cell model. J Proteome Res 2012; 11:1879-90. [PMID: 22248381 PMCID: PMC3292267 DOI: 10.1021/pr2010988] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Goblet cells specialize in producing and secreting mucus
with its
main component, mucins. An inducible goblet-like cell line was used
for the purification of the mucus vesicles stored in these cells by
density gradient ultracentrifugation, and their proteome was analyzed
by nanoLC-MS and MS/MS. Although the density of these vesicles coincides
with others, it was possible to reveal a number of proteins that after
immunolocalization on colon tissue and functional analyses were likely
to be linked to the MUC2 vesicles. Most of the proteins were associated
with the vesicle membrane or their outer surface. The ATP6AP2, previously
suggested to be associated with vesicular proton pumps, was colocalized
with MUC2 without other V-ATPase proteins and, thus, probably has
roles in mucin vesicle function yet to be discovered. FAM62B, known
to be a calcium-sensitive protein involved in vesicle fusion, also
colocalized with the MUC2 vesicles and is probably involved in unknown
ways in the later events of the MUC2 vesicles and their secretion.
Collapse
Affiliation(s)
- Ana M Rodríguez-Piñeiro
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg , Box 440, 40530 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Verderio C, Cagnoli C, Bergami M, Francolini M, Schenk U, Colombo A, Riganti L, Frassoni C, Zuccaro E, Danglot L, Wilhelm C, Galli T, Canossa M, Matteoli M. TI-VAMP/VAMP7 is the SNARE of secretory lysosomes contributing to ATP secretion from astrocytes. Biol Cell 2012; 104:213-28. [PMID: 22188132 DOI: 10.1111/boc.201100070] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 12/05/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND INFORMATION ATP is the main transmitter stored and released from astrocytes under physiological and pathological conditions. Morphological and functional evidence suggest that besides secretory granules, secretory lysosomes release ATP. However, the molecular mechanisms involved in astrocytic lysosome fusion remain still unknown. RESULTS In the present study, we identify tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP, also called VAMP7) as the vesicular SNARE which mediates secretory lysosome exocytosis, contributing to release of both ATP and cathepsin B from glial cells. We also demonstrate that fusion of secretory lysosomes is triggered by slow and locally restricted calcium elevations, distinct from calcium spikes which induce the fusion of glutamate-containing clear vesicles. Downregulation of TI-VAMP/VAMP7 expression inhibited the fusion of ATP-storing vesicles and ATP-mediated calcium wave propagation. TI-VAMP/VAMP7 downregulation also significantly reduced secretion of cathepsin B from glioma. CONCLUSIONS Given that sustained ATP release from glia upon injury greatly contributes to secondary brain damage and cathepsin B plays a critical role in glioma dissemination, TI-VAMP silencing can represent a novel strategy to control lysosome fusion in pathological conditions.
Collapse
Affiliation(s)
- Claudia Verderio
- Department of Medical Pharmacology and CNR Institute of Neuroscience, Università di Milano, 20129 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Proux-Gillardeaux V, Raposo G, Irinopoulou T, Galli T. Expression of the Longin domain of TI-VAMP impairs lysosomal secretion and epithelial cell migration. Biol Cell 2012; 99:261-71. [PMID: 17288539 DOI: 10.1042/bc20060097] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION TI-VAMP (tetanus neurotoxin-insensitive vesicle-associated membrane protein; also called VAMP7) belongs to the Longin subfamily of v-SNAREs (vesicular soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors). The regulatory N-terminal extension, called the Longin domain, of TI-VAMP has been shown previously to have a dual biochemical function: it inhibits the capacity of TI-VAMP to form SNARE complexes and it binds to the delta subunit of the AP-3 (adaptor protein 3) complex in early endosomes, thereby targeting TI-VAMP to late endosomes. RESULTS We have generated MDCK (Madin-Darby canine kidney) cell lines expressing the Longin domain of TI-VAMP coupled to GFP (green fluorescent protein) in a doxycycline-dependent manner. As expected, AP-3delta (AP-3 delta subunit) is not properly localized in Longin-expressing cells. We have shown that the expression of the Longin domain impairs lysosomal secretion, as determined by the release of a pre-internalized fluorescent fluid-phase marker and by electron microscopy of the membrane-associated released particles. Membrane repair following mechanical wounding, a process requiring lysosomal secretion, is also impaired in cells expressing the Longin domain. Furthermore, cell migration, assessed by wound healing of MDCK monolayers, is also inhibited. CONCLUSIONS The results of the present study suggest that the expression of the Longin domain of TI-VAMP regulates lysosomal secretion of epithelial cells and provide molecular evidence for a role of the late endocytic system in cell migration.
Collapse
|
47
|
Frank SPC, Thon KP, Bischoff SC, Lorentz A. SNAP-23 and syntaxin-3 are required for chemokine release by mature human mast cells. Mol Immunol 2011; 49:353-8. [PMID: 21981832 DOI: 10.1016/j.molimm.2011.09.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 01/21/2023]
Abstract
Mast cells play a key role in allergic and non-allergic disease by releasing a broad array of mediators. Soluble N-ethyl-maleimide-sensitive factor attachment protein receptors (SNAREs) are necessary for membrane fusion events during mast cell exocytosis. We have shown recently that the SNAREs SNAP-23, syntaxin (STX)-4, vesicle associated membrane protein (VAMP)-7, and VAMP-8 are required for release of pre-stored histamine by mast cells. Here we analyze the involvement of different SNARE isoforms in exocytosis of de novo synthesized chemokines in mast cells isolated from human intestine. Following IgE receptor cross-linking, mast cells released substantial amounts of the chemokines CXCL8, CCL2, CCL3, and CCL4. Measurement of SNARE mRNA expression revealed only a moderate up-regulation of mRNA for STX-4 after stimulation for 1.5h. Inhibition of SNAP-23 or STX-3 abolished IgE mediated release of the chemokines CXCL8, CCL2, CCL3, and CCL4. In contrast, blocking of STX-2, or VAMP-3 did not affect the chemokine release. Inhibition of STX-4 or VAMP-8 resulted in a reduced release of CXCL8, but not of CCL2, CCL3, or CCL4. Inhibition of STX-6 attenuated the release of CXCL8 and CCL2, inhibition of VAMP-7 that of CCL3. In summary, STX-3 and SNAP-23 are crucial for the release of all chemokines in mature human mast cells whereas other SNAREs affect only release of selected chemokines.
Collapse
Affiliation(s)
- Simon P C Frank
- Department of Nutritional Medicine, University of Hohenheim, Fruwirthstraße 12, D-70593 Stuttgart, Germany
| | | | | | | |
Collapse
|
48
|
Krzewski K, Gil-Krzewska A, Watts J, Stern JNH, Strominger JL. VAMP4- and VAMP7-expressing vesicles are both required for cytotoxic granule exocytosis in NK cells. Eur J Immunol 2011; 41:3323-9. [PMID: 21805468 DOI: 10.1002/eji.201141582] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/09/2011] [Accepted: 07/28/2011] [Indexed: 11/10/2022]
Abstract
NK cells eliminate cancer and virus-infected cells through their cytolytic activity. The last step in NK-cell cytotoxicity, resulting in exocytosis of granule content, requires fusion of lytic granules with the plasma membrane. Proteins from the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion events in the cell. Here, we show that NK cells express all members of the R-SNARE subgroup. Two of these R-SNARE proteins, VAMP4 and VAMP7, colocalize with lytic granules during cytotoxic interactions. However, only VAMP7 associates with perforin-containing granules in nonactivated cells, indicating that the two VAMPs have different functions in exocytosis. Using both the tumor NK-cell line YTS and the peripheral NK cells, we show that the disruption of expression of either VAMP4 or VAMP7 inhibits the release of lytic granules and severely impairs NK-cell cytotoxic activity. Furthermore, VAMP7 but not VAMP4 is involved in IFN-γ secretion in NK cells, indicating that VAMP7 is involved in many fusion processes and thus plays a more general function in NK-cell activity than VAMP4.
Collapse
Affiliation(s)
- Konrad Krzewski
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
49
|
Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, Ballabio A. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011; 20:3852-66. [PMID: 21752829 DOI: 10.1093/hmg/ddr306] [Citation(s) in RCA: 730] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In metazoans, lysosomes are the center for the degradation of macromolecules and play a key role in a variety of cellular processes, such as autophagy, exocytosis and membrane repair. Defects of lysosomal pathways are associated with lysosomal storage disorders and with several late onset neurodegenerative diseases. We recently discovered the CLEAR (Coordinated Lysosomal Expression and Regulation) gene network and its master gene transcription factor EB (TFEB), which regulates lysosomal biogenesis and function. Here, we used a combination of genomic approaches, including ChIP-seq (sequencing of chromatin immunoprecipitate) analysis, profiling of TFEB-mediated transcriptional induction, genome-wide mapping of TFEB target sites and recursive expression meta-analysis of TFEB targets, to identify 471 TFEB direct targets that represent essential components of the CLEAR network. This analysis revealed a comprehensive system regulating the expression, import and activity of lysosomal enzymes that control the degradation of proteins, glycosaminoglycans, sphingolipids and glycogen. Interestingly, the CLEAR network appears to be involved in the regulation of additional lysosome-associated processes, including autophagy, exo- and endocytosis, phagocytosis and immune response. Furthermore, non-lysosomal enzymes involved in the degradation of essential proteins such as hemoglobin and chitin are also part of the CLEAR network. Finally, we identified nine novel lysosomal proteins by using the CLEAR network as a tool for prioritizing candidates. This study provides potential therapeutic targets to modulate cellular clearance in a variety of disease conditions.
Collapse
Affiliation(s)
- Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Shandala T, Woodcock JM, Ng Y, Biggs L, Skoulakis EMC, Brooks DA, Lopez AF. Drosophila 14-3-3ε has a crucial role in anti-microbial peptide secretion and innate immunity. J Cell Sci 2011; 124:2165-74. [DOI: 10.1242/jcs.080598] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The secretion of anti-microbial peptides is recognised as an essential step in innate immunity, but there is limited knowledge of the molecular mechanism controlling the release of these effectors from immune response cells. Here, we report that Drosophila 14-3-3ε mutants exhibit reduced survival when infected with either Gram-positive or Gram-negative bacteria, indicating a functional role for 14-3-3ε in innate immunity. In 14-3-3ε mutants, there was a reduced release of the anti-microbial peptide Drosomycin into the haemolymph, which correlated with an accumulation of Drosomycin-containing vesicles near the plasma membrane of cells isolated from immune response tissues. Drosomycin appeared to be delivered towards the plasma membrane in Rab4- and Rab11-positive vesicles and smaller Rab11-positive vesicles. RNAi silencing of Rab11 and Rab4 significantly blocked the anterograde delivery of Drosomycin from the perinuclear region to the plasma membrane. However, in 14-3-3ε mutants there was an accumulation of small Rab11-positive vesicles near the plasma membrane. This vesicular phenotype was similar to that observed in response to the depletion of the vesicular Syntaxin protein Syx1a. In wild-type Drosophila immune tissue, 14-3-3ε was detected adjacent to Rab11, and partially overlapping with Syx1a, on vesicles near the plasma membrane. We conclude that 14-3-3ε is required for Rab11-positive vesicle function, which in turn enables antimicrobial peptide secretion during an innate immune response.
Collapse
Affiliation(s)
- Tetyana Shandala
- Division of Human Immunology, Centre for Cancer Biology, Adelaide SA5000, Australia
- Sansom Institute for Health Research, University of South Australia, Adelaide SA5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide SA5000, Australia
| | - Joanna M. Woodcock
- Division of Human Immunology, Centre for Cancer Biology, Adelaide SA5000, Australia
| | - Yeap Ng
- Division of Human Immunology, Centre for Cancer Biology, Adelaide SA5000, Australia
- Sansom Institute for Health Research, University of South Australia, Adelaide SA5000, Australia
| | - Lisa Biggs
- Division of Human Immunology, Centre for Cancer Biology, Adelaide SA5000, Australia
| | | | - Doug A. Brooks
- Sansom Institute for Health Research, University of South Australia, Adelaide SA5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide SA5000, Australia
| | - Angel F. Lopez
- Division of Human Immunology, Centre for Cancer Biology, Adelaide SA5000, Australia
| |
Collapse
|