1
|
Wartchow KM, Scaini G, Quevedo J. Glial-Neuronal Interaction in Synapses: A Possible Mechanism of the Pathophysiology of Bipolar Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:191-208. [PMID: 36949311 DOI: 10.1007/978-981-19-7376-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Bipolar disorder (BD) is a severe and chronic psychiatric disorder that affects approximately 1-4% of the world population and is characterized by recurrent episodes of mania or hypomania and depression. BD is also associated with illnesses marked by immune activation, such as metabolic syndrome, obesity, type 2 diabetes mellitus, and cardiovascular diseases. Indeed, a connection has been suggested between neuroinflammation and peripheral inflammatory markers in the pathophysiology of BD, which can be associated with the modulation of many dysfunctional processes, including synaptic plasticity, neurotransmission, neurogenesis, neuronal survival, apoptosis, and even cognitive/behavioral functioning. Rising evidence suggests that synaptic dysregulations, especially glutamatergic system dysfunction, are directly involved in mood disorders. It is becoming clear that dysregulations in connection and structural changes of glial cells play a central role in the BD pathophysiology. This book chapter highlighted the latest findings that support the theory of synaptic dysfunction in BD, providing an overview of the alterations in neurotransmitters release, astrocytic uptake, and receptor signaling, as well as the role of inflammation on glial cells in mood disorders. Particular emphasis is given to the alterations in presynaptic and postsynaptic neurons and glial cells, all cellular elements of the "tripartite synapse," compromising the neurotransmitters system, excitatory-inhibitory balance, and neurotrophic states of local networks in mood disorders. Together, these studies provide a foundation of knowledge about the exact role of the glial-neuronal interaction in mood disorders.
Collapse
Affiliation(s)
- Krista M Wartchow
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
2
|
Modified climbing fiber/Purkinje cell synaptic connectivity in the cerebellum of the neonatal phencyclidine model of schizophrenia. Proc Natl Acad Sci U S A 2022; 119:e2122544119. [PMID: 35588456 PMCID: PMC9173783 DOI: 10.1073/pnas.2122544119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Synaptogenesis and neural network remodeling are at their maximum during the perinatal period of human brain development. Perturbations of this highly sensitive stage might underlie the etiology of neurodevelopmental disorders. Subchronic neonatal administration of phencyclidine, a drug of abuse, has been used to model schizophrenia in rodents. In this model, we found specific long-term synaptic changes in Purkinje cells and transient gene expression changes in the cerebellum. While transient increased neuronal activity in the cerebellum, induced using chemogenetics, reproduces some phencyclidine-induced molecular changes, it is insufficient to reproduce the long-term synaptic effects. Our results show the complex mechanism of action of phencyclidine on the development of neuronal connectivity and further highlight the potential contribution of cerebellar defects in psychiatric diseases. Environmental perturbations during the first years of life are a major factor in psychiatric diseases. Phencyclidine (PCP), a drug of abuse, has psychomimetic effects, and neonatal subchronic administration of PCP in rodents leads to long-term behavioral changes relevant for schizophrenia. The cerebellum is increasingly recognized for its role in diverse cognitive functions. However, little is known about potential cerebellar changes in models of schizophrenia. Here, we analyzed the characteristics of the cerebellum in the neonatal subchronic PCP model. We found that, while the global cerebellar cytoarchitecture and Purkinje cell spontaneous spiking properties are unchanged, climbing fiber/Purkinje cell synaptic connectivity is increased in juvenile mice. Neonatal subchronic administration of PCP is accompanied by increased cFos expression, a marker of neuronal activity, and transient modification of the neuronal surfaceome in the cerebellum. The largest change observed is the overexpression of Ctgf, a gene previously suggested as a biomarker for schizophrenia. This neonatal increase in Ctgf can be reproduced by increasing neuronal activity in the cerebellum during the second postnatal week using chemogenetics. However, it does not lead to increased climbing fiber/Purkinje cell connectivity in juvenile mice, showing the complexity of PCP action. Overall, our study shows that administration of the drug of abuse PCP during the developmental period of intense cerebellar synaptogenesis and circuit remodeling has long-term and specific effects on Purkinje cell connectivity and warrants the search for this type of synaptic changes in psychiatric diseases.
Collapse
|
3
|
Leung E, Lau EW, Liang A, de Dios C, Suchting R, Östlundh L, Masdeu JC, Fujita M, Sanches M, Soares JC, Selvaraj S. Alterations in brain synaptic proteins and mRNAs in mood disorders: a systematic review and meta-analysis of postmortem brain studies. Mol Psychiatry 2022; 27:1362-1372. [PMID: 35022529 DOI: 10.1038/s41380-021-01410-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022]
Abstract
The pathophysiological mechanisms underlying bipolar (BD) and major depressive disorders (MDD) are multifactorial but likely involve synaptic dysfunction and dysregulation. There are multiple synaptic proteins but three synaptic proteins, namely SNAP-25, PSD-95, and synaptophysin, have been widely studied for their role in synaptic function in human brain postmortem studies in BD and MDD. These studies have yielded contradictory results, possibly due to the small sample size and sourcing material from different cortical regions of the brain. We performed a systematic review and meta-analysis to understand the role of these three synaptic proteins and other synaptic proteins, messenger RNA (mRNA) and their regional localizations in BD and MDD. A systematic literature search was conducted and the review is reported in accordance with the MOOSE Guidelines. Meta-analysis was performed to compare synaptic marker levels between BD/MDD groups and controls separately. 1811 papers were identified in the literature search and screened against the preset inclusion and exclusion criteria. A total of 72 studies were screened in the full text, of which 47 were identified as eligible to be included in the systematic review. 24 of these 47 papers were included in the meta-analysis. The meta-analysis indicated that SNAP-25 protein levels were significantly lower in BD. On average, PSD-95 mRNA levels were lower in BD, and protein levels of SNAP-25, PSD-95, and syntaxin were lower in MDD. Localization analysis showed decreased levels of PSD-95 protein in the frontal cortex. We found specific alterations in synaptic proteins and RNAs in both BD and MDD. The review was prospectively registered online in PROSPERO international prospective register of systematic reviews, registration no. CRD42020196932.
Collapse
Affiliation(s)
- Edison Leung
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ethan W Lau
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andi Liang
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Constanza de Dios
- Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Robert Suchting
- Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Linda Östlundh
- The National Medical Library, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Joseph C Masdeu
- Houston Methodist Neurological Institute, Houston, TX, USA.,Weill Cornell Medicine, New York, NY, USA
| | - Masahiro Fujita
- Weill Cornell Medicine, New York, NY, USA.,PET Core Facility, Houston Methodist Research Insitute, Houston, TX, USA
| | - Marsal Sanches
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sudhakar Selvaraj
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Depression Research Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
4
|
Sitbon J, Nestvogel D, Kappeler C, Nicolas A, Maciuba S, Henrion A, Troudet R, Courtois E, Grannec G, Latapie V, Barau C, Le Corvoisier P, Pietrancosta N, Henry C, Leboyer M, Etain B, Nosten-Bertrand M, Martin TFJ, Rhee J, Jamain S. CADPS functional mutations in patients with bipolar disorder increase the sensitivity to stress. Mol Psychiatry 2022; 27:1145-1157. [PMID: 35169262 DOI: 10.1038/s41380-021-01151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 11/09/2022]
Abstract
Bipolar disorder is a severe and chronic psychiatric disease resulting from a combination of genetic and environmental risk factors. Here, we identified a significant higher mutation rate in a gene encoding the calcium-dependent activator protein for secretion (CADPS) in 132 individuals with bipolar disorder, when compared to 184 unaffected controls or to 21,070 non-psychiatric and non-Finnish European subjects from the Exome Aggregation Consortium. We found that most of these variants resulted either in a lower abundance or a partial impairment in one of the basic functions of CADPS in regulating neuronal exocytosis, synaptic plasticity and vesicular transporter-dependent uptake of catecholamines. Heterozygous mutant mice for Cadps+/- revealed that a decreased level of CADPS leads to manic-like behaviours, changes in BDNF level and a hypersensitivity to stress. This was consistent with more childhood trauma reported in families with mutation in CADPS, and more specifically in mutated individuals. Furthermore, hyperactivity observed in mutant animals was rescued by the mood-stabilizing drug lithium. Overall, our results suggest that dysfunction in calcium-dependent vesicular exocytosis may increase the sensitivity to environmental stressors enhancing the risk of developing bipolar disorder.
Collapse
Affiliation(s)
- Jérémy Sitbon
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Dennis Nestvogel
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Caroline Kappeler
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Aude Nicolas
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Stephanie Maciuba
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Annabelle Henrion
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Réjane Troudet
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Elisa Courtois
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Gaël Grannec
- INSERM U1270, Sorbonne Université, Institut du Fer à Moulin, Paris, France
| | - Violaine Latapie
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Caroline Barau
- AP-HP, Hôpital H. Mondor - A. Chenevier, Plateforme de Ressources Biologiques, Créteil, France
| | | | - Nicolas Pietrancosta
- Sorbonne University, École Normale Supérieure, PSL University, CNRS, Laboratoire des biomolécules (LBM), Paris, France.,Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Chantal Henry
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, France.,Fondation FondaMental, Créteil, France.,AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, Créteil, France
| | - Marion Leboyer
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, France.,Fondation FondaMental, Créteil, France.,AP-HP, Hôpitaux Universitaires H. Mondor, DMU IMPACT, Créteil, France
| | - Bruno Etain
- Fondation FondaMental, Créteil, France.,Département de Psychiatrie et de Médecine Addictologique, AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, UMR-S1144, Paris, France
| | | | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Stéphane Jamain
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, France. .,Fondation FondaMental, Créteil, France.
| |
Collapse
|
5
|
Chen S, Alhassen W, Vakil Monfared R, Vachirakorntong B, Nauli SM, Baldi P, Alachkar A. Dynamic Changes of Brain Cilia Transcriptomes across the Human Lifespan. Int J Mol Sci 2021; 22:10387. [PMID: 34638726 PMCID: PMC8509004 DOI: 10.3390/ijms221910387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
Almost all brain cells contain primary cilia, antennae-like microtubule sensory organelles, on their surface, which play critical roles in brain functions. During neurodevelopmental stages, cilia are essential for brain formation and maturation. In the adult brain, cilia play vital roles as signaling hubs that receive and transduce various signals and regulate cell-to-cell communications. These distinct roles suggest that cilia functions, and probably structures, change throughout the human lifespan. To further understand the age-dependent changes in cilia roles, we identified and analyzed age-dependent patterns of expression of cilia's structural and functional components across the human lifespan. We acquired cilia transcriptomic data for 16 brain regions from the BrainSpan Atlas and analyzed the age-dependent expression patterns using a linear regression model by calculating the regression coefficient. We found that 67% of cilia transcripts were differentially expressed genes with age (DEGAs) in at least one brain region. The age-dependent expression was region-specific, with the highest and lowest numbers of DEGAs expressed in the ventrolateral prefrontal cortex and hippocampus, respectively. The majority of cilia DEGAs displayed upregulation with age in most of the brain regions. The transcripts encoding cilia basal body components formed the majority of cilia DEGAs, and adjacent cerebral cortices exhibited large overlapping pairs of cilia DEGAs. Most remarkably, specific α/β-tubulin subunits (TUBA1A, TUBB2A, and TUBB2B) and SNAP-25 exhibited the highest rates of downregulation and upregulation, respectively, across age in almost all brain regions. α/β-tubulins and SNAP-25 expressions are known to be dysregulated in age-related neurodevelopmental and neurodegenerative disorders. Our results support a role for the high dynamics of cilia structural and functional components across the lifespan in the normal physiology of brain circuits. Furthermore, they suggest a crucial role for cilia signaling in the pathophysiological mechanisms of age-related psychiatric/neurological disorders.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA; (S.C.); (P.B.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA
| | - Wedad Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| | - Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| | - Benjamin Vachirakorntong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Pierre Baldi
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA; (S.C.); (P.B.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA
| | - Amal Alachkar
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| |
Collapse
|
6
|
Proteomic Characterization of Synaptosomes from Human Substantia Nigra Indicates Altered Mitochondrial Translation in Parkinson's Disease. Cells 2020; 9:cells9122580. [PMID: 33276480 PMCID: PMC7761546 DOI: 10.3390/cells9122580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
The pathological hallmark of Parkinson's disease (PD) is the loss of neuromelanin-containing dopaminergic neurons within the substantia nigra pars compacta (SNpc). Additionally, numerous studies indicate an altered synaptic function during disease progression. To gain new insights into the molecular processes underlying the alteration of synaptic function in PD, a proteomic study was performed. Therefore, synaptosomes were isolated by density gradient centrifugation from SNpc tissue of individuals at advanced PD stages (N = 5) as well as control subjects free of pathology (N = 5) followed by mass spectrometry-based analysis. In total, 362 proteins were identified and assigned to the synaptosomal core proteome. This core proteome comprised all proteins expressed within the synapses without regard to data analysis software, gender, age, or disease. The differential analysis between control subjects and PD cases revealed that CD9 antigen was overrepresented and fourteen proteins, among them Thymidine kinase 2 (TK2), mitochondrial, 39S ribosomal protein L37, neurolysin, and Methionine-tRNA ligase (MARS2) were underrepresented in PD suggesting an alteration in mitochondrial translation within synaptosomes.
Collapse
|
7
|
Age-related changes in cerebral congenital toxoplasmosis: Histopathological and immunohistochemical evaluation. J Neuroimmunol 2020; 348:577384. [PMID: 32919146 DOI: 10.1016/j.jneuroim.2020.577384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 11/24/2022]
Abstract
Congenital toxoplasmosis is a widespread worldwide disease producing varying degrees of damage to the fetus including ocular and neurological impairment. However, the underlying mechanisms are not yet clear. Therefore, the current study aimed to investigate the progress of congenital cerebral toxoplasmosis in experimentally infected offspring animal model at different age groups till become adults. To fulfill this aim, the offspring of Me49 T. gondii infected pregnant mice were divided into groups; embryo, infant, young and adult phases. Blood and brain samples were collected for further hormonal and histopathological studies and immunohistochemical staining of glial fibrillary acidic protein (GFAP) and synaptophysin (SYN). Our results showed several encephalitic changes in the infected groups ranging from gliosis to reduced cortical cell number and fibrinoid degeneration of the brain. We showed increased expression of GFAP and SYN indicating activation of astrocytes and modification of the synaptic function, respectively. These changes started intrauterine following congenital infection and increased progressively afterward. Moreover, infected mice had elevated corticosterone levels. In conclusion, the current study provided new evidences for the cellular changes especially in the infected embryo and highlighted the role of GFAP and SYN that may be used as indicators for T. gondii-related neuropathy.
Collapse
|
8
|
Dean B, Pavey G, Scarr E. Higher levels of α7 nicotinic receptors, but not choline acetyltransferase, in the dorsolateral prefrontal cortex from a sub-group of patients with schizophrenia. Schizophr Res 2020; 222:283-290. [PMID: 32507381 DOI: 10.1016/j.schres.2020.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/16/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
It has been suggested the study of sub-groups within the syndrome of schizophrenia will assist in elucidating the complex pathophysiology of the syndrome. Hence, we have studied a number of cholinergic markers in the cortex from a sub-group of subjects with schizophrenia that have a marked decrease in levels of muscarinic M1 receptors (MRDS). The displacement of [3H]NMS by cortical extracts was used to measure tissue anticholinergic load, [125I]α bungarotoxin binding was used to measure levels of the α7 nicotinic receptor (CHRNA7) and western blotting was used to measure levels of choline acetyltransferase (ChAT) 68 and 82 as well as synaptosome nerve-associated protein 25 (SNAP25). In comparing schizophrenia, MRDS and non-MRDS to controls, there were no differences in levels of ChAT 68 or 82, SNAP 25 or cholinergic load in BA 9. However, levels of CHRNA7 were higher in BA 9, but not BA 6 or 44, from subjects with MRDS. These data argue that there is no change in cholinergic innovation (measured using ChAT), presynaptic neurons (measured using SNAP25) or cholinergic load in schizophrenia, MRDS or non-MRDS. However, increased levels of CHRNA7 may be contributing to a breakdown in cholinergic homeostasis in BA 9, but not BA 6 or 44, in subjects with MRDS.
Collapse
Affiliation(s)
- Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Victoria, Australia; The Centre for Mental Health, Swinburne University of Technology, Hawthorn, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Geoffrey Pavey
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Victoria, Australia
| | - Elizabeth Scarr
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Victoria, Australia; Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Xu C, Wang C, Meng Q, Gu Y, Wang Q, Xu W, Han Y, Qin Y, Li J, Jia S, Xu J, Zhou Y. miR‑153 promotes neural differentiation in the mouse hippocampal HT‑22 cell line and increases the expression of neuron‑specific enolase. Mol Med Rep 2019; 20:1725-1735. [PMID: 31257504 PMCID: PMC6625396 DOI: 10.3892/mmr.2019.10421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/06/2019] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) have been found to play important regulatory roles in certain neurodegenerative diseases. The aim of the present study was to investigate the effect of miRNA-153 (miR-153) on the neural differentiation of HT-22 cells. Overexpression of miR-153 induced the differentiation of HT-22 cells, increasing the number of protrusions and branches, reducing the S phase distribution of the cell cycle, and attenuating the cell proliferation rate as determined using the Cell Counting Kit-8 assay. Furthermore, miR-153 increased the expression of neuron-specific γ-enolase (NSE), neuronal nuclei (NeuN), and N-ethylmaleimide-sensitive fusion attachment protein 23 (SNAP23) and SNAP25 at the transcriptional and protein level by PCR and western blot analysis. Moreover, miR-153 caused obvious upregulation of peroxiredoxin 5 (PRX5), which has been found to protect neural cells from death and apoptosis. miR-153 promoted neural differentiation and protected neural cells by upregulating the neuron markers γ-enolase, neuronal nuclei, and the functional proteins SNAP23, SNAP25 and PRX5. Therefore, miR-153 may be a potential target for the treatment of certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunli Xu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Chen Wang
- School of Life Science and Technology, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Qiuyu Meng
- School of Life Science and Technology, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Yuming Gu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Qiwei Wang
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wenjie Xu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Ying Han
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yong Qin
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Jiao Li
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Song Jia
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Jie Xu
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Yixin Zhou
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
10
|
SNAP-25 in Major Psychiatric Disorders: A Review. Neuroscience 2019; 420:79-85. [PMID: 30790667 DOI: 10.1016/j.neuroscience.2019.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 01/10/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Synaptosomal Associated Protein-25 kilodaltons (SNAP-25) is an integral member of the SNARE complex. This complex is essential for calcium-triggered synaptic vesicular fusion and release of neurotransmitters into the synaptic cleft. In addition to neurotransmission, SNAP-25 is associated with insulin release, the regulation of intracellular calcium, and neuroplasticity. Because of SNAP-25's varied and crucial biological roles, the consequences of changes in this protein can be seen in both the central nervous system and the periphery. In this review, we will look at the published literature from human genetic, postmortem, and animal studies involving SNAP-25. The accumulated data indicate that SNAP-25 may be linked with some symptoms associated with a variety of psychiatric disorders. These disorders include bipolar disorder, schizophrenia, major depressive disorder, attention deficit hyperactivity disorder, autism, alcohol use disorder, and dementia. There are also data suggesting SNAP-25 may be involved with non-psychiatric seizures and metabolic disorders. We believe investigation of SNAP-25 is important for understanding both normal behavior and some aspects of the pathophysiology of behavior seen with psychiatric disorders. The wealth of information from both animal and human studies on SNAP-25 offers an excellent opportunity to use a bi-directional research approach. Hypotheses generated from genetically manipulated mice can be directly tested in human postmortem tissue, and, conversely, human genetic and postmortem findings can improve and validate animal models for psychiatric disorders.
Collapse
|
11
|
Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry 2019; 24:549-561. [PMID: 29511299 PMCID: PMC6004314 DOI: 10.1038/s41380-018-0041-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
Although synaptic loss is thought to be core to the pathophysiology of schizophrenia, the nature, consistency and magnitude of synaptic protein and mRNA changes has not been systematically appraised. Our objective was thus to systematically review and meta-analyse findings. The entire PubMed database was searched for studies from inception date to the 1st of July 2017. We selected case-control postmortem studies in schizophrenia quantifying synaptic protein or mRNA levels in brain tissue. The difference in protein and mRNA levels between cases and controls was extracted and meta-analysis conducted. Among the results, we found a significant reduction in synaptophysin in schizophrenia in the hippocampus (effect size: -0.65, p < 0.01), frontal (effect size: -0.36, p = 0.04), and cingulate cortices (effect size: -0.54, p = 0.02), but no significant changes for synaptophysin in occipital and temporal cortices, and no changes for SNAP-25, PSD-95, VAMP, and syntaxin in frontal cortex. There were insufficient studies for meta-analysis of complexins, synapsins, rab3A and synaptotagmin and mRNA measures. Findings are summarised for these, which generally show reductions in SNAP-25, PSD-95, synapsin and rab3A protein levels in the hippocampus but inconsistency in other regions. Our findings of moderate-large reductions in synaptophysin in hippocampus and frontal cortical regions, and a tendency for reductions in other pre- and postsynaptic proteins in the hippocampus are consistent with models that implicate synaptic loss in schizophrenia. However, they also identify potential differences between regions and proteins, suggesting synaptic loss is not uniform in nature or extent.
Collapse
|
12
|
Qiu A, Shen M, Buss C, Chong YS, Kwek K, Saw SM, Gluckman PD, Wadhwa PD, Entringer S, Styner M, Karnani N, Heim CM, O'Donnell KJ, Holbrook JD, Fortier MV, Meaney MJ. Effects of Antenatal Maternal Depressive Symptoms and Socio-Economic Status on Neonatal Brain Development are Modulated by Genetic Risk. Cereb Cortex 2018; 27:3080-3092. [PMID: 28334351 PMCID: PMC6057508 DOI: 10.1093/cercor/bhx065] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/28/2017] [Indexed: 12/11/2022] Open
Abstract
This study included 168 and 85 mother–infant dyads from Asian and United States of America cohorts to examine whether a genomic profile risk score for major depressive disorder (GPRSMDD) moderates the association between antenatal maternal depressive symptoms (or socio-economic status, SES) and fetal neurodevelopment, and to identify candidate biological processes underlying such association. Both cohorts showed a significant interaction between antenatal maternal depressive symptoms and infant GPRSMDD on the right amygdala volume. The Asian cohort also showed such interaction on the right hippocampal volume and shape, thickness of the orbitofrontal and ventromedial prefrontal cortex. Likewise, a significant interaction between SES and infant GPRSMDD was on the right amygdala and hippocampal volumes and shapes. After controlling for each other, the interaction effect of antenatal maternal depressive symptoms and GPRSMDD was mainly shown on the right amygdala, while the interaction effect of SES and GPRSMDD was mainly shown on the right hippocampus. Bioinformatic analyses suggested neurotransmitter/neurotrophic signaling, SNAp REceptor complex, and glutamate receptor activity as common biological processes underlying the influence of antenatal maternal depressive symptoms on fetal cortico-limbic development. These findings suggest gene–environment interdependence in the fetal development of brain regions implicated in cognitive–emotional function. Candidate biological mechanisms involve a range of brain region-specific signaling pathways that converge on common processes of synaptic development.
Collapse
Affiliation(s)
- Anqi Qiu
- Department of Biomedical Engineering and Clinical Imaging Research Center, National University of Singapore, Singapore 117576, Singapore.,Singapore Institute for Clinical Sciences, Singapore 117609, Singapore
| | - Mojun Shen
- Singapore Institute for Clinical Sciences, Singapore 117609, Singapore
| | - Claudia Buss
- Departent of Medical Psychology, Charité University Medicine Berlin, Berlin 10117, Germany.,Development, Health and Disease Research Program, Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Singapore 117609, Singapore.,Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore 119228, Singapore
| | - Kenneth Kwek
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Seang-Mei Saw
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital (KKH), Singapore 229899, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Singapore 117609, Singapore
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Sonja Entringer
- Departent of Medical Psychology, Charité University Medicine Berlin, Berlin 10117, Germany.,Development, Health and Disease Research Program, Department of Pediatrics, University of California, Irvine, CA 92697, USA
| | - Martin Styner
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, Singapore 117609, Singapore
| | - Christine M Heim
- Departent of Medical Psychology, Charité University Medicine Berlin, Berlin 10117, Germany.,Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Kieran J O'Donnell
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montréal H4H 1R3, Canada.,Sackler Program for Epigenetics & Psychobiology at McGill University, Montréal H4H 1R3, Canada
| | - Joanna D Holbrook
- Singapore Institute for Clinical Sciences, Singapore 117609, Singapore
| | - Marielle V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital (KKH), Singapore 229899, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Singapore 117609, Singapore.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montréal H4H 1R3, Canada.,Sackler Program for Epigenetics & Psychobiology at McGill University, Montréal H4H 1R3, Canada
| | | |
Collapse
|
13
|
A Multilevel Functional Study of a SNAP25 At-Risk Variant for Bipolar Disorder and Schizophrenia. J Neurosci 2017; 37:10389-10397. [PMID: 28972123 DOI: 10.1523/jneurosci.1040-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 12/16/2022] Open
Abstract
The synaptosomal-associated protein SNAP25 is a key player in synaptic vesicle docking and fusion and has been associated with multiple psychiatric conditions, including schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder. We recently identified a promoter variant in SNAP25, rs6039769, that is associated with early-onset bipolar disorder and a higher gene expression level in human prefrontal cortex. In the current study, we showed that this variant was associated both in males and females with schizophrenia in two independent cohorts. We then combined in vitro and in vivo approaches in humans to understand the functional impact of the at-risk allele. Thus, we showed in vitro that the rs6039769 C allele was sufficient to increase the SNAP25 transcription level. In a postmortem expression analysis of 33 individuals affected with schizophrenia and 30 unaffected control subjects, we showed that the SNAP25b/SNAP25a ratio was increased in schizophrenic patients carrying the rs6039769 at-risk allele. Last, using genetics imaging in a cohort of 71 subjects, we showed that male risk carriers had an increased amygdala-ventromedial prefrontal cortex functional connectivity and a larger amygdala than non-risk carriers. The latter association has been replicated in an independent cohort of 121 independent subjects. Altogether, results from these multilevel functional studies are bringing strong evidence for the functional consequences of this allelic variation of SNAP25 on modulating the development and plasticity of the prefrontal-limbic network, which therefore may increase the vulnerability to both early-onset bipolar disorder and schizophrenia.SIGNIFICANCE STATEMENT Functional characterization of disease-associated variants is a key challenge in understanding neuropsychiatric disorders and will open an avenue in the development of personalized treatments. Recent studies have accumulated evidence that the SNARE complex, and more specifically the SNAP25 protein, may be involved in psychiatric disorders. Here, our multilevel functional studies are bringing strong evidence for the functional consequences of an allelic variation of SNAP25 on modulating the development and plasticity of the prefrontal-limbic network. These results demonstrate a common genetically driven functional alteration of a synaptic mechanism both in schizophrenia and early-onset bipolar disorder and confirm the shared genetic vulnerability between these two disorders.
Collapse
|
14
|
The Study of Postmortem Human Synaptosomes for Understanding Alzheimer's Disease and Other Neurological Disorders: A Review. Neurol Ther 2017; 6:57-68. [PMID: 28733958 PMCID: PMC5520816 DOI: 10.1007/s40120-017-0070-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Synaptic dysfunction is thought to play important roles in the pathophysiology of many neurological diseases, including Alzheimer’s disease, Parkinson’s disease, and schizophrenia. Over the past few decades, there have been systematic efforts to collect postmortem brain tissues via autopsies, leading to the establishment of dozens of human brain banks around the world. From cryopreserved human brain tissues, it is possible to isolate detached-and-resealed synaptic terminals termed synaptosomes, which remain metabolically and enzymatically active. Synaptosomes have become important model systems for studying human synaptic functions, being much more accessible than ex vivo brain slices or primary neuronal cultures. Here we review recent advances in the establishment of human brain banks, the isolation of synaptosomes, their biological activities, and various analytical techniques for investigating their biochemical and ultrastructural properties. There are unique insights to be gained by directly examining human synaptosomes, which cannot be substituted by animal models. We will also discuss how human synaptosome research has contributed to better understanding of neurological disorders, especially Alzheimer’s disease.
Collapse
|
15
|
Demirel ÖF, Cetin İ, Turan Ş, Sağlam T, Yıldız N, Duran A. Decreased Expression of α-Synuclein, Nogo-A and UCH-L1 in Patients with Schizophrenia: A Preliminary Serum Study. Psychiatry Investig 2017; 14:344-349. [PMID: 28539953 PMCID: PMC5440437 DOI: 10.4306/pi.2017.14.3.344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/15/2016] [Accepted: 07/03/2016] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE α-synuclein, Nogo-A and Ubiquitin C-terminal hydrolase L1 (UCH-L1) have neuromodulatory roles for human brain. Therefore, abnormalities of these molecules are associated with neuropsychiatric disorders. Although some serum studies in the other disorders have been made, serum study of α-synuclein, Nogo-A and UCH-L1 is not present in patients with schizophrenia and healthy controls. Therefore, our aim was to compare serum levels of α-synuclein, Nogo-A and UCH-L1 of the patients with schizophrenia and healthy controls. METHODS Forty-four patients with schizophrenia who is followed by psychotic disorders unit, and 40 healthy control were included in this study. Socio-demographic form and Positive and Negative Syndrome Scale (PANSS) was applied to patients, and sociodemographic form was applied to control group. Fasting bloods were collected and the serum levels of α-synuclein, Nogo-A and UCH-L1 were measured by ELISA method. RESULTS Serum α-synuclein [patient: 12.73 (5.18-31.84) ng/mL; control: 41.77 (15.12-66.98) ng/mL], Nogo-A [patient: 33.58 (3.09-77.26) ng/mL; control: 286.05 (136.56-346.82) ng/mL] and UCH-L1 [patient: 5.26 (1.64-10.87) ng/mL; control: 20.48 (11.01-20.81) ng/mL] levels of the patients with schizophrenia were significianly lower than healthy controls (p<0.001). CONCLUSION Our study results added new evidence for explaining the etiopathogenesis of schizophrenia on the basis of neurochemical markers.
Collapse
Affiliation(s)
- Ömer Faruk Demirel
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - İhsan Cetin
- Department of Nutrition and Dietetics, Health High School, Batman University, Batman, Turkey
| | - Şenol Turan
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tarık Sağlam
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nazım Yıldız
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Alaattin Duran
- Department of Psychiatry, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
16
|
Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders. Neural Plast 2017; 2017:8081758. [PMID: 28331639 PMCID: PMC5346360 DOI: 10.1155/2017/8081758] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
Synapses are complex structures that allow communication between neurons in the central nervous system. Studies conducted in vertebrate and invertebrate models have contributed to the knowledge of the function of synaptic proteins. The functional synapse requires numerous protein complexes with specialized functions that are regulated in space and time to allow synaptic plasticity. However, their interplay during neuronal development, learning, and memory is poorly understood. Accumulating evidence links synapse proteins to neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. In this review, we describe the way in which several proteins that participate in cell adhesion, scaffolding, exocytosis, and neurotransmitter reception from presynaptic and postsynaptic compartments, mainly from excitatory synapses, have been associated with several synaptopathies, and we relate their functions to the disease phenotype.
Collapse
|
17
|
Safari MR, Omrani MD, Noroozi R, Sayad A, Sarrafzadeh S, Komaki A, Manjili FA, Mazdeh M, Ghaleiha A, Taheri M. Synaptosome-Associated Protein 25 (SNAP25) Gene Association Analysis Revealed Risk Variants for ASD, in Iranian Population. J Mol Neurosci 2016; 61:305-311. [PMID: 27888397 DOI: 10.1007/s12031-016-0860-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a common, complex neurological condition, affecting approximately 1% of people worldwide. Monogenic neurodevelopmental disorders which showed autistic behavior patterns have suggested synaptic dysfunction, as a key mechanism in the pathophysiology of ASD. Subsequently, genes involved in synaptic signaling have been investigated with a priority for candidate gene studies. A synaptosomal-associated protein 25 (SNAP25) gene plays a crucial role in the central nervous system, contributing to exocytosis by targeting and fusion of vesicles to the cell membrane. Studies have shown a correlation between aberrant expression of the SNAP25 and a variety of brain diseases. Single nucleotide polymorphisms (SNPs) in this gene are associated with several psychiatric diseases, such as bipolar, schizophrenia, and attention-deficit/hyperactivity disorder. The aim of the present study was to investigate whether polymorphisms (rs3746544 and rs1051312) in the regulatory 3'-untranslated region (3'UTR) of the SNAP25 gene have an association with ASD in unrelated Iranian case (N = 524)-control (N = 472) samples. We observed robust association of the rs3746544 SNP and ASD patients, in both allele and haplotype-based analyses. Our results supported the previous observations and indicated a possible role for SNAP25 polymorphisms as susceptibility genetic factors involved in developing ASD.
Collapse
Affiliation(s)
- Mohammad Reza Safari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Labbafi Nejad Educational Hospital, Shahid Beheshti University of Medical Sciences, No 23, Amir Ebrahimi St, Pasdaran Ave, Tehran, Iran
| | - Rezvan Noroozi
- Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sarrafzadeh
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neurology, Hamadan University of Medical sciences, Hamadan, Iran
| | - Ali Ghaleiha
- Research Center for Behavioral Disorders and Substance Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Labbafi Nejad Educational Hospital, Shahid Beheshti University of Medical Sciences, No 23, Amir Ebrahimi St, Pasdaran Ave, Tehran, Iran.
| |
Collapse
|
18
|
Noor A, Zahid S. A review of the role of synaptosomal-associated protein 25 (SNAP-25) in neurological disorders. Int J Neurosci 2016; 127:805-811. [DOI: 10.1080/00207454.2016.1248240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aneeqa Noor
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
19
|
Abstract
Schizophrenia is a serious psychiatric illness which is experienced by about 1 % of individuals worldwide and has a debilitating impact on perception, cognition, and social function. Over the years, several models/hypotheses have been developed which link schizophrenia to dysregulations of the dopamine, glutamate, and serotonin receptor pathways. An important segment of these pathways that have been extensively studied for the pathophysiology of schizophrenia is the presynaptic neurotransmitter release mechanism. This set of molecular events is an evolutionarily well-conserved process that involves vesicle recruitment, docking, membrane fusion, and recycling, leading to efficient neurotransmitter delivery at the synapse. Accumulated evidence indicate dysregulation of this mechanism impacting postsynaptic signal transduction via different neurotransmitters in key brain regions implicated in schizophrenia. In recent years, after ground-breaking work that elucidated the operations of this mechanism, research efforts have focused on the alterations in the messenger RNA (mRNA) and protein expression of presynaptic neurotransmitter release molecules in schizophrenia and other neuropsychiatric conditions. In this review article, we present recent evidence from schizophrenia human postmortem studies that key proteins involved in the presynaptic release mechanism are dysregulated in the disorder. We also discuss the potential impact of dysfunctional presynaptic neurotransmitter release on the various neurotransmitter systems implicated in schizophrenia.
Collapse
Affiliation(s)
- Chijioke N Egbujo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Duncan Sinclair
- Neuroscience Research Australia, Barker St, Randwick, NSW, 2031, Australia
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Shao L, Golbaz K, Honer WG, Beasley CL. Deficits in axon-associated proteins in prefrontal white matter in bipolar disorder but not schizophrenia. Bipolar Disord 2016; 18:342-51. [PMID: 27218831 DOI: 10.1111/bdi.12395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/25/2016] [Accepted: 02/26/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Brain imaging studies have implicated white matter dysfunction in the pathophysiology of both bipolar disorder (BD) and schizophrenia (SCZ). However, the contribution of axons to white matter pathology in these disorders is not yet understood. Maintenance of neuronal function is dependent on the active transport of biological material, including synaptic proteins, along the axon. In this study, the expression of six proteins associated with axonal transport of synaptic cargoes was quantified in postmortem samples of prefrontal white matter in subjects with BD, those with SCZ, and matched controls, as a measure of axonal dysfunction in these disorders. METHODS Levels of the microtubule-associated proteins β-tubulin and microtubule-associated protein 6 (MAP6), the motor and accessory proteins kinesin-1 and disrupted-in-schizophrenia 1 (DISC1), and the synaptic cargoes synaptotagmin and synaptosomal-associated protein-25 (SNAP-25) were quantified in white matter adjacent to the dorsolateral prefrontal cortex in subjects with BD (n = 34), subjects with SCZ (n = 35), and non-psychiatric controls (n = 35) using immunoblotting and an enzyme-linked immunosorbent assay (ELISA). RESULTS Protein expression of β-tubulin, kinesin-1, DISC1, synaptotagmin, and SNAP-25 was significantly lower in subjects with BD compared to controls. Levels of axon-associated proteins were also lower in subjects with SCZ, but failed to reach statistical significance. CONCLUSIONS These data provide evidence for deficits in axon-associated proteins in prefrontal white matter in BD. Findings are suggestive of decreased axonal density or dysregulation of axonal function in this disorder.
Collapse
Affiliation(s)
- Li Shao
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Khashayar Golbaz
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Antonucci F, Corradini I, Fossati G, Tomasoni R, Menna E, Matteoli M. SNAP-25, a Known Presynaptic Protein with Emerging Postsynaptic Functions. Front Synaptic Neurosci 2016; 8:7. [PMID: 27047369 PMCID: PMC4805587 DOI: 10.3389/fnsyn.2016.00007] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/07/2016] [Indexed: 12/27/2022] Open
Abstract
A hallmark of synaptic specializations is their dependence on highly organized complexes of proteins that interact with each other. The loss or modification of key synaptic proteins directly affects the properties of such networks, ultimately impacting synaptic function. SNAP-25 is a component of the SNARE complex, which is central to synaptic vesicle exocytosis, and, by directly interacting with different calcium channels subunits, it negatively modulates neuronal voltage-gated calcium channels, thus regulating intracellular calcium dynamics. The SNAP-25 gene has been associated with distinct brain diseases, including Attention Deficit Hyperactivity Disorder (ADHD), schizophrenia and bipolar disorder, indicating that the protein may act as a shared biological substrate among different "synaptopathies". The mechanisms by which alterations in SNAP-25 may concur to these psychiatric diseases are still undefined, although alterations in neurotransmitter release have been indicated as potential causative processes. This review summarizes recent work showing that SNAP-25 not only controls exo/endocytic processes at the presynaptic terminal, but also regulates postsynaptic receptor trafficking, spine morphogenesis, and plasticity, thus opening the possibility that SNAP-25 defects may contribute to psychiatric diseases by impacting not only presynaptic but also postsynaptic functions.
Collapse
Affiliation(s)
- Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano Milan, Italy
| | - Irene Corradini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di MilanoMilan, Italy; Istituto di Neuroscienze, Centro Nazionale RicercheMilan, Italy
| | - Giuliana Fossati
- Humanitas Clinical and Research Center, IRCCS Rozzano Rozzano, Italy
| | - Romana Tomasoni
- Humanitas Clinical and Research Center, IRCCS Rozzano Rozzano, Italy
| | - Elisabetta Menna
- Istituto di Neuroscienze, Centro Nazionale RicercheMilan, Italy; Humanitas Clinical and Research Center, IRCCS RozzanoRozzano, Italy
| | - Michela Matteoli
- Istituto di Neuroscienze, Centro Nazionale RicercheMilan, Italy; Humanitas Clinical and Research Center, IRCCS RozzanoRozzano, Italy
| |
Collapse
|
22
|
Dean B, Gibbons AS, Boer S, Uezato A, Meador-Woodruff J, Scarr E, McCullumsmith RE. Changes in cortical N-methyl- d-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide. Aust N Z J Psychiatry 2016; 50:275-83. [PMID: 26013316 PMCID: PMC7683009 DOI: 10.1177/0004867415586601] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES In humans, depending on dose, blocking the N-methyl-D-aspartate receptor (NMDAR) with ketamine can cause psychomimetic or antidepressant effects. The overall outcome for drugs such as ketamine depends on dose and the number of its available binding sites in the central nervous system, and to understand something of the latter variable we measure NMDAR in the frontal pole, dorsolateral prefrontal, anterior cingulate and parietal cortices from people with schizophrenia, bipolar disorder, major depressive disorders and age/sex matched controls. METHOD We measured levels of NMDARs (using [(3)H]MK-801 binding) and NMDAR sub-unit mRNAs (GRINs: using in situ hybridisation) as well as post-synaptic density protein 95 (anterior cingulate cortex only; not major depressive disorders: an NMDAR post-synaptic associated protein) in bipolar disorder, schizophrenia and controls. RESULTS Compared to controls, levels of NMDAR were lower in the outer laminae of the dorsolateral prefrontal cortex (-17%, p = 0.01) in people with schizophrenia. In bipolar disorder, levels of NMDAR binding (laminae IV-VI; -19%, p < 0.01) and GRIN2C mRNA (laminae I-VI; -27%, p < 0.05) were lower in the anterior cingulate cortex and NMDAR binding was lower in the outer lamina IV of the dorsolateral prefrontal cortex (-19%, p < 0.01). In major depressive disorders, levels of GRIN2D mRNA were higher in frontal pole (+22%, p < 0.05). In suicide completers, levels of GRIN2B mRNA were higher in parietal cortex (+20%, p < 0.01) but lower (-35%, p = 0.02) in dorsolateral prefrontal cortex while post-synaptic density protein 95 was higher (+26%, p < 0.05) in anterior cingulate cortex. CONCLUSION These data suggest that differences in cortical NMDAR expression and post-synaptic density protein 95 are present in psychiatric disorders and suicide completion and may contribute to different responses to ketamine.
Collapse
Affiliation(s)
- Brian Dean
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,Psychiatric Neuropathology Laboratory, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Andrew S Gibbons
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,Psychiatric Neuropathology Laboratory, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Simone Boer
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Akihito Uezato
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Elizabeth Scarr
- Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,Psychiatric Neuropathology Laboratory, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
23
|
Cupertino RB, Kappel DB, Bandeira CE, Schuch JB, da Silva BS, Müller D, Bau CHD, Mota NR. SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond. J Neural Transm (Vienna) 2016; 123:867-83. [DOI: 10.1007/s00702-016-1514-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022]
|
24
|
Abstract
Cup-shaped secretory portals at the cell plasma membrane called porosomes mediate the precision release of intravesicular material from cells. Membrane-bound secretory vesicles transiently dock and fuse at the base of porosomes facing the cytosol to expel pressurized intravesicular contents from the cell during secretion. The structure, isolation, composition, and functional reconstitution of the neuronal porosome complex have greatly progressed, providing a molecular understanding of its function in health and disease. Neuronal porosomes are 15 nm cup-shaped lipoprotein structures composed of nearly 40 proteins, compared to the 120 nm nuclear pore complex composed of >500 protein molecules. Membrane proteins compose the porosome complex, making it practically impossible to solve its atomic structure. However, atomic force microscopy and small-angle X-ray solution scattering studies have provided three-dimensional structural details of the native neuronal porosome at sub-nanometer resolution, providing insights into the molecular mechanism of its function. The participation of several porosome proteins previously implicated in neurotransmission and neurological disorders, further attest to the crosstalk between porosome proteins and their coordinated involvement in release of neurotransmitter at the synapse.
Collapse
Affiliation(s)
- Akshata R Naik
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kenneth T Lewis
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Bhanu P Jena
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
25
|
Dean B, Thomas N, Lai CY, Chen WJ, Scarr E. Changes in cholinergic and glutamatergic markers in the striatum from a sub-set of subjects with schizophrenia. Schizophr Res 2015; 169:83-88. [PMID: 26545297 DOI: 10.1016/j.schres.2015.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND/OBJECTIVES Having separated a sub-group of people with schizophrenia based on a marked loss of cortical [(3)H]pirenzepine binding (MRDS); we wished to determine if MRDS had lower levels of [(3)H]pirenzepine and other muscarinic receptor antagonist binding to the striatum and if this was due to loss of pre- or post-synaptic neurons or glia measured using surrogate markers (25 kilodalton synaptosomal-associated protein (SNAP 25), postsynaptic density protein 95 (PSD 95), glial fibrillary acidic protein (GFAP) 41/43) of cell number. METHODS [(3)H]pirenzepine, [(3)H]AF-DX 384 and [(3)H]4-DAMP binding to the striatum from 37 subjects with schizophrenia (19 MRDS) and 20 controls as well as SNAP 25, PSD 95 and GFAP 41/43 in crude particulate membrane were measured. RESULTS [(3)H]pirenzepine and [(3)H]AF-DX 384 binding to the striatum were significantly lower in schizophrenia due to lower binding of both radioligands in the striatum from MRDS. Levels of PSD 95 were higher in schizophrenia, predominantly due to higher levels in MRDS. CONCLUSIONS Our data suggest muscarinic M1 ([(3)H]pirenzepine) and M2 and/or M4 receptors ([(3)H]AF-DX 384) are lower in the striatum from MRDS which could mediate inappropriate adaption to internal and external cues which, in turn, would affect motivation, cognition and motor control. Increased levels of PSD 95 could indicate increased post-synaptic boutons or changes in NMDA receptor-mediated signalling in MRDS.
Collapse
Affiliation(s)
- Brian Dean
- The Molecular Psychiatry Laboratories, The Florey Institute for Neuroscience and Mental Health, Parkville, Australia; The Department of Psychiatry, The University of Melbourne, Parkville, Australia.
| | - Natalie Thomas
- The Department of Psychiatry, The University of Melbourne, Parkville, Australia; The Molecular Psychiatry Laboratories, The Florey Institute for Neuroscience and Mental Health, Parkville, Australia
| | - Chi-Yu Lai
- The Molecular Psychiatry Laboratories, The Florey Institute for Neuroscience and Mental Health, Parkville, Australia; The Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Genetic Epidemiologic Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei J Chen
- The Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Genetic Epidemiologic Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Parkville, Australia; The Molecular Psychiatry Laboratories, The Florey Institute for Neuroscience and Mental Health, Parkville, Australia
| |
Collapse
|
26
|
Thompson PM, Cruz DA, Fucich EA, Olukotun DY, Takahashi M, Itakura M. SNAP-25a/b Isoform Levels in Human Brain Dorsolateral Prefrontal Cortex and Anterior Cingulate Cortex. MOLECULAR NEUROPSYCHIATRY 2015; 1:220-34. [PMID: 27606314 DOI: 10.1159/000441224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/09/2015] [Indexed: 01/03/2023]
Abstract
SNAP-25 is a neurotransmitter vesicular docking protein which has been associated with brain disorders such as attention deficit hyperactivity disorder, bipolar disorder and schizophrenia. In this project, we were interested if clinical factors are associated with differential SNAP-25 expression. We examined the SNAP-25 isoform mRNA and protein levels in postmortem cortex Brodmann's area 9 (BA9) and BA24 (n = 29). Subjects were divided by psychiatric diagnosis, clinical variables including mood state in the last week of life and lifetime impulsiveness. We found affected subjects with a diagnosis of alcohol use disorder (AUD) had a lower level of SNAP-25b BA24 protein compared to those without AUD. Hispanic subjects had lower levels of SNAP-25a, b and BA9 mRNA than Anglo-American subjects. Subjects who smoked had a total pan (total) SNAP-25 BA9/BA24 ratio. Subjects in the group with a low level of anxious-psychotic symptoms had higher SNAP-25a BA24 mRNA compared to normal controls, and both the high and low symptoms groups had higher pan (total) SNAP-25 BA9/BA24 ratios than normal controls. These data expand our understanding of clinical factors associated with SNAP-25. They suggest that SNAP-25 total and isoform levels may be useful biomarkers beyond limited neurological and psychiatric diagnostic categories.
Collapse
Affiliation(s)
| | - Dianne A Cruz
- Departments of Psychiatry, University of Texas Health Science Center San Antonio, San Antonio, Tex., USA
| | - Elizabeth A Fucich
- Departments of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, Tex., USA
| | - Dianna Y Olukotun
- Departments of Psychiatry, University of Texas Health Science Center San Antonio, San Antonio, Tex., USA
| | - Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, Tokyo, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Thangavel M, Seelan RS, Lakshmanan J, Vadnal RE, Stagner JI, Parthasarathy LK, Casanova MF, El-Mallakh RS, Parthasarathy RN. Proteomic analysis of rat prefrontal cortex after chronic valproate treatment. J Neurosci Res 2014; 92:927-36. [DOI: 10.1002/jnr.23373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Muthusamy Thangavel
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
| | - Ratnam S. Seelan
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
- Department of Molecular; Cellular; and Craniofacial Biology; School of Dentistry, University of Louisville; Louisville Kentucky
| | - Jaganathan Lakshmanan
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
- Price Institute of Surgical Research; Department of Surgery; School of Medicine, University of Louisville; Louisville Kentucky
| | - Robert E. Vadnal
- Eastern Colorado Health Care System; Department of Veterans Affairs; Pueblo Colorado
| | - John I. Stagner
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
| | - Latha K. Parthasarathy
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
| | - Manuel F. Casanova
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
| | - Rifaat Shody El-Mallakh
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
| | - Ranga N. Parthasarathy
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
- Department of Biochemistry and Molecular Biology; University of Louisville; Louisville Kentucky
| |
Collapse
|
28
|
Naughton M, Clarke G, O'Leary OF, Cryan JF, Dinan TG. A review of ketamine in affective disorders: current evidence of clinical efficacy, limitations of use and pre-clinical evidence on proposed mechanisms of action. J Affect Disord 2014; 156:24-35. [PMID: 24388038 DOI: 10.1016/j.jad.2013.11.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Recent research has seen low-dose ketamine emerge as a novel, rapid-acting antidepressant. Ketamine, an N-methy-d-aspartate (NMDA) receptor antagonist, leads to effects on the glutamatergic system and abnormalities in this neurotransmittor system are present in depression. This article aims to (1) review the clinical literature on low-dose ketamine as a rapid-acting antidepressant in affective disorders, (2) provide a critical overview of the limitations of ketamine and research attempts to overcome these (3) discuss the proposed mechanisms of action of ketamine and (4) point towards future research directions. METHOD The electronic database Pubmed, Web of Science and sciencedirect were searched using the keywords: ketamine, N-methyl-d-aspartate receptor antagonist, rapid-acting antidepressant, depression, treatment-resistant depression, bipolar depression, suicidal ideation, electroconvulsive therapy, mechanism of action. RESULT The literature demonstrates evidence supporting a rapid-acting antidepressant effect of low-dose intravenous ketamine in major depressive disorder, in bipolar depression and in depression with suicidal ideation. There are mixed results as to whether ketamine leads to a reduction in time to remission in patients undergoing electroconvulsive therapy (ECT). Efforts to unravel ketamine's therapeutic mechanism of action have implicated the mammalian target of rapamycin (mTOR)-dependent synapse formation in the rat prefrontal cortex, eukaryotic elongation factor 2 phosphorylation (p-eEF2) and glycogen synthase kinase (GSK-3). Ketamine's limiting factors are the transient nature of its antidepressant effect and concerns regarding abuse, and research efforts to overcome these are reviewed. CONCLUSION Current and future research studies are using ketamine as a promising tool to evaluate the glutamatergic neurotransmittor system to learn more about the pathophysiology of depression and develop more specific rapid-acting antidepressant treatments.
Collapse
Affiliation(s)
- Marie Naughton
- Department of Psychiatry, University College Cork, Western Road, Cork City, Cork, Ireland.
| | - Gerard Clarke
- Department of Psychiatry, University College Cork, Western Road, Cork City, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | - Olivia F O'Leary
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - John F Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Timothy G Dinan
- Department of Psychiatry, University College Cork, Western Road, Cork City, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
29
|
Németh N, Kovács-Nagy R, Székely A, Sasvári-Székely M, Rónai Z. Association of impulsivity and polymorphic microRNA-641 target sites in the SNAP-25 gene. PLoS One 2013; 8:e84207. [PMID: 24391914 PMCID: PMC3877256 DOI: 10.1371/journal.pone.0084207] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/13/2013] [Indexed: 12/21/2022] Open
Abstract
Impulsivity is a personality trait of high impact and is connected with several types of maladaptive behavior and psychiatric diseases, such as attention deficit hyperactivity disorder, alcohol and drug abuse, as well as pathological gambling and mood disorders. Polymorphic variants of the SNAP-25 gene emerged as putative genetic components of impulsivity, as SNAP-25 protein plays an important role in the central nervous system, and its SNPs are associated with several psychiatric disorders. In this study we aimed to investigate if polymorphisms in the regulatory regions of the SNAP-25 gene are in association with normal variability of impulsivity. Genotypes and haplotypes of two polymorphisms in the promoter (rs6077690 and rs6039769) and two SNPs in the 3' UTR (rs3746544 and rs1051312) of the SNAP-25 gene were determined in a healthy Hungarian population (N = 901) using PCR-RFLP or real-time PCR in combination with sequence specific probes. Significant association was found between the T-T 3' UTR haplotype and impulsivity, whereas no association could be detected with genotypes or haplotypes of the promoter loci. According to sequence alignment, the polymorphisms in the 3' UTR of the gene alter the binding site of microRNA-641, which was analyzed by luciferase reporter system. It was observed that haplotypes altering one or two nucleotides in the binding site of the seed region of microRNA-641 significantly increased the amount of generated protein in vitro. These findings support the role of polymorphic SNAP-25 variants both at psychogenetic and molecular biological levels.
Collapse
Affiliation(s)
- Nóra Németh
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Réka Kovács-Nagy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Anna Székely
- Institute of Psychology, Eotvos Lorand University, Budapest, Hungary
| | - Mária Sasvári-Székely
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Rónai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
30
|
Müller HK, Wegener G, Liebenberg N, Zarate CA, Popoli M, Elfving B. Ketamine regulates the presynaptic release machinery in the hippocampus. J Psychiatr Res 2013; 47:892-9. [PMID: 23548331 PMCID: PMC3678963 DOI: 10.1016/j.jpsychires.2013.03.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 01/23/2023]
Abstract
In the search for new drug targets, that may help point the way to develop fast-acting treatments for mood disorders, we have explored molecular pathways regulated by ketamine, an NMDA receptor antagonist, which has consistently shown antidepressant response within a few hours of administration. Using Sprague-Dawley rats we investigated the effects of ketamine on the presynaptic release machinery responsible for neurotransmitter release at 1, 2 and 4 h as well as 7 days after administration of a single subanesthetic dose of ketamine (15 mg/kg). A large reduction in the accumulation of SNARE complexes was observed in hippocampal synaptic membranes after 1, 2 and 4 h of ketamine administration. In parallel, we found a selective reduction in the expression of the synaptic vesicle protein synaptotagmin I and an increase in the levels of synapsin I in hippocampal synaptosomes suggesting a mechanism by which ketamine reduces SNARE complex formation, in part, by regulating the number of synaptic vesicles in the nerve terminals. Moreover, ketamine reduced Thr(286)-phosphorylated αCaMKII and its interaction with syntaxin 1A, which identifies CaMKII as a potential target for second messenger-mediated actions of ketamine. In addition, despite previous reports of ketamine-induced inhibition of GSK-3, we were unable to detect regulation of its activity after ketamine administration. Our findings demonstrate that ketamine rapidly induces changes in the hippocampal presynaptic machinery similar to those that are obtained only with chronic treatments with traditional antidepressants. This suggests that reduction of neurotransmitter release in the hippocampus has possible relevance for the rapid antidepressant effect of ketamine.
Collapse
Affiliation(s)
- Heidi Kaastrup Müller
- Centre for Psychiatric Research, Aarhus University Hospital, Skovagervej 2, DK-8240 Risskov, Denmark.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
A large body of evidence from molecular, cellular and human studies suggests that lithium may enhance synaptic plasticity, which may be associated with its therapeutic efficacy. However, only a small number of studies have directly assessed this. To determine whether lithium treatment alters structural synaptic plasticity, this study examined the effect of 4 wk lithium treatment on the amount and distribution of dendrites in the dentate gyrus (DG) and hippocampal area CA1 of young adult rats. Following 4 wk lithium or control chow feeding, animals were decapitated, the hippocampi were prepared and stained using a rapid Golgi staining technique and the amount and distribution of the dendritic branching was evaluated using Sholl analyses (method of concentric circles). In the DG, lithium treatment increased the amount and distribution of dendritic branches in the proximal half of dendritic trees of the granule cells and reduced branching in the distal half. In area CA1, the same treatment also increased the number of dendritic branches in the proximal half of apical dendritic trees of CA1 pyramidal cells and reduced branching in the distal half of apical dendritic trees but had no effect on basilar dendritic trees. The lithium treatment altered the total density of dendritic trees in neither the DG nor area CA1. These findings suggest that, in the DG and apical CA1, chronic lithium treatment rearranges neuronal morphology to increase dendritic branching and distribution to where major afferent input is received.
Collapse
|
32
|
Different changes in cortical tumor necrosis factor-α-related pathways in schizophrenia and mood disorders. Mol Psychiatry 2013; 18:767-73. [PMID: 22801413 DOI: 10.1038/mp.2012.95] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The growing body of evidence implicating tumor necrosis factor-α (TNFα) in the pathophysiology of psychiatric disorders led us to measure levels of that protein in the cortex of subjects with major depressive disorders (MDD). Having reported an increase (458%) in the levels of the transmembrane (tmTNFα), but not the soluble (sTNFα), form of the protein in Brodmann's area (BA) 46, but not 24, in people with the disorder, we decided to examine additional components of TNFα-related pathways in the same regions in people with MDD and extend our studies to the same cortical regions of people with schizophrenia (Sz) and bipolar disorders (BD). Using postmortem tissue, western blots and quantitative PCR, we have now shown there is a significant increase (305%) in tmTNFα in Brodmann's area 24, but not 46, from subjects with BD, and that levels of the protein were not altered in Sz. Levels of sTNFα were not altered in BD or Sz. In addition, we have shown that levels of TNF receptor 1 (TNFR1) mRNA are increased in BA 24 (53%) and BA 46 (82%) in people with Sz, whereas levels of TNFR2 mRNA was decreased in BA 46 in people with mood disorders (MDD=-51%; BD=-67%). Levels of proteins frequently used as surrogate markers of neuronal, astrocytic and microglia numbers, as well as levels of the pro-inflammatory marker (interleukin 1β), were not changed in the cortex of people with mood disorders. Our data suggest there are differential changes in TNFα-related markers in the cortex of people with MDD, BD and Sz that may not be related to classical inflammation and may cause changes in different TNFα-related signaling pathways.
Collapse
|
33
|
Concordance of psychiatric symptom ratings between a subject and informant, relevancy to post-mortem research. Transl Psychiatry 2013; 3:e214. [PMID: 23321811 PMCID: PMC3566714 DOI: 10.1038/tp.2012.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Investigators are interested in determining whether lifetime behavioral traits and specific mood states experienced close to death affect brain gene and protein expression as assessed in post-mortem human brains. Major obstacles to conducting this type of research are the uncertain reliability of the post-mortem psychiatric diagnoses and clinical information because of the retrospective nature of the information. In this study, we addressed the concordance of clinical information obtained through an informant compared with information obtained through a clinician interview of the subject. To test this, we measured both lifetime and within the week psychiatric symptoms of subjects (n=20) and an informant, their next-of-kin (n=20) who were asked identical questions. We found Diagnostic and Statistical Manual (DSM)-IV axis 1 diagnoses by Mini-International Neuropsychiatric Interview proportion of positive agreement for major depression was 0.97, bipolar disorder was 0.81, whereas proportion of negative agreement was 0.97 for schizophrenia. Symptom scale intra-class correlation coefficients and 95% confidence interval were: Bipolar Inventory of Signs and Symptoms=0.59 (0.23, 0.81), Brief Psychiatric Rating Scale=0.58 (0.19, 0.81), Hamilton Depression Rating Scale=0.44 (0.03, 0.72), Montgomery Asberg Depression Rating Scale=0.44 (0.03, 0.72), Young Mania Rating Scale=0.61 (0.30, 0.82), Barratt Impulsiveness Score=0.36 (-0.11, 0.70) and Childhood Trauma Questionnaire=0.48 (-0.15, 0.83). We show that DSM-IV diagnoses; lifetime impulsivity severity, childhood trauma score and symptom scores were significantly consistent between the subjects and their informants. These data suggest, with some limitations, that both retrospective and informant obtained information can provide useful clinical information in post-mortem research.
Collapse
|
34
|
Corradini I, Donzelli A, Antonucci F, Welzl H, Loos M, Martucci R, De Astis S, Pattini L, Inverardi F, Wolfer D, Caleo M, Bozzi Y, Verderio C, Frassoni C, Braida D, Clerici M, Lipp HP, Sala M, Matteoli M. Epileptiform Activity and Cognitive Deficits in SNAP-25+/− Mice are Normalized by Antiepileptic Drugs. Cereb Cortex 2012; 24:364-76. [DOI: 10.1093/cercor/bhs316] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
35
|
Schubert KO, Föcking M, Prehn JHM, Cotter DR. Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Mol Psychiatry 2012; 17:669-81. [PMID: 21986877 DOI: 10.1038/mp.2011.123] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the best-characterized mechanism governing cellular membrane and protein trafficking. In this hypothesis review, we integrate recent evidence implicating CME and related cellular trafficking mechanisms in the pathophysiology of psychotic disorders such as schizophrenia and bipolar disorder. The evidence includes proteomic and genomic findings implicating proteins and genes of the clathrin interactome. Additionally, several important candidate genes for schizophrenia, such as dysbindin, are involved in processes closely linked to CME and membrane trafficking. We discuss that key aspects of psychosis neuropathology such as synaptic dysfunction, white matter changes and aberrant neurodevelopment are all influenced by clathrin-dependent processes, and that other cellular trafficking mechanisms previously linked to psychoses interact with the clathrin interactome in important ways. Furthermore, many antipsychotic drugs have been shown to affect clathrin-interacting proteins. We propose that the targeted pharmacological manipulation of the clathrin interactome may offer fruitful opportunities for novel treatments of schizophrenia.
Collapse
Affiliation(s)
- K O Schubert
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Republic of Ireland
| | | | | | | |
Collapse
|
36
|
Regulation of munc18-1 and syntaxin-1A interactive partners in schizophrenia prefrontal cortex: down-regulation of munc18-1a isoform and 75 kDa SNARE complex after antipsychotic treatment. Int J Neuropsychopharmacol 2012; 15:573-88. [PMID: 21669024 DOI: 10.1017/s1461145711000861] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Munc18-1 and syntaxin-1 are crucial interacting molecules for synaptic membrane fusion and neurotransmitter release. Contrasting abnormalities of several proteins of the exocytotic machinery, including the formation of SNARE (synaptobrevin, SNAP-25 and syntaxin-1) complexes, have been reported in schizophrenia. This study quantified in the dorsolateral prefrontal cortex (PFC, Brodmann area 9) the immunocontent of munc18-1a/b isoforms, syntaxin-1A, other presynaptic proteins (synaptotagmin, synaptophysin), and SNARE complexes, as well as the effects of psychoactive drug exposure, in schizophrenia (SZ, n=24), non-schizophrenia suicide (SD, n=13) and major depression (MD, n=15) subjects compared to matched controls (n=39). SZ was associated with normal expression of munc18-1a/b and increased syntaxin-1A (+44%). The presence of antipsychotic drugs reduced the basal content of munc18-1a isoform (-23%) and synaptobrevin (-32%), and modestly reduced that of up-regulated syntaxin-1A (-16%). Munc18-1a and syntaxin-1A protein expression correlated positively in controls but showed a markedly opposite pattern in SZ, regardless of antipsychotic treatment. Thus, the ratio of syntaxin-1A to munc18-1a showed a net increase in SZ (+53/114%). The SNARE complex (75 kDa) was found unaltered in antipsychotic-free and reduced (-28%) in antipsychotic-treated SZ subjects. None of these abnormalities were observed in SD and MD subjects, unexposed or exposed to psychoactive drugs. The results reveal some exocytotic dysfunctions in SZ that are probably related to an imbalance of the interaction between munc18-1a and SNARE (mainly syntaxin-1A) complex. Moreover, antipsychotic drug treatment is associated with lower content of key proteins of the exocytotic machinery, which could result in a destabilization/impairment of neurosecretion.
Collapse
|
37
|
Scarr E, Dean B. Altered neuronal markers following treatment with mood stabilizer and antipsychotic drugs indicate an increased likelihood of neurotransmitter release. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2012; 10:25-33. [PMID: 23429852 PMCID: PMC3569157 DOI: 10.9758/cpn.2012.10.1.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/10/2011] [Indexed: 01/08/2023]
Abstract
Objective Given the ability of mood stabilizers and antipsychotics to promote cell proliferation, we wanted to determine the effects of these drugs on neuronal markers previously reported to be altered in subjects with psychiatric disorders. Methods Male Sprauge-Dawley rats were treated with vehicle (ethanol), lithium (25.5 mg per day), haloperidol (0.1 mg/kg), olanzapine (1.0 mg/kg) or a combination of lithium and either of the antipsychotic drugs for 28 days. Levels of cortical synaptic (synaptosomal associated protein-25, synaptophysin, vesicle associated protein and syntaxin) and structural (neural cell adhesion molecule and alpha-synuclein) proteins were determined in each treatment group using Western blots. Results Compared to the vehicle treated group; animals treated with haloperidol had greater levels of synaptosomal associated protein-25 (p<0.01) and neural cell adhesion molecule (p<0.05), those treated with olanzapine had greater levels of synaptophysin (p<0.01) and syntaxin (p<0.01). Treatment with lithium alone did not affect the levels of any of the proteins. Combining lithium and haloperidol resulted in greater levels of synaptophysin (p<0.01), synaptosomal associated protein-25 (p<0.01) and neural cell adhesion molecule (p<0.01). The combination of lithium and olanzapine produced greater levels of synaptophysin (p<0.01) and alpha-synuclein (p<0.05). Conclusion Lithium alone had no effect on the neuronal markers. However, haloperidol and olanzapine affected different presynaptic markers. Combining lithium with olanzapine additionally increased alpha-synuclein. These drug effects need to be taken into account by future studies examining presynaptic and neuronal markers in tissue from subjects with psychiatric disorders.
Collapse
Affiliation(s)
- Elizabeth Scarr
- Department of Psychiatry, Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute, Melbourne Brain Centre, The University of Melbourne, Parkville, Australia
| | | |
Collapse
|
38
|
Bennett M. Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Prog Neurobiol 2011; 95:275-300. [DOI: 10.1016/j.pneurobio.2011.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/01/2023]
|
39
|
Type VI adenylyl cyclase regulates neurite extension by binding to Snapin and Snap25. Mol Cell Biol 2011; 31:4874-86. [PMID: 21986494 DOI: 10.1128/mcb.05593-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
3'-5'-Cyclic AMP (cAMP) is an important second messenger which regulates neurite outgrowth. We demonstrate here that type VI adenylyl cyclase (AC6), an enzyme which catalyzes cAMP synthesis, regulates neurite outgrowth by direct interaction with a binding protein (Snapin) of Snap25 at the N terminus of AC6 (AC6-N). We first showed that AC6 expression increased during postnatal brain development. In primary hippocampal neurons and Neuro2A cells, elevated AC6 expression suppressed neurite outgrowth, whereas the downregulation or genetic removal of AC6 promoted neurite extension. An AC6 variant (AC6-N5) that contains the N terminus of AC5 had no effect, indicating the importance of AC6-N. The downregulation of endogenous Snapin or the overexpression of a Snapin mutant (Snap(Δ33-51)) that does not bind to AC6, or another Snapin mutant (Snapin(S50A)) that does not interact with Snap25, reversed the inhibitory effect of AC6. Pulldown assays and immunoprecipitation-AC assays revealed that the complex formation of AC6, Snapin, and Snap25 is dependent on AC6-N and the phosphorylation of Snapin. The overexpression of Snap25 completely reversed the action of AC6. Collectively, in addition to cAMP production, AC6 plays a complex role in modulating neurite outgrowth by redistributing localization of the SNARE apparatus via its interaction with Snapin.
Collapse
|
40
|
Dean B. Dissecting the Syndrome of Schizophrenia: Progress toward Clinically Useful Biomarkers. SCHIZOPHRENIA RESEARCH AND TREATMENT 2011; 2011:614730. [PMID: 22937270 PMCID: PMC3420453 DOI: 10.1155/2011/614730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 03/28/2011] [Accepted: 04/07/2011] [Indexed: 12/17/2022]
Abstract
The search for clinically useful biomarkers has been one of the holy grails of schizophrenia research. This paper will outline the evolving notion of biomarkers and then outline outcomes from a variety of biomarkers discovery strategies. In particular, the impact of high-throughput screening technologies on biomarker discovery will be highlighted and how new or improved technologies may allow the discovery of either diagnostic biomarkers for schizophrenia or biomarkers that will be useful in determining appropriate treatments for people with the disorder. History tells those involved in biomarker research that the discovery and validation of useful biomarkers is a long process and current progress must always be viewed in that light. However, the approval of the first biomarker screen with some value in predicting responsiveness to antipsychotic drugs suggests that biomarkers can be identified and that these biomarkers that will be useful in diagnosing and treating people with schizophrenia.
Collapse
Affiliation(s)
- Brian Dean
- The Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute, Locked bag 11, Parkville, VIC 3052, Australia
- The Department of Psychiatry, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
41
|
Fung SJ, Webster MJ, Weickert CS. Expression of VGluT1 and VGAT mRNAs in human dorsolateral prefrontal cortex during development and in schizophrenia. Brain Res 2011; 1388:22-31. [PMID: 21396926 DOI: 10.1016/j.brainres.2011.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/02/2011] [Indexed: 01/16/2023]
Abstract
A balance between excitatory and inhibitory neurotransmission is important in normal brain function, and in schizophrenia a deficit in γ-aminobutyric acid (GABA)ergic inhibitory neurotransmission has been indicated by postmortem studies. We examined the ratio of excitatory to inhibitory vesicular neurotransmitter transporter mRNAs (VGluT1 to VGAT) and their ratio in the dorsolateral prefrontal cortex during normal human development and in people with schizophrenia and controls by quantitative RT-PCR. The ratio of VGluT1/VGAT increased gradually in development to reach a peak at school age (5-12 years), after which levels remained fairly constant into adulthood. The VGluT1 mRNA/VGAT mRNA ratio was unchanged in schizophrenia, as was the ratio of complexin 2 mRNA to complexin 1 mRNA (related to synaptic vesicle fusion in excitatory and inhibitory terminals, respectively). This suggests that the excitatory/inhibitory balance is attained prior to adolescence and is maintained across the rest of the life-span and also indicates that in schizophrenia this balance is not greatly disturbed.
Collapse
Affiliation(s)
- Samantha J Fung
- Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
42
|
Differential expression of synaptic proteins after chronic restraint stress in rat prefrontal cortex and hippocampus. Brain Res 2011; 1385:26-37. [PMID: 21354112 DOI: 10.1016/j.brainres.2011.02.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/31/2011] [Accepted: 02/14/2011] [Indexed: 01/13/2023]
Abstract
Prolonged stress has been associated with altered synaptic plasticity but little is known about the molecular components and mechanisms involved in the stress response. In this study, we examined the effect of chronic restraint stress (CRS) on the expression of genes associated with synaptic vesicle exocytosis in rat prefrontal cortex and hippocampus. Rats were stressed daily using a 21day restraint stress paradigm, with durations of half an hour or 6h. RNA and protein were extracted from the same tissue sample and used for real-time quantitative polymerase chain reaction (real-time qPCR) and immunoblotting, respectively. Focusing on the SNARE complex, we investigated the expression of the SNARE core components syntaxin 1A, SNAP-25, and VAMP2 at both transcriptional and protein levels. In addition, the expression of 10 SNARE regulatory proteins was investigated at the transcriptional level. Overall, the prefrontal cortex was more sensitive to CRS compared to the hippocampus. In prefrontal cortex, CRS induced increased mRNA levels of VAMP2, VAMP1, syntaxin 1A, snapin, synaptotagmins I and III, and synapsins I and II, whereas SNAP-25 was down-regulated after CRS. Immunoblotting demonstrated equivalent changes in protein levels of VAMP2, syntaxin 1A, and SNAP-25. In hippocampus, we found increased mRNA levels of VAMP2 and SNAP-29 and a decrease in VAMP1 levels. Immunoblotting revealed decreased VAMP2 protein levels despite increased mRNA levels. Changes in the expression of synaptic proteins may accompany or contribute to the morphological, functional, and behavioral changes observed in experimental models of stress and may have relevance to the pathophysiology of stress-related disorders.
Collapse
|
43
|
Fung SJ, Sivagnanasundaram S, Shannon Weickert C. Lack of change in markers of presynaptic terminal abundance alongside subtle reductions in markers of presynaptic terminal plasticity in prefrontal cortex of schizophrenia patients. Biol Psychiatry 2011; 69:71-9. [PMID: 21145444 PMCID: PMC3001685 DOI: 10.1016/j.biopsych.2010.09.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 11/27/2022]
Abstract
BACKGROUND Reduced synaptic connectivity in frontal cortex may contribute to schizophrenia symptoms. While altered messenger RNA (mRNA) and protein expression of various synaptic genes have been found, discrepancies between studies mean a generalizable synaptic pathology has not been identified. METHODS We determined if mRNAs encoding presynaptic proteins enriched in inhibitory (vesicular gamma-aminobutyric acid transporter [VGAT] and complexin 1) and/or excitatory (vesicular glutamate transporter 1 [VGluT1] and complexin 2) terminals are altered in the dorsolateral prefrontal cortex of subjects with schizophrenia (n = 37 patients, n = 37 control subjects). We also measured mRNA expression of markers associated with synaptic plasticity/neurite outgrowth (growth associated protein 43 [GAP43] and neuronal navigators [NAVs] 1 and 2) and mRNAs of other synaptic-associated proteins previously implicated in schizophrenia: dysbindin and vesicle-associated membrane protein 1 (VAMP1) mRNAs using quantitative polymerase chain reaction. RESULTS No significant changes in complexin 1, VGAT, complexin 2, VGluT1, dysbindin, NAV2, or VAMP1 mRNA expression were found; however, expression of mRNAs associated with plasticity/cytoskeletal modification (GAP43 and NAV1) was reduced in schizophrenia. Although dysbindin mRNA did not differ in schizophrenia compared with control subjects, dysbindin mRNA positively correlated with GAP43 and NAV1 in schizophrenia but not in control subjects, suggesting low levels of dysbindin may be linked to reduced plasticity in the disease state. No relationships between three dysbindin genetic polymorphisms previously associated with dysbindin mRNA levels were found. CONCLUSIONS A reduction in the plasticity of synaptic terminals supports the hypothesis that their reduced modifiability may contribute to neuropathology and working memory deficits in schizophrenia.
Collapse
Affiliation(s)
- Samantha J. Fung
- Schizophrenia Research Institute, Sydney, Australia,Neuroscience Research Australia, Sydney, Australia,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, Australia,Neuroscience Research Australia, Sydney, Australia,School of Psychiatry, University of New South Wales, Australia
| |
Collapse
|
44
|
Bousman CA, Chana G, Glatt SJ, Chandler SD, May T, Lohr J, Kremen WS, Tsuang MT, Everall IP. Positive symptoms of psychosis correlate with expression of ubiquitin proteasome genes in peripheral blood. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1336-41. [PMID: 20552680 PMCID: PMC4461056 DOI: 10.1002/ajmg.b.31106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several brain- and blood-based gene expression studies in patients with psychotic disorders (e.g., schizophrenia) have identified genes in the ubiquitin proteasome system (UPS) pathway as putative biomarkers. However, to date an examination of the UPS pathway in the broader context of symptom severity in psychosis has not been conducted. The purpose of this study was to investigate the correlation between clinical scores on the Scales for the Assessment of Positive and Negative Symptoms (SAPS-SANS) and expression of 43 highly annotated genes within the UPS pathway in blood from patients with psychosis. A sample of 19 psychotic patients diagnosed with schizophrenia (n = 13) or bipolar disorder (n = 6) were recruited. Pearson's partial correlations, adjusting for gender, ethnicity, age, education, medication, smoking, and past 6-month substance use, were performed between each of the selected UPS genes and both scales. Significant Bonferroni-adjusted positive associations were observed between SAPS scores and two ubiquitin conjugation genes (i.e., UBE2K, SIAH2), while a negative association was observed with one deubiquitination gene (i.e., USP2). No gene expression levels were significantly associated with scores on the SANS after correction for multiple testing. Our findings suggest that dysregulation of the UPS, specifically ubiquitin conjugation and deubiquitination, may point to a possible underlying biological mechanism for severity of positive but not negative symptoms.
Collapse
Affiliation(s)
- Chad A. Bousman
- Department of Psychiatry, University of California, San Diego, California,Correspondence to: Chad A. Bousman, M.P.H., Ph.D, Center for Behavioral Genomics; Department of Psychiatry, University of California San Diego, 9500 Gilman Drive; La Jolla, CA 92039.
| | - Gursharan Chana
- Department of Psychiatry, University of California, San Diego, California
| | - Stephen J. Glatt
- Department of Psychiatry & Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Sharon D. Chandler
- Department of Psychiatry, University of California, San Diego, California
| | - Todd May
- Department of Psychiatry, University of California, San Diego, California,VA San Diego Healthcare System, Harvard University, Boston, Massachusetts
| | - James Lohr
- Department of Psychiatry, University of California, San Diego, California,VA San Diego Healthcare System, Harvard University, Boston, Massachusetts
| | - William S. Kremen
- Department of Psychiatry, University of California, San Diego, California,VA San Diego Healthcare System, Harvard University, Boston, Massachusetts
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego, California,VA San Diego Healthcare System, Harvard University, Boston, Massachusetts,Department of Epidemiology and Psychiatry, Harvard University, Boston, Massachusetts
| | - Ian P. Everall
- Department of Psychiatry, University of California, San Diego, California
| |
Collapse
|
45
|
Webster MJ, Elashoff M, Weickert CS. Molecular evidence that cortical synaptic growth predominates during the first decade of life in humans. Int J Dev Neurosci 2010; 29:225-36. [PMID: 20888897 DOI: 10.1016/j.ijdevneu.2010.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 01/02/2023] Open
Abstract
Theories concerning the pathology of human neurodevelopmental disorders that emerge in adolescence, such as schizophrenia, often hypothesize that there may be a failure of normal cortical synaptic loss or pruning. However, direct evidence that synaptic regression is a major developmental event in the adolescent human cortex is limited. Furthermore, developmental work in rodents suggested that synaptic regression in adolescence is not a major feature of cortical development. Thus, we set out to determine when and to what extent molecular markers of synaptic terminals [synaptophysin (SYP), SNAP-25, syntaxin1A (STX1A), and vesicle-associated membrane protein 1 (VAMP1)] are reduced during postnatal human life spanning from 1 month to 45 years (n = 69) using several different quantitative methods, microarray, qPCR and immunoblotting. We found little evidence for a consistent decrease in synaptic-related molecular markers at any time point, but instead found clear patterns of gradual increases in expression of some presynaptic markers with postnatal age (including SNAP-25, VAMP1 and complexin 1 (CPLX1) mRNAs and 6/6 presynaptic proteins evaluated). A measure of synaptic plasticity [growth-associated protein of 43 kDa (GAP-43)] was elevated in neonates, and continued robust expression throughout life. Since CPLX1 protein is enriched in inhibitory terminals we also tested if the protein product of complexin 2 (CPLX2), which is enriched in excitatory neurons, is more specifically reduced in development. In contrast to CPLX1, which showed a steady increase in both mRNA and protein levels during postnatal development (both r > 0.58, p < 0.001), CPLX2 mRNA decreased from infants to toddlers (r = -0.56, p < 0.001), while CPLX2 protein showed a steady increase until young adulthood (r = 0.55, p < 0.001). Furthermore, we found that indices of the dendrites [microtubule associated protein 2 (MAP2)] and spines (spinophilin and postsynaptic density protein of 95 kDa (PSD95)] showed some evidence of reduction over time at the mRNA level but the opposite pattern, of a developmental increase, was found for PSD95 and spinophilin protein levels. Taken together, the postnatal changes in molecular components of synapses supports the notion that growth and strengthening of synaptic elements is a major developmental event occurring in the frontal cortex throughout childhood and that maintenance of steady state levels of synapse-associated molecules may predominate during human adolescence.
Collapse
Affiliation(s)
- Maree J Webster
- Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | |
Collapse
|
46
|
Gray LJ, Dean B, Kronsbein HC, Robinson PJ, Scarr E. Region and diagnosis-specific changes in synaptic proteins in schizophrenia and bipolar I disorder. Psychiatry Res 2010; 178:374-80. [PMID: 20488553 DOI: 10.1016/j.psychres.2008.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 05/27/2008] [Accepted: 07/23/2008] [Indexed: 12/01/2022]
Abstract
Aberrant regulation of synaptic function is thought to play a role in the aetiology of psychiatric disorders, including schizophrenia and bipolar disorder. Normal neurotransmitter release is dependent on a complex group of presynaptic proteins that regulate synaptic vesicle docking, membrane fusion and fission, including synaptophysin, syntaxin, synaptosomal-associated protein-25 (SNAP-25), vesicle-associated membrane protein (VAMP), alpha-synuclein and dynamin I. In addition, structural and signalling proteins such as neural cell adhesion molecule (NCAM) maintain the integrity of the synapse. We have assessed the levels of these important synaptic proteins using Western blots, in three cortical regions (BA10, 40 and 46) obtained post-mortem from subjects with bipolar 1 disorder, schizophrenia or no history of a psychiatric disorder. In bipolar 1 disorder cortex (parietal; BA40), we found a significant increase in the expression of SNAP-25, and a significant reduction in alpha-synuclein compared with controls. These changes in presynaptic protein expression are proposed to inhibit synaptic function in bipolar 1 disorder. In schizophrenia, a significant reduction in the ratio of the two major membrane-bound forms of NCAM (180 and 140) was observed in BA10. The distinct functions of these two NCAM forms suggest that changes in the comparative levels of these proteins could lead to a destabilisation of synaptic signalling. Our data support the notion that there are complex and region-specific alterations in presynaptic proteins that may lead to alterations in synaptic activity in both schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Laura J Gray
- The Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute of Victoria, Parkville, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
47
|
Etain B, Dumaine A, Mathieu F, Chevalier F, Henry C, Kahn JP, Deshommes J, Bellivier F, Leboyer M, Jamain S. A SNAP25 promoter variant is associated with early-onset bipolar disorder and a high expression level in brain. Mol Psychiatry 2010; 15:748-55. [PMID: 19125158 PMCID: PMC2937032 DOI: 10.1038/mp.2008.148] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bipolar disorder (BD) is one of the most common and persistent psychiatric disorders. Early-onset BD has been shown to be the most severe and familial form. We recently carried out a whole-genome linkage analysis on sibpairs affected by early-onset BD and showed that the 20p12 region was more frequently shared in our families than expected by chance. The synaptosomal-associated protein SNAP25 is a presynaptic plasma membrane protein essential for the triggering of vesicular fusion and neurotransmitter release, and for which abnormal protein levels have been reported in postmortem studies of bipolar patients. We hypothesised that variations in the gene encoding SNAP25, located on chromosome 20p12, might influence the susceptibility to early-onset BD. We screened SNAP25 for mutations and performed a case-control association study in 197 patients with early-onset BD, 202 patients with late-onset BD and 136 unaffected subjects. In addition, we analysed the expression level of the two SNAP25 isoforms in 60 brains. We showed that one variant, located in the promoter region, was associated with early-onset BD but not with the late-onset subgroup. In addition, individuals homozygous for this variant showed a significant higher SNAP25b expression level in prefrontal cortex. These results show that variations in SNAP25, associated with an increased gene expression level in prefrontal cortex, might predispose to early-onset BD. Further analyses of this gene, as well as analysis of genes encoding for the SNAP25 protein partners, are required to understand the impact of such molecular mechanisms in BD.
Collapse
Affiliation(s)
- Bruno Etain
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR,Pôle de psychiatrie
AP-HPGroupe Henri Mondor-Albert ChenevierCréteil,FR
| | - Anne Dumaine
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR
| | - Flavie Mathieu
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR
| | - Fabien Chevalier
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR
| | - Chantal Henry
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR,Pôle de psychiatrie
AP-HPGroupe Henri Mondor-Albert ChenevierCréteil,FR
| | - Jean-Pierre Kahn
- Service de psychiatrie et psychologie clinique
CHU NancyHôpital Jeanne-d'ArcNancy,FR
| | - Jasmine Deshommes
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR,Pôle de psychiatrie
AP-HPGroupe Henri Mondor-Albert ChenevierCréteil,FR
| | - Frank Bellivier
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR,Pôle de psychiatrie
AP-HPGroupe Henri Mondor-Albert ChenevierCréteil,FR
| | - Marion Leboyer
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR,Pôle de psychiatrie
AP-HPGroupe Henri Mondor-Albert ChenevierCréteil,FR
| | - Stéphane Jamain
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII Val de MarneIFR10FR,* Correspondence should be adressed to: Stéphane Jamain
| |
Collapse
|
48
|
Terracciano A, Sanna S, Uda M, Deiana B, Usala G, Busonero F, Maschio A, Scally M, Patriciu N, Chen WM, Distel MA, Slagboom EP, Boomsma DI, Villafuerte S, Sliwerska E, Burmeister M, Amin N, Janssens ACJW, van Duijn CM, Schlessinger D, Abecasis GR, Costa PT. Genome-wide association scan for five major dimensions of personality. Mol Psychiatry 2010; 15:647-56. [PMID: 18957941 PMCID: PMC2874623 DOI: 10.1038/mp.2008.113] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 09/22/2008] [Accepted: 10/01/2008] [Indexed: 01/01/2023]
Abstract
Personality traits are summarized by five broad dimensions with pervasive influences on major life outcomes, strong links to psychiatric disorders and clear heritable components. To identify genetic variants associated with each of the five dimensions of personality we performed a genome-wide association (GWA) scan of 3972 individuals from a genetically isolated population within Sardinia, Italy. On the basis of the analyses of 362 129 single-nucleotide polymorphisms we found several strong signals within or near genes previously implicated in psychiatric disorders. They include the association of neuroticism with SNAP25 (rs362584, P=5 x 10(-5)), extraversion with BDNF and two cadherin genes (CDH13 and CDH23; Ps<5 x 10(-5)), openness with CNTNAP2 (rs10251794, P=3 x 10(-5)), agreeableness with CLOCK (rs6832769, P=9 x 10(-6)) and conscientiousness with DYRK1A (rs2835731, P=3 x 10(-5)). Effect sizes were small (less than 1% of variance), and most failed to replicate in the follow-up independent samples (N up to 3903), though the association between agreeableness and CLOCK was supported in two of three replication samples (overall P=2 x 10(-5)). We infer that a large number of loci may influence personality traits and disorders, requiring larger sample sizes for the GWA approach to confidently identify associated genetic variants.
Collapse
Affiliation(s)
- A Terracciano
- National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
RIM1alpha and interacting proteins involved in presynaptic plasticity mediate prepulse inhibition and additional behaviors linked to schizophrenia. J Neurosci 2010; 30:5326-33. [PMID: 20392954 DOI: 10.1523/jneurosci.0328-10.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Several presynaptic proteins involved in neurotransmitter release in the CNS have been implicated in schizophrenia in human clinical genetic studies, in postmortem studies, and in studies of putative animal models of schizophrenia. The presynaptic protein RIM1alpha mediates presynaptic plasticity and cognitive function. We now demonstrate that mice deficient in RIM1alpha exhibit abnormalities in multiple schizophrenia-relevant behavioral tasks including prepulse inhibition, response to psychotomimetic drugs, and social interaction. These schizophrenia-relevant behavioral findings are relatively selective to RIM1alpha-deficient mice, as mice bearing mutations in the RIM1alpha binding partners Rab3A or synaptotagmin 1 only show decreased prepulse inhibition. In addition to RIM1alpha's involvement in multiple behavioral abnormalities, these data suggest that alterations in presynaptic forms of short-term plasticity are linked to alterations in prepulse inhibition, a measure of sensorimotor gating.
Collapse
|
50
|
Association between a synaptosomal protein (SNAP-25) gene polymorphism and verbal memory and attention in patients with endogenous psychoses and mentally healthy subjects. ACTA ACUST UNITED AC 2010; 40:461-5. [PMID: 20333500 DOI: 10.1007/s11055-010-9280-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Synaptosomal protein SNAP-25 is involved in the process of transmitting nerve spikes in the CNS and in the consolidation of memory traces in the hippocampus. Two independent studies have demonstrated associations between SNAP-25 gene polymorphisms and intellectual functions in a group of mentally healthy subjects and patients with schizophrenia. The aim of the present work was to perform a comparative study of the association between the MnlI polymorphism of SNAP-25 and cognitive functions (verbal memory, attention/executive functions) in 66 patients with endogenous psychoses, 75 of their mentally healthy relatives, and 136 healthy control subjects. Statistical analysis showed that the effectiveness of performing cognitive tests was significantly affected by group assignment (p = 0.00001) and genotype (p = 0.012). The interaction between genotype and group assignment also had an influence (p = 0.02). In all groups, carriers of the TT genotype had worse measures than carriers of other genotypes. The similar nature of the influences of the MnlI polymorphism on variations in measures in all groups indicates that this gene is related to overall intellect.
Collapse
|