1
|
Dragon J, Obuchowicz E. How depression and antidepressant drugs affect endocannabinoid system?-review of clinical and preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4511-4536. [PMID: 38280009 DOI: 10.1007/s00210-023-02938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/30/2023] [Indexed: 01/29/2024]
Abstract
As major depressive disorder is becoming a more and more common issue in modern society, it is crucial to discover new possible grip points for its diagnosis and antidepressive therapy. One of them is endocannabinoid system, which has been proposed as a manager of emotional homeostasis, and thus, endocannabinoid alterations have been found in animals undergoing various preclinical models of depression procedures as well as in humans suffering from depressive-like disorders. In this review article, studies regarding those alterations have been summed up and analyzed. Another important issue raised by the researchers is the impact of currently used antidepressive drugs on endocannabinoid system so that it would be possible to predict reversibility of endocannabinoid alterations following stress exposure and, in the future, to be able to design individually personalized therapies. Preclinical studies investigating this topic have been analyzed and described in this article. Unfortunately, too few clinical studies in this field exist, what indicates an urgent need for collecting such data, so that it would be possible to compare them with preclinical outcomes and draw reliable conclusions.
Collapse
Affiliation(s)
- Jonasz Dragon
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków Street 18, 40-752, Katowice, Poland.
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków Street 18, 40-752, Katowice, Poland
| |
Collapse
|
2
|
Abbasi N, Mirabzadeh Y, Khesali G, Ebrahimkhani Z, Karimi H, Vaseghi S. Chronic REM sleep deprivation leads to manic- and OCD-related behaviors, and decreases hippocampal BDNF expression in female rats. Psychopharmacology (Berl) 2024; 241:1345-1363. [PMID: 38430395 DOI: 10.1007/s00213-024-06566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Rapid-eye movement (REM) sleep deprivation (SD) can induce manic-like behaviors in rodents. On the other hand, lithium, as one of the oldest drugs used in neuropsychiatric disorders, is still one of the best drugs for the treatment and control of bipolar disorder. In this study, we aimed to investigate the role of chronic short-term REM SD in the induction of manic-like behaviors in female rats. METHODS The rats were exposed to REM SD for 14 days (6 hours/day). Lithium was intraperitoneally injected at the doses of 10, 50, and 100 mg/kg. RESULTS REM SD induced hyperactivity and OCD-like behavior, and decreased anxiety, depressive-like behavior, and pain subthreshold. REM SD also impaired passive avoidance memory and decreased hippocampal brain-derived neurotrophic factor (BDNF) expression level. Lithium at the doses of 50 and 100 mg/kg partly and completely abolished these effects, respectively. However, lithium (100 mg/kg) increased BDNF expression level in control and sham REM SD rats with no significant changes in behavior. CONCLUSIONS Chronic short-term REM SD may induce a mania-like model and lead to OCD-like behavior and irritability. In the present study, we demonstrated a putative rodent model of mania induced by chronic REM SD in female rats. We suggest that future studies should examine behavioral and mood changes following chronic REM SD in both sexes. Furthermore, the relationship between manic-like behaviors and chronic REM SD should be investigated.
Collapse
Affiliation(s)
- Nahal Abbasi
- Department of Health Psychology, Faculty of Medical Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Yasaman Mirabzadeh
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Golnaz Khesali
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Zahra Ebrahimkhani
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Hanie Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
3
|
Chiperi LE, Huţanu A, Tecar C, Muntean I. Serum Markers of Brain Injury in Pediatric Patients with Congenital Heart Defects Undergoing Cardiac Surgery: Diagnostic and Prognostic Role. Clin Pract 2023; 13:1253-1265. [PMID: 37887089 PMCID: PMC10605074 DOI: 10.3390/clinpract13050113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction: The objectives of this study were to assess the role of neuromarkers like glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF), protein S100 (pS100), and neuron-specific enolase (NSE) as diagnostic markers of acute brain injury and also as prognostic markers for short-term neurodevelopmental impairment. Methods: Pediatric patients with congenital heart defects (CHDs) undergoing elective cardiac surgery were included. Neurodevelopmental functioning was assessed preoperatively and 4-6 months postoperatively using the Denver Developmental Screening Test II. Blood samples were collected preoperatively and postoperatively. During surgery, regional cerebral tissue oxygen saturation was monitored using near-infrared spectroscopy (NIRS). Results: Forty-two patients were enrolled and dichotomized into cyanotic and non-cyanotic groups based on peripheric oxygen saturation. Nineteen patients (65.5%) had abnormal developmental scores in the non-cyanotic group and eleven (84.6%) in the cyanotic group. A good diagnostic model was observed between NIRS values and GFAP in the cyanotic CHD group (AUC = 0.7). A good predicting model was observed with GFAP and developmental scores in the cyanotic CHD group (AUC = 0.667). A correlation was found between NSE and developmental quotient scores (r = 0.09, p = 0.046). Conclusions: From all four neuromarkers studied, only GFAP was demonstrated to be a good diagnostic and prognostic factor in cyanotic CHD patients. NSE had only prognostic value.
Collapse
Affiliation(s)
- Lacramioara Eliza Chiperi
- Clinic of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Heart Transplant, 540136 Targu Mures, Romania
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adina Huţanu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Laboratory of Humoral Immunology, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Cristina Tecar
- Department of Neurosciences, Iuliu Hatieganu University of Medicine and Pharmacy, 400129 Cluj-Napoca, Romania
| | - Iolanda Muntean
- Clinic of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Heart Transplant, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
4
|
De Felice G, Luciano M, Boiano A, Colangelo G, Catapano P, Della Rocca B, Lapadula MV, Piegari E, Toni C, Fiorillo A. Can Brain-Derived Neurotrophic Factor Be Considered a Biomarker for Bipolar Disorder? An Analysis of the Current Evidence. Brain Sci 2023; 13:1221. [PMID: 37626577 PMCID: PMC10452328 DOI: 10.3390/brainsci13081221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a key role in brain development, contributing to neuronal survival and neuroplasticity. Previous works have found that BDNF is involved in several neurological or psychiatric diseases. In this review, we aimed to collect all available data on BDNF and bipolar disorder (BD) and assess if BDNF could be considered a biomarker for BD. We searched the most relevant medical databases and included studies reporting original data on BDNF circulating levels or Val66Met polymorphism. Only articles including a direct comparison with healthy controls (HC) and patients diagnosed with BD according to international classification systems were included. Of the 2430 identified articles, 29 were included in the present review. Results of the present review show a reduction in BDNF circulating levels during acute phases of BD compared to HC, which increase after effective therapy of the disorders. The Val66Met polymorphism was related to features usually associated with worse outcomes. High heterogeneity has been observed regarding sample size, clinical differences of included patients, and data analysis approaches, reducing comparisons among studies. Although more studies are needed, BDNF seems to be a promising biomarker for BD.
Collapse
Affiliation(s)
| | - Mario Luciano
- Department of Psychiatry, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (G.D.F.); (A.B.); (G.C.); (P.C.); (B.D.R.); (M.V.L.); (E.P.); (C.T.); (A.F.)
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Shahyad S, Kheirabadi GR, Jahromi GP, Massaly M. Brain-derived Neurotrophic Factor and High Sensitive C-reactive Protein in Bipolar Depression and Unipolar Depression: The Practical Usage as a Discriminatory Tool. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:108-117. [PMID: 36700317 PMCID: PMC9889908 DOI: 10.9758/cpn.2023.21.1.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/26/2021] [Accepted: 11/04/2021] [Indexed: 01/27/2023]
Abstract
Objective Brain-derived neurotrophic factor (BDNF) and high sensitive C-reactive protein (hs-CRP) have been reported to play roles in depression and bipolar disorder (BD). However, the probable discriminatory properties of these biologic markers are less investigated. We aimed to assess the serum BDNF and hs-CRP levels among Iranian patients with major depressive disorder (MDD) and BD during a depressive episode and investigate the optimum cut-off point for differential diagnosis of BD and MDD. Methods We recruited 30 patients with MDD, 30 with BD in depressive mood and 30 healthy comparators. Blood sample was taken from each participant to measure BDNF and hs-CRP levels. We also used receiver operating characteristic (ROC) curve analysis to find an optimal cut-off point for differentiating MDD from BD according to pre-defined variables. Results The mean age of total study population was 37.3 ± 5.0 years (males: 49%). BDNF was significantly lower in patients with BD, followed by MDD subjects and healthy controls 541.0 ± 601.0 pg/ml vs. 809.5 ± 433.3 pg/ml vs. 1,482.1 ± 519.8, respectively, p < 0.001). The area under curve of ROC curve analysis for BD versus MDD was 0.704 (95% confidence interval: 0.564-0.844, p = 0.007). We also found that the BDNF cut-off value of 504 could appropriately distinguished BD from MDD (sensitivity: 73%, specificity: 70%). No significant association were identified in terms of hs-CRP levels. Conclusion Patients suffering from BD had lowest BDNF levels compared to MDD or healthy adults and this biomarker could play a practical role differentiating MDD from BD. Several studies are required confirming our outcomes.
Collapse
Affiliation(s)
- Shima Shahyad
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,Address for correspondence: Shima Shahyad Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Molla-sadra St, Tehran 1435916471, Iran, E-mail: , ORCID: https://orcid.org/0000-0002-5483-5367
| | - Gholam Reza Kheirabadi
- Behavioral Sciences Research Center, Department of Psychiatry, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gila Pirzad Jahromi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Muhammad Massaly
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Cheung T, Li TMH, Ho YS, Kranz G, Fong KNK, Leung SF, Lam SC, Yeung WF, Lam JYT, Fong KH, Beisteiner R, Xiang YT, Cheng CPW. Effects of Transcranial Pulse Stimulation (TPS) on Adults with Symptoms of Depression-A Pilot Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032333. [PMID: 36767702 PMCID: PMC9915638 DOI: 10.3390/ijerph20032333] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 05/29/2023]
Abstract
Transcranial pulse stimulation (TPS) is a recent development in non-invasive brain stimulations (NIBS) that has been proven to be effective in terms of significantly improving Alzheimer patients' cognition, memory, and execution functions. Nonetheless, there is, currently, no trial evaluating the efficacy of TPS on adults with major depression disorder (MDD) nationwide. In this single-blinded, randomized controlled trial, a 2-week TPS treatment comprising six 30 min TPS sessions were administered to participants. Participants were randomized into either the TPS group or the Waitlist Control (WC) group, stratified by gender and age according to a 1:1 ratio. Our primary outcome was evaluated by the Hamilton depression rating scale-17 (HDRS-17). We recruited 30 participants that were aged between 18 and 54 years, predominantly female (73%), and ethnic Chinese from 1 August to 31 October 2021. Moreover, there was a significant group x time interaction (F(1, 28) = 18.8, p < 0.001). Further, when compared with the WC group, there was a significant reduction in the depressive symptom severity in the TPS group (mean difference = -6.60, p = 0.02, and Cohen's d = -0.93). The results showed a significant intervention effect; in addition, the effect was large and sustainable at the 3-month follow-up. In this trial, it was found that TPS is effective in reducing depressive symptoms among adults with MDD.
Collapse
Affiliation(s)
- Teris Cheung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tim Man Ho Li
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuen Shan Ho
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Georg Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kenneth N. K. Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sau Fong Leung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Wing Fai Yeung
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Joyce Yuen Ting Lam
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kwan Hin Fong
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Roland Beisteiner
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, University of Macau, Macao SAR, China
| | | |
Collapse
|
7
|
The Relationship Between Trichotillomania and Serum Brain-Derived Neurotrophic Factor Levels in Children and Adolescents: A Case-Control Study. Clin Neuropharmacol 2022; 45:117-121. [PMID: 35947418 DOI: 10.1097/wnf.0000000000000515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Trichotillomania (TTM) is a clinical psychiatric manifestation involving significant hair loss in association with recurrent hair-pulling behavior, the etiology of which is still unknown. Insufficiency or disorder in the synthesis of brain-derived neurotrophic factor (BDNF) is reported to be potentially associated with neurological, neurodegenerative, and psychiatric diseases in humans and animals. This study examines the relationship between serum BDNF levels and TTM. METHODS Ninety-four children and adolescents, 47 patients with TTM and a 47-member control group, were included in the study. Participants were administered the Schedule for Affective Disorders and Schizophrenia for School-Aged Children (6-18 Years) Present and Lifetime Version, and the members of the case group completed the Clinical Global Impression scale. Serum BDNF levels were determined from blood specimens collected from the study and control groups, and the results were subjected to statistical analysis. RESULTS Serum BDNF levels were 11.06 ± 1.9 ng/mL in the TTM group and 13.78 ± 2.2 ng/mL in the control group. Serum BDNF was significantly lower in the case group than in the control group. Moderate negative correlation was also determined between Clinical Global Impression scores and serum BDNF levels in the case group. CONCLUSIONS Low serum BDNF was associated with TTM and the severity thereof. Furthermore, more extensive studies are needed to elucidate this association.
Collapse
|
8
|
Bai Y, Dai G, Song L, Gu X, Ba N, Ju W, Zhang W. Potential Anti-Depressive Effects and Mechanisms of Zhi-Zi Hou-Po Decoction Using Behavioral Despair Tests Combined With in Vitro Approaches. Front Pharmacol 2022; 13:918776. [PMID: 35873590 PMCID: PMC9298739 DOI: 10.3389/fphar.2022.918776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Zhi-Zi Hou-Po Decoction (ZHD) has been widely used in the treatment of depression for centuries. This study aimed to investigate the antidepressant effects of the water extract of ZHD (ZHD-WE) and ethanol extract of ZHD (ZHD-EE) using behavioral despair tests in mice, and to further explore the neuroprotective effects in a PC12 cell injury model induced by corticosterone (CORT). Mice were divided into a control group (normal saline), ZHD-WE groups (4, 8, and 16 g kg-1), ZHD-EE groups (4, 8, and 16 g kg-1) and the fluoxetine group (20 mg kg-1). The forced swimming test (FST) and tail suspension test (TST) were used to screen the antidepressant effects of ZHD-WE and ZHD-EE after oral administration for seven consecutive days. The level of brain-derived neurotrophic factor (BDNF) in the hippocampus was determined by ELISA. The MTT, lactate dehydrogenase (LDH) and flow cytometry analysis were performed to elucidate the neuroprotective effect of ZHD-EE on a PC12 cell injury model. Additionally, the mRNA and proteins expression of apoptotic molecules Bax, Bcl-2 and BDNF were detected by RT-PCR and western blot assay. It showed that ZHD-EE at concentrations of 8 and 16 g kg-1 significantly decreased the immobility time in the TST and FST, and increased the BDNF levels in the hippocampus. While ZHD-WE at concentrations of 4, 8, and 16 g kg-1 had no significant effect on the immobility time in the TST, and only the 16 g kg-1 of extract group significantly decreased the immobility time in the FST. In vitro, the obtained results showed that PC12 cells pre-incubated with ZHD-EE at concentrations of 100 and 400 μg ml-1 improved cell viability, decreased LDH release, and reduced apoptosis rate of PC12 cells. Moreover, ZHD-EE significantly increased the mRNA and proteins expression of Bcl-2 and BDNF, while decreased the mRNA and protein expression of Bax. ZHD-EE significantly improved despair-like behavior in mice, and its mechanism may be related to BDNF upregulation in the hippocampus. This study also showed that ZHD-EE had a protective effect on CORT-induced injury in PC12 cells by upregulating the expression of BDNF and restoring Bcl-2/Bax balance.
Collapse
Affiliation(s)
- Yongtao Bai
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China.,Clinical Research Center, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Guoliang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lihua Song
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xiaolei Gu
- Clinical Research Center, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ning Ba
- Clinical Research Center, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Wenzheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Brain-Derived Neurotropic Factor in Neurodegenerative Disorders. Biomedicines 2022; 10:biomedicines10051143. [PMID: 35625880 PMCID: PMC9138678 DOI: 10.3390/biomedicines10051143] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/23/2022] [Accepted: 04/30/2022] [Indexed: 12/30/2022] Open
Abstract
Globally, neurodegenerative diseases cause a significant degree of disability and distress. Brain-derived neurotrophic factor (BDNF), primarily found in the brain, has a substantial role in the development and maintenance of various nerve roles and is associated with the family of neurotrophins, including neuronal growth factor (NGF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5). BDNF has affinity with tropomyosin receptor kinase B (TrKB), which is found in the brain in large amounts and is expressed in several cells. Several studies have shown that decrease in BDNF causes an imbalance in neuronal functioning and survival. Moreover, BDNF has several important roles, such as improving synaptic plasticity and contributing to long-lasting memory formation. BDNF has been linked to the pathology of the most common neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. This review aims to describe recent efforts to understand the connection between the level of BDNF and neurodegenerative diseases. Several studies have shown that a high level of BDNF is associated with a lower risk for developing a neurodegenerative disease.
Collapse
|
10
|
Cheung T, Ho YS, Yeung JWF, Leung SF, Fong KNK, Fong T, Kranz GS, Beisteiner R, Cheng CPW. Effects of Transcranial Pulse Stimulation (TPS) on Young Adults With Symptom of Depression: A Pilot Randomised Controlled Trial Protocol. Front Neurol 2022; 13:861214. [PMID: 35401418 PMCID: PMC8990306 DOI: 10.3389/fneur.2022.861214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Background Since the emergence of the COVID-19 pandemic, there have been lots of published work examining the association between COVID-19 and mental health, particularly, anxiety and depression in the general populations and disease subpopulations globally. Depression is a debilitating disorder affecting individuals' level of bio-psychological-social functioning across different age groups. Since almost all studies were cross-sectional studies, there seems to be a lack of robust, large-scale, and technological-based interventional studies to restore the general public's optimal psychosocial wellbeing amidst the COVID-19 pandemic. Transcranial pulse stimulation (TPS) is a relatively new non-intrusive brain stimulation (NIBS) technology, and only a paucity of studies was conducted related to the TPS treatment on older adults with mild neurocognitive disorders. However, there is by far no study conducted on young adults with major depressive disorder nationwide. This gives us the impetus to execute the first nationwide study evaluating the efficacy of TPS on the treatment of depression among young adults in Hong Kong. Methods This study proposes a two-armed single-blinded randomised controlled trial including TPS as an intervention group and a waitlist control group. Both groups will be measured at baseline (T1), immediately after the intervention (T2), and at the 3- month follow-up (T3). Recruitment A total of 30 community-dwelling subjects who are aged 18 and above and diagnosed with major depressive disorder (MDD) will be recruited in this study. All subjects will be computer randomised into either the intervention group or the waitlist control group, balanced by gender and age on a 1:1 ratio. Intervention All subjects in each group will have to undertake functional MRI (fMRI) before and after six 30-min TPS sessions, which will be completed in 2 weeks' time. Outcomes Baseline measurements and post-TPS evaluation of the psychological outcomes (i.e., depression, cognition, anhedonia, and instrumental activities of daily living) will also be conducted on all participants. A 3-month follow-up period will be usedto assess the long-term sustainability of the TPS intervention. For statistical analysis, ANOVA with repeated measures will be used to analyse data. Missing data were managed by multiple mutations. The level of significance will be set to p < 0.05. Significance of the Study Results of this study will be used to inform health policy to determine whether TPS could be considered as a top treatment option for MDD. Clinical Trial Registration ClinicalTrials.gov, identifier: NCT05006365.
Collapse
Affiliation(s)
- Teris Cheung
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yuen Shan Ho
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Jerry Wing-Fai Yeung
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sau Fong Leung
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kenneth N. K. Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Tommy Fong
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Roland Beisteiner
- Department of Neurology, Functional Diagnostics and Therapy, Medical University of Vienna, Vienna, Austria
| | - Calvin Pak Wing Cheng
- Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
11
|
Kennedy KG, Shahatit Z, Dimick MK, Fiksenbaum L, Freeman N, Zai CC, Kennedy JL, MacIntosh BJ, Goldstein BI. Neurostructural correlates of BDNF rs6265 genotype in youth bipolar disorder. Bipolar Disord 2022; 24:185-194. [PMID: 34263997 DOI: 10.1111/bdi.13116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/20/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) rs6265 single-nucleotide polymorphism has been associated with bipolar disorder (BD), and with brain structure among adults with BD. We set out to investigate the association of the BDNF rs6265 Met allele with neurostructural phenotypes in youth BD. METHODS Caucasian youth (N = 99; 13-20 years; n = 56 BD, n = 43 age and sex-matched healthy controls) underwent 3-Tesla Magnetic Resonance Imaging and genotyping for BDNF rs6265. Region of interest (ROI) analyses of the ventromedial prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), and hippocampus were complemented by vertex-wise analyses examining cortical thickness, surface area (SA) and volume. Multivariable models included the main effects of diagnosis and gene, and a diagnosis-by-genotype interaction term, controlling for age, sex, and intracranial volume. RESULTS There were no significant gene main effects or diagnosis-by-gene interaction effects in ROI analyses. The vertex-wise analysis yielded a significant gene main effect whereby Met allele carriers had greater middle temporal gyrus SA (p = 0.001) and supramarginal gyrus volume (p = 0.03) than Val/Val individuals. Significant interaction effects were found on lateral occipital lobe SA (p = 0.03), whereby the Met allele was associated with increased SA in BD only. Interaction effects were also found on postcentral gyrus SA (p = 0.049) and supramarginal gyrus SA (p = 0.04), with smaller SA in BD Met carriers versus healthy control Met carriers. CONCLUSION These findings suggest that BDNF rs6265 is differentially associated with regional SA in youth BD. Further investigation is warranted to evaluate whether BDNF protein levels mediate the observed effects, and to evaluate rs6265-related developmental changes.
Collapse
Affiliation(s)
- Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Zaid Shahatit
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Lisa Fiksenbaum
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Natalie Freeman
- Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Clement C Zai
- Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - James L Kennedy
- Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
de Menezes Galvão AC, Almeida RN, de Sousa GM, Leocadio-Miguel MA, Palhano-Fontes F, de Araujo DB, Lobão-Soares B, Maia-de-Oliveira JP, Nunes EA, Hallak JEC, Schuch FB, Sarris J, Galvão-Coelho NL. Pathophysiology of Major Depression by Clinical Stages. Front Psychol 2021; 12:641779. [PMID: 34421705 PMCID: PMC8374436 DOI: 10.3389/fpsyg.2021.641779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/23/2021] [Indexed: 01/01/2023] Open
Abstract
The comprehension of the pathophysiology of the major depressive disorder (MDD) is essential to the strengthening of precision psychiatry. In order to determine the relationship between the pathophysiology of the MDD and its clinical progression, analyzed by severity of the depressive symptoms and sleep quality, we conducted a study assessing different peripheral molecular biomarkers, including the levels of plasma C-reactive protein (CRP), serum mature brain-derived neurotrophic factor (mBDNF), serum cortisol (SC), and salivary cortisol awakening response (CAR), of patients with MDD (n = 58) and a control group of healthy volunteers (n = 62). Patients with the first episode of MDD (n = 30) had significantly higher levels of CAR and SC than controls (n = 32) and similar levels of mBDNF of controls. Patients with treatment-resistant depression (TRD, n = 28) presented significantly lower levels of SC and CAR, and higher levels of mBDNF and CRP than controls (n = 30). An increased severity of depressive symptoms and worse sleep quality were correlated with levels low of SC and CAR, and with high levels of mBDNF. These results point out a strong relationship between the stages clinical of MDD and changes in a range of relevant biological markers. This can assist in the development of precision psychiatry and future research on the biological tests for depression.
Collapse
Affiliation(s)
- Ana Cecília de Menezes Galvão
- Postgraduate Program in Psychobiology, Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Raíssa Nobrega Almeida
- Postgraduate Program in Psychobiology, Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Geovan Menezes de Sousa
- Postgraduate Program in Psychobiology, Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Mario André Leocadio-Miguel
- Laboratory of Neurobiology and Biological Rhythms, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Bruno Lobão-Soares
- National Institute of Science and Technology in Translational Medicine, São Paulo, Brazil
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - João Paulo Maia-de-Oliveira
- National Institute of Science and Technology in Translational Medicine, São Paulo, Brazil
- Department of Clinical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Emerson Arcoverde Nunes
- National Institute of Science and Technology in Translational Medicine, São Paulo, Brazil
- Department of Psychiatry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jaime Eduardo Cecilio Hallak
- National Institute of Science and Technology in Translational Medicine, São Paulo, Brazil
- Department of Neurosciences and Behavior, University of São Paulo, São Paulo, Brazil
| | - Felipe Barreto Schuch
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jerome Sarris
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Nicole Leite Galvão-Coelho
- Postgraduate Program in Psychobiology, Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
- National Institute of Science and Technology in Translational Medicine, São Paulo, Brazil
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Strawbridge R, Carter R, Saldarini F, Tsapekos D, Young AH. Inflammatory biomarkers and cognitive functioning in individuals with euthymic bipolar disorder: exploratory study. BJPsych Open 2021; 7:e126. [PMID: 36043690 PMCID: PMC8281256 DOI: 10.1192/bjo.2021.966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Neurobiological research frequently implicates inflammatory and neurogenic components with core aspects of bipolar disorder. Even in periods of symptom remission (euthymia), individuals with bipolar disorder experience cognitive impairments, which are increasingly being proposed as an outcome for interventions; identifying biomarkers associated with cognitive impairment in people with bipolar disorder could advance progress in this therapeutic field through identifying biological treatment targets. AIMS We aimed to identify proteomic biomarker correlates of cognitive impairment in individuals with euthymic bipolar disorder. METHOD Forty-four adults with a bipolar disorder diagnosis in euthymia underwent a battery of cognitive assessments and provided blood for biomarkers. We examined a comprehensive panel of inflammatory and trophic proteins as putative cross-sectional predictors of cognition, conceptualised according to recommended definitions of clinically significant cognitive impairment (binary construct) and global cognitive performance (continuous measure). RESULTS A total of 48% of the sample met the criteria for cognitive impairment. Adjusting for potentially important covariates, regression analyses identified lower levels of three proteins as significantly and independently associated with cognitive deficits, according to both binary and continuous definitions (interleukin-7, vascular endothelial growth factor C and placental growth factor), and one positively correlated with (continuous) global cognitive performance (basic fibroblast growth factor). CONCLUSIONS This study identifies four candidate markers of cognitive impairment in bipolar disorder, none of which have been previously compared with cognitive function in participants with bipolar disorder. Pending replication in larger samples and support from longitudinal studies, these markers could have implications for treating cognitive dysfunction in this patient population.
Collapse
Affiliation(s)
- Rebecca Strawbridge
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Rowena Carter
- National Affective Disorders Service, South London & Maudsley NHS Foundation Trust, UK
| | - Francesco Saldarini
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Dimosthenis Tsapekos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; and National Affective Disorders Service, South London & Maudsley NHS Foundation Trust, UK
| |
Collapse
|
14
|
Carniel BP, da Rocha NS. Brain-derived neurotrophic factor (BDNF) and inflammatory markers: Perspectives for the management of depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110151. [PMID: 33096156 DOI: 10.1016/j.pnpbp.2020.110151] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mood disorders, including major depressive disorder, are among the main causes of disability and early mortality and constitute an important public health problem. Despite the search for a neurobiological explanation for these disorders, diagnosis and treatment are still based on subjective symptoms and psychometric assessments. Biomarkers, used as indicators of normal biological and pathological processes or pharmacological responses to a clinical intervention, may be useful in improving the current classification of psychiatric disorders, which can help understand the role of biological information in diagnosis, prognosis, and assessment of responses to intervention. OBJECTIVES This review aims to analyze the existing literature on Brain-Derived Neurotrophic Factor (BDNF) and inflammatory markers related to depression and to assess the advances and perspectives of their applicability in the diagnosis, prognosis, and assessment of responses to intervention in order to understand the importance of these biomarkers for the management of depression. RESULTS Evidence shows that BDNF is an important biomarker for the pathogenesis of depression; reduced levels are linked to reduced synaptic plasticity and neuronal atrophy, while elevated levels are associated with survival and neuronal differentiation, which is compatible with the neurogenic hypothesis of depression. Although the use of this biomarker is not yet established, literature shows that the concentration of BDNF is a useful measure for the differentiation between healthy and depressed individuals. Based on the inflammatory theory of depression, studies have found higher levels of inflammation in depressed individuals when compared to healthy ones, as well as an association between chronic inflammation and depressive symptoms. Studies have also found anti-inflammatory agents with anti-depressant effects. Markers such as IL-6, IL-1β, TNFα, and C-reactive protein (CRP) are potential markers of depression, but the role of cytokines in human brain activity is still insufficiently established. CONCLUSIONS Despite the large number of potential biological markers not yet fully established in the pathophysiology of depression, which is a challenge for psychobiology, it is clear that the concentrations of these substances are altered in psychiatric diagnoses related to the disease activity. Thus, although more research is needed, the current body of knowledge on biomarkers allows us to predict their use in the management of depression.
Collapse
Affiliation(s)
- Bruno Perosa Carniel
- Psychiatry Service, Center for Clinical and Experimental Research, Hospital de Clínicas de Porto Alegre, Brazil; Postgraduate Program in Psychiatry and Behavioral Sciences, Brazil; Universidade Federal de Ciências da Saúde da Porto Alegre, Brazil; I-QOL: Interventions and Innovations for Quality of Life Research Group, Brazil.
| | - Neusa Sica da Rocha
- Department of Psychiatry, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Psychiatry Service, Center for Clinical and Experimental Research, Hospital de Clínicas de Porto Alegre, Brazil; Postgraduate Program in Psychiatry and Behavioral Sciences, Brazil; I-QOL: Interventions and Innovations for Quality of Life Research Group, Brazil
| |
Collapse
|
15
|
Rackova L, Mach M, Brnoliakova Z. An update in toxicology of ageing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103611. [PMID: 33581363 DOI: 10.1016/j.etap.2021.103611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The field of ageing research has been rapidly advancing in recent decades and it had provided insight into the complexity of ageing phenomenon. However, as the organism-environment interaction appears to significantly affect the organismal pace of ageing, the systematic approach for gerontogenic risk assessment of environmental factors has yet to be established. This puts demand on development of effective biomarker of ageing, as a relevant tool to quantify effects of gerontogenic exposures, contingent on multidisciplinary research approach. Here we review the current knowledge regarding the main endogenous gerontogenic pathways involved in acceleration of ageing through environmental exposures. These include inflammatory and oxidative stress-triggered processes, dysregulation of maintenance of cellular anabolism and catabolism and loss of protein homeostasis. The most effective biomarkers showing specificity and relevancy to ageing phenotypes are summarized, as well. The crucial part of this review was dedicated to the comprehensive overview of environmental gerontogens including various types of radiation, certain types of pesticides, heavy metals, drugs and addictive substances, unhealthy dietary patterns, and sedentary life as well as psychosocial stress. The reported effects in vitro and in vivo of both recognized and potential gerontogens are described with respect to the up-to-date knowledge in geroscience. Finally, hormetic and ageing decelerating effects of environmental factors are briefly discussed, as well.
Collapse
Affiliation(s)
- Lucia Rackova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia.
| | - Mojmir Mach
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| | - Zuzana Brnoliakova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
16
|
Arosio B, Guerini FR, Voshaar RCO, Aprahamian I. Blood Brain-Derived Neurotrophic Factor (BDNF) and Major Depression: Do We Have a Translational Perspective? Front Behav Neurosci 2021; 15:626906. [PMID: 33643008 PMCID: PMC7906965 DOI: 10.3389/fnbeh.2021.626906] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Major depressive disorder (MDD) affects millions of people worldwide and is a leading cause of disability. Several theories have been proposed to explain its pathological mechanisms, and the “neurotrophin hypothesis of depression” involves one of the most relevant pathways. Brain-derived neurotrophic factor (BDNF) is an important neurotrophin, and it has been extensively investigated in both experimental models and clinical studies of MDD. Robust empirical findings have indicated an association between increased BDNF gene expression and peripheral concentration with improved neuronal plasticity and neurogenesis. Additionally, several studies have indicated the blunt expression of BDNF in carriers of the Val66Met gene polymorphism and lower blood BDNF (serum or plasma) levels in depressed individuals. Clinical trials have yielded mixed results with different treatment options, peripheral blood BDNF measurement techniques, and time of observation. Previous meta-analyses of MDD treatment have indicated that antidepressants and electroconvulsive therapy showed higher levels of blood BDNF after treatment but not with physical exercise, psychotherapy, or direct current stimulation. Moreover, the rapid-acting antidepressant ketamine has presented an early increase in blood BDNF concentration. Although evidence has pointed to increased levels of BDNF after antidepressant therapy, several factors, such as heterogeneous results, low sample size, publication bias, and different BDNF measurements (serum or plasma), pose a challenge in the interpretation of the relation between peripheral blood BDNF and MDD. These potential gaps in the literature have not been properly addressed in previous narrative reviews. In this review, current evidence regarding BDNF function, genetics and epigenetics, expression, and results from clinical trials is summarized, putting the literature into a translational perspective on MDD. In general, blood BDNF cannot be recommended for use as a biomarker in clinical practice. Moreover, future studies should expand the evidence with larger samples, use the serum or serum: whole blood concentration of BDNF as a more accurate measure of peripheral BDNF, and compare its change upon different treatment modalities of MDD.
Collapse
Affiliation(s)
- Beatrice Arosio
- Geriatric Unit, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Richard C Oude Voshaar
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ivan Aprahamian
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Group of Investigation on Multimorbidity and Mental Health in Aging (GIMMA), Geriatrics Division, Internal Medicine Department, Faculty of Medicine of Jundiaí, Jundiaí, Brazil
| |
Collapse
|
17
|
Chan G, Rosic T, Pasyk S, Dehghan M, Samaan Z. Exploring the Impact of Modifiable Factors on Serum BDNF in Psychiatric Patients and Community Controls. Neuropsychiatr Dis Treat 2021; 17:545-554. [PMID: 33628025 PMCID: PMC7898784 DOI: 10.2147/ndt.s295026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has been a focus of psychiatric research for the past two decades. BDNF has been shown to impact neural function and development. Studies have investigated serum BDNF as a biomarker for psychiatric disorders such as depression and schizophrenia. In some studies, investigators attempt to control for variables such as smoking status, exercise, or diet. However, the relationship between these factors and BDNF is not clearly established. Furthermore, some studies have questioned whether a difference in the impact of BDNF exists between psychiatric and healthy populations. PURPOSE We aim to examine the association between serum BDNF levels and modifiable risk factors such as body mass index (BMI), smoking, exercise levels, and diet. Subsequently, we aim to examine whether the relationship between these risk factors and serum BDNF is different between psychiatric and control populations. PATIENTS AND METHODS We use cross-sectional data from an age- and sex-matched case-control study of participants with psychiatric inpatients and community controls without psychiatric diagnoses. Participants completed comprehensive assessments at study enrolment including sociodemographic information, smoking status, exercise, diet, and BMI. Serum BDNF levels were collected from participants. Linear regression analysis was performed to determine the association between modifiable factors and serum BDNF level. RESULTS A significant association was found between sedentary activity level and lower serum BDNF levels (Beta coefficient = -2.49, 95% confidence interval [CI] -4.70, -0.28, p = 0.028). Subgroup analysis demonstrated that this association held for psychiatric inpatients but not for community controls; it also held in females (Beta coefficient = -3.18, 95% CI -6.29, -0.07, p = 0.045) but not in males (Beta coefficient = -1.42, 95% CI -4.61, 1.78, p = 0.383). Antidepressant use had a significantly different association between male (Beta coefficient = 3.20, 95% CI 0.51, 5.88, p = 0.020) and female subgroups (Beta coefficient = -3.10, 95% CI -5.75, -0.46, p = 0.022). No significant association was found between other factors and serum BDNF. CONCLUSION Sedentary activity level may lead to lower serum BDNF levels in individuals with psychiatric diagnoses. Our findings support the notion that physical activity can provide a positive impact as part of treatment for psychiatric illness.
Collapse
Affiliation(s)
- Galen Chan
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Tea Rosic
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Stanislav Pasyk
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Mahshid Dehghan
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Zainab Samaan
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
18
|
Abstract
Bipolar disorders are severe and have a high prevalence; despite this, the neurobiological mechanisms are far from being elucidated, and this limits the development of new treatments. Although the aetiology of bipolar disorders is not yet fully understood, it is accepted that the disorder(s) may result from the interaction between genetic factors that cause susceptibility and predisposing, precipitating and perpetuating environmental factors, such as stress and traumatic events. A pathophysiological formulation of the disease suggests that dysfunctions in intracellular biochemical cascades, oxidative stress and mitochondrial dysfunction impair the processes linked to neuronal plasticity, leading to cell damage and the consequent loss of brain tissue that has been identified in post-mortem and neuroimaging studies. The data we have reviewed suggests that peripheral biomarkers related to hormones, inflammation, oxidative stress and neurotrophins are altered in bipolar disorders, especially during acute mood episodes. Together, these changes have been associated with a systemic toxicity of the disease and the damage resulting from multiple episodes. Systemic toxicity related to recurrent episodes in bipolar disorder may influence brain anatomical changes associated with the progression of stress and neuroplasticity in bipolar disorder and the response to treatment.
Collapse
Affiliation(s)
- Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
19
|
Changes in Hippocampal Plasticity in Depression and Therapeutic Approaches Influencing These Changes. Neural Plast 2020; 2020:8861903. [PMID: 33293948 PMCID: PMC7718046 DOI: 10.1155/2020/8861903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a common neurological disease that seriously affects human health. There are many hypotheses about the pathogenesis of depression, and the most widely recognized and applied is the monoamine hypothesis. However, no hypothesis can fully explain the pathogenesis of depression. At present, the brain-derived neurotrophic factor (BDNF) and neurogenesis hypotheses have highlighted the important role of plasticity in depression. The plasticity of neurons and glial cells plays a vital role in the transmission and integration of signals in the central nervous system. Plasticity is the adaptive change in the nervous system in response to changes in external signals. The hippocampus is an important anatomical area associated with depression. Studies have shown that some antidepressants can treat depression by changing the plasticity of the hippocampus. Furthermore, caloric restriction has also been shown to affect antidepressant and hippocampal plasticity changes. In this review, we summarize the latest research, focusing on changes in the plasticity of hippocampal neurons and glial cells in depression and the role of BDNF in the changes in hippocampal plasticity in depression, as well as caloric restriction and mitochondrial plasticity. This review may contribute to the development of antidepressant drugs and elucidating the mechanism of depression.
Collapse
|
20
|
Schröter K, Brum M, Brunkhorst-Kanaan N, Tole F, Ziegler C, Domschke K, Reif A, Kittel-Schneider S. Longitudinal multi-level biomarker analysis of BDNF in major depression and bipolar disorder. Eur Arch Psychiatry Clin Neurosci 2020; 270:169-181. [PMID: 30929061 DOI: 10.1007/s00406-019-01007-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022]
Abstract
Preliminary evidence suggests that BDNF (brain derived neurotrophic factor) rs6265 genetic polymorphism, BDNF gene promotor methylation and BDNF serum levels might play an important role in the pathogenesis of affective disorders. As studies testing the BDNF system across molecular levels are sparse, this study aimed at investigating the BDNF val66met genotype, BDNF DNA methylation changes and peripheral BDNF serum levels in acute and remitted phases of MDD (major depressive disorder) and BD (bipolar disorder) and healthy controls. We found a significant difference of methylation levels at CpG site 1-1-1 and 3-1-1 between MDD and healthy controls (p < 0.003) with MDD patients showing significantly higher methylation levels. CpG 5-2-1 revealed a statistically significant difference between MDD and healthy controls and MDD and BD (p = 0.00003). Similar to the results of the methylation analysis a significant difference between MDD and healthy controls was found in BDNF serum levels (p = 0.002) with significantly lower BDNF serum levels in MDD compared to healthy controls. A difference between the samples from admission and discharge from hospital of both BDNF gene methylation and serum levels could not be detected in the present study and no influence of the BDNF val66met genotype on neither methylation nor BDNF serum level.
Collapse
Affiliation(s)
- Katrin Schröter
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt, Germany
| | - Murielle Brum
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt, Germany
| | - Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt, Germany
| | - Franziska Tole
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt, Germany
| | - Christiane Ziegler
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt, Germany.
| |
Collapse
|
21
|
Dong SQ, Wang SS, Zhu JX, Mu RH, Li CF, Geng D, Liu Q, Yi LT. Oleanolic acid decreases SGK1 in the hippocampus in corticosterone-induced mice. Steroids 2019; 149:108419. [PMID: 31153932 DOI: 10.1016/j.steroids.2019.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022]
Abstract
Our previous study has demonstrated that oleanolic acid produced an antidepressant-like effect in mice exposed to chronic stress. Considering that serine/threonine-protein kinase 1 (SGK1) is involved in stress response, the present study aimed to evaluate the involvement of SGK1 in the antidepressant-like effects of oleanolic acid in depression-like mice induced by long term corticosterone (CORT) injection. Behaviors, SGK1, brain-derived neurotrophic factor (BDNF) and its downstream targets were assessed after administration with oleanolic for three weeks. The results indicated that oleanolic acid increased the sucrose preference and decreased the immobility time. In addition, oleanolic acid decreased SGK1 and activated BDNF-AKT/mTOR signaling in the hippocampus of CORT-induced animals. However, we found that GSK650394, an inhibitor of SGK1 did not exert any effects on the behaviors, GR levels and BDNF signaling. The number of spines in hippocampal neurons was not changed by GSK650394 as well. Taken together, this study demonstrated that oleanolic acid produced the antidepressant-like effects, which might be related to the down-regulation of SGK1. However, inhibition of SGK1 directly lacks the effects in the treatment of depression.
Collapse
Affiliation(s)
- Shu-Qi Dong
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Shuang-Shuang Wang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, PR China
| | - Rong-Hao Mu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Xiamen 361009, Fujian Province, PR China
| | - Di Geng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Qing Liu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
22
|
Rothenberg DO, Zhang L. Mechanisms Underlying the Anti-Depressive Effects of Regular Tea Consumption. Nutrients 2019; 11:E1361. [PMID: 31212946 PMCID: PMC6627400 DOI: 10.3390/nu11061361] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
This article is a comprehensive review of the literature pertaining to the antidepressant effects and mechanisms of regular tea consumption. Meta-data supplemented with recent observational studies were first analyzed to assess the association between tea consumption and depression risk. The literature reported risk ratios (RR) were 0.69 with 95% confidence intervals of 0.62-0.77. Next, we thoroughly reviewed human trials, mouse models, and in vitro experiments to determine the predominant mechanisms underlying the observed linear relationship between tea consumption and reduced risk of depression. Current theories on the neurobiology of depression were utilized to map tea-mediated mechanisms of antidepressant activity onto an integrated framework of depression pathology. The major nodes within the network framework of depression included hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, inflammation, weakened monoaminergic systems, reduced neurogenesis/neuroplasticity, and poor microbiome diversity affecting the gut-brain axis. We detailed how each node has subsystems within them, including signaling pathways, specific target proteins, or transporters that interface with compounds in tea, mediating their antidepressant effects. A major pathway was found to be the ERK/CREB/BDNF signaling pathway, up-regulated by a number of compounds in tea including teasaponin, L-theanine, EGCG and combinations of tea catechins and their metabolites. Black tea theaflavins and EGCG are potent anti-inflammatory agents via down-regulation of NF-κB signaling. Multiple compounds in tea are effective modulators of dopaminergic activity and the gut-brain axis. Taken together, our findings show that constituents found in all major tea types, predominantly L-theanine, polyphenols and polyphenol metabolites, are capable of functioning through multiple pathways simultaneously to collectively reduce the risk of depression.
Collapse
Affiliation(s)
- Dylan O'Neill Rothenberg
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| | - Lingyun Zhang
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
23
|
Chakrabarty T, Yatham LN. Objective and biological markers in bipolar spectrum presentations. Expert Rev Neurother 2019; 19:195-209. [PMID: 30761925 DOI: 10.1080/14737175.2019.1580145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Subthreshold presentations of bipolarity (BSPs) pose a diagnostic conundrum, in terms of whether they should be conceptualized and treated similarly as traditionally defined bipolar disorders (BD). While it has been argued that BSPs are on a pathophysiologic continuum with traditionally defined BDs, there has been limited examination of biological and objective markers in these presentations to validate this assertion. Areas covered: The authors review studies examining genetic, neurobiological, cognitive and peripheral markers in BSPs, encompassing clinical and non-clinical populations with subthreshold hypo/manic symptoms. Results are placed in the context of previously identified markers in traditionally defined BDs. Expert commentary: There have been few studies of objective and biological markers in subthreshold presentations of BD, and results are mixed. While abnormalities in brain structure/functioning, peripheral inflammatory, and cognitive markers have been reported, it is unclear whether these findings are specific to BD or indicative of broad affective pathology. However, some studies suggest that increased sensitivity to reward and positive stimuli are shared between subthreshold and traditionally defined BDs, and may represent a point of departure from unipolar major depression. Further examination of such markers may improve understanding of subthreshold bipolar presentations, and provide guidance in terms of therapeutic strategies.
Collapse
Affiliation(s)
- Trisha Chakrabarty
- a Department of Psychiatry , University of British Columbia , Vancouver , BC , Canada
| | - Lakshmi N Yatham
- a Department of Psychiatry , University of British Columbia , Vancouver , BC , Canada
| |
Collapse
|
24
|
Djillani A, Pietri M, Mazella J, Heurteaux C, Borsotto M. Fighting against depression with TREK-1 blockers: Past and future. A focus on spadin. Pharmacol Ther 2018; 194:185-198. [PMID: 30291907 DOI: 10.1016/j.pharmthera.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Depression is a devastating mood disorder and a leading cause of disability worldwide. Depression affects approximately one in five individuals in the world and represents heavy economic and social burdens. The neurobiological mechanisms of depression are not fully understood, but evidence highlights the role of monoamine neurotransmitter balance. Several antidepressants (ADs) are marketed to treat depression and related mood disorders. However, despite their efficacy, they remain nonspecific and unsafe because they trigger serious adverse effects. Therefore, developing new molecules for new targets in depression has become a real necessity. Eight years ago, spadin was described as a natural peptide with AD properties. This 17-amino acid peptide blocks TREK-1 channels, an original target in depression. Compared to the classical AD drugs such as fluoxetine, which requires 3-4 weeks for the AD effect to manifest, spadin acts rapidly within only 4 days of treatment. The AD properties are associated with increased neurogenesis and synaptogenesis in the brain. Despite the advantages of this fast-acting AD, the in vivo stability is weak and does not last for >7 h. The present review summarizes different strategies such as retro-inverso strategy, cyclization, and shortening the spadin sequence that has led to the development and optimization of spadin as an AD. Shortened spadin analogs present increased inhibition potency for TREK-1, an improved AD activity, and prolonged in vivo bioavailability. Finally, we also discuss about other inhibitors of TREK-1 channels with a proven efficacy in treating depression in the clinic, such as fluoxetine.
Collapse
Affiliation(s)
- Alaeddine Djillani
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Mariel Pietri
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Jean Mazella
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Catherine Heurteaux
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Marc Borsotto
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France.
| |
Collapse
|
25
|
Rowland T, Perry BI, Upthegrove R, Barnes N, Chatterjee J, Gallacher D, Marwaha S. Neurotrophins, cytokines, oxidative stress mediators and mood state in bipolar disorder: systematic review and meta-analyses. Br J Psychiatry 2018; 213:514-525. [PMID: 30113291 PMCID: PMC6429261 DOI: 10.1192/bjp.2018.144] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND A reliable biomarker signature for bipolar disorder sensitive to illness phase would be of considerable clinical benefit. Among circulating blood-derived markers there has been a significant amount of research into inflammatory markers, neurotrophins and oxidative stress markers.AimsTo synthesise and interpret existing evidence of inflammatory markers, neurotrophins and oxidative stress markers in bipolar disorder focusing on the mood phase of illness. METHOD Following PRISMA (Preferred Reporting Items for Systematic reviews and Meta-analyses) guidelines, a systematic review was conducted for studies investigating peripheral biomarkers in bipolar disorder compared with healthy controls. We searched Medline, Embase, PsycINFO, SciELO and Web of Science, and separated studies by bipolar mood phase (mania, depression and euthymia). Extracted data on each biomarker in separate mood phases were synthesised using random-effects model meta-analyses. RESULTS In total, 53 studies were included, comprising 2467 cases and 2360 controls. Fourteen biomarkers were identified from meta-analyses of three or more studies. No biomarker differentiated mood phase in bipolar disorder individually. Biomarker meta-analyses suggest a combination of high-sensitivity C-reactive protein/interleukin-6, brain derived neurotrophic factor/tumour necrosis factor (TNF)-α and soluble TNF-α receptor 1 can differentiate specific mood phase in bipolar disorder. Several other biomarkers of interest were identified. CONCLUSIONS Combining biomarker results could differentiate individuals with bipolar disorder from healthy controls and indicate a specific mood-phase signature. Future research should seek to test these combinations of biomarkers in longitudinal studies.Declaration of interestNone.
Collapse
Affiliation(s)
- Tobias Rowland
- IHR Academic Clinical Fellow in Psychiatry, Mental Health and Wellbeing, Warwick Medical School, University of Warwick, UK
| | - Benjamin I. Perry
- NIHR Academic Clinical Fellow in Psychiatry, Mental Health and Wellbeing, Warwick Medical School, University of Warwick, UK
| | - Rachel Upthegrove
- Senior Clinical Lecturer in Psychiatry, Institute of Clinical Sciences, School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Nicholas Barnes
- Professor of Neuropharmacology, Institute of Clinical Sciences, School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Jayanta Chatterjee
- Consultant Psychiatrist, Affective Disorders Service, Caludon Centre, Coventry, UK
| | - Daniel Gallacher
- Research Associate in Medical Statistics, WMS Population, Evidence and Technologies, Warwick Medical School, University of Warwick, UK
| | - Steven Marwaha
- Reader in Psychiatry, Mental Health and Wellbeing, Warwick Medical School, University of Warwick,UK,Correspondence: Steven Marwaha, Mental Health and Wellbeing, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
26
|
Cui W, Ning Y, Hong W, Wang J, Liu Z, Li MD. Crosstalk Between Inflammation and Glutamate System in Depression: Signaling Pathway and Molecular Biomarkers for Ketamine's Antidepressant Effect. Mol Neurobiol 2018; 56:3484-3500. [PMID: 30140973 DOI: 10.1007/s12035-018-1306-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/07/2018] [Indexed: 12/25/2022]
Abstract
Depression is a worldwide illness with a significant impact on both family and society. Conventional antidepressants are ineffective for more than 30% of patients. In such patients, who have what is called treatment-resistant depression (TRD), inflammatory biomarkers are expressed excessively in both the central nervous system (CNS) and the peripheral blood. Ketamine, a glutamate receptor antagonist, exerts a rapid and sustained therapeutic effect in patients with TRD. Thus, the investigation of the relations between inflammation and glutamate underlying depression has drawn great attention. Inflammation influences glutamate release, transmission, and metabolism, resulting in accumulated extracellular glutamate in the CNS. Downstream of the glutamate receptors, the mammalian target of rapamycin (mTOR) signaling pathway plays a key role in mediating ketamine's antidepressant effect by improving neurogenesis and plasticity. Based on the mechanism and clinical evidence of the inflammatory contribution to the pathogenesis of depression, extensive research has been devoted to inflammatory biomarkers of the clinical response of depression to ketamine. The inconsistent findings from the biomarker investigations are at least partially attributable to the heterogeneity of depression, limited sample size, and complex gene-environment interactions. Deep exploration of the clinical observations and the underlying mechanism of ketamine's antidepressant response can provide new insights into the selection of specific groups of depressed patients for ketamine treatment and to aid in monitoring the therapeutic effect during antidepressant medication. Further, targeting persistent inflammation in patients with TRD and the key molecules mediating ketamine's antidepressant effect may encourage the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Zhening Liu
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China. .,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China. .,Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
27
|
da Fonsêca VS, da Silva Colla AR, de Paula Nascimento-Castro C, Plácido E, Rosa JM, Farina M, Gil-Mohapel J, Rodrigues ALS, Brocardo PS. Brain-Derived Neurotrophic Factor Prevents Depressive-Like Behaviors in Early-Symptomatic YAC128 Huntington’s Disease Mice. Mol Neurobiol 2018; 55:7201-7215. [DOI: 10.1007/s12035-018-0890-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|
28
|
Vakonaki E, Tsiminikaki K, Plaitis S, Fragkiadaki P, Tsoukalas D, Katsikantami I, Vaki G, Tzatzarakis MN, Spandidos DA, Tsatsakis AM. Common mental disorders and association with telomere length. Biomed Rep 2018; 8:111-116. [PMID: 29435268 PMCID: PMC5778888 DOI: 10.3892/br.2018.1040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Telomeres are repeated 5′-TTAGGG-3′ sequences at the end of chromosomes, which maintain genomic stability. Their length is related to a number of diseases that affect humans. Apart from cancer, cardiovascular diseases, diabetes and other, telomere length has been associated with chronic diseases. Chronic mental illness includes various types of mental disorders with the most common being depression, schizophrenia and stress-anxiety. The aim of this review is to summarize the current state of knowledge on the role of telomeres in these disorders and to compare telomere length variations in patients receiving medication and patients not taking treatment. Most studies report reduced telomere length in patients suffering from mental disorders, compared to the general population. Since the factors that can affect telomere length are various, more experiments and investigations are required to understand the general impact of different factors on telomere length.
Collapse
Affiliation(s)
- E Vakonaki
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - K Tsiminikaki
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - S Plaitis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - P Fragkiadaki
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - D Tsoukalas
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - I Katsikantami
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - G Vaki
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - M N Tzatzarakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - D A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Crete, Greece
| | - A M Tsatsakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| |
Collapse
|
29
|
de Queiroz AIG, Chaves Filho AJM, Araújo TDS, Lima CNC, Machado MDJS, Carvalho AF, Vasconcelos SMM, de Lucena DF, Quevedo J, Macedo D. Antimanic activity of minocycline in a GBR12909-induced model of mania in mice: Possible role of antioxidant and neurotrophic mechanisms. J Affect Disord 2018; 225:40-51. [PMID: 28783519 DOI: 10.1016/j.jad.2017.07.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Mania/hypomania is the cardinal feature of bipolar disorder. Recently, single administration of the dopamine transporter (DAT) inhibitor, GBR12909, was related to mania-like alterations. In the present study we aimed at testing behavioral and brain oxidant/neurotrophic alterations induced by the repeated administration of GBR12909 and its prevention/reversal by the mood stabilizing drugs, lithium (Li) and valproate (VAL) as well as by the neuroprotective drug, minocycline (Mino). METHODS Adult Swiss mice were submitted to 14 days protocols namely prevention and reversal. In the reversal protocol mice were given GBR12909 or saline and between days 8 and 14 received Li, VAL, Mino (25 or 50mg/kg) or saline. In the prevention treatment, mice were pretreated with Li, VAL, Mino or saline prior to GBR12909. RESULTS GBR12909 repeated administration induced hyperlocomotion and increased risk taking behavior that were prevented and reversed by the mood stabilizers and both doses of Mino. Li, VAL or Mino were more effective in the reversal of striatal GSH alterations induced by GBR12909. Regarding lipid peroxidation Mino was more effective in the prevention and reversal of lipid peroxidation in the hippocampus whereas Li and VAL prevented this alteration in the striatum and PFC. Li, VAL and Mino25 reversed the decrease in BDNF levels induced by GBR12909. CONCLUSION GBR12909 repeated administration resembles manic phenotype. Similarly to classical mood-stabilizing agents, Mino prevented and reversed GBR12909 manic-like behavior in mice. Thus, our data provide preclinical support to the design of trials investigating Mino's possible antimanic effects.
Collapse
Affiliation(s)
- Ana Isabelle G de Queiroz
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Tatiane da Silva Araújo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Camila Nayane Carvalho Lima
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Michel de Jesus Souza Machado
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group and the Department of Clinical Medicine, Faculty of Medicine, Fortaleza, CE, Brazil
| | - Silvania Maria Mendes Vasconcelos
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - David Freitas de Lucena
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Danielle Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
30
|
Tatay-Manteiga A, Balanzá-Martínez V, Bristot G, Tabarés-Seisdedos R, Kapczinski F, Cauli O. Clinical staging and serum cytokines in bipolar patients during euthymia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:194-201. [PMID: 28445689 DOI: 10.1016/j.pnpbp.2017.04.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 01/08/2023]
Abstract
AIMS Changes in serum cytokines and altered neutrophin concentration have been associated with bipolar disorder (BD). Our aim here was to analyze peripheral blood biomarkers according to the clinical stages of BD. METHOD Euthymic BD-I patients were grouped according to their level of functioning in early-stage (n=25) and late-stage (n=23), and compared to healthy siblings (n=23) and genetically unrelated healthy controls (n=21). Neurotrophin (neurotrophin-3 and BDNF) concentration and biomarkers of inflammation, including cytokines (IL-6, IL-10 and TNF-α), leukocytes count and acute phase proteins, were measured. RESULTS IL-10 concentration was significantly increased in early-stage patients compared to late-stage patients, healthy siblings and controls whereas TNF-α concentration was significantly increased in late-stage patients compared to controls. Total leukocytes, neutrophil and monocyte count were significantly increased in late-stage patients compared to healthy siblings and controls. The concentration of IL-6, neurotrophin-3 and BDNF was unchanged in euthymia. Healthy siblings did not show significant changes in any biomarker. CONCLUSIONS The concentration of IL-10, TNF-α, neutrophil and monocytes subtype count in blood is altered in patients with BD during euthymic state. The link between peripheral inflammation and different stages in BD deserves further studies.
Collapse
Affiliation(s)
| | - Vicent Balanzá-Martínez
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, CIBERSAM, Valencia, Spain; Service of Psychiatry, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Giovana Bristot
- Laboratório de Psiquiatria Molecular, Centro de Pesquisas Experimentais, Hospital de Clínicas de Porto Alegre (HCPA), InstitutoNacional de Ciência e Tecnologia - Medicina Translacional (INCT-TM), Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Tabarés-Seisdedos
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, CIBERSAM, Valencia, Spain
| | | | - Omar Cauli
- Department of Nursing, University of Valencia, Valencia, Spain.
| |
Collapse
|
31
|
Burkhart A, Andresen TL, Aigner A, Thomsen LB, Moos T. Transfection of primary brain capillary endothelial cells for protein synthesis and secretion of recombinant erythropoietin: a strategy to enable protein delivery to the brain. Cell Mol Life Sci 2017; 74:2467-2485. [PMID: 28293718 PMCID: PMC11107693 DOI: 10.1007/s00018-017-2501-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/13/2017] [Accepted: 03/03/2017] [Indexed: 12/13/2022]
Abstract
Treatment of chronic disorders affecting the central nervous system (CNS) is complicated by the inability of drugs to cross the blood-brain barrier (BBB). Non-viral gene therapy applied to brain capillary endothelial cells (BCECs) denotes a novel approach to overcome the restraints in this passage, as turning BCECs into recombinant protein factories by transfection could result in protein secretion further into the brain. The present study aims to investigate the possibility of transfecting primary rat brain endothelial cells (RBECs) for recombinant protein synthesis and secretion of the neuroprotective protein erythropoietin (EPO). We previously showed that 4% of RBECs with BBB properties can be transfected without disrupting the BBB integrity in vitro, but it can be questioned whether this is sufficient to enable protein secretion at therapeutic levels. The present study examined various transfection vectors, with regard to increasing the transfection efficiency without disrupting the BBB integrity. Lipofectamine 3000™ was the most potent vector compared to polyethylenimine (PEI) and Turbofect. When co-cultured with astrocytes, the genetically modified RBECs secreted recombinant EPO into the cell culture medium both luminally and abluminally, and despite lower levels of EPO reaching the abluminal chamber, the amount of recombinant EPO was sufficient to evolve a biological effect on astrocytes cultured at the abluminal side in terms of upregulated gene expression of brain-derived neurotropic factor (BDNF). In conclusion, non-viral gene therapy to RBECs leads to protein secretion and signifies a method for therapeutic proteins to target cells inside the CNS otherwise omitted due to the BBB.
Collapse
Affiliation(s)
- Annette Burkhart
- Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 3B, 2.104, 9220, Aalborg East, Denmark.
| | - Thomas Lars Andresen
- DTU Nanotech, Technical University of Denmark, Produktionstorvet Building 423, 2800, Kongens Lyngby, Denmark
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Louiza Bohn Thomsen
- Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 3B, 2.104, 9220, Aalborg East, Denmark
| | - Torben Moos
- Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 3B, 2.104, 9220, Aalborg East, Denmark
| |
Collapse
|
32
|
Dean J, Keshavan M. The neurobiology of depression: An integrated view. Asian J Psychiatr 2017; 27:101-111. [PMID: 28558878 DOI: 10.1016/j.ajp.2017.01.025] [Citation(s) in RCA: 406] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 12/19/2022]
Abstract
Major Depressive Disorder (MDD) is one of the most common and debilitating mental disorders; however, its etiology remains unclear. This paper aims to summarize the major neurobiological underpinnings of depression, synthesizing the findings into a comprehensive integrated view. A literature review was conducted using Pubmed. Search terms included "depression" or "MDD" AND "biology", "neurobiology", "inflammation", "neurogenesis", "monoamine", and "stress". Articles from 1995 to 2016 were reviewed with a focus on the connection between different biological and psychological models. Some possible pathophysiological mechanisms of depression include altered neurotransmission, HPA axis abnormalities involved in chronic stress, inflammation, reduced neuroplasticity, and network dysfunction. All of these proposed mechanisms are integrally related and interact bidirectionally. In addition, psychological factors have been shown to have a direct effect on neurodevelopment, causing a biological predisposition to depression, while biological factors can lead to psychological pathology as well. The authors suggest that while it is possible that there are several different endophenotypes of depression with distinct pathophysiological mechanisms, it may be helpful to think of depression as one united syndrome, in which these mechanisms interact as nodes in a matrix. Depressive disorders are considered in the context of the RDoC paradigm, identifying the pathological mechanisms at every translational level, with a focus on how these mechanisms interact. Finally, future directions of research are identified.
Collapse
Affiliation(s)
- Jason Dean
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA, 02115, United States.
| | - Matcheri Keshavan
- Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center, Harvard Medical School, 75 Fenwood Rd., Boston, MA, 02115, United States.
| |
Collapse
|
33
|
Cevher Binici N, Inal Emiroğlu FN, Resmi H, Ellidokuz H. Serum Brain-derived Neurotrophic Factor Levels among Euthymic Adolescents with Bipolar Disorder Type I. Noro Psikiyatr Ars 2017; 53:267-271. [PMID: 28373806 DOI: 10.5152/npa.2015.8832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 04/21/2015] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Bipolar disorder (BD) has been increasingly associated with abnormalities in neuroplasticity and cellular resilience in brain regions that are involved in mood and that affect regulation. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family that regulates neuroplasticity. The aims of the current study were to compare serum BDNF levels in euthymic adolescents with BD type I with those in controls and to investigate the relationship between clinical variables and serum BDNF levels in adolescents with BD type I. METHODS Twenty-five adolescents diagnosed with BD type I and 17 healthy control subjects within the age range of 15-19 years were recruited. Diagnoses were made by two experienced research clinicians using the Kiddie and Young Adult Schedule for Affective Disorders and Schizophrenia Present and Lifetime Version and the affective module of Washington University in St. Louis Kiddie and Young Adult Schedule for Affective Disorders and Schizophrenia-Present State and Lifetime. Blood samples were taken during euthymia, which was defined as Young Mania Rating Scale and Hamilton Depression Rating Scale scores below 7. RESULTS The comparison of BDNF serum levels between the case and healthy control groups revealed no significant differences. In the case group, BDNF levels were significantly lower in patients being currently treated with lithium. CONCLUSION Similar to normal BDNF levels in adult patients with BD, the normal BDNF serum levels that we found in the euthymic state in adolescents and early adulthood may be related to the developmental brain stage in our study group. It may also show a common neurobiological basis of pediatric and adult BD. Further investigations evaluating BDNF levels in different mood states could help identify the role of BDNF in the underlying pathophysiology of BD.
Collapse
Affiliation(s)
- Nagihan Cevher Binici
- Clinic of Child and Adolescent Psychiatry, Dr. Behçet Uz Pediatrics and Surgery Training and Research Hospital, İzmir, Turkey
| | | | - Halil Resmi
- Department of Medical Biochemistry, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Hülya Ellidokuz
- Department of Preventive Oncology, Dokuz Eylül University School of Medicine, İzmir, Turkey
| |
Collapse
|
34
|
You Z, Yao Q, Shen J, Gu Z, Xu H, Wu Z, Chen C, Li L. Antidepressant-like effects of ginsenoside Rg3 in mice via activation of the hippocampal BDNF signaling cascade. J Nat Med 2016; 71:367-379. [PMID: 28013484 DOI: 10.1007/s11418-016-1066-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
Abstract
Current antidepressants are clinically effective only after several weeks of administration. Ginsenoside Rg3 is one component of ginsenosides, with a similar chemical structure to ginsenoside Rg1. Here, we investigated the antidepressant effects of Rg3 in mouse models of depression. The antidepressant actions of Rg3 were first examined in the forced swim test (FST) and tail suspension test (TST), and then assessed in the chronic social defeat stress (CSDS) model of depression. The changes in the hippocampal brain-derived neurotrophic factor (BDNF) signaling pathway after CSDS and Rg3 treatment were investigated. A tryptophan hydroxylase inhibitor and a BDNF signaling inhibitor were also used to determine the pharmacological mechanisms of Rg3. It was found that Rg3 produced antidepressant effects in the FST and TST without affecting locomotor activity. Rg3 also prevented the CSDS-induced depressive-like symptoms. Moreover, Rg3 fully restored the CSDS-induced decrease in the hippocampal BDNF signaling pathway, and use of the BDNF signaling inhibitor blocked the antidepressant effects of Rg3. In conclusion, ginsenoside Rg3 has antidepressant effects via promotion of the hippocampal BDNF signaling pathway.
Collapse
Affiliation(s)
- Zhengchen You
- Department of Burns and Plastic Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical College of Nantong University, No. 210 Yingchun Road, Taizhou, 225300, Jiangsu, China.
| | - Qi Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhikai Gu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Hui Xu
- Department of Neurosurgery, The Sixth People's Hospital of Nantong, Nantong, 226001, Jiangsu, China
| | - Zhonghua Wu
- Department of Neurosurgery, The Sixth People's Hospital of Nantong, Nantong, 226001, Jiangsu, China
| | - Chuanjun Chen
- Department of Burns and Plastic Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical College of Nantong University, No. 210 Yingchun Road, Taizhou, 225300, Jiangsu, China
| | - Luozhu Li
- Department of Burns and Plastic Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Medical College of Nantong University, No. 210 Yingchun Road, Taizhou, 225300, Jiangsu, China
| |
Collapse
|
35
|
Stratta P, Sanità P, Bonanni RL, de Cataldo S, Angelucci A, Rossi R, Origlia N, Domenici L, Carmassi C, Piccinni A, Dell'Osso L, Rossi A. Clinical correlates of plasma brain-derived neurotrophic factor in post-traumatic stress disorder spectrum after a natural disaster. Psychiatry Res 2016; 244:165-70. [PMID: 27479108 DOI: 10.1016/j.psychres.2016.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/26/2016] [Accepted: 07/09/2016] [Indexed: 12/30/2022]
Abstract
Clinical correlates of plasma Brain-Derived Neurotrophic Factor (BDNF) have been investigated in a clinical population with Post Traumatic Stress Disorder (PTSD) symptoms and healthy control subjects who survived to the L'Aquila 2009 earthquake. Twenty-six outpatients and 14 control subjects were recruited. Assessments included: Structured Clinical Interview for DSM-IV Axis-I disorders Patient Version, Trauma and Loss Spectrum-Self Report (TALS-SR) for post-traumatic spectrum symptoms. Thirteen patients were diagnosed as Full PTSD and 13 as Partial PTSD. The subjects with full-blown PTSD showed lower BDNF level than subjects with partial PTSD and controls. Different relationship patterns of BDNF with post-traumatic stress spectrum symptoms have been reported in the three samples. Our findings add more insight on the mechanisms regulating BDNF levels in response to stress and further proofs of the utility of the distinction of PTSD into full and partial categories.
Collapse
Affiliation(s)
- Paolo Stratta
- Department of Mental Health, ASL 1, L'Aquila, Italy.
| | - Patrizia Sanità
- General Pathology and Immunology Laboratory, Department Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
| | | | | | - Adriano Angelucci
- General Pathology and Immunology Laboratory, Department Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Rossi
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
| | | | - Luciano Domenici
- Neuroscience Institute, CNR, Pisa, Italy; Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Armando Piccinni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Rossi
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
36
|
Antidepressant-like effects of standardized gypenosides: involvement of brain-derived neurotrophic factor signaling in hippocampus. Psychopharmacology (Berl) 2016; 233:3211-21. [PMID: 27385417 DOI: 10.1007/s00213-016-4357-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/13/2016] [Indexed: 12/19/2022]
Abstract
RATIONALE Gypenosides have been reported to produce neuroprotective effects and increase monoamine neurotransmitter levels in the brain. OBJECTIVE Considering that depression is involved in monoamine reduction, this study evaluated the antidepressant-like effects of gypenosides in mice exposed to chronic unpredictable mild stress (CUMS). METHODS The sucrose preference test and forced swimming test were performed after administration of gypenosides (at 25, 50, or 100 mg/kg) for 4 weeks. Hippocampal brain-derived neurotrophic factor (BDNF) and its downstream targets were analyzed by western blot. Additionally, hippocampal neuronal proliferation was measured by immunohistochemistry. RESULTS Four-week treatment with fluoxetine (20 mg/kg) and gypenosides (at either 50 or 100 mg/kg) increased sucrose preference and decreased the immobility time in mice exposed to CUMS. In addition, gypenosides (at either 50 or 100 mg/kg) also increased BDNF expression and neuronal proliferation in the hippocampus of CUMS animals. Further, we showed that treating CUMS mice with K252a, which is an inhibitor of the BDNF receptor TrkB, blocked the effects of gypenosides (100 mg/kg), including behavioral improvements, neuronal proliferation, and up-regulation of p-TrkB, p-ERK, and p-Akt proteins. CONCLUSIONS This study demonstrates that gypenosides exhibit antidepressant-like effects in mice, which may be mediated by activation of the BDNF-ERK/Akt signaling pathway in the hippocampus.
Collapse
|
37
|
Serum BDNF levels before and after the development of mood disorders: a case-control study in a population cohort. Transl Psychiatry 2016; 6:e782. [PMID: 27070410 PMCID: PMC4872405 DOI: 10.1038/tp.2016.47] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023] Open
Abstract
Serum levels of brain-derived neurotrophic factor (BDNF) are low in major depressive disorder (MDD), and were recently shown to decrease in chronic depression, but whether this is a trait or state marker of MDD remains unclear. We investigated whether serum BDNF levels decrease before or after the developments of MDD and other mood disorders through a case-control study nested in a cohort of 1276 women aged 75-84 years in 2008. Psychiatrists using the Structured Clinical Interview for DSM-IV identified incident cases of mood disorders at follow-up surveys in 2010 and 2012: 28 of MDDs, 39 of minor depressive disorders (minDDs) and 8 of minor depressive episodes with a history of major depressive episodes (minDEs with MDE history). A total of 106 representative non-depressed controls were also identified in the 2012 follow-up. We assayed BDNF levels in preserved sera of cases and controls at baseline and at follow-up. Serum BDNF levels at baseline in cases of MDD, minDD or minDE with MDE history were no lower than those in controls. The decrease in the serum BDNF level from baseline to follow-up was greater in cases of MDD or minDE with MDE history than in controls or cases of minDD. These results show that serum BDNF levels are not a trait marker of MDD in old women but appeared to be a state marker. The different changes in BDNF levels among diagnostic groups suggest that MDD has a pathophysiologic relation to minDE with MDE history, rather than to minDD.
Collapse
|
38
|
Nery FG, Gigante AD, Amaral JA, Fernandes FB, Berutti M, Almeida KM, Stertz L, Bristot G, Kapczinski F, Lafer B. Serum BDNF levels in unaffected first-degree relatives of patients with bipolar disorder. ACTA ACUST UNITED AC 2016; 38:197-200. [PMID: 26870912 PMCID: PMC7194272 DOI: 10.1590/1516-4446-2015-1801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/09/2015] [Indexed: 01/19/2023]
Abstract
Objective: Unaffected relatives of bipolar disorder (BD) patients have been investigated for the identification of endophenotypes in an attempt to further elucidate the pathophysiology of the disease. Brain-derived neurotrophic factor (BDNF) is considered to be implicated in the pathophysiology of BD, but its role as an endophenotype has been poorly studied. We investigated abnormal serum BDNF levels in BD patients, in their unaffected relatives, and in healthy controls. Methods: BDNF levels were obtained from 25 DSM-IV bipolar I disorder patients, 23 unaffected relatives, and 27 healthy controls. All BD patients were in remission. The unaffected subjects were first-degree relatives of the proband who had no lifetime DSM-IV diagnosis of axis I disorder. BDNF serum levels were determined by sandwich ELISA using monoclonal BDNF-specific antibodies. Results: There were no statistical differences in BDNF levels among BD patients, relatives, and healthy controls. Conclusion: Serum BDNF levels may not indicate high genetic risk for BD, possibly acting as state markers rather than trait markers of the disease.
Collapse
Affiliation(s)
- Fabiano G Nery
- Programa de Transtorno Bipolar, Departamento de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexandre D Gigante
- Programa de Transtorno Bipolar, Departamento de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Jose A Amaral
- Programa de Transtorno Bipolar, Departamento de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Francy B Fernandes
- Programa de Transtorno Bipolar, Departamento de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Mariangeles Berutti
- Programa de Transtorno Bipolar, Departamento de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Karla M Almeida
- Programa de Transtorno Bipolar, Departamento de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Laura Stertz
- Laboratório de Psiquiatria Molecular, Centro de Pesquisas Experimentais, Hospital de Clínicas de Porto Alegre (HCPA), Instituto Nacional de Ciência e Tecnologia - Medicina Translacional (INCT-TM), Porto Alegre, RS, Brazil
| | - Giovana Bristot
- Laboratório de Psiquiatria Molecular, Centro de Pesquisas Experimentais, Hospital de Clínicas de Porto Alegre (HCPA), Instituto Nacional de Ciência e Tecnologia - Medicina Translacional (INCT-TM), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Flavio Kapczinski
- Laboratório de Psiquiatria Molecular, Centro de Pesquisas Experimentais, Hospital de Clínicas de Porto Alegre (HCPA), Instituto Nacional de Ciência e Tecnologia - Medicina Translacional (INCT-TM), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Medicina, Psiquiatria, UFRGS, Porto Alegre, RS, Brazil
| | - Beny Lafer
- Programa de Transtorno Bipolar, Departamento de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
39
|
Chou YH, Lirng JF, Hsieh WC, Chiu YC, Tu YA, Wang SJ. Neither cortisol nor brain-derived neurotrophic factor is associated with serotonin transporter in bipolar disorder. Eur Neuropsychopharmacol 2016; 26:280-287. [PMID: 26706694 DOI: 10.1016/j.euroneuro.2015.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 10/18/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022]
Abstract
Converging evidence indicates the hypothalamus-pituitary-adrenal axis and serotonergic neurons exert reciprocal modulatory actions. Likewise, brain-derived neurotrophic factor (BDNF) has been implicated as a growth and differentiation factor in the development of serotonergic neurons. The aim of this study was to examine the interaction of cortisol and BDNF on serotonin transporter (SERT) in bipolar disorder (BD). Twenty-eight BD and 28 age- and gender-matched healthy controls (HCs) were recruited. (123)I-ADAM with single-photon emission computed tomography (SPECT) was applied for measurement of SERT availability in the brain, which included the midbrain, thalamus, putamen and caudate. Ten milliliters of venous blood was withdrawn, when the subject underwent SPECT, for the measurement of the plasma concentration of cortisol and BDNF. SERT availability was significantly decreased in the midbrain and caudate of BD compared with HCs, whereas plasma concentration of cortisol and BDNF did not show a significant difference. The linear mixed-effect model revealed that there was a significant interaction of group and cortisol on SERT availability of the midbrain, but not BDNF. Linear regression analyses by groups revealed that cortisol was associated with SERT availability in the midbrain in the HCs, but not in BD. Considering previous studies, which showed a significant association of cortisol with SERT availability in the HCs and major depressive disorder (MDD), our result replicated a similar finding in HCs. However, the negative finding of the association of cortisol and SERT availability in BD, which was different from MDD, suggests a different role for cortisol in the pathophysiology of mood disorder.
Collapse
Affiliation(s)
- Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan; Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan.
| | - Jiing-Feng Lirng
- Department of Radiology, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan
| | - Wen-Chi Hsieh
- Department of Psychiatry, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan
| | - Yen-Chen Chiu
- Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan
| | - Yi-An Tu
- Department of Psychiatry, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan
| | - Shyh-Jen Wang
- Department of Nuclear Medicine, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
40
|
Cunha GR, Asevedo E, Mansur RB, Zugman A, Pan PM, Gadelha A, Belangero SI, Rizzo LB, Coelho R, Stertz L, Cogo-Moreira H, Grassi-Oliveira R, Teixeira AL, Kauer-Sant'Anna M, Mari JJ, Miguel EC, Bressan RA, Brietzke E. Inflammation, neurotrophism and oxidative stress and childhood psychopathology in a large community sample. Acta Psychiatr Scand 2016; 133:122-132. [PMID: 26139469 DOI: 10.1111/acps.12453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2015] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To investigate the association between peripheral biomarkers and child psychopathology in a large community sample. METHOD A total of 625 aged 6- to 13-year old subjects were recruited from a community school-based study. Psychopathology was assessed using the Child Behaviour Checklist (CBCL). Psychiatric diagnosis was evaluated using the Development and Well-Being Assessment. The following biomarkers were examined in peripheral blood: brain-derived neurotrophic factor, cytokines (IL-2, IL-4, IL-6, IL-10, IL-17, IFN-g, and TNF-α), chemokines (eotaxin/CCL11, IP-10, MCP-1), cytokine receptors (sTNFR1 and sTNFR2), and the oxidative stress marker TBARS. RESULTS We found significant associations between sTNFR2, eotaxin/CCL11 and CBCL total score, as well as with specific dimensions of psychopathology. There were different patterns of association between these biomarkers and psychological and behavioural symptoms in children with and without a mental disorder. TBARS, IL-6 and MCP-1 were more specific to some clusters of symptoms in children with a psychiatric diagnosis. CONCLUSION Our data support the potential use of biomarkers, especially those involved in immune-inflammatory pathways, in investigating neurodevelopmental psychopathology. Their association with different dimensions of symptoms might be of useful when analyzing illness severity and clusters of symptoms within specific disorders.
Collapse
Affiliation(s)
- G R Cunha
- National Institute of Developmental Psychiatry (INPD), São Paulo, Brazil.,Program for Recognition and Intervention in Individuals in At-Risk Mental State (PRISMA), Department of Psychiatry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.,Department of Psychiatry, Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - E Asevedo
- National Institute of Developmental Psychiatry (INPD), São Paulo, Brazil.,Program for Recognition and Intervention in Individuals in At-Risk Mental State (PRISMA), Department of Psychiatry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.,Department of Psychiatry, Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - R B Mansur
- National Institute of Developmental Psychiatry (INPD), São Paulo, Brazil.,Program for Recognition and Intervention in Individuals in At-Risk Mental State (PRISMA), Department of Psychiatry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - A Zugman
- National Institute of Developmental Psychiatry (INPD), São Paulo, Brazil.,Program for Recognition and Intervention in Individuals in At-Risk Mental State (PRISMA), Department of Psychiatry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.,Department of Psychiatry, Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - P M Pan
- National Institute of Developmental Psychiatry (INPD), São Paulo, Brazil.,Program for Recognition and Intervention in Individuals in At-Risk Mental State (PRISMA), Department of Psychiatry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.,Department of Psychiatry, Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - A Gadelha
- National Institute of Developmental Psychiatry (INPD), São Paulo, Brazil.,Program for Recognition and Intervention in Individuals in At-Risk Mental State (PRISMA), Department of Psychiatry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.,Department of Psychiatry, Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - S I Belangero
- National Institute of Developmental Psychiatry (INPD), São Paulo, Brazil.,Department of Psychiatry, Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - L B Rizzo
- Department of Psychiatry, Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - R Coelho
- Post-Graduation Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Developmental Cognitive Neuroscience Research Group (GNCD), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - L Stertz
- Molecular Psychiatry Unit and National Science and Technology Institute for Translational Medicine (INCT-TM), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Psychiatry and Behavioral Sciences, UT Center for Molecular Psychiatry, University of Texas Health Science Center, Houston, TX, USA
| | - H Cogo-Moreira
- Department of Psychiatry, Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - R Grassi-Oliveira
- National Institute of Developmental Psychiatry (INPD), São Paulo, Brazil.,Post-Graduation Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Developmental Cognitive Neuroscience Research Group (GNCD), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - A L Teixeira
- Translational Psychoneuroimmunology Group, Federal University of Minas Gerais (UFMG), Belo Horizonte
| | - M Kauer-Sant'Anna
- Molecular Psychiatry Unit and National Science and Technology Institute for Translational Medicine (INCT-TM), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - J J Mari
- National Institute of Developmental Psychiatry (INPD), São Paulo, Brazil.,Program for Recognition and Intervention in Individuals in At-Risk Mental State (PRISMA), Department of Psychiatry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.,Department of Psychiatry, Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Federal University of São Paulo (UNIFESP), São Paulo, Brazil.,Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - E C Miguel
- National Institute of Developmental Psychiatry (INPD), São Paulo, Brazil.,Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Psychiatry, Faculty of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - R A Bressan
- National Institute of Developmental Psychiatry (INPD), São Paulo, Brazil.,Program for Recognition and Intervention in Individuals in At-Risk Mental State (PRISMA), Department of Psychiatry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.,Department of Psychiatry, Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Federal University of São Paulo (UNIFESP), São Paulo, Brazil.,Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - E Brietzke
- National Institute of Developmental Psychiatry (INPD), São Paulo, Brazil.,Program for Recognition and Intervention in Individuals in At-Risk Mental State (PRISMA), Department of Psychiatry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.,Department of Psychiatry, Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
41
|
Peripheral blood brain-derived neurotrophic factor in bipolar disorder: a comprehensive systematic review and meta-analysis. Mol Psychiatry 2016; 21:216-28. [PMID: 26194180 DOI: 10.1038/mp.2015.54] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/11/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022]
Abstract
Peripheral blood brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in bipolar disorder, speculated to mirror alterations in brain expression of BDNF. The research area is rapidly evolving; however, recent investigations have yielded conflicting results with substantial variation in outcomes, highlighting the need to critically assess the state of current evidence. The aims of the study were to investigate differences in peripheral blood BDNF concentrations between bipolar disorder patients and healthy control subjects and between affective states in bipolar disorder patients, including assessment of the effect of treatment of acute episodes on BDNF levels. A systematic review of English language studies without considering publication status was conducted in PubMed (January 1950-November 2014), Embase (1974-November 2014) and PsycINFO (1806-November 2014), and 35 studies comprising a total of 3798 participants were included in the meta-analysis. The results indicated that crude peripheral blood BDNF levels may be lower in bipolar disorder patients overall (Hedges' g=-0.28, 95% CI: -0.51 to -0.04, P=0.02) and in serum of manic (g=-0.77, 95% CI: -1.36 to -0.18, P=0.01) and depressed (g=-0.87, 95% CI: -1.42 to -0.32, P=0.002) bipolar disorder patients compared with healthy control subjects. No differences in peripheral BDNF levels were observed between affective states overall. Longer illness duration was associated with higher BDNF levels in bipolar disorder patients. Relatively low study quality, substantial unexplained between-study heterogeneity, potential bias in individual studies and indications of publication bias, was observed and studies were overall underpowered. It could thus not be excluded that identified differences between groups were due to factors not related to bipolar disorder. In conclusion, limitations in the evidence base prompt tempered conclusions regarding the role of peripheral BDNF as a biomarker in bipolar disorder and substantially improving the quality of further research is warranted.
Collapse
|
42
|
Fernandes BS, Molendijk ML, Köhler CA, Soares JC, Leite CMGS, Machado-Vieira R, Ribeiro TL, Silva JC, Sales PMG, Quevedo J, Oertel-Knöchel V, Vieta E, González-Pinto A, Berk M, Carvalho AF. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies. BMC Med 2015; 13:289. [PMID: 26621529 PMCID: PMC4666054 DOI: 10.1186/s12916-015-0529-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/18/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The neurotrophic hypothesis postulates that mood disorders such as bipolar disorder (BD) are associated with a lower expression of brain-derived neurotrophic factor (BDNF). However, its role in peripheral blood as a biomarker of disease activity and of stage for BD, transcending pathophysiology, is still disputed. In the last few years an increasing number of clinical studies assessing BDNF in serum and plasma have been published. Therefore, it is now possible to analyse the association between BDNF levels and the severity of affective symptoms in BD as well as the effects of acute drug treatment of mood episodes on BDNF levels. METHODS We conducted a systematic review and meta-analysis of all studies on serum and plasma BDNF levels in bipolar disorder. RESULTS Through a series of meta-analyses including a total of 52 studies with 6,481 participants, we show that, compared to healthy controls, peripheral BDNF levels are reduced to the same extent in manic (Hedges' g = -0.57, P = 0.010) and depressive (Hedges' g = -0.93, P = 0.001) episodes, while BDNF levels are not significantly altered in euthymia. In meta-regression analyses, BDNF levels additionally negatively correlate with the severity of both manic and depressive symptoms. We found no evidence for a significant impact of illness duration on BDNF levels. In addition, in plasma, but not serum, peripheral BDNF levels increase after the successful treatment of an acute mania episode, but not of a depressive one. CONCLUSIONS In summary, our data suggest that peripheral BDNF levels, more clearly in plasma than in serum, is a potential biomarker of disease activity in BD, but not a biomarker of stage. We suggest that peripheral BDNF may, in future, be used as a part of a blood protein composite measure to assess disease activity in BD.
Collapse
Affiliation(s)
- Brisa S Fernandes
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Geelong, Australia.
- Laboratory of Calcium Binding Proteins in the Central Nervous System, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Marc L Molendijk
- Institute of Psychology, Department of Clinical Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| | - Cristiano A Köhler
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, Texas Health and Science University, Houston, TX, USA
| | - Cláudio Manuel G S Leite
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Rodrigo Machado-Vieira
- Laboratory of Neuroscience, LIM-27, Institute and Department of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Thamara L Ribeiro
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jéssica C Silva
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Paulo M G Sales
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - João Quevedo
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, Texas Health and Science University, Houston, TX, USA
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Viola Oertel-Knöchel
- Laboratory for Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - Eduard Vieta
- Bipolar Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Ana González-Pinto
- University of the Basque Country, Biomedical Research Center in Mental Health Net (CIBERSAM), Department of Neurosciences, University of the Basque Country, Leioa, Spain
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, Orygen, The National Centre of Excellence in Youth Mental Health and Orygen Youth Health Research Centre, Parkville, VIC, Australia
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - André F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
43
|
Buttenschøn HN, Foldager L, Elfving B, Poulsen PHP, Uher R, Mors O. Neurotrophic factors in depression in response to treatment. J Affect Disord 2015; 183:287-94. [PMID: 26047306 DOI: 10.1016/j.jad.2015.05.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/11/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor A (VEGF) have been suggested to play a role in the pathophysiology of depression. The neurotrophic model of depression hypothesises that the serum level of e.g. BDNF is decreased during depression and increased in response to treatment. The aim of the present study was to investigate BDNF and VEGF as potential predictors of response to antidepressant treatment. METHODS We investigated the longitudinal associations between depression scores and serum levels of these neurotrophic factors during antidepressant treatment in 90 individuals with depression of at least moderate severity. Serum levels were measured at baseline and after 8 and 12 weeks of treatment with nortriptyline or escitalopram. RESULTS No baseline or longitudinal correlations between depression scores and serum levels of BDNF and VEGF were found, and the baseline serum levels did not predict the MADRS depression score after 12 weeks of treatment or the improvement in depression scores. Interestingly, we observed a significant baseline and longitudinal correlation between serum levels of BDNF and VEGF. The two classes of antidepressant treatment did not affect the results differently. LIMITATIONS Information on potential factors influencing the serum levels is missing. CONCLUSION Our results do not support the neurotrophic model of depression, since a significant decrease in serum BDNF and VEGF levels after 12 weeks of antidepressant treatment was observed. Our study encourages future studies with large sample sizes, more observations and a longer follow-up period.
Collapse
Affiliation(s)
- Henriette N Buttenschøn
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark.
| | - Leslie Foldager
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark
| | - Pia H P Poulsen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark
| | - Rudolf Uher
- Kings College London, England; Department of Psychiatry, Halifax, Canada
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Research Department P, Aarhus University Hospital, Risskov, Denmark
| |
Collapse
|
44
|
Karamustafalioglu N, Genc A, Kalelioglu T, Tasdemir A, Umut G, Incir S, Akkuş M, Emul M. Plasma BDNFs level initially and post treatment in acute mania: comparison between ECT and atypical antipsychotic treatment and healthy controls. J Psychopharmacol 2015; 29:898-902. [PMID: 25827643 DOI: 10.1177/0269881115578161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Inconsistent findings concerning brain-derived neurotrophic factor (BDNF) levels across different episodes in bipolar disorder have been reported, which is also in line with the treatment effects on BDNF levels in acute mania. We aimed to compare plasma BDNF level alterations after pure antipsychotic drug or ECT plus antipsychotic drug treatment in acute mania. METHODS Sixty-eight patients with mania were divided into two treatment arms: the antipsychotic treatment arm (AP) and electroconvulsive therapy (ECT)+AP arm. In addition, 30 healthy controls were included in the study. RESULTS There was no significant statistical difference according to mean age, education level, marital and working status between patients and healthy controls. The initial serum BDNF level in patients with acute mania was significantly lower than healthy controls. The initial BDNF level between the ECT arm and AP arm was not significant. The BDNF level decreased significantly after reaching remission in patients with acute mania. The change in BDNF level in the AP arm was not significant while in the ECT arm it was significant after treatment. CONCLUSIONS In this study, for the first time we revealed a significant decrease in BDNF levels after ECT sessions in acute manic patients. Besides clinical remission after treatment in acute mania, the decrement in BDNF levels does not seem to be related to clinical response. Thus cumulative effects of mood episodes for the ongoing decrease in BDNF levels might be borne in mind despite the achievement of remission and/or more time being required for an increase in BDNF levels after treatment.
Collapse
Affiliation(s)
- Nesrin Karamustafalioglu
- Department of Psychiatry, Bakırkoy Mental Health Research and Training State Hospital, Istanbul, Turkey
| | - Abdullah Genc
- Department of Psychiatry, Bakırkoy Mental Health Research and Training State Hospital, Istanbul, Turkey
| | - Tevfik Kalelioglu
- Department of Psychiatry, Bakırkoy Mental Health Research and Training State Hospital, Istanbul, Turkey
| | - Akif Tasdemir
- Department of Psychiatry, Bakırkoy Mental Health Research and Training State Hospital, Istanbul, Turkey
| | - Gokhan Umut
- Department of Psychiatry, Bakırkoy Mental Health Research and Training State Hospital, Istanbul, Turkey
| | - Said Incir
- Department of Biochemistry, Medical School of Cerrahpasa, Istanbul University, Istanbul, Turkey
| | - Mustafa Akkuş
- Department of Psychiatry, Bakırkoy Mental Health Research and Training State Hospital, Istanbul, Turkey
| | - Murat Emul
- Department of Psychiatry, Medical School of Cerrahpasa, Istanbul University, Istanbul, Turkey
| |
Collapse
|
45
|
Vinberg M, Miskowiak K, Hoejman P, Pedersen M, Kessing LV. The effect of recombinant erythropoietin on plasma brain derived neurotrophic factor levels in patients with affective disorders: a randomised controlled study. PLoS One 2015; 10:e0127629. [PMID: 26011424 PMCID: PMC4444304 DOI: 10.1371/journal.pone.0127629] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/16/2015] [Indexed: 02/01/2023] Open
Abstract
The study aims to investigate the effect of repeated infusions of recombinant erythropoietin (EPO) on plasma brain derived neurotrophic factor (BDNF) levels in patients with affective disorders. In total, 83 patients were recruited: 40 currently depressed patients with treatment-resistant depression (TRD) (Hamilton Depression Rating Scale-17 items (HDRS-17) score >17) (study 1) and 43 patients with bipolar disorder (BD) in partial remission (HDRS-17 and Young Mania Rating Scale (YMRS) ≤ 14) (study 2). In both studies, patients were randomised to receive eight weekly EPO (Eprex; 40,000 IU) or saline (0.9% NaCl) infusions in a double-blind, placebo-controlled, parallel—group design. Plasma BDNF levels were measured at baseline and at weeks 5, 9 and at follow up, week 14. In contrast with our hypothesis, EPO down regulated plasma BDNF levels in patients with TRD (mean reduction at week 9 (95% CI): EPO 10.94 ng/l (4.51-21.41 ng/l); mean increase at week 9: Saline 0.52 ng/l, p=0.04 (-5.88-4.48 ng/l) p=0.04, partial ŋ2=0.12). No significant effects were found on BDNF levels in partially remitted patients with BD (p=0.35). The present effects of EPO on BDNF levels in patients with TRD point to a role of neurotrophic factors in the potential effects of EPO seen in TRD and BD. The neurobiological mechanisms underlying these effects and the interaction between EPO and peripheral levels on BDNF need to be further elucidated in human studies including a broad range of biomarkers.
Collapse
Affiliation(s)
- Maj Vinberg
- Psychiatric Centre Copenhagen, Rigshospitalet, University Hospital of Copenhagen Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- * E-mail:
| | - Kamilla Miskowiak
- Psychiatric Centre Copenhagen, Rigshospitalet, University Hospital of Copenhagen Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Pernille Hoejman
- Centre of Inflammation and Metabolism and Centre of Physical Activity Research, Rigshospitalet, 7641, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Maria Pedersen
- Centre of Inflammation and Metabolism and Centre of Physical Activity Research, Rigshospitalet, 7641, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Lars Vedel Kessing
- Psychiatric Centre Copenhagen, Rigshospitalet, University Hospital of Copenhagen Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| |
Collapse
|
46
|
Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML. BDNF as a biomarker for successful treatment of mood disorders: a systematic & quantitative meta-analysis. J Affect Disord 2015; 174:432-40. [PMID: 25553404 DOI: 10.1016/j.jad.2014.11.044] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/20/2014] [Accepted: 11/23/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Peripheral brain-derived neurotrophic factor (BDNF) is decreased in acute major depressive disorder (MDD) and bipolar disorder (BD) and recovered after treatment. Here we validated on a meta-analytical level whether BDNF restores differentially according to treatment response and whose measurements could be used as a biomarker, plasma or serum. METHODS Using strict inclusion criteria, we compared BDNF in healthy controls and patients with MDD (38 studies, n=6619), and BD (17 studies, n=1447). Pre- and post-treatment BDNF levels were meta-analyzed according to treatment response in patients from 21 MDD studies (n=735) and 7 BD studies (n=88). Serum and plasma subgroups were analyzed, publication bias was assessed and heterogeneity was investigated. RESULTS Serum and plasma BDNF were decreased in acute MDD and BD, and did not differ in euthymia in comparison with control subjects. Antidepressive treatment increased serum BDNF levels in MDD in responders (Cohen׳s d (d)=1.27, p=4.4E-07) and remitters (d=0.89, p=0.01), significantly more than in non-responders (d=0.11, p=0.69). For plasma BDNF in MDD and for BD, the evidence was insufficient for a meta-analysis. Although no significant difference was found between serum and plasma ES, variance of plasma ES was higher. LIMITATIONS Between-study heterogeneity was explained only partially; signs of publication bias in serum studies. CONCLUSION Serum BDNF might be regarded as a biomarker for the successful treatment of MDD. Serum measurements seem more reliable than plasma ones. Further research should focus on defining optimal time points for BDNF measurements and increase evidence for the usage of BDNF as a predictive biomarker in BD.
Collapse
Affiliation(s)
- Maryna Polyakova
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.
| | - Katharina Stuke
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katharina Schuemberg
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Karsten Mueller
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter Schoenknecht
- Clinic for Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Matthias L Schroeter
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| |
Collapse
|
47
|
Dwivedi T, Zhang H. Lithium-induced neuroprotection is associated with epigenetic modification of specific BDNF gene promoter and altered expression of apoptotic-regulatory proteins. Front Neurosci 2015; 8:457. [PMID: 25642163 PMCID: PMC4294125 DOI: 10.3389/fnins.2014.00457] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/25/2014] [Indexed: 01/19/2023] Open
Abstract
Bipolar disorder (BD), one of the most debilitating mental disorders, is associated with increased morbidity and mortality. Lithium is the first line of treatment option for BD and is often used for maintenance therapy. Recently, the neuroprotective action of lithium has gained tremendous attention, given that BD is associated with structural and functional abnormalities of the brain. However, the precise molecular mechanism by which lithium exerts its neuroprotective action is not clearly understood. In hippocampal neurons, the effects of lithium (1 and 2 mM) on neuronal viability against glutamate-induced cytotoxicity, dendritic length and number, and expression and methylation of BDNF promoter exons and expression of apoptotic regulatory genes were studied. In rat hippocampal neurons, lithium not only increased dendritic length and number, but also neuronal viability against glutamate-induced cytotoxicity. While lithium increased the expression of BDNF as well as genes associated with neuroprotection such as Bcl2 and Bcl-XL, it decreased the expression of pro-apoptotic genes Bax, Bad, and caspases 3. Interestingly, lithium activated transcription of specific exon IV to induce BDNF gene expression. This was accompanied by hypomethylation of BDNF exon IV promoter. This study delineates mechanisms by which lithium mediates its effects in protecting neurons.
Collapse
Affiliation(s)
- Tushar Dwivedi
- Department of Psychiatry, University of Illinois at Chicago Chicago, IL, USA
| | - Hui Zhang
- Department of Psychiatry, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
48
|
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) plays a critical role in brain plasticity processes and serum levels have been demonstrated to be altered in patients with different mental disorder including suicidal behaviour. The objective of this study was to examine the association between serum BDNF levels as a possible peripheral indicator of suicide behaviour in subjects suffering from depression, personality disorders (PDs) and adjustment disorders (ADs) with or without suicide attempt. METHODS The research included 172 randomly selected individuals suffering from recurrent depressive disorder (RDD; F 33.2), emotionally unstable PD (F 60.3) and AD (F 43.2), with or without attempted suicide according to the criteria of the ICD-10 (International Statistical Classification of Diseases and Related Health Problems 10th Revision) and 60 phenotypically health control subjects. In the group of patients, 73% subjects took some form of psychopharmacotherapy. Serum BDNF levels were measured by enzyme linked immunosorbent assay. RESULTS Subjects with PD and AD with suicide attempts had significantly lower serum BDNF levels than those without suicide attempts. In groups of subjects with PD and AD, those taking psychopharmacotherapy had higher serum BDNF levels. In the group of subjects with RDD, there were no differences with respect to suicide attempts or psychopharmacotherapy. Logistical regression analysis was indicated that psychopharmacotherapy and serum BDNF levels statistically correlated with suicide attempts. CONCLUSION The lower levels of BDNF in subjects suffering from PD and AD with suicide attempts, suggest that the serum BDNF level is a potential marker of suicidal behaviour, independent of mental disorders.
Collapse
|
49
|
Chen SL, Lee SY, Chang YH, Chen PS, Lee IH, Wang TY, Chen KC, Yang YK, Hong JS, Lu RB. Therapeutic effects of add-on low-dose dextromethorphan plus valproic acid in bipolar disorder. Eur Neuropsychopharmacol 2014; 24:1753-9. [PMID: 25262178 DOI: 10.1016/j.euroneuro.2014.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/08/2014] [Accepted: 09/03/2014] [Indexed: 12/24/2022]
Abstract
UNLABELLED Changes in inflammatory cytokines and dysfunction of the neurotrophic system are thought to be involved in the pathology of bipolar disorder (BP). We investigated whether inflammatory and neurotrophic factors were changed in BP. We also investigated whether treating BP with valproic acid (VPA) plus low-dose (30 or 60 mg/day) dextromethorphan (DM) is more effective than treating it with VPA only, and whether DM affects plasma cytokines and brain derived neurotrophic factor (BDNF) levels. In a 12-week, randomized, double-blind study, patients were randomly assigned to the VPA+DM30, VPA+DM60, or VPA+Placebo groups. The Young Mania Rating Scale (YMRS) and Hamilton Depression Rating Scale (HDRS) were used to evaluate symptom severity, and ELISA to analyze plasma cytokine and BDNF levels. We recruited 309 patients with BP and 123 healthy controls. Before treatment, patients with BP had significantly higher plasma cytokine and lower plasma BDNF levels than did healthy controls. After treatment, HDRS and YMRS scores in each group showed significant improvement. Plasma cytokine levels tended to decline in all groups. Changes in plasma BDNF levels were significantly greater in the VPA+DM60 group than in the VPA+Placebo group. CONCLUSION patients with BP have a certain degree of systemic inflammation and BDNF dysfunction. Treatment with VPA plus DM (60 mg/day) provided patients with BP significantly more neurotrophic benefit than did VPA treatment alone.
Collapse
Affiliation(s)
- Shiou-Lan Chen
- Department of Neurology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veteran׳s General Hospital, Kaohsiung, Taiwan
| | - Yun-Hsuan Chang
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Po-See Chen
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - I-Hui Lee
- Department of Neurology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Behavioral Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Kao-Ching Chen
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yen-Kuang Yang
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Jau-Shyong Hong
- Laboratory of Toxicology and Pharmacology, NIH/NIEHS, Research Triangle Park, NC, USA
| | - Ru-Band Lu
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Addiction Research Center, National Cheng Kung University, Tainan, Taiwan; Center for Neuropsychiatric Research, National Health Research Institute, Miaoli, Taiwan.
| |
Collapse
|
50
|
Shimada H, Park H, Makizako H, Doi T, Lee S, Suzuki T. Depressive symptoms and cognitive performance in older adults. J Psychiatr Res 2014; 57:149-56. [PMID: 25023083 DOI: 10.1016/j.jpsychires.2014.06.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/21/2014] [Accepted: 06/06/2014] [Indexed: 12/22/2022]
Abstract
Many longitudinal studies have found that older adults with depressive symptoms or depression have increased risk of cognitive impairment. We investigated the relationships between depressive symptoms or depression, cognitive function, serum brain-derived neurotrophic factor (BDNF), and volumetric MRI measurements in older adults. A total of 4352 individuals aged 65 years or older (mean age 72 years) participated in the study. We investigated medical history and geriatric depression scale-15 (GDS-15) items to determine depression and depressive symptoms. Cognitive tests included the mini-mental state examination (MMSE), story memory, word list memory, trail-making tests, and the symbol digit substitution task. Of the 4352 participants, 570 (13%) fulfilled the criteria for depressive symptoms (GDS-15: 6 + points) and 87 (2%) were diagnosed with depression. All cognitive tests showed significant differences between the 'no depressive symptoms', 'depressive symptoms', and 'depression' groups. The 'depressive symptoms' and 'depression' groups showed lower serum BDNF (p < 0.001) concentrations than the 'no depressive symptoms' group. The 'depressive symptoms' group exhibited greater atrophy of the right medial temporal lobe than did the 'no depressive symptoms' group (p = 0.023). These results suggest that memory, executive function, and processing speed examinations are useful to identify cognitive decline in older adults who have depressive symptoms and depression. Serum BDNF concentration and atrophy of the right medial temporal lobe may in part mediate the relationships between depressive symptoms and cognitive decline.
Collapse
Affiliation(s)
- Hiroyuki Shimada
- Department of Functioning Activation, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka-machi, Obu, Aichi 474-8511, Japan.
| | - Hyuntae Park
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hyuma Makizako
- Department of Functioning Activation, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka-machi, Obu, Aichi 474-8511, Japan
| | - Takehiko Doi
- Department of Functioning Activation, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka-machi, Obu, Aichi 474-8511, Japan
| | - Sangyoon Lee
- Department of Functioning Activation, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka-machi, Obu, Aichi 474-8511, Japan
| | - Takao Suzuki
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|