1
|
Gokcan H, Bedoyan JK, Isayev O. Simulations of Pathogenic E1α Variants: Allostery and Impact on Pyruvate Dehydrogenase Complex-E1 Structure and Function. J Chem Inf Model 2022; 62:3463-3475. [PMID: 35797142 DOI: 10.1021/acs.jcim.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyruvate dehydrogenase complex (PDC) deficiency is a major cause of primary lactic acidemia resulting in high morbidity and mortality, with limited therapeutic options. The E1 component of the mitochondrial multienzyme PDC (PDC-E1) is a symmetric dimer of heterodimers (αβ/α'β') encoded by the PDHA1 and PDHB genes, with two symmetric active sites each consisting of highly conserved phosphorylation loops A and B. PDHA1 mutations are responsible for 82-88% of cases. Greater than 85% of E1α residues with disease-causing missense mutations (DMMs) are solvent-inaccessible, with ∼30% among those involved in subunit-subunit interface contact (SSIC). We performed molecular dynamics simulations of wild-type (WT) PDC-E1 and E1 variants with E1α DMMs at R349 and W185 (residues involved in SSIC), to investigate their impact on human PDC-E1 structure. We evaluated the change in E1 structure and dynamics and examined their implications on E1 function with the specific DMMs. We found that the dynamics of phosphorylation Loop A, which is crucial for E1 biological activity, changes with DMMs that are at least about 15 Å away. Because communication is essential for PDC-E1 activity (with alternating active sites), we also investigated the possible communication network within WT PDC-E1 via centrality analysis. We observed that DMMs altered/disrupted the communication network of PDC-E1. Collectively, these results indicate allosteric effect in PDC-E1, with implications for the development of novel small-molecule therapeutics for specific recurrent E1α DMMs such as replacements of R349 responsible for ∼10% of PDC deficiency due to E1α DMMs.
Collapse
Affiliation(s)
- Hatice Gokcan
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jirair K Bedoyan
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224, United States.,Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Olexandr Isayev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Wilson RJ, Lyons SP, Koves TR, Bryson VG, Zhang H, Li T, Crown SB, Ding JD, Grimsrud PA, Rosenberg PB, Muoio DM. Disruption of STIM1-mediated Ca 2+ sensing and energy metabolism in adult skeletal muscle compromises exercise tolerance, proteostasis, and lean mass. Mol Metab 2022; 57:101429. [PMID: 34979330 PMCID: PMC8814391 DOI: 10.1016/j.molmet.2021.101429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Stromal interaction molecule 1 (STIM1) is a single-pass transmembrane endoplasmic/sarcoplasmic reticulum (E/SR) protein recognized for its role in a store operated Ca2+ entry (SOCE), an ancient and ubiquitous signaling pathway. Whereas STIM1 is known to be indispensable during development, its biological and metabolic functions in mature muscles remain unclear. METHODS Conditional and tamoxifen inducible muscle STIM1 knock-out mouse models were coupled with multi-omics tools and comprehensive physiology to understand the role of STIM1 in regulating SOCE, mitochondrial quality and bioenergetics, and whole-body energy homeostasis. RESULTS This study shows that STIM1 is abundant in adult skeletal muscle, upregulated by exercise, and is present at SR-mitochondria interfaces. Inducible tissue-specific deletion of STIM1 (iSTIM1 KO) in adult muscle led to diminished lean mass, reduced exercise capacity, and perturbed fuel selection in the settings of energetic stress, without affecting whole-body glucose tolerance. Proteomics and phospho-proteomics analyses of iSTIM1 KO muscles revealed molecular signatures of low-grade E/SR stress and broad activation of processes and signaling networks involved in proteostasis. CONCLUSION These results show that STIM1 regulates cellular and mitochondrial Ca2+ dynamics, energy metabolism and proteostasis in adult skeletal muscles. Furthermore, these findings provide insight into the pathophysiology of muscle diseases linked to disturbances in STIM1-dependent Ca2+ handling.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA
| | - Scott P Lyons
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Geriatrics, Duke University School of Medicine, Durham, NC 27705, USA
| | - Victoria G Bryson
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Hengtao Zhang
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - TianYu Li
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Scott B Crown
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA
| | - Jin-Dong Ding
- Department of Medicine, Division of Ophthalmology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC 27705, USA
| | - Paul B Rosenberg
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC 27705, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA.
| |
Collapse
|
3
|
Jin L, Cho M, Kim BS, Han JH, Park S, Lee IK, Ryu D, Kim JH, Bae SJ, Ha KT. Drug evaluation based on phosphomimetic PDHA1 reveals the complexity of activity-related cell death in A549 non-small cell lung cancer cells. BMB Rep 2021. [PMID: 34488935 PMCID: PMC8633525 DOI: 10.5483/bmbrep.2021.54.11.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cells predominantly generate energy via glycolysis, even in the presence of oxygen, to support abnormal cell proliferation. Suppression of PDHA1 by PDK1 prevents the conversion of cytoplasmic pyruvate into Acetyl-CoA. Several PDK inhibitors have been identified, but their clinical applications have not been successful for unclear reasons. In this study, endogenous PDHA1 in A549 cells was silenced by the CRISPR/Cas9 system, and PDHA1WT and PDHA13SD were transduced. Since PDHA13SD cannot be phosphorylated by PDKs, it was used to evaluate the specific activity of PDK inhibitors. This study highlights that PDHA1WT and PDHA13SD A549 cells can be used as a cell-based PDK inhibitor-distinction system to examine the relationship between PDH activity and cell death by established PDK inhibitors. Leelamine, huzhangoside A and otobaphenol induced PDH activity-dependent apoptosis, whereas AZD7545, VER-246608 and DCA effectively enhanced PDHA1 activity but little toxic to cancer cells. Furthermore, the activity of phosphomimetic PDHA1 revealed the complexity of its regulation, which requires further in-depth investigation.
Collapse
Affiliation(s)
- Ling Jin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Minkyoung Cho
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Bo-Sung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Jung Ho Han
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Sungmi Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41404, Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea
| | - Jae Ho Kim
- Department of Physiology, College of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Sung-Jin Bae
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
4
|
Anwar S, Kar RK, Haque MA, Dahiya R, Gupta P, Islam A, Ahmad F, Hassan MI. Effect of pH on the structure and function of pyruvate dehydrogenase kinase 3: Combined spectroscopic and MD simulation studies. Int J Biol Macromol 2020; 147:768-777. [PMID: 31982536 DOI: 10.1016/j.ijbiomac.2020.01.218] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
Pyruvate dehydrogenase kinase-3 (PDK3) plays important role in the glucose metabolism and is associated with cancer progression, and thus being considered as an attractive target for cancer therapy. In this study, we employed spectroscopic techniques to study the structural and conformational changes in the PDK3 at varying pH conditions ranging from pH 2.0 to 12.0. UV/Vis, fluorescence and circular dichroism spectroscopic measurements revealed that PDK3 maintains its native-like structure (both secondary and tertiary) in the alkaline conditions (pH 7.0-12.0). However, a significant loss in the structure was observed under acidic conditions (pH 2.0-6.0). The propensity of aggregate formation at pH 4.0 was estimated by thioflavin T fluorescence measurements. To further complement structural data, kinase activity assay was performed, and maximum activity of PDK3 was observed at pH 7.0-8.0 range; whereas, its activity was lost under acidic pH. To further see conformational changes at atomistic level we have performed all-atom molecular dynamics at different pH conditions for 150 ns. A well defined correlation was observed between experimental and computational studies. This work highlights the significance of structural dependence of pH for wide implications in protein-protein interaction, biological function and drug design procedures.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rajiv K Kar
- Fritz Haber Center for Molecular Dynamic Research, Hebrew University of Jerusalem, Israel
| | - Md Anzarul Haque
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashmi Dahiya
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
5
|
Dahiya R, Mohammad T, Gupta P, Haque A, Alajmi MF, Hussain A, Hassan MI. Molecular interaction studies on ellagic acid for its anticancer potential targeting pyruvate dehydrogenase kinase 3. RSC Adv 2019; 9:23302-23315. [PMID: 35514501 PMCID: PMC9067284 DOI: 10.1039/c9ra02864a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/15/2019] [Indexed: 11/21/2022] Open
Abstract
Pyruvate dehydrogenase kinase 3 (PDK3) plays a central role in the cancer metabolic switch through the reversible phosphorylation of pyruvate dehydrogenase complex thereby blocking the entry of pyruvate for its catabolism into the TCA cycle, and thus it is considered as an important drug target for various types of cancers. We have successfully expressed full length human PDK3 and investigated its interaction mechanism with dietary polyphenols in the search for potential inhibitors. Molecular docking analysis revealed that the selected compounds preferentially bind to the ATP-binding pocket of PDK3 and interact with functionally important residues. In silico observations were further complemented by experimental measurements of the fluorescence quenching of PDK3 and confirmed with the isothermal titration calorimetry measurements. Ellagic acid (EA) significantly binds and inhibits the kinase activity of PDK3. In vitro cytotoxicity and the anti-proliferative properties of EA were evaluated by MTT assay. Conformational dynamics of the EA-PDK3 complex during molecular dynamics simulation revealed that a stable complex was maintained by a significant number of hydrogen bonds throughout the 100 ns trajectories. In conclusion, EA may be considered as a promising molecule for PDK3 inhibition and could be exploited as a lead molecule against PDK3 associated diseases.
Collapse
Affiliation(s)
- Rashmi Dahiya
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia Jamia Nagar New Delhi 110025 India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia Jamia Nagar New Delhi 110025 India
| | - Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia Jamia Nagar New Delhi 110025 India
| | - Anzarul Haque
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia Jamia Nagar New Delhi 110025 India
| | - Mohamed F Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University Riyadh 11451 Kingdom of Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University Riyadh 11451 Kingdom of Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia Jamia Nagar New Delhi 110025 India
| |
Collapse
|
6
|
Sgrignani J, Chen J, Alimonti A, Cavalli A. How phosphorylation influences E1 subunit pyruvate dehydrogenase: A computational study. Sci Rep 2018; 8:14683. [PMID: 30279533 PMCID: PMC6168537 DOI: 10.1038/s41598-018-33048-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022] Open
Abstract
Pyruvate (PYR) dehydrogenase complex (PDC) is an enzymatic system that plays a crucial role in cellular metabolism as it controls the entry of carbon into the Krebs cycle. From a structural point of view, PDC is formed by three different subunits (E1, E2 and E3) capable of catalyzing the three reaction steps necessary for the full conversion of pyruvate to acetyl-CoA. Recent investigations pointed out the crucial role of this enzyme in the replication and survival of specific cancer cell lines, renewing the interest of the scientific community. Here, we report the results of our molecular dynamics studies on the mechanism by which posttranslational modifications, in particular the phosphorylation of three serine residues (Ser-264-α, Ser-271-α, and Ser-203-α), influence the enzymatic function of the protein. Our results support the hypothesis that the phosphorylation of Ser-264-α and Ser-271-α leads to (1) a perturbation of the catalytic site structure and dynamics and, especially in the case of Ser-264-α, to (2) a reduction in the affinity of E1 for the substrate. Additionally, an analysis of the channels connecting the external environment with the catalytic site indicates that the inhibitory effect should not be due to the occlusion of the access/egress pathways to/from the active site.
Collapse
Affiliation(s)
- Jacopo Sgrignani
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), Via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - JingJing Chen
- Institute of Research in Oncology (IOR), Università della Svizzera Italiana (USI), Via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland
| | - Andrea Alimonti
- Institute of Research in Oncology (IOR), Università della Svizzera Italiana (USI), Via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), Via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
7
|
Islam R, Kim JG, Park Y, Cho JY, Cap KC, Kho AR, Chung WS, Suh SW, Park JB. Insulin induces phosphorylation of pyruvate dehydrogenase through RhoA activation pathway in HepG2 cells. FASEB J 2018; 33:2072-2083. [DOI: 10.1096/fj.201800917r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rokibul Islam
- Department of BiochemistryHallym UniversityChuncheonSouth Korea
- Institute of Cell Differentiation and AgingHallym UniversityChuncheonSouth Korea
- Department of Biotechnology and Genetic EngineeringFaculty of Applied Science and TechnologyIslamic UniversityKushtiaBangladesh
| | - Jae-Gyu Kim
- Department of BiochemistryHallym UniversityChuncheonSouth Korea
- Institute of Cell Differentiation and AgingHallym UniversityChuncheonSouth Korea
| | - Yohan Park
- Department of BiochemistryHallym UniversityChuncheonSouth Korea
| | - Jung-Yoon Cho
- Department of BiochemistryHallym UniversityChuncheonSouth Korea
- Institute of Cell Differentiation and AgingHallym UniversityChuncheonSouth Korea
| | - Kim-Cuong Cap
- Department of BiochemistryHallym UniversityChuncheonSouth Korea
| | - A-Ra Kho
- Department of PhysiologyHallym University College of MedicineHallym UniversityChuncheonSouth Korea
| | - Won-Suk Chung
- Department of Biological ScienceKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Sang-Won Suh
- Department of PhysiologyHallym University College of MedicineHallym UniversityChuncheonSouth Korea
- Hallym Clinical and Translational Research InstituteHallym UniversityChuncheonSouth Korea
| | - Jae-Bong Park
- Department of BiochemistryHallym UniversityChuncheonSouth Korea
- Institute of Cell Differentiation and AgingHallym UniversityChuncheonSouth Korea
- Hallym Clinical and Translational Research InstituteHallym UniversityChuncheonSouth Korea
| |
Collapse
|
8
|
Huang A, Ju HQ, Liu K, Zhan G, Liu D, Wen S, Garcia-Manero G, Huang P, Hu Y. Metabolic alterations and drug sensitivity of tyrosine kinase inhibitor resistant leukemia cells with a FLT3/ITD mutation. Cancer Lett 2016; 377:149-57. [PMID: 27132990 DOI: 10.1016/j.canlet.2016.04.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 11/28/2022]
Abstract
Internal tandem duplication (ITD) of the juxtamembrane region of FMS-like tyrosine kinase-3 (FLT3) receptor is a common type of mutation in adult acute myeloid leukemia (AML), and patient response to FLT3 inhibitors appears to be transient due to the emergence of drug resistance. We established two sorafenib-resistant cell lines carrying FLT3/ITD mutations, including the murine BaF3/ITD-R and human MV4-11-R cell lines. Gene expression profile analysis of the resistant and parental cells suggests that the highest ranked molecular and cellular functions of the differentially expressed genes are related to mitochondrial dysfunction. Both murine and human resistant cell lines display a longer doubling time, along with a significant inhibition of mitochondrial respiratory chain activity and substantial upregulation of glycolysis. The sorafenib-resistant cells exhibit increased expression of a majority of glycolytic enzymes, including hexokinase 2, which is also highly expressed in the mitochondrial fraction and is associated with resistance to apoptotic cell death. The sorafenib-resistant cells are collaterally sensitive to a number of glycolytic inhibitors including 2-deoxyglucose and 3-bromopyruvate propylester. Our study reveals a metabolic signature of sorafenib-resistant cells and suggests that glycolytic inhibition may override such resistance and warrant further clinical investigation.
Collapse
Affiliation(s)
- Amin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Kaiyan Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guilian Zhan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Daolu Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shijun Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Peng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Yumin Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Hou X, Zhang L, Han L, Ge J, Ma R, Zhang X, Moley K, Schedl T, Wang Q. Differing roles of pyruvate dehydrogenase kinases during mouse oocyte maturation. J Cell Sci 2015; 128:2319-29. [PMID: 25991547 DOI: 10.1242/jcs.167049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/28/2015] [Indexed: 12/21/2022] Open
Abstract
Pyruvate dehydrogenase kinases (PDKs) modulate energy homeostasis in multiple tissues and cell types, under various nutrient conditions, through phosphorylation of the α subunit (PDHE1α, also known as PDHA1) of the pyruvate dehydrogenase (PDH) complex. However, the roles of PDKs in meiotic maturation are currently unknown. Here, by undertaking knockdown and overexpression analysis of PDK paralogs (PDK1-PDK4) in mouse oocytes, we established the site-specificity of PDKs towards the phosphorylation of three serine residues (Ser232, Ser293 and Ser300) on PDHE1α. We found that PDK3-mediated phosphorylation of Ser293-PDHE1α results in disruption of meiotic spindle morphology and chromosome alignment and decreased total ATP levels, probably through inhibition of PDH activity. Unexpectedly, we discovered that PDK1 and PDK2 promote meiotic maturation, as their knockdown disturbs the assembly of the meiotic apparatus, without significantly altering ATP content. Moreover, phosphorylation of Ser232-PDHE1α was demonstrated to mediate PDK1 and PDK2 action in meiotic maturation, possibly through a mechanism that is distinct from PDH inactivation. These findings reveal that there are divergent roles of PDKs during oocyte maturation and indicate a new mechanism controlling meiotic structure.
Collapse
Affiliation(s)
- Xiaojing Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Liang Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Rujun Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuesen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Kelle Moley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
10
|
Ho N, Coomber BL. Pyruvate dehydrogenase kinase expression and metabolic changes following dichloroacetate exposure in anoxic human colorectal cancer cells. Exp Cell Res 2014; 331:73-81. [PMID: 25536473 DOI: 10.1016/j.yexcr.2014.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/17/2014] [Accepted: 12/13/2014] [Indexed: 12/25/2022]
Abstract
Dichloroacetate (DCA) is a small molecule that inhibits pyruvate dehydrogenase kinase (PDK) to constrain the aerobic glycolytic pathway observed in many cancer cells and effectively kill them with limited cytotoxicity on normal cells. We previously showed that DCA induced a cytoprotective effect in different human colorectal cancer (CRC) cell lines under anoxic conditions. In this study, we investigated the molecular and metabolic changes that may be providing this cytoprotection. The expression profiles of PDK isoforms in SW480 and LS174T cells along with subsequent changes in pyruvate dehydrogenase (PDH) phosphorylation were assessed following DCA exposure. Changes in mitochondrial activity and subsequent glucose consumption and lactate production were then examined. We show evidence of differential regulation in PDH phosphorylation between different human CRC cells leading to differences in mitochondrial activity following DCA exposure. However, these effects did not lead to significant changes in cellular metabolism nor growth. In conclusion, DCA may only be beneficial in treating a subset of tumor types based on their molecular profiles of different PDK isoforms.
Collapse
Affiliation(s)
- Nelson Ho
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | - Brenda L Coomber
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
11
|
Hanberry BS, Berger R, Zastre JA. High-dose vitamin B1 reduces proliferation in cancer cell lines analogous to dichloroacetate. Cancer Chemother Pharmacol 2014; 73:585-94. [PMID: 24452394 DOI: 10.1007/s00280-014-2386-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 01/02/2014] [Indexed: 12/26/2022]
Abstract
PURPOSE The dichotomous effect of thiamine supplementation on cancer cell growth is characterized by growth stimulation at low doses and growth suppression at high doses. Unfortunately, how thiamine reduces cancer cell proliferation is currently unknown. Recent focuses on metabolic targets for cancer therapy have exploited the altered regulation of the thiamine-dependent enzyme pyruvate dehydrogenase (PDH). Cancer cells inactivate PDH through phosphorylation by overexpression of pyruvate dehydrogenase kinases (PDKs). Inhibition of PDKs by dichloracetate (DCA) exhibits a growth suppressive effect in many cancers. Recently, it has been shown that the thiamine coenzyme, thiamine pyrophosphate reduces PDK-mediated phosphorylation of PDH. Therefore, the objective of this study was to determine whether high-dose thiamine supplementation reduces cell proliferation through a DCA-like mechanism. METHODS Cytotoxicity of thiamine and DCA was assessed in SK-N-BE and Panc-1 cancer cell lines. Comparative effects of high-dose thiamine and DCA on PDH phosphorylation were measured by Western blot. The metabolic impact of PDH reactivation was determined by glucose and lactate assays. Changes in the mitochondrial membrane potential, reactive oxygen species (ROS) production, and caspase-3 activation were assessed to characterize the mechanism of action. RESULTS Thiamine exhibited a lower IC50 value in both cell lines compared with DCA. Both thiamine and DCA reduced the extent of PDH phosphorylation, reduced glucose consumption, lactate production, and mitochondrial membrane potential. High-dose thiamine and DCA did not increase ROS, but increased caspase-3 activity. CONCLUSION Our findings suggest that high-dose thiamine reduces cancer cell proliferation by a mechanism similar to that described for dichloroacetate.
Collapse
Affiliation(s)
- Bradley S Hanberry
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, R.C. Wilson Pharmacy Building, Athens, GA, 30602, USA
| | | | | |
Collapse
|
12
|
Pehmøller C, Brandt N, Birk JB, Høeg LD, Sjøberg KA, Goodyear LJ, Kiens B, Richter EA, Wojtaszewski JF. Exercise alleviates lipid-induced insulin resistance in human skeletal muscle-signaling interaction at the level of TBC1 domain family member 4. Diabetes 2012; 61:2743-52. [PMID: 22851577 PMCID: PMC3478539 DOI: 10.2337/db11-1572] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Excess lipid availability causes insulin resistance. We examined the effect of acute exercise on lipid-induced insulin resistance and TBC1 domain family member 1/4 (TBCD1/4)-related signaling in skeletal muscle. In eight healthy young male subjects, 1 h of one-legged knee-extensor exercise was followed by 7 h of saline or intralipid infusion. During the last 2 h, a hyperinsulinemic-euglycemic clamp was performed. Femoral catheterization and analysis of biopsy specimens enabled measurements of leg substrate balance and muscle signaling. Each subject underwent two experimental trials, differing only by saline or intralipid infusion. Glucose infusion rate and leg glucose uptake was decreased by intralipid. Insulin-stimulated glucose uptake was higher in the prior exercised leg in the saline and the lipid trials. In the lipid trial, prior exercise normalized insulin-stimulated glucose uptake to the level observed in the resting control leg in the saline trial. Insulin increased phosphorylation of TBC1D1/4. Whereas prior exercise enhanced TBC1D4 phosphorylation on all investigated sites compared with the rested leg, intralipid impaired TBC1D4 S341 phosphorylation compared with the control trial. Intralipid enhanced pyruvate dehydrogenase (PDH) phosphorylation and lactate release. Prior exercise led to higher PDH phosphorylation and activation of glycogen synthase compared with resting control. In conclusion, lipid-induced insulin resistance in skeletal muscle was associated with impaired TBC1D4 S341 and elevated PDH phosphorylation. The prophylactic effect of exercise on lipid-induced insulin resistance may involve augmented TBC1D4 signaling and glycogen synthase activation.
Collapse
Affiliation(s)
- Christian Pehmøller
- Department of Exercise and Sport Sciences, Molecular Physiology Group, University of Copenhagen, Copenhagen, Denmark
| | - Nina Brandt
- Department of Exercise and Sport Sciences, Molecular Physiology Group, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B. Birk
- Department of Exercise and Sport Sciences, Molecular Physiology Group, University of Copenhagen, Copenhagen, Denmark
| | - Louise D. Høeg
- Department of Exercise and Sport Sciences, Molecular Physiology Group, University of Copenhagen, Copenhagen, Denmark
| | - Kim A. Sjøberg
- Department of Exercise and Sport Sciences, Molecular Physiology Group, University of Copenhagen, Copenhagen, Denmark
| | - Laurie J. Goodyear
- Joslin Diabetes Center, Section on Metabolism, Harvard Medical School, Boston, Massachusetts
| | - Bente Kiens
- Department of Exercise and Sport Sciences, Molecular Physiology Group, University of Copenhagen, Copenhagen, Denmark
| | - Erik A. Richter
- Department of Exercise and Sport Sciences, Molecular Physiology Group, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F.P. Wojtaszewski
- Department of Exercise and Sport Sciences, Molecular Physiology Group, University of Copenhagen, Copenhagen, Denmark
- Corresponding author: Jørgen F.P. Wojtaszewski,
| |
Collapse
|
13
|
Covian R, Balaban RS. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation. Am J Physiol Heart Circ Physiol 2012; 303:H940-66. [PMID: 22886415 DOI: 10.1152/ajpheart.00077.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has become appreciated over the last several years that protein phosphorylation within the cardiac mitochondrial matrix and respiratory complexes is extensive. Given the importance of oxidative phosphorylation and the balance of energy metabolism in the heart, the potential regulatory effect of these classical signaling events on mitochondrial function is of interest. However, the functional impact of protein phosphorylation and the kinase/phosphatase system responsible for it are relatively unknown. Exceptions include the well-characterized pyruvate dehydrogenase and branched chain α-ketoacid dehydrogenase regulatory system. The first task of this review is to update the current status of protein phosphorylation detection primarily in the matrix and evaluate evidence linking these events with enzymatic function or protein processing. To manage the scope of this effort, we have focused on the pathways involved in energy metabolism. The high sensitivity of modern methods of detecting protein phosphorylation and the low specificity of many kinases suggests that detection of protein phosphorylation sites without information on the mole fraction of phosphorylation is difficult to interpret, especially in metabolic enzymes, and is likely irrelevant to function. However, several systems including protein translocation, adenine nucleotide translocase, cytochrome c, and complex IV protein phosphorylation have been well correlated with enzymatic function along with the classical dehydrogenase systems. The second task is to review the current understanding of the kinase/phosphatase system within the matrix. Though it is clear that protein phosphorylation occurs within the matrix, based on (32)P incorporation and quantitative mass spectrometry measures, the kinase/phosphatase system responsible for this process is ill-defined. An argument is presented that remnants of the much more labile bacterial protein phosphoryl transfer system may be present in the matrix and that the evaluation of this possibility will require the application of approaches developed for bacterial cell signaling to the mitochondria.
Collapse
Affiliation(s)
- Raul Covian
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, Bethesda, Maryland 20817, USA
| | | |
Collapse
|
14
|
Abstract
Calcium is an important signaling molecule involved in the regulation of many cellular functions. The large free energy in the Ca(2+) ion membrane gradients makes Ca(2+) signaling inherently sensitive to the available cellular free energy, primarily in the form of ATP. In addition, Ca(2+) regulates many cellular ATP-consuming reactions such as muscle contraction, exocytosis, biosynthesis, and neuronal signaling. Thus, Ca(2+) becomes a logical candidate as a signaling molecule for modulating ATP hydrolysis and synthesis during changes in numerous forms of cellular work. Mitochondria are the primary source of aerobic energy production in mammalian cells and also maintain a large Ca(2+) gradient across their inner membrane, providing a signaling potential for this molecule. The demonstrated link between cytosolic and mitochondrial Ca(2+) concentrations, identification of transport mechanisms, and the proximity of mitochondria to Ca(2+) release sites further supports the notion that Ca(2+) can be an important signaling molecule in the energy metabolism interplay of the cytosol with the mitochondria. Here we review sites within the mitochondria where Ca(2+) plays a role in the regulation of ATP generation and potentially contributes to the orchestration of cellular metabolic homeostasis. Early work on isolated enzymes pointed to several matrix dehydrogenases that are stimulated by Ca(2+), which were confirmed in the intact mitochondrion as well as cellular and in vivo systems. However, studies in these intact systems suggested a more expansive influence of Ca(2+) on mitochondrial energy conversion. Numerous noninvasive approaches monitoring NADH, mitochondrial membrane potential, oxygen consumption, and workloads suggest significant effects of Ca(2+) on other elements of NADH generation as well as downstream elements of oxidative phosphorylation, including the F(1)F(O)-ATPase and the cytochrome chain. These other potential elements of Ca(2+) modification of mitochondrial energy conversion will be the focus of this review. Though most specific molecular mechanisms have yet to be elucidated, it is clear that Ca(2+) provides a balanced activation of mitochondrial energy metabolism that exceeds the alteration of dehydrogenases alone.
Collapse
Affiliation(s)
- Brian Glancy
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20817, USA
| | | |
Collapse
|
15
|
Tokmakov AA. Comparative homology modeling of pyruvate dehydrogenase kinase isozymes from Xenopus tropicalis reveals structural basis for their subfunctionalization. J Mol Model 2011; 18:2567-76. [PMID: 22069030 DOI: 10.1007/s00894-011-1281-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/13/2011] [Indexed: 10/15/2022]
Abstract
Structural-functional divergence is responsible for the preservation of highly homologous genes. Protein functions affected by mutagenesis in divergent sequences require investigation on an individual basis. In the present study, comparative homology modeling and predictive bioinformatics analysis were used to reveal for the first time the subfunctionalization of two pyruvate dehydrogenase kinase (PDK) isozymes in the western clawed frog Xenopus tropicalis. Three-dimensional structures of the two proteins were built by homology modeling based on the crystal structures of mammalian PDKs. A detailed comparison of them revealed important structural differences that modify the accessibility of the nucleotide binding site in the two isozymes. Based on the generated models and bioinformatics data analysis, the differences between the two proteins in terms of kinetic parameters, metabolic regulation, and tissue distribution are predicted. The results obtained are consistent with the idea that one of the xtPDKs is the major isozyme responsible for metabolic control of PDC activity in X. tropicalis, whereas the other one has more specialized functions. Hence, this study provides a rationale for the existence of two closely related PDK isozymes in X. tropicalis, thereby enhancing our understanding of the functional evolution of PDK family genes.
Collapse
Affiliation(s)
- Alexander A Tokmakov
- Research Center for Environmental Genomics and Graduate School of Science, Kobe University, Nada, Kobe, Japan.
| |
Collapse
|
16
|
Love LK, LeBlanc PJ, Inglis JG, Bradley NS, Choptiany J, Heigenhauser GJF, Peters SJ. The relationship between human skeletal muscle pyruvate dehydrogenase phosphatase activity and muscle aerobic capacity. J Appl Physiol (1985) 2011; 111:427-34. [DOI: 10.1152/japplphysiol.00672.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pyruvate dehydrogenase (PDH) is a mitochondrial enzyme responsible for regulating the conversion of pyruvate to acetyl-CoA for use in the tricarboxylic acid cycle. PDH is regulated through phosphorylation and inactivation by PDH kinase (PDK) and dephosphorylation and activation by PDH phosphatase (PDP). The effect of endurance training on PDK in humans has been investigated; however, to date no study has examined the effect of endurance training on PDP in humans. Therefore, the purpose of this study was to examine differences in PDP activity and PDP1 protein content in human skeletal muscle across a range of muscle aerobic capacities. This association is important as higher PDP activity and protein content will allow for increased activation of PDH, and carbohydrate oxidation. The main findings of this study were that 1) PDP activity ( r2 = 0.399, P = 0.001) and PDP1 protein expression ( r2 = 0.153, P = 0.039) were positively correlated with citrate synthase (CS) activity as a marker for muscle aerobic capacity; 2) E1α ( r2 = 0.310, P = 0.002) and PDK2 protein ( r2 = 0.229, P =0.012) are positively correlated with muscle CS activity; and 3) although it is the most abundant isoform, PDP1 protein content only explained ∼18% of the variance in PDP activity ( r2 = 0.184, P = 0.033). In addition, PDP1 in combination with E1α explained ∼38% of the variance in PDP activity ( r2 = 0.383, P = 0.005), suggesting that there may be alternative regulatory mechanisms of this enzyme other than protein content. These data suggest that with higher muscle aerobic capacity (CS activity) there is a greater capacity for carbohydrate oxidation (E1α), in concert with higher potential for PDH activation (PDP activity).
Collapse
Affiliation(s)
- Lorenzo K. Love
- Department of Kinesiology,
- Centre for Muscle Metabolism and Biophysics, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario
| | - Paul J. LeBlanc
- Centre for Muscle Metabolism and Biophysics, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario
| | - J. Greig Inglis
- Centre for Muscle Metabolism and Biophysics, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario
| | - Nicolette S. Bradley
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jon Choptiany
- Department of Kinesiology,
- Centre for Muscle Metabolism and Biophysics, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario
| | | | - Sandra J. Peters
- Department of Kinesiology,
- Centre for Muscle Metabolism and Biophysics, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario
| |
Collapse
|
17
|
Li J, Kato M, Chuang DT. Pivotal role of the C-terminal DW-motif in mediating inhibition of pyruvate dehydrogenase kinase 2 by dichloroacetate. J Biol Chem 2009; 284:34458-67. [PMID: 19833728 DOI: 10.1074/jbc.m109.065557] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial pyruvate dehydrogenase complex (PDC) is down-regulated by phosphorylation catalyzed by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. Overexpression of PDK isoforms and therefore reduced PDC activity prevails in cancer and diabetes. In the present study, we investigated the role of the invariant C-terminal DW-motif in inhibition of human PDK2 by dichloroacetate (DCA). Substitutions were made in the DW-motif (Asp-382 and Trp-383) and its interacting residues (Tyr-145 and Arg-149) in the other subunit of PDK2 homodimer. Single and double mutants show 20-60% residual activities that are not stimulated by the PDC core. The R149A and Y145F/R149A mutants show drastic increases in apparent IC(50) values for DCA, whereas binding affinities for DCA are comparable with wild-type PDK2. Both R149A and Y145F variants exhibit increased similar affinities for ADP and ATP, mimicking the effects of DCA. The R149A and the DW-motif mutations (D382A/W383A) forestall binding of the lipoyl domain of PDC to these mutants, analogous to wild-type PDK2 in the presence of DCA and ADP. In contrast, the binding of a dihydrolipoamide mimetic AZD7545 is largely unaffected in these PDK2 variants. Our results illuminate the pivotal role of the DW-motif in mediating communications between the DCA-, the nucleotide-, and the lipoyl domain-binding sites. This signaling network locks PDK2 in the inactive closed conformation, which is in equilibrium with the active open conformation without DCA and ADP. These results implicate the DW-motif anchoring site as a drug target for the inhibition of aberrant PDK activity in cancer and diabetes.
Collapse
Affiliation(s)
- Jun Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, USA
| | | | | |
Collapse
|
18
|
Tokmakov AA, Terazawa Y, Ikeda M, Shirouzu M, Fukami Y, Yokoyama S. Comparative expression analysis of multiple PDK genes in Xenopus laevis during oogenesis, maturation, fertilization, and early embryogenesis. Gene Expr Patterns 2009; 9:158-65. [DOI: 10.1016/j.gep.2008.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 11/26/2022]
|
19
|
Kato M, Wynn RM, Chuang JL, Tso SC, Machius M, Li J, Chuang DT. Structural basis for inactivation of the human pyruvate dehydrogenase complex by phosphorylation: role of disordered phosphorylation loops. Structure 2009; 16:1849-59. [PMID: 19081061 DOI: 10.1016/j.str.2008.10.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/26/2008] [Accepted: 10/27/2008] [Indexed: 11/15/2022]
Abstract
We report the crystal structures of the phosporylated pyruvate dehydrogenase (E1p) component of the human pyruvate dehydrogenase complex (PDC). The complete phosphorylation at Ser264-alpha (site 1) of a variant E1p protein was achieved using robust pyruvate dehydrogenase kinase 4 free of the PDC core. We show that unlike its unmodified counterpart, the presence of a phosphoryl group at Ser264-alpha prevents the cofactor thiamine diphosphate-induced ordering of the two loops carrying the three phosphorylation sites. The disordering of these phosphorylation loops is caused by a previously unrecognized steric clash between the phosphoryl group at site 1 and a nearby Ser266-alpha, which nullifies a hydrogen-bonding network essential for maintaining the loop conformations. The disordered phosphorylation loops impede the binding of lipoyl domains of the PDC core to E1p, negating the reductive acetylation step. This results in the disruption of the substrate channeling in the PDC, leading to the inactivation of this catalytic machine.
Collapse
Affiliation(s)
- Masato Kato
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Kato M, Li J, Chuang JL, Chuang DT. Distinct structural mechanisms for inhibition of pyruvate dehydrogenase kinase isoforms by AZD7545, dichloroacetate, and radicicol. Structure 2007; 15:992-1004. [PMID: 17683942 PMCID: PMC2871385 DOI: 10.1016/j.str.2007.07.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/10/2007] [Accepted: 07/10/2007] [Indexed: 01/07/2023]
Abstract
Pyruvate dehydrogenase kinase (PDK) isoforms are molecular switches that downregulate the pyruvate dehydrogenase complex (PDC) by reversible phosphorylation in mitochondria. We have determined structures of human PDK1 or PDK3 bound to the inhibitors AZD7545, dichloroacetate (DCA), and radicicol. We show that the trifluoromethylpropanamide end of AZD7545 projects into the lipoyl-binding pocket of PDK1. This interaction results in inhibition of PDK1 and PDK3 activities by aborting kinase binding to the PDC scaffold. Paradoxically, AZD7545 at saturating concentrations robustly increases scaffold-free PDK3 activity, similar to the inner lipoyl domain. Good DCA density is present in the helix bundle in the N-terminal domain of PDK1. Bound DCA promotes local conformational changes that are communicated to both nucleotide-binding and lipoyl-binding pockets of PDK1, leading to the inactivation of kinase activity. Finally, radicicol inhibits kinase activity by binding directly to the ATP-binding pocket of PDK3, similar to Hsp90 and Topo VI from the same ATPase/kinase superfamily.
Collapse
Affiliation(s)
- Masato Kato
- Department of Internal Medicine University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Li
- Department of Biochemistry University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jacinta L. Chuang
- Department of Biochemistry University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David T. Chuang
- Department of Internal Medicine University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
21
|
Tso SC, Kato M, Chuang JL, Chuang DT. Structural determinants for cross-talk between pyruvate dehydrogenase kinase 3 and lipoyl domain 2 of the human pyruvate dehydrogenase complex. J Biol Chem 2006; 281:27197-204. [PMID: 16849321 DOI: 10.1074/jbc.m604339200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyruvate dehydrogenase kinase isoforms (PDK1-4) are the molecular switch that down-regulates activity of the human pyruvate dehydrogenase complex through reversible phosphorylation. We showed previously that binding of the lipoyl domain 2 (L2) of the pyruvate dehydrogenase complex to PDK3 induces a "cross-tail" conformation in PDK3, resulting in an opening of the active site cleft and the stimulation of kinase activity. In the present study, we report that alanine substitutions of Leu-140, Glu-170, and Glu-179 in L2 markedly reduce binding affinities of these L2 mutants for PDK3. Unlike wildtype L2, binding of these L2 mutants to PDK3 does not preferentially reduce the affinity of PDK3 for ADP over ATP. The inefficient removal of product inhibition associated with ADP accounts for the decreased stimulation of PDK3 activity by these L2 variants. Serial truncations of the PDK3 C-terminal tail region either impede or abolish the binding of wild-type L2 to the PDK3 mutants, resulting in the reduction or absence of L2-enhanced kinase activity. Alanine substitutions of residues Leu-27, Phe-32, Phe-35, and Phe-48 in the lipoyl-binding pocket of PDK3 similarly nullify L2 binding and L2-stimulated PDK3 activity. Our results indicate that the above residues in L2 and residues in the C-terminal region and the lipoyl-binding pocket of PDK3 are critical determinants for the cross-talk between L2 and PDK3, which up-regulates PDK3 activity.
Collapse
Affiliation(s)
- Shih-Chia Tso
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
22
|
Sugden MC, Holness MJ. Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Arch Physiol Biochem 2006; 112:139-49. [PMID: 17132539 DOI: 10.1080/13813450600935263] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The mechanisms that control mammalian pyruvate dehydrogenase complex (PDC) activity include its phosphorylation (inactivation) by a family of pyruvate dehydrogenase kinases (PDKs 1 - 4). Here we review new developments in the regulation of the activities and expression of the PDKs, in particular PDK2 and PDK4, in relation to glucose and lipid homeostasis. This review describes recent advances relating to the acute and long-term modes of regulation of the PDKs, with particular emphasis on the regulatory roles of nuclear receptors including peroxisome proliferator-activated receptor (PPAR) alpha and Liver X receptor (LXR), PPAR gamma coactivator alpha (PGC-1alpha) and insulin, and the impact of changes in PDK activity and expression in glucose and lipid homeostasis. Since PDK4 may assist in lipid clearance when there is an imbalance between lipid delivery and oxidation, it may represent an attractive target for interventions aimed at rectifying abnormal lipid as well as glucose homeostasis in disease states.
Collapse
Affiliation(s)
- Mary C Sugden
- Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, Bart's and the London, Queen Mary's School of Medicine and Dentistry, London, UK.
| | | |
Collapse
|
23
|
Maj MC, MacKay N, Levandovskiy V, Addis J, Baumgartner ER, Baumgartner MR, Robinson BH, Cameron JM. Pyruvate dehydrogenase phosphatase deficiency: identification of the first mutation in two brothers and restoration of activity by protein complementation. J Clin Endocrinol Metab 2005; 90:4101-7. [PMID: 15855260 DOI: 10.1210/jc.2005-0123] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Pyruvate dehydrogenase phosphatase (PDP) deficiency has been previously reported as an enzymopathy, but the genetic basis for such a defect has never been established. OBJECTIVE The aim of this study was to identify the cause of the defect in two patients who presented with PDP deficiency. PATIENTS We studied two brothers of consanguineous parents who presented with neonatal hypotonia, elevated lactate, and less than 25% native pyruvate dehydrogenase complex (PDHc) activity in skin fibroblasts compared with controls. The activity of the complex could be restored to normal values by preincubation of the cells with dichloroacetate or by treating cell extracts with calcium. RESULTS These two individuals were found to be homozygous for a 3-bp deletion in the coding sequence of the PDP isoform 1 (PDP1), which removes the amino acid residue leucine from position 213 of the protein. A recombinant version of this protein was synthesized and found to have a very reduced (<5%) ability to activate purified PDHc. Reduced steady-state levels of PDP1 in the patient's fibroblasts coupled with the low catalytic activity of the mutant PDP1 resulted in native PDHc activity being reduced, but this could be corrected by the addition of recombinant PDP1 (wild type). CONCLUSION We have identified mutations in PDP1 in two brothers with PDP deficiency and have proven that the mutation is disease-causing. This is the first demonstration of human disease due to a mutation in PDP1.
Collapse
Affiliation(s)
- Mary C Maj
- Metabolic Research Program, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kato M, Chuang JL, Tso SC, Wynn RM, Chuang DT. Crystal structure of pyruvate dehydrogenase kinase 3 bound to lipoyl domain 2 of human pyruvate dehydrogenase complex. EMBO J 2005; 24:1763-74. [PMID: 15861126 PMCID: PMC1142596 DOI: 10.1038/sj.emboj.7600663] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 04/06/2005] [Indexed: 01/22/2023] Open
Abstract
The human pyruvate dehydrogenase complex (PDC) is regulated by reversible phosphorylation by four isoforms of pyruvate dehydrogenase kinase (PDK). PDKs phosphorylate serine residues in the dehydrogenase (E1p) component of PDC, but their amino-acid sequences are unrelated to eukaryotic Ser/Thr/Tyr protein kinases. PDK3 binds to the inner lipoyl domains (L2) from the 60-meric transacetylase (E2p) core of PDC, with concomitant stimulated kinase activity. Here, we present crystal structures of the PDK3-L2 complex with and without bound ADP or ATP. These structures disclose that the C-terminal tail from one subunit of PDK3 dimer constitutes an integral part of the lipoyl-binding pocket in the N-terminal domain of the opposing subunit. The two swapped C-terminal tails promote conformational changes in active-site clefts of both PDK3 subunits, resulting in largely disordered ATP lids in the ADP-bound form. Our structural and biochemical data suggest that L2 binding stimulates PDK3 activity by disrupting the ATP lid, which otherwise traps ADP, to remove product inhibition exerted by this nucleotide. We hypothesize that this allosteric mechanism accounts, in part, for E2p-augmented PDK3 activity.
Collapse
Affiliation(s)
- Masato Kato
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacinta L Chuang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shih-Chia Tso
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R Max Wynn
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David T Chuang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Biochemistry and Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA. Tel.: +1 214 648 2457; Fax: +1 214 648 8856; E-mail:
| |
Collapse
|
25
|
Karpova T, Danchuk S, Kolobova E, Popov KM. Characterization of the isozymes of pyruvate dehydrogenase phosphatase: implications for the regulation of pyruvate dehydrogenase activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2003; 1652:126-35. [PMID: 14644048 DOI: 10.1016/j.bbapap.2003.08.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The activity of mammalian pyruvate dehydrogenase complex (PDC) is regulated by a phosphorylation/dephosphorylation cycle. Dephosphorylation accompanied by activation is carried out by two genetically different isozymes of pyruvate dehydrogenase phosphatase, PDP1c and PDP2c. Here, we report data showing that PDP1c and PDP2c display marked biochemical differences. The activity of PDP1c strongly depends upon the simultaneous presence of calcium ions and the E2 component of PDC. In contrast, the activity of PDP2c displays little, if any, dependence upon either calcium ions or E2. Furthermore, PDP2c does not appreciably bind to PDC under the conditions when PDP1c exists predominantly in the PDC-bound state. The stimulatory effect of E2 on PDP1c can be partially mimicked by a monomeric construct consisting of the inner lipoyl-bearing domain and the E1-binding domain of E2 component. This strongly suggests that the E2-mediated activation of PDP1c largely reflects the effects of co-localization and mutual orientation of PDP1c and E1 component facilitated by their binding to E2. Both PDP1c and PDP2c can efficiently dephosphorylate all three phosphorylation sites located on the alpha chain of the E1 component. For PDC phosphorylated at a single site, the relative rates of dephosphorylation of individual sites are: 2>site 3>site 1. Phosphorylation of sites 2 or 3 in addition to site 1 does not have a significant effect on the rates of dephosphorylation of individual sites by PDP1c, suggesting a random mechanism of dephosphorylation. In contrast, there is a significant decrease in the overall rate of dephosphorylation of pyruvate dehydrogenase by PDP2c under these conditions. This indicates that the mechanism of dephosphorylation of PDC phosphorylated at multiple sites by PDP2c is not purely random. These marked differences in the site-specificity displayed by PDP1c and PDP2c should be particularly important under conditions such as starvation and diabetes, which are associated with a great increase in phosphorylation of sites 2 and 3 of pyruvate dehydrogenase.
Collapse
Affiliation(s)
- Tatiana Karpova
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5110 Rockhill Road, Kansas City, MO 64110-2499, USA
| | | | | | | |
Collapse
|
26
|
Sugden MC, Holness MJ. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab 2003; 284:E855-62. [PMID: 12676647 DOI: 10.1152/ajpendo.00526.2002] [Citation(s) in RCA: 367] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mitochondrial pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate, linking glycolysis to the tricarboxylic acid cycle and fatty acid (FA) synthesis. Knowledge of the mechanisms that regulate PDC activity is important, because PDC inactivation is crucial for glucose conservation when glucose is scarce, whereas adequate PDC activity is required to allow both ATP and FA production from glucose. The mechanisms that control mammalian PDC activity include its phosphorylation (inactivation) by a family of pyruvate dehydrogenase kinases (PDKs 1-4) and its dephosphorylation (activation, reactivation) by the pyruvate dehydrogenase phosphate phosphatases (PDPs 1 and 2). Isoform-specific differences in kinetic parameters, regulation, and phosphorylation site specificity of the PDKs introduce variations in the regulation of PDC activity in differing endocrine and metabolic states. In this review, we summarize recent significant advances in our knowledge of the mechanisms regulating PDC with emphasis on the PDKs, in particular PDK4, whose expression is linked with sustained changes in tissue lipid handling and which may represent an attractive target for pharmacological interventions aimed at modulating whole body glucose, lipid, and lactate homeostasis in disease states.
Collapse
Affiliation(s)
- Mary C Sugden
- Department of Diabetes and Metabolic Medicine, Division of General and Developmental Medicine, Bart's and the London, Queen Mary's School of Medicine and Dentistry, University of London, Mile End Road, London E1 4NS, United Kingdom.
| | | |
Collapse
|
27
|
Tuganova A, Boulatnikov I, Popov KM. Interaction between the individual isoenzymes of pyruvate dehydrogenase kinase and the inner lipoyl-bearing domain of transacetylase component of pyruvate dehydrogenase complex. Biochem J 2002; 366:129-36. [PMID: 11978179 PMCID: PMC1222743 DOI: 10.1042/bj20020301] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2002] [Revised: 04/15/2002] [Accepted: 04/29/2002] [Indexed: 11/17/2022]
Abstract
Protein-protein interactions play an important role in the regulation of enzymic activity of pyruvate dehydrogenase kinase (PDK). It is generally believed that the binding of PDK to the inner lipoyl-bearing domain L2 of the transacetylase component E2 of pyruvate dehydrogenase complex largely determines the level of kinase activity. In the present study, we characterized the interaction between the individual isoenzymes of PDK (PDK1-PDK4) and monomeric L2 domain of human E2, as well as the effect of this interaction on kinase activity. It was found that PDK isoenzymes are markedly different with respect to their affinities for L2. PDK3 demonstrated a very tight binding, which persisted during isolation of PDK3-L2 complexes using size-exclusion chromatography. Binding of PDK1 and PDK2 was readily reversible with the apparent dissociation constant of approx. 10 microM for both isoenzymes. PDK4 had a greatly reduced capacity for L2 binding (relative order PDK3>PDK1=PDK2>PDK4). Monomeric L2 domain alone had very little effect on the activities of either PDK1 or PDK2. In contrast, L2 caused a 3-fold increase in PDK3 activity and approx. 37% increase in PDK4 activity. These results strongly suggest that the interactions between the individual isoenzymes of PDK and L2 domain are isoenzyme-specific and might be among the major factors that determine the level of kinase activity of particular isoenzyme towards the pyruvate dehydrogenase complex.
Collapse
Affiliation(s)
- Alina Tuganova
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-2499, U.S.A
| | | | | |
Collapse
|
28
|
Randle PJ. General Introduction: Reminiscences and Reflections on Fifty Years of the Endocrine Pancreas. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Sugden MC, Bulmer K, Gibbons GF, Holness MJ. Role of peroxisome proliferator-activated receptor-alpha in the mechanism underlying changes in renal pyruvate dehydrogenase kinase isoform 4 protein expression in starvation and after refeeding. Arch Biochem Biophys 2001; 395:246-52. [PMID: 11697863 DOI: 10.1006/abbi.2001.2586] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pyruvate dehydrogenase complex (PDC) occupies a strategic role in renal intermediary metabolism, via partitioning of pyruvate flux between oxidation and entry into the gluconeogenic pathway. Inactivation of PDC via activation of pyruvate dehydrogenase kinases (PDKs), which catalyze PDC phosphorylation, occurs secondary to increased fatty acid oxidation (FAO). In kidney, inactivation of PDC after prolonged starvation is mediated by up-regulation of the protein expression of two PDK isoforms, PDK2 and PDK4. The lipid-activated transcription factor, peroxisome proliferator-activated receptor-alpha (PPAR alpha), plays a pivotal role in the cellular metabolic response to fatty acids and is abundant in kidney. In the present study we used PPAR alpha null mice to examine the potential role of PPAR alpha in regulating renal PDK protein expression. In wild-type mice, fasting (24 h) induced marked up-regulation of the protein expression of PDK4, together with modest up-regulation of PDK2 protein expression. In striking contrast, renal protein expression of PDK4 was only marginally induced by fasting in PPAR alpha null mice. The present results define a critical role for PPAR alpha in renal adaptation to fasting, and identify PDK4 as a downstream target of PPAR alpha activation in the kidney. We propose that specific up-regulation of renal PDK4 protein expression in starvation, by maintaining PDC activity relatively low, facilitates pyruvate carboxylation to oxaloacetate and therefore entry of acetyl-CoA derived from FA beta-oxidation into the TCA cycle, allowing adequate ATP production for brisk rates of gluconeogenesis.
Collapse
Affiliation(s)
- M C Sugden
- Department of Diabetes and Metabolic Medicine, Division of General and Developmental Medicine, St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary, University of London, United Kingdom.
| | | | | | | |
Collapse
|
30
|
Kolobova E, Tuganova A, Boulatnikov I, Popov KM. Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites. Biochem J 2001; 358:69-77. [PMID: 11485553 PMCID: PMC1222033 DOI: 10.1042/0264-6021:3580069] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The enzymic activity of the mammalian pyruvate dehydrogenase complex is regulated by the phosphorylation of three serine residues (sites 1, 2 and 3) located on the E1 component of the complex. Here we report that the four isoenzymes of protein kinase responsible for the phosphorylation and inactivation of pyruvate dehydrogenase (PDK1, PDK2, PDK3 and PDK4) differ in their abilities to phosphorylate the enzyme. PDK1 can phosphorylate all three sites, whereas PDK2, PDK3 and PDK4 each phosphorylate only site 1 and site 2. Although PDK2 phosphorylates site 1 and 2, it incorporates less phosphate in site 2 than PDK3 or PDK4. As a result, the amount of phosphate incorporated by each isoenzyme decreases in the order PDK1>PDK3>or=PDK4>PDK2. Significantly, binding of the coenzyme thiamin pyrophosphate to pyruvate dehydrogenase alters the rates and stoichiometries of phosphorylation of the individual sites. First, the rate of phosphorylation of site 1 by all isoenzymes of kinase is decreased. Secondly, thiamin pyrophosphate markedly decreases the amount of phosphate that PDK1 incorporates in sites 2 and 3 and that PDK2 incorporates in site 2. In contrast, the coenzyme does not significantly affect the total amount of phosphate incorporated in site 2 by PDK3 and PDK4, but instead decreases the rate of phosphorylation of this site. Furthermore, pyruvate dehydrogenase complex phosphorylated by the individual isoenzymes of kinase is reactivated at different rates by pyruvate dehydrogenase phosphatase. Both isoenzymes of phosphatase (PDP1 and PDP2) readily reactivate the complex phosphorylated by PDK2. When pyruvate dehydrogenase is phosphorylated by other isoenzymes, the rates of reactivation decrease in the order PDK4>or=PDK3>PDK1. Taken together, results reported here strongly suggest that the major determinants of the activity state of pyruvate dehydrogenase in mammalian tissues include the phosphorylation site specificity of isoenzymes of kinase in addition to the absolute amounts of kinase and phosphatase protein expressed in mitochondria.
Collapse
Affiliation(s)
- E Kolobova
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-2499, USA
| | | | | | | |
Collapse
|
31
|
Song H, Komuniecki R. Novel regulation of pyruvate dehydrogenase phosphatase purified from anaerobic muscle mitochondria of the adult parasitic nematode, Ascaris suum. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31732-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Thissen J, Komuniecki R. Phosphorylation and inactivation of the pyruvate dehydrogenase from the anaerobic parasitic nematode, Ascaris suum. Stoichiometry and amino acid sequence around the phosphorylation sites. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37394-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Midgley PJ, Rutter GA, Thomas AP, Denton RM. Effects of Ca2+ and Mg2+ on the activity of pyruvate dehydrogenase phosphate phosphatase within toluene-permeabilized mitochondria. Biochem J 1987; 241:371-7. [PMID: 3036061 PMCID: PMC1147570 DOI: 10.1042/bj2410371] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitochondria from rat epididymal white adipose tissue were made permeable to small molecules by toluene treatment and were used to investigate the effects of Mg2+ and Ca2+ on the re-activation of pyruvate dehydrogenase phosphate by endogenous phosphatase. Re-activation of fully phosphorylated enzyme after addition of 0.18 mM-Mg2+ showed a marked lag of 5-10 min before a maximum rate of reactivation was achieved. Increasing the Mg2+ concentration to 1.8 mM (near saturating) or the addition of 100 microM-Ca2+ resulted in loss of the lag phase, which was also greatly diminished if pyruvate dehydrogenase was not fully phosphorylated. It is concluded that, within intact mitochondria, phosphatase activity is highly sensitive to the degree of phosphorylation of pyruvate dehydrogenase and that the major effect of Ca2+ may be to overcome the inhibitory effects of sites 2 and 3 on the dephosphorylation of site 1. Apparent K0.5 values for Mg2+ and Ca2+ were determined from the increases in pyruvate dehydrogenase activity observed after 5 min. The K0.5 for Mg2+ was diminished from 0.60 mM at less than 1 nM-Ca2+ to 0.32 mM at 100 microM-Ca2+; at 0.18 mM-Mg2+, the K0.5 for Ca2+ was 0.40 microM. Ca2+ had little or no effect at saturating Mg2+ concentrations. Since effects of Ca2+ are readily observed in intact coupled mitochondria, it follows that Mg2+ concentrations within mitochondria are sub-saturating for pyruvate dehydrogenase phosphate phosphatase and hence less than 0.5 mM.
Collapse
|
34
|
Denyer GS, Kerbey AL, Randle PJ. Kinase activator protein mediates longer-term effects of starvation on activity of pyruvate dehydrogenase kinase in rat liver mitochondria. Biochem J 1986; 239:347-54. [PMID: 3814076 PMCID: PMC1147287 DOI: 10.1042/bj2390347] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Starvation of rats for 48 h increased the activity of PDH (pyruvate dehydrogenase) kinase 2.2-fold in extracts of liver mitochondria, 2.9-fold in PDH complex partially purified therefrom by fractional precipitation, and 5-fold in PDH complex partially purified by gel filtration on Sephacryl S-300. A protein fraction was separated from PDH complex in extracts of rat liver mitochondria by gel filtration or fractional precipitation, which increased the activity of PDH kinase in rat liver and pig heart PDH complexes. The activity of this protein fraction was increased approx. 2.5-fold by 48 h starvation of rats. With highly purified pig heart PDH complex it was shown that the protein fraction increased the Vmax. of the PDH kinase reaction 35-fold (fraction from fed rats) or 82-fold (fraction from starved rats); starvation had no effect on the concentration of protein fraction required to give 0.5 Vmax. Evidence is given that the increase in PDH kinase activity effected in extracts of liver mitochondria by starvation is due to increased activity of kinase activator protein, which is tightly bound by rat liver PDH complex and not removed by a single gel filtration. With pig heart PDH complex, increased PDH kinase activity was retained after gel filtration of an admixture with kinase activator protein from starved rats, but was restored to the control value by a second gel filtration; the alterations in PDH kinase activity were associated with obvious changes in protein bands in SDS gels.
Collapse
|
35
|
Fatania HR, Vary TC, Randle PJ. Modulation of pyruvate dehydrogenase kinase activity in cultured hepatocytes by glucagon and n-octanoate. Biochem J 1986; 234:233-6. [PMID: 3707545 PMCID: PMC1146552 DOI: 10.1042/bj2340233] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The activity of pyruvate dehydrogenase kinase in extracts of mitochondria from rat hepatocytes cultured for 21 h in medium 199 was increased 2.5-fold by the presence of 55 nM-glucagon and 1 mM-sodium n-octanoate in the culture medium. The change was comparable with that induced in vivo by 48 h starvation. The potential contribution of branched-chain complex to estimates of PDH-complex activity in rat liver mitochondria has been defined.
Collapse
|
36
|
Fuller SJ, Randle PJ. Reversible phosphorylation of pyruvate dehydrogenase in rat skeletal-muscle mitochondria. Effects of starvation and diabetes. Biochem J 1984; 219:635-46. [PMID: 6331393 PMCID: PMC1153522 DOI: 10.1042/bj2190635] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The total activity of pyruvate dehydrogenase (PDH) complex in rat hind-limb muscle mitochondria was 76.4 units/g of mitochondrial protein. The proportion of complex in the active form was 34% (as isolated), 8-14% (incubation with respiratory substrates) and greater than 98% (incubation without respiratory substrates). Complex was also inactivated by ATP in the presence of oligomycin B and carbonyl cyanide m-chlorophenylhydrazone. Ca2+ (which activates PDH phosphatase) and pyruvate or dichloroacetate (which inhibit PDH kinase) each increased the concentration of active PDH complex in a concentration-dependent manner in mitochondria oxidizing 2-oxoglutarate/L-malate. Values giving half-maximal activation were 10 nM-Ca2+, 3 mM-pyruvate and 16 microM-dichloroacetate. Activation by Ca2+ was inhibited by Na+ and Mg2+. Mitochondria incubated with [32P]Pi/2-oxoglutarate/L-malate incorporated 32P into three phosphorylation sites in the alpha-chain of PDH; relative rates of phosphorylation were sites 1 greater than 2 greater than 3, and of dephosphorylation, sites 2 greater than 1 greater than 3. Starvation ( 48h ) or induction of alloxan-diabetes had no effect on the total activity of PDH complex in skeletal-muscle mitochondria, but each decreased the concentration of active complex in mitochondria oxidizing 2-oxoglutarate/L-malate and increased the concentrations of Ca2+, pyruvate or dichloracetate required for half-maximal reactivation. In extracts of mitochondria the activity of PDH kinase was increased 2-3-fold by 48 h starvation or alloxan-diabetes, but the activity of PDH phosphatase was unchanged.
Collapse
|
37
|
Lau KS, Phillips CE, Randle PJ. Multi-site phosphorylation in ox-kidney branched-chain 2-oxoacid dehydrogenase complex. FEBS Lett 1983; 160:149-52. [PMID: 6884504 DOI: 10.1016/0014-5793(83)80955-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tryptic [32P]phosphopeptides were prepared from [32P]phosphorylated ox-kidney branched-chain complex and analysed by high-voltage paper electrophoresis at pH 1.9. In the maximally phosphorylated complex 3 tryptic [32P]phosphopeptides were identified (TA, TB, TC). RF-values relative to N6-dinitrophenyllysine were (mean +/- SEM for 25 obs.): TA, 1.53 +/- 0.03; TB, 1.07 +/- 0.02; TC, 0.65 +/- 0.01. Relative rates of phosphorylation were TA greater than TB greater than TC. Phosphorylation of TA reached a maximum when about 66% of the complex was inactivated. Phosphorylation of TB and TC was associated mainly with 66-95% inactivation of the complex.
Collapse
|
38
|
Randle PJ. Mitochondrial 2-oxoacid dehydrogenase complexes of animal tissues. Philos Trans R Soc Lond B Biol Sci 1983; 302:47-57. [PMID: 6137008 DOI: 10.1098/rstb.1983.0037] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The pyruvate dehydrogenase and branched-chain 2-oxoacid dehydrogenase complexes of animal mitochondria are inactivated by phosphorylation of serine residues, and reactivated by dephosphorylation. In addition, phosphorylated branched-chain complex is reactivated, apparently without dephosphorylation, by a protein or protein-associated factor present in liver and kidney mitochondria but not in heart or skeletal muscle mitochondria. Interconversion of the branched-chain complex may adjust the degradation of branched-chain amino acids in different tissues in response to supply. Phosphorylation is inhibited by branched-chain ketoacids, ADP and TPP. The pyruvate dehydrogenase complex is almost totally inactivated (99%) by starvation or diabetes, the kinase reactions being accelerated by products of fatty acid oxidation and by a protein or protein-associated factor induced by starvation or diabetes. There are three sites of phosphorylation, but only sites 1 and 2 are inactivating. Site 1 phosphorylation accounts for 98% of inactivation except during dephosphorylation when its contribution falls to 93%. Sites 2 and 3 are only fully phosphorylated when the complex is fully inactivated (starvation, diabetes). Phosphorylation of sites 2 and 3 inhibits reactivation by phosphatase. The phosphatase reaction is activated by Ca2+ (which may mediate effects of muscle work) and possibly by uncharacterized factors mediating insulin action in adipocytes.
Collapse
|
39
|
Wieland OH. The mammalian pyruvate dehydrogenase complex: structure and regulation. Rev Physiol Biochem Pharmacol 1983; 96:123-70. [PMID: 6338572 DOI: 10.1007/bfb0031008] [Citation(s) in RCA: 260] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Tonks NK, Kearns A, Randle PJ. Pig heart [35S]thiophosphoryl pyruvate dehydrogenase complexes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 122:549-51. [PMID: 7060590 DOI: 10.1111/j.1432-1033.1982.tb06472.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Thiophosphorylation of the pig heart pyruvate dehydrogenase complex with ATP [35S] (adenosine 5'[gamma-thio]-triphosphate) was analogous to phosphorylation with [gamma-32P]ATP except that thiophosphorylation of sites 2 and 3 was more rapid. With pyruvate dehydrogenase phosphatase the rate of dethiophosphorylation was 0.5% of that of dephosphorylation. Thiophosphorylation of sites 2 and 3 in complex phosphorylated in site 1 reduced the rate of dephosphorylation of site 1.
Collapse
|