1
|
Trypanosoma brucei brucei Induced Hypoglycaemia Depletes Hepatic Glycogen and Altered Hepatic Hexokinase and Glucokinase Activities in Infected Mice. Acta Parasitol 2022; 67:1097-1106. [PMID: 35476260 DOI: 10.1007/s11686-022-00550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Little progress has been made in understanding the effect of Trypanosoma brucei brucei infection that was allowed to run its course without treatment on human and animal carbohydrate metabolism even though most of the symptoms associated with the disease can be clearly linked with interference with host energy generation. The present study therefore assessed the course of untreated Trypanosoma brucei brucei infection on hepatic glycogen, hepatic hexokinase and glucokinase activities. METHODS Mice were grouped into two: control and infected group. Trypanosomiasis was induced by intraperitoneal inoculation of 1 × 104 parasites/mice in 0.3 ml of phosphate saline glucose. The infection was allowed to run its course until the first mortality was recorded with all the mice showing chronic symptoms of the second stage of the disease before the research was terminated. Blood and liver samples were collected from the mice in each group for the assessment of hepatic glycogen and total protein, hepatic hexokinase and glucokinase activities, liver biomarkers, blood glucose and protein with packed cell volume. RESULTS The infection resulted in decrease in blood glucose, hepatic glycogen, liver protein, PCV, hepatic hexokinase and glucokinase activities, but increase in serum total protein and liver biomarkers. CONCLUSION Trypanosomiasis negatively affects hepatic integrity, resulting in the depletion of hepatic glycogen content and suppression of both hepatic hexokinase and glucokinase activities. The suppression of hepatic hexokinase and glucokinase activities suggested that trypanosomiasis affected the oxidation of glucose and host energy generation via glycolysis. This probably denied the host of the needed energy which is likely the reason for early death in untreated African trypanosomiasis.
Collapse
|
2
|
Update on relevant trypanosome peptidases: Validated targets and future challenges. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140577. [PMID: 33271348 DOI: 10.1016/j.bbapap.2020.140577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Trypanosoma cruzi, the agent of the American Trypanosomiasis, Chagas disease, and Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, the agents of Sleeping sickness (Human African Trypanosomiasis, HAT), as well as Trypanosoma brucei brucei, the agent of the cattle disease nagana, contain cysteine, serine, threonine, aspartyl and metallo peptidases. The most abundant among these enzymes are the cysteine proteases from the Clan CA, the Cathepsin L-like cruzipain and rhodesain, and the Cathepsin B-like enzymes, which have essential roles in the parasites and thus are potential targets for chemotherapy. In addition, several other proteases, present in one or both parasites, have been characterized, and some of them are also promising candidates for the developing of new drugs. Recently, new inhibitors, with good selectivity for the parasite proteasomes, have been described and are very promising as lead compounds for the development of new therapies for these neglected diseases. This article is part of a Special Issue entitled: "Play and interplay of proteases in health and disease".
Collapse
|
3
|
Ugwu DI, Okoro UC, Mishra NK. Synthesis, characterization and in vitro antitrypanosomal activities of new carboxamides bearing quinoline moiety. PLoS One 2018; 13:e0191234. [PMID: 29324817 PMCID: PMC5764481 DOI: 10.1371/journal.pone.0191234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/29/2017] [Indexed: 11/19/2022] Open
Abstract
The reported toxicities of current antitrypanosomal drugs and the emergence of drug resistant trypanosomes underscore the need for the development of new antitrypanosomal agents. We report herein the synthesis and antitrypanosomal activity of 24 new amide derivatives of 3-aminoquinoline, bearing substituted benzenesulphonamide. Nine of the new derivatives showed comparable antitrypanosomal activities at IC50 range of 1-6 nM (melarsoprol 5 nM). Compound 11n and 11v are more promising antitrypanosomal agents with IC50 1.0 nM than the rest of the reported derivatives. The novel compounds showed satisfactory predicted physico-chemical properties including oral bioavailability, permeability and transport properties.
Collapse
Affiliation(s)
- David Izuchukwu Ugwu
- Medicinal Chemistry Unit, Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
- Department of Chemistry, Indian Institute of Technology, Kanpur, India
- * E-mail:
| | - Uchechukwu Chris Okoro
- Medicinal Chemistry Unit, Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | | |
Collapse
|
4
|
Guegan F, Plazolles N, Baltz T, Coustou V. Erythrophagocytosis of desialylated red blood cells is responsible for anaemia during Trypanosoma vivax infection. Cell Microbiol 2013; 15:1285-303. [PMID: 23421946 DOI: 10.1111/cmi.12123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/26/2022]
Abstract
Trypanosomal infection-induced anaemia is a devastating scourge for cattle in widespread regions. Although Trypanosoma vivax is considered as one of the most important parasites regarding economic impact in Africa and South America, very few in-depth studies have been conducted due to the difficulty of manipulating this parasite. Several hypotheses were proposed to explain trypanosome induced-anaemia but mechanisms have not yet been elucidated. Here, we characterized a multigenic family of trans-sialidases in T. vivax, some of which are released into the host serum during infection. These enzymes are able to trigger erythrophagocytosis by desialylating the major surface erythrocytes sialoglycoproteins, the glycophorins. Using an ex vivo assay to quantify erythrophagocytosis throughout infection, we showed that erythrocyte desialylation alone results in significant levels of anaemia during the acute phase of the disease. Characterization of virulence factors such as the trans-sialidases is vital to develop a control strategy against the disease or parasite.
Collapse
Affiliation(s)
- Fabien Guegan
- Microbiologie fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, Bordeaux, France
| | | | | | | |
Collapse
|
5
|
Trypanosoma brucei: Chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int J Parasitol 2012; 42:481-8. [DOI: 10.1016/j.ijpara.2012.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 01/10/2023]
|
6
|
Costa TF, Reis FCD, Lima APC. Substrate inhibition and allosteric regulation by heparan sulfate of Trypanosoma brucei cathepsin L. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:493-501. [DOI: 10.1016/j.bbapap.2011.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 12/13/2011] [Accepted: 12/23/2011] [Indexed: 11/27/2022]
|
7
|
Caffrey CR, Lima AP, Steverding D. Cysteine peptidases of kinetoplastid parasites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:84-99. [PMID: 21660660 DOI: 10.1007/978-1-4419-8414-2_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We review Clan CA Family C1 peptidases of kinetoplastid parasites (Trypanosoma and Leishmania) with respect to biochemical and genetic diversity, genomic organization and stage-specificity and control of expression. We discuss their contributions to parasite metabolism, virulence and pathogenesis and modulation of the host's immune response. Their applications as vaccine candidates and diagnostic markers as well as their chemical and genetic validation as drug targets are also summarized.
Collapse
Affiliation(s)
- Conor R Caffrey
- Sandler Center for Drug Discovery, California Institute for Quantitative Biosciences, Byers Hall, University of California San Francisco, San Francisco, USA.
| | | | | |
Collapse
|
8
|
Cellular and molecular remodeling of the endocytic pathway during differentiation of Trypanosoma brucei bloodstream forms. EUKARYOTIC CELL 2010; 9:1272-82. [PMID: 20581292 DOI: 10.1128/ec.00076-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the course of mammalian infection, African trypanosomes undergo extensive cellular differentiation, as actively dividing long slender (SL) forms progressively transform into intermediate (I) forms and finally quiescent G(1)/G(0)-locked short stumpy (ST) forms. ST forms maintain adaptations compatible with their survival in the mammalian bloodstream, such as high endocytic activity, but they already show preadaptations to the insect midgut conditions. The nutritional requirements of ST forms must differ from those of SL forms because the ST forms stop multiplying. We report that the uptake of several ligands was reduced in ST forms compared with that in SL forms. In particular, the haptoglobin-hemoglobin (Hp-Hb) complex was no longer taken up due to dramatic downregulation of its cognate receptor, TbHpHbR. As this receptor also allows uptake of trypanolytic particles from human serum, ST forms were resistant to trypanolysis by human serum lipoproteins. These observations allowed both flow cytometry analysis of SL-to-ST differentiation and the generation of homogeneous ST populations after positive selection upon exposure to trypanolytic particles. In addition, we observed that in ST forms the lysosome relocates anterior to the nucleus. Altogether, we identified novel morphological and molecular features that characterize SL-to-ST differentiation.
Collapse
|
9
|
Host-parasite interactions in trypanosomiasis: on the way to an antidisease strategy. Infect Immun 2009; 77:1276-84. [PMID: 19168735 DOI: 10.1128/iai.01185-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
10
|
Santos CC, Coombs GH, Lima APCA, Mottram JC. Role of the Trypanosoma brucei natural cysteine peptidase inhibitor ICP in differentiation and virulence. Mol Microbiol 2007; 66:991-1002. [PMID: 17944830 PMCID: PMC2680270 DOI: 10.1111/j.1365-2958.2007.05970.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ICP is a chagasin-family natural tight binding inhibitor of Clan CA, family C1 cysteine peptidases (CPs). We investigated the role of ICP in Trypanosoma brucei by generating bloodstream form ICP-deficient mutants (Deltaicp). A threefold increase in CP activity was detected in lysates of Deltaicp, which was restored to the levels in wild type parasites by re-expression of the gene in the null mutant. Deltaicp displayed slower growth in culture and increased resistance to a trypanocidal synthetic CP inhibitor. More efficient exchange of the variant surface glycoprotein (VSG) to procyclin during differentiation from bloodstream to procyclic form was observed in Deltaicp, a phenotype that was reversed in the presence of synthetic CP inhibitors. Furthermore, we showed that degradation of anti-VSG IgG is abolished when parasites are pretreated with synthetic CP inhibitors, and that parasites lacking ICP degrade IgG more efficiently than wild type. In addition, Deltaicp reached higher parasitemia than wild type parasites in infected mice, suggesting that ICP modulates parasite infectivity. Taken together, these data suggest that CPs of T. brucei bloodstream form play a role in surface coat exchange during differentiation, in the degradation of internalized IgG and in parasite infectivity, and that their function is regulated by ICP.
Collapse
Affiliation(s)
- Camila C Santos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Bloco G, C.C.S., Cidade Universitaria, Rio de Janeiro, RJ, 21949-900, Brazil
| | | | | | | |
Collapse
|
11
|
Scory S, Stierhof YD, Caffrey CR, Steverding D. The cysteine proteinase inhibitor Z-Phe-Ala-CHN2 alters cell morphology and cell division activity of Trypanosoma brucei bloodstream forms in vivo. KINETOPLASTID BIOLOGY AND DISEASE 2007; 6:2. [PMID: 17328798 PMCID: PMC1810305 DOI: 10.1186/1475-9292-6-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/28/2007] [Indexed: 11/25/2022]
Abstract
Background Current chemotherapy of human African trypanosomiasis or sleeping sickness relies on drugs developed decades ago, some of which show toxic side effects. One promising line of research towards the development of novel anti-trypanosomal drugs are small-molecule inhibitors of Trypanosoma brucei cysteine proteinases. Results In this study, we demonstrate that treatment of T. brucei-infected mice with the inhibitor, carbobenzoxy-phenylalanyl-alanine-diazomethyl ketone (Z-Phe-Ala-CHN2), alters parasite morphology and inhibits cell division. Following daily intra-peritoneal administration of 250 mg kg-1 of Z-Phe-Ala-CHN2 on days three and four post infection (p.i.), stumpy-like forms with enlarged lysosomes were evident by day five p.i. In addition, trypanosomes exposed to the inhibitor had a 65% greater protein content than those from control mice. Also, in contrast to the normal 16% of parasites containing two kinetoplasts – a hallmark of active mitosis, only 4% of trypanosomes exposed to the inhibitor were actively dividing, indicating cell cycle-arrest. Conclusion We suggest that inhibition of endogenous cysteine proteinases by Z-Phe-Ala-CHN2 depletes the parasite of essential nutrients necessary for DNA synthesis, which in turn, prevents progression of the cell cycle. This arrest then triggers differentiation of the long-slender into short-stumpy forms.
Collapse
Affiliation(s)
- Stefan Scory
- Abteilung Parasitologie, Hygiene-Institut der Ruprecht Karls-Universität, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - York-Dieter Stierhof
- Abteilung Membranbiochemie, Max-Planck-Institut für Biologie, Corrensstraße 38, 72076 Tübingen, Germany
- Zentrum für Molekularbiologie der Pflanzen, Eberhard-Karls-Universität, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | - Conor R Caffrey
- Abteilung Tropenhygiene und Öffentliches Gesundheitswesen, Hygiene-Institut der Ruprecht Karls-Universität, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Sandler Center for Basic Research in Parasitic Diseases, California Institute for Quantitative Biomedical Research, Byers Hall, University of California San Francisco, 1700 4th Street, San Francisco, CA94158-2330, USA
| | - Dietmar Steverding
- Abteilung Parasitologie, Hygiene-Institut der Ruprecht Karls-Universität, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Present address: BioMedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
12
|
Shaw E. Cysteinyl proteinases and their selective inactivation. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 63:271-347. [PMID: 2407065 DOI: 10.1002/9780470123096.ch5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The affinity-labeling of cysteinyl proteinases may now be carried out with a number of peptide-derived reagents with selectivity, particularly for reactions carried out in vitro. These reagents have been described with emphasis on their selectivity for cysteine proteinases and lack of action on serine proteinases, the most likely source of side reactions among proteinases. Perhaps a crucial feature of this selectivity is an enzyme-promoted activation due to initial formation of a hemiketal, which may destabilize the reagent. Prominent among the reagent types that have this class selectivity are the peptidyl diazomethyl ketones, the acyloxymethyl ketones, the peptidylmethyl sulfonium salts, and peptidyl oxides analogous to E-64. The need for specific inhibitors capable of inactivating the target enzyme in intact cells and animals is inevitably pushing the biochemical application of these inhibitors into more complex molecular environments where the possibilities of competing reactions are greatly increased. In dealing with the current state and potential developments for the in vivo use of affinity-labeling reagents of cysteine proteinases, the presently known variety of cysteinyl proteinases had to be considered. Therefore this chapter has, at the same time, attempted to survey these proteinases with respect to specificity and gene family. The continual discovery of new proteinases will increase the complexity of this picture. At present the lysosomal cysteine proteinases cathepsins B and L and the cytoplasmic calcium-dependent proteinases are reasonable goals for a fairly complete metabolic clarification. The ability of investigators to inactivate individual members of this family in vivo, possibly without complications due to concurrent inactivation of serine proteinases by improvements in reagent specificity, is increasing. Among the cysteine proteinases, at least those of the papain super family, hydrophobic interactions in the S2 and S3 subsites are important and some specificity has been achieved by taking advantage of topographical differences among members of this group. Some of this has probably involved surface differences removed from the regions involved in proteolytic action. The emerging cysteine proteinases include some which, in contrast to the papain family, have a pronounced specificity in S1 for the binding of basic side chains, familiar in the trypsin family of serine proteinases. At least a potential conflict with serine proteinases can be avoided by choice of a covalent bonding mechanism. The departing group region, has not been exploited. As a sole contributor to binding, this region may be rather limited as a source of specificity.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Shaw
- Friedrich Miescher-Institut, Basel, Switzerland
| |
Collapse
|
13
|
Abstract
Trypanosomes are the causative agents of Chagas' disease in Central and South America and sleeping sickness in sub-Saharan Africa. The current chemotherapy of the human trypanosomiases relies on only six drugs, five of which were developed > 30 years ago. In addition, these drugs display undesirable toxic side effects and the emergence of drug-resistant trypanosomes has been reported. Therefore, the development of new drugs in the treatment of Chagas' disease and sleeping sickness is urgently required. This article summarises the recent progress in identifying novel lead compounds for antitrypanosomal chemotherapy. Particular emphasis is placed on those agents showing promising, selective antitrypanosomal activity.
Collapse
Affiliation(s)
- Dietmar Steverding
- School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 TJ7, UK.
| | | |
Collapse
|
14
|
Abstract
Proteinases are involved with many processes in living organisms. In recent years, there has been increasing interest in elucidating the functions the enzymes perform in parasites. These studies have revealed that one class of proteinases, the cysteine proteinases, predominates in many parasitic protozoa. In this article Mick North, Jeremy Mottram and Graham Coombs review what is known about the cysteine proteinases of parasitic protozoa and discuss the approaches being pursued in attempts to design antiparasite drugs based on inhibitors or substrates of these enzymes.
Collapse
Affiliation(s)
- M J North
- Department of Biological and Molecular Sciences, University of Stirling, UK
| | | | | |
Collapse
|
15
|
Naessens J, Kitani H, Nakamura Y, Yagi Y, Sekikawa K, Iraqi F. TNF-alpha mediates the development of anaemia in a murine Trypanosoma brucei rhodesiense infection, but not the anaemia associated with a murine Trypanosoma congolense infection. Clin Exp Immunol 2005; 139:405-10. [PMID: 15730385 PMCID: PMC1809320 DOI: 10.1111/j.1365-2249.2004.02717.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Development of anaemia in inflammatory diseases is cytokine-mediated. Specifically, the levels of tumour necrosis factor-alpha (TNF-alpha), produced by activated macrophages, are correlated with severity of disease and anaemia in infections and chronic disease. In African trypanosomiasis, anaemia develops very early in infection around the time when parasites become detectable in the blood. Since the anaemia persists after the first waves of parasitaemia when low numbers of trypanosomes are circulating in the blood, it is generally assumed that anaemia is not directly induced by a parasite factor, but might be cytokine-mediated, as in other cases of anaemia accompanying inflammation. To clarify the role of TNF-alpha in the development of anaemia, blood parameters of wild type (TNF-alpha+/+), TNF-alpha-null (TNF-alpha-/-) and TNF-alpha-hemizygous (TNF-alpha-/+) trypanotolerant mice were compared during infections with the cattle parasite Trypanosoma congolense. No differences in PCV, erythrocyte numbers or haemoglobin were observed between TNF-alpha-deficient and wild type mice, suggesting that the decrease in erythrocytes was not mediated by TNF-alpha. Erythropoetin (EPO) levels increased during infection and no significant differences in EPO levels were observed between the three mouse strains. In contrast, during an infection with the human pathogen Trypanosoma brucei rhodesiense, the number of red blood cells in TNF-alpha-deficient mice remained significantly higher than in the wild type mice. These data suggest that more than one mechanism promotes the development of anaemia associated with trypanosomiasis.
Collapse
Affiliation(s)
- J Naessens
- International livestock Research Institute, Nairobi, Kenya.
| | | | | | | | | | | |
Collapse
|
16
|
Mackey ZB, O'Brien TC, Greenbaum DC, Blank RB, McKerrow JH. A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei. J Biol Chem 2004; 279:48426-33. [PMID: 15326171 DOI: 10.1074/jbc.m402470200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Identification and analysis of Clan CA (papain) cysteine proteases in primitive protozoa and metazoa have suggested that this enzyme family is more diverse and biologically important than originally thought. The protozoan parasite Trypanosoma brucei is the etiological agent of African sleeping sickness. The cysteine protease activity of this organism is a validated drug target as first recognized by the killing of the parasite with the diazomethane inhibitor Z-Phe-Ala-CHN(2) (where Z is benzyloxycarbonyl). Whereas the presumed target of this inhibitor was rhodesain (also brucipain, trypanopain), the major cathepsin L-like cysteine protease of T. brucei, genomic analysis has now identified tbcatB, a cathepsin B-like cysteine protease as a possible inhibitor target. The mRNA of tbcatB is more abundantly expressed in the bloodstream versus the procyclic form of the parasite. Induction of RNA interference against rhodesain did not result in an abnormal phenotype in cultured T. brucei. However, induction of RNA interference against tbcatB led to enlargement of the endosome, accumulation of fluorescein isothiocyanate-transferrin, defective cytokinesis after completion of mitosis, and ultimately the death of cultured parasites. Therefore, tbcatB, but not rhodesain, is essential for T. brucei survival in culture and is the most likely target of the diazomethane protease inhibitor Z-Phe-Ala-CHN(2) in T. brucei.
Collapse
Affiliation(s)
- Zachary B Mackey
- Department of Pathology Tropical Disease Research Unit, University of California, San Francisco, California 94143, USA.
| | | | | | | | | |
Collapse
|
17
|
Li J, Ruyechan WT, Williams N. Stage-specific translational efficiency and protein stability regulate the developmental expression of p37, an RNA binding protein from Trypanosoma brucei. Biochem Biophys Res Commun 2003; 306:918-23. [PMID: 12821129 DOI: 10.1016/s0006-291x(03)01084-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously characterized two novel RNA binding proteins, p34 and p37, from Trypanosoma brucei. Their sequences do not show significant homology to other proteins but are highly homologous to one another. The p34 and p37 proteins are developmentally regulated, with p34 the predominant protein in the procyclic stage and p37 nearly exclusively expressed in the bloodstream cells. In vivo metabolic labeling of procyclic cells showed that p34 and p37 were differentially translated, with levels of p34 approximately fourfold higher than p37. The newly synthesized p34 and p37 exhibited differential stability in the procyclic stage. In vitro analysis confirmed this observation and further suggested that this differential stability may be due to a trypsin-like cysteine protease activity in procyclic extracts that selectively degraded the p37 protein. Taken together, these results indicate that the developmental regulation of the T. brucei RNA binding protein, p37, occurs at both translational and post-translational levels.
Collapse
Affiliation(s)
- Jinlei Li
- Department of Microbiology and Witebsky Center for Microbial Pathogenesis and Immunology, 253 Biomedical Research Building, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
18
|
Duschak VG, Barboza M, Couto AS. Trypanosoma cruzi: partial characterization of minor cruzipain isoforms non-adsorbed to Concanavalin A–Sepharose. Exp Parasitol 2003; 104:122-30. [PMID: 14552859 DOI: 10.1016/j.exppara.2003.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present paper reports the partial characterization of a subset of atypical cruzipain molecules which do not bind to Concanavalin A-Sepharose column. They are present in different strains of epimastigote forms of Trypanosoma cruzi and represent a 2-4% of total cruzipain. They were purified by affinity chromatography on Cystatin-Sepharose, recognized by the polyclonal anti-cruzipain serum, and their activity in gelatin-containing gels was completely abolished by E-64, TLCK, leupeptin, and aprotinin but not by PMSF, pepstatin A, EDTA or 1,10-phenantroline. These cysteine proteinases, as well as cruzipain showed to be endoproteinases able to hydrolize azocasein, hemoglobin, and bovine serum albumin at acidic pHs. However, evidences are presented indicating that this subset of cruzipain isoforms were also able to use the same blocked chromogenic peptidyl substrates than cruzipain at similar optimal alkaline pH values although with a different order of preference. Moreover, they showed a different oligosaccharide pattern after enzymatic treatment by high pH anion exchange chromatography, suggesting that this structural difference may account for the atypical behaviour in the lectin column.
Collapse
Affiliation(s)
- Vilma G Duschak
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, Av. Gral Paz y Albarellos, Parque Tecnológico Miguelete, INTI-Edificio 24, (1650) San Martín, Prov. Buenos Aires, Argentina.
| | | | | |
Collapse
|
19
|
Triggs VP, Bangs JD. Glycosylphosphatidylinositol-dependent protein trafficking in bloodstream stage Trypanosoma brucei. EUKARYOTIC CELL 2003; 2:76-83. [PMID: 12582124 PMCID: PMC141176 DOI: 10.1128/ec.2.1.76-83.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously demonstrated that glycosylphosphatidylinositol (GPI) anchors strongly influence protein trafficking in the procyclic insect stage of Trypanosoma brucei (M. A. McDowell, D. A. Ransom, and J. D. Bangs, Biochem. J. 335:681-689, 1998), where GPI-minus variant surface glycoprotein (VSG) reporters have greatly reduced rates of endoplasmic reticulum (ER) exit but are ultimately secreted. We now demonstrate that GPI-dependent trafficking also occurs in pathogenic bloodstream trypanosomes. However, unlike in procyclic trypanosomes, truncated VSGs lacking C-terminal GPI-addition signals are not secreted but are mistargeted to the lysosome and degraded. Failure to export these reporters is not due to a deficiency in secretion of these cells since the N-terminal ATPase domain of the endogenous ER protein BiP is efficiently secreted from transgenic cell lines. Velocity sedimentation experiments indicate that GPI-minus VSG dimerizes similarly to wild-type VSG, suggesting that degradation is not due to ER quality control mechanisms. However, GPI-minus VSGs are fully protected from degradation by the cysteine protease inhibitor FMK024, a potent inhibitor of the major lysosomal protease trypanopain. Immunofluorescence of cells incubated with FMK024 demonstrates that GPI-minus VSG colocalizes with p67, a lysosomal marker. These data suggest that in the absence of a GPI anchor, VSG is mistargeted to the lysosome and subsequently degraded. Our findings indicate that GPI-dependent transport is a general feature of secretory trafficking in both stages of the life cycle. A working model is proposed in which GPI valence regulates progression in the secretory pathway of bloodstream stage trypanosomes.
Collapse
Affiliation(s)
- Veronica P Triggs
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
20
|
Caffrey CR, Schanz M, Nkemngu NJ, Nkemgu-Njinkeng J, Brush M, Hansell E, Cohen FE, Flaherty TM, McKerrow JH, Steverding D. Screening of acyl hydrazide proteinase inhibitors for antiparasitic activity against Trypanosoma brucei. Int J Antimicrob Agents 2002; 19:227-31. [PMID: 11932146 DOI: 10.1016/s0924-8579(01)00488-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The major cysteine proteinase (brucipain) of Trypanosoma brucei is a target for chemotherapy of African Sleeping Sickness. We have screened a non-peptidyl acyl hydrazide proteinase inhibitor library of 500 compounds for inhibition of brucipain. Those 21 compounds with IC(50) values of <40 microM were tested for efficacy against bloodstream forms of T. brucei in cell culture. Eight acyl hydrazides showed 50% or more inhibition of trypanosome replication at <1 microM. The trypanocidal acitivity of the most effective compounds was comparable with those of the commercial antitrypanosomal drugs suramin and diminazene aceturate. However, these acyl hydrazides exhibited varying cytotoxicity towards human HL-60 cells and therefore, only less favourable selectivity indices compared with the commercially available drugs. Nevertheless, the data support the potential of acyl hydrazides as antitrypanosomal chemotherapeutic agents for treatment of sleeping sickness.
Collapse
Affiliation(s)
- Conor R Caffrey
- Department of Pathology, Tropical Disease Research Unit, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Caffrey CR, Hansell E, Lucas KD, Brinen LS, Alvarez Hernandez A, Cheng J, Gwaltney SL, Roush WR, Stierhof YD, Bogyo M, Steverding D, McKerrow JH. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 2001; 118:61-73. [PMID: 11704274 DOI: 10.1016/s0166-6851(01)00368-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cysteine protease activity of African trypanosome parasites is a target for new chemotherapy using synthetic protease inhibitors. To support this effort and further characterize the enzyme, we expressed and purified rhodesain, the target protease of Trypanosoma brucei rhodesiense (MVAT4 strain), in reagent quantities from Pichia pastoris. Rhodesain was secreted as an active, mature protease. Site-directed mutagenesis of a cryptic glycosylation motif not previously identified allowed production of rhodesain suitable for crystallization. An invariable ER(A/V)FNAA motif in the pro-peptide sequence of rhodesain was identified as being unique to the genus Trypanosoma. Antibodies to rhodesain localized the protease in the lysosome and identified a 40-kDa protein in long slender forms of T. b. rhodesiense and all life-cycle stages of T. b. brucei. With the latter parasite, protease expression was five times greater in short stumpy trypanosomes than in the other stages. Radiolabeled active site-directed inhibitors identified brucipain as the major cysteine protease in T. b. brucei. Peptidomimetic vinyl sulfone and epoxide inhibitors designed to interact with the S2, S1 and S' subsites of the active site cleft revealed differences between rhodesain and the related trypanosome protease cruzain. Using fluorogenic dipeptidyl substrates, rhodesain and cruzain had acid pH optima, but unlike some mammalian cathepsins retained significant activity and stability up to pH 8.0, consistent with a possible extracellular function. S2 subsite mapping of rhodesain and cruzain with fluorogenic peptidyl substrates demonstrates that the presence of alanine rather than glutamate at S2 prevents rhodesain from cleaving substrates in which P2 is arginine.
Collapse
Affiliation(s)
- C R Caffrey
- Tropical Disease Research Unit, Department of Pathology, University of California San Francisco, VAMC, 4150 Clement Street-113B, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Coppens I, Courtoy PJ. The adaptative mechanisms of Trypanosoma brucei for sterol homeostasis in its different life-cycle environments. Annu Rev Microbiol 2001; 54:129-56. [PMID: 11018126 DOI: 10.1146/annurev.micro.54.1.129] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bloodstream forms of Trypanosoma brucei do not synthesize sterols de novo and therefore cannot survive in medium devoid of lipoproteins. Growth of parasites is essentially supported by receptor-mediated endocytosis of low-density lipoproteins (LDLs), which carry phospholipids and cholesteryl esters. These lipids are released from internalized LDL after apoprotein B-100 is degraded by acidic thiol-proteases in the endolysosomal apparatus and then metabolized, as in mammalian cells. The LDL receptor is recycled and its expression is regulated by the sterol stores. Documented pharmacological and immunological interferences with LDL receptor-mediated lipid supply to the bloodstream forms are summarized, and the potential for new approaches to fight against these parasites is evaluated. In contrast to bloodstream forms, cultured procyclic forms can acquire sterols from both exogenous (lipoprotein endocytosis) and endogenous (biosynthesis of ergosterol) sources. The rate-limiting steps of both endocytosis (surface LDL receptor expression) and biosynthesis (3-hydroxy-3-methylglutaryl coenzyme A reductase activity) are regulated by the cellular content of sterol. These two pathways thus complement each other to yield a balanced sterol supply, which demonstrates adaptative capacities to survive in totally different environments and fine regulatory mechanisms of sterol homeostasis.
Collapse
Affiliation(s)
- I Coppens
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022, USA.
| | | |
Collapse
|
23
|
Morty RE, Lonsdale-Eccles JD, Morehead J, Caler EV, Mentele R, Auerswald EA, Coetzer TH, Andrews NW, Burleigh BA. Oligopeptidase B from Trypanosoma brucei, a new member of an emerging subgroup of serine oligopeptidases. J Biol Chem 1999; 274:26149-56. [PMID: 10473566 DOI: 10.1074/jbc.274.37.26149] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei contains a soluble serine oligopeptidase (OP-Tb) that is released into the host bloodstream during infection, where it has been postulated to participate in the pathogenesis of African trypanosomiasis. Here, we report the identification of a single copy gene encoding the T. brucei oligopeptidase and a homologue from the related trypanosomatid pathogen Leishmania major. The enzymes encoded by these genes belong to an emerging subgroup of the prolyl oligopeptidase family of serine hydrolases, referred to as oligopeptidase B. The trypanosomatid oligopeptidases share 70% amino acid sequence identity with oligopeptidase B from the intracellular pathogen Trypanosoma cruzi, which has a demonstrated role in mammalian host cell signaling and invasion. OP-Tb exhibited no activity toward the prolyl oligopeptidase substrate H-Gly-Pro-7-amido-4-methylcoumarin. Instead, it had activity toward substrates of trypsin-like enzymes, particularly those that have basic amino acids in both P(1) and P(2) (e.g. benzyloxycarbonyl-Arg-Arg-7-amido-4-methylcoumarin k(cat)/K(m) = 529 s(-1) microM(-1)). The activity of OP-Tb was enhanced by reducing agents and by polyamines, suggesting that these agents may act as in vivo regulators of OP-Tb activity. This study provides the basis of the characterization of a novel subgroup of serine oligopeptidases from kinetoplastid protozoa with potential roles in pathogenesis.
Collapse
Affiliation(s)
- R E Morty
- Department of Biochemistry, University of Natal, Private Bag X01, 3209 Scottsville, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Morty RE, Authié E, Troeberg L, Lonsdale-Eccles JD, Coetzer TH. Purification and characterisation of a trypsin-like serine oligopeptidase from Trypanosoma congolense. Mol Biochem Parasitol 1999; 102:145-55. [PMID: 10477183 DOI: 10.1016/s0166-6851(99)00097-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Trypanosoma brucei contain a serine oligopeptidase (OP-Tb) that is released into (and remains active in) the blood of trypanosome-infected animals. Here a similar enzyme from Trypanosoma congolense is described. This oligopeptidase, called OP-Tc, was purified using three-phase partitioning, and ion-exchange and affinity chromatography. OP-Tc is inhibited by alkylating agents, by serine peptidase-specific inhibitors including 3,4-dichloroisocoumarin, 4-(2-aminoethyl)benzenesulfonylfluoride and diispropylfluoro-phosphate and by other peptidase inhibitors including leupeptin, antipain and peptidyl chloromethyl ketones. Reducing agents such as dithiothreitol enhanced activity as did heparin, spermine and spermidine. The enzyme has trypsin-like specificity since it cleaved fluorogenic peptides that have basic amino acid residues (Arg or Lys) in the P1 position. Potential substrates without a basic residue in P1 were not hydrolysed. Although OP-Tc has weak arginine aminopeptidase activity, the enzyme clearly preferred substrates that had amino acids in the P2 and P3 positions. Overall, OP-Tc appears to be less efficient than OP-Tb because it usually displayed lower k(cat)/Km values for the substrates tested. However, like OP-Tb, the best substrate for OP-Tc was Cbz-Arg-Arg-AMC (Km = 0.72 microM, k(cat) = 96 s(-1)). OP-Tc preference for amino acids in the P2 position was (Gly,Lys,Arg) > Phe > Leu > Pro. The results also suggest that the P3-binding site has hydrophobic characteristics. OP-Tc may not be a naturally immunodominant molecule because neither IgG nor IgM anti- OP-Tc antibodies were detected in the blood of experimentally infected cattle.
Collapse
Affiliation(s)
- R E Morty
- Department of Biochemistry, University of Natal, Scottsville, South Africa
| | | | | | | | | |
Collapse
|
25
|
Abstract
Proteolytic enzymes seem to play important roles in the life cycles of all medically important protozoan parasites, including the organisms that cause malaria, trypanosomiasis, leishmaniasis, amebiasis, toxoplasmosis, giardiasis, cryptosporidiosis and trichomoniasis. Proteases from all four major proteolytic classes are utilized by protozoans for diverse functions, including the invasion of host cells and tissues, the degradation of mediators of the immune response and the hydrolysis of host proteins for nutritional purposes. The biochemical and molecular characterization of protozoan proteases is providing tools to improve our understanding of the functions of these enzymes. In addition, studies in multiple systems suggest that inhibitors of protozoan proteases have potent antiparasitic effects. This review will discuss recent advances in the identification and characterization of protozoan proteases, in the determination of the function of these enzymes, and in the evaluation of protease inhibitors as potential antiprotozoan drugs.
Collapse
Affiliation(s)
- P J Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California 94143-0811, USA
| |
Collapse
|
26
|
McKerrow JH, Engel JC, Caffrey CR. Cysteine protease inhibitors as chemotherapy for parasitic infections. Bioorg Med Chem 1999; 7:639-44. [PMID: 10353643 DOI: 10.1016/s0968-0896(99)00008-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Analysis of the evolution, localization and biologic function of papain family cysteine proteases in metazoan and protozoan parasites has provided important and often surprising insights into the biochemistry and cellular function of this diverse enzyme family. Furthermore, the relative lack of redundancy of cysteine proteases in parasites compared to their mammalian hosts makes them attractive targets for the development of new antiparasitic chemotherapy. The treatment of experimental models of parasitic diseases with cysteine protease inhibitors has provided an important 'proof of concept' for the use of cysteine protease inhibitors in vivo. Evidence has now accumulated that cysteine protease inhibitors can selectively arrest replication of a microbial pathogen without untoward toxicity to the host. Furthermore, this can be achieved with reasonable dosing schedules and oral administration of the drug. Initial studies have confirmed the efficacy of cysteine protease inhibitors in treatment of Trypanosoma cruzi, Plasmodium falciparum and Leishmania major. Work on Trypanosoma brucei, the agent of African trypanosomiasis, is preliminary but also promising. Target validation studies have shown that biotinylated or radiolabeled irreversible inhibitors specifically bind to the cysteine protease targets thought to represent the major activity within the parasite. In the case of T. cruzi, the effect of inhibitors appears to be predominantly in blocking protease processing. Transfection studies using variant constructs have supported this model. Finally, the generation of null mutants for the multiple protease genes in Leishmania mexicana has provided the first genetic support for the key role of this enzyme family in parasite virulence. Safety studies in rodents and analysis of uptake of inhibitors by parasites and host cells suggest that the selectivity of inhibitors for the parasite targets may reside in the lack of redundancy of parasite proteases, the higher concentration of host proteases in intracellular compartments, and differential uptake of inhibitors by parasites. Attempts to elicit resistance to cysteine protease inhibitors in parasite cultures suggest that mechanisms of induced resistance are independent of resistance to the traditional antiparasitic agents. This suggests that cysteine protease inhibitors may provide an alternative to traditional therapy in drug-resistant organisms.
Collapse
Affiliation(s)
- J H McKerrow
- Department of Pathology, VA Medical Center, University of California, San Francisco 94121, USA.
| | | | | |
Collapse
|
27
|
Troeberg L, Morty RE, Pike RN, Lonsdale-Eccles JD, Palmer JT, McKerrow JH, Coetzer TH. Cysteine proteinase inhibitors kill cultured bloodstream forms of Trypanosoma brucei brucei. Exp Parasitol 1999; 91:349-55. [PMID: 10092479 DOI: 10.1006/expr.1998.4386] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei brucei is a causative agent of bovine trypanosomiasis (nagana), a disease of considerable economic significance in much of Africa. Here we report investigations on the effects of various irreversible cysteine proteinase inhibitors, including vinyl sulfones (VS), peptidyl chloromethylketones (CMK), diazomethylketones, and fluoromethyl ketones, on the major lysosomal cysteine proteinase (trypanopain-Tb) of T. b. brucei and on in vitro-cultured bloodstream forms of the parasite. Many of the tested inhibitors were trypanocidal at low micromolar concentrations. Methylpiperazine urea-Phe-homoPhe-VS was the most effective trypanocidal agent, killing 50% of test populations at a work ing concentration of 0.11 microM, while carbobenzoxy-Phe-Phe-CMK was the most trypanocidal of the methylketones with an IC50 of 3.6 microM. Labelling of live and lysed T. b. brucei with biotinylated inhibitor derivatives suggests that trypanopain-Tb is the likely intracellular target for these inhibitors. Kinetic analysis of the inhibition of purified trypanopain-Tb by the inhibitors showed that most had kass values in the 10(6) M-1 s-1 range. We conclude that cysteine proteinase inhibitors have potential as trypanocidal agents and that a major target of these compounds is the lysosomal enzyme trypanopain-Tb.
Collapse
Affiliation(s)
- L Troeberg
- Department of Biochemistry, University of Natal (Pietermaritzburg), Private Bag X01, Scottsville, 3209, South Africa
| | | | | | | | | | | | | |
Collapse
|
28
|
Scory S, Caffrey CR, Stierhof YD, Ruppel A, Steverding D. Trypanosoma brucei: killing of bloodstream forms in vitro and in vivo by the cysteine proteinase inhibitor Z-phe-ala-CHN2. Exp Parasitol 1999; 91:327-33. [PMID: 10092476 DOI: 10.1006/expr.1998.4381] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cysteine proteinases were tested for their suitability as targets for chemotherapy of sleeping sickness using the peptidyl inhibitor Z-Phe-Ala-diazomethyl ketone (Z-Phe-Ala-CHN2). In vitro, the inhibitory concentration of Z-Phe-Ala-CHN;2 required to reduce the growth rate by 50% was 400 times lower for culture-adapted bloodstream forms of Trypanosoma brucei than for a mouse myeloma cell line. At an inhibitor concentration of 10;M the parasites were lysed within 48 h of incubation. Parasitemia of mice infected with T. brucei decreased to undetectable levels for 3 days following treatment with 250 mg/kg Z-Phe-Ala-CHN2 on days 3 to 6 after infection. Although parasitemia returned thereafter to control levels, infected mice treated with the inhibitor survived approximately twice as long as those treated with placebo. Z-Phe-Ala-CHN2 inhibited proteinolysis in lysosomes in vitro and almost completely blocked cysteine proteinase activity in vivo. The results demonstrate the importance of cysteine proteinase activity for survival of T. brucei and suggest that such activity is an appropriate target for antitrypanosomal chemotherapy.
Collapse
Affiliation(s)
- S Scory
- Abteilung Parasitologie, Hygiene-Institut der Ruprecht-Karls- Universität, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
29
|
Kelley RJ, Alexander DL, Cowan C, Balber AE, Bangs JD. Molecular cloning of p67, a lysosomal membrane glycoprotein from Trypanosoma brucei. Mol Biochem Parasitol 1999; 98:17-28. [PMID: 10029306 DOI: 10.1016/s0166-6851(98)00155-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously characterized a highly glycosylated membrane protein (p67) in Trypanosoma brucei spp that is apparently targeted to lysosomes in a developmentally regulated manner. Antibody to native p67 identified a partial cDNA clone from a T. b. rhodesiense expression library and RT-PCR was used to complete the sequence of the cDNA. Equal levels of p67 transcript are detected in both procyclic and bloodstream stages of the life cycle. The 2771 nt cDNA contains a 1980 nt orf encoding a 659 amino acid polypeptide (72,567 Da). Hydropathy analysis predicts a Type I membrane topology (N to C): an N-terminal signal sequence, a large hydrophilic lumenal domain with 14 N-glycosylation sites, a trans-membrane domain (19 aa), and a short (24 aa) cytoplasmic domain. Peptide microsequencing of purified p67 identified nine residues identical to the deduced amino acid sequence, confirming the identity of the cDNA and defining the signal sequence cleavage site. Antibody to p67 protein produced in E. coli recognizes the same spectrum of native p67 glycoforms as the antibody used to clone the cDNA. All features of the deduced amino acid sequence are consistent with the known properties of the native protein and suggest a structure similar to mammalian LAMPS. The cytoplasmic domain contains two putative di-leucine targeting motifs similar to those involved in lysosomal targeting in vertebrate cells. Our results suggest that a single p67 polypeptide, or a group of highly related polypeptides, is synthesized in both bloodstream and procyclic trypanosomes and that subsequent post-translational processing and lysosomal targeting is subject to stage-specific regulation.
Collapse
Affiliation(s)
- R J Kelley
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
30
|
Morty RE, Troeberg L, Pike RN, Jones R, Nickel P, Lonsdale-Eccles JD, Coetzer TH. A trypanosome oligopeptidase as a target for the trypanocidal agents pentamidine, diminazene and suramin. FEBS Lett 1998; 433:251-6. [PMID: 9744805 DOI: 10.1016/s0014-5793(98)00914-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
African trypanosomes contain a cytosolic serine oligopeptidase, called OP-Tb, that is reversibly inhibited by the active principles of three of the five most commonly used trypanocidal drugs: pentamidine, diminazene and suramin. OP-Tb was inhibited by pentamidine in a competitive manner, and by suramin in a partial, non-competitive manner. The inhibition of OP-Tb by a variety of suramin analogues correlated with the trypanocidal efficacy of these analogues (P=0.03; by paired Student's t-test). Since intracellular (therapeutic) concentrations of pentamidine and suramin are reported to reach approximately 206Ki and 15Ki respectively, we suggest that these drugs may exert part of their trypanocidal activity through the inhibition of OP-Tb.
Collapse
Affiliation(s)
- R E Morty
- Department of Biochemistry, University of Natal, Scottsville, South Africa
| | | | | | | | | | | | | |
Collapse
|
31
|
Grab DJ, Webster P, Lonsdale-Eccles JD. Analysis of trypanosomal endocytic organelles using preparative free-flow electrophoresis. Electrophoresis 1998; 19:1162-70. [PMID: 9662179 DOI: 10.1002/elps.1150190717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this paper we demonstrate the power of preparative free-flow electrophoresis (FFE) for the study of endocytosis by African trypanosomes. Endocytosis of extracellular macromolecules by these parasites occurs through a specialized region of the parasite called the flagella pocket. The uptake of fluid phase markers such as horseradish peroxidase (HRP) into the various compartments of the endocytic pathway of bloodstream forms of Trypanosoma brucei brucei was manipulated by regulating the external environment (e.g., by altering the temperature of incubation). The various subcellular compartments were then separated by free-flow electrophoresis (FFE) or isopycnic density gradient centrifugation and analyzed for marker uptake. At low temperatures, HRP was found predominantly in the flagellar pocket. Increasing the temperature resulted in a time-dependent uptake of HRP into more positively charged endosomal fractions. However, little HRP activity was detected in lysosomal compartments, suggesting that either HRP had not yet entered the lysosome or was degraded immediately upon entry. Through the use of FFE we were able to identify and analyze compartments of the endosomal pathway that were not possible to identify by density gradient centrifugation alone. Although the differences in FFE separation of the endocytic compartments as seen in HRP uptake were striking, the minor changes seen within the lysosomal system were more subtle, as depicted in the protease profiles. In conclusion, we show that preparative FFE is a powerful technique for the analysis and separation of flagellar pocket-derived membranes from other endosomal and lysosomal compartments of African trypanosomes.
Collapse
Affiliation(s)
- D J Grab
- Tulane University Medical Center, New Orleans, LA, USA.
| | | | | |
Collapse
|
32
|
O'Beirne C, Lowry CM, Voorheis HP. Both IgM and IgG anti-VSG antibodies initiate a cycle of aggregation-disaggregation of bloodstream forms of Trypanosoma brucei without damage to the parasite. Mol Biochem Parasitol 1998; 91:165-93. [PMID: 9574934 DOI: 10.1016/s0166-6851(97)00191-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bloodstream forms of Trypanosoma brucei, when aggregated in the presence of either acute immune plasma, acute immune serum, purified IgM anti-VSG antibodies or purified IgG anti-VSG antibodies, subsequently disaggregated with a t1/2 for disaggregation of 15 min at 37 degrees C as long as the trypanosomes were metabolically active at the beginning of the experiment and maintained during the experiment in a suitable supporting medium. The t1/2 for disaggregation was found to be directly dependent upon temperature and inversely proportional to the antibody concentration. The trypanosomes were always motile and metabolically active during aggregation and after disaggregation and were fully infective for a mammalian host following disaggregation as well as able to grow and divide normally during axenic culture. The disaggregation was strictly energy dependent and was inhibited when intracellular ATP levels were reduced by salicylhydroxamic acid or following addition of oligomycin while respiring glucose. In addition the process of disaggregation was dependent upon normal endosomal activity as evidenced by its sensitivity to a wide variety of inhibitors of various endosomal functions. Disaggregation was not due to separation of immunoglobulin chains by either disulphide reduction or disulphide exchange reactions and gross proteolytic cleavage of the immunoglobulins attached to the surface of the parasite was not detected. In addition, gross cleavage or release of the VSG from the surface of the cell did not occur during disaggregation but proteolytic cleavage of a small proportion of either the VSG or the immunoglobulins could not be eliminated from consideration. Finally the mechanism of disaggregation was found to be a regulated process, independent of Ca2+ movements but dependent upon the activity of protein kinase C or related kinases and inhibited by the activity of protein kinase A as evidenced by the effects of a panel of inhibitors and cAMP analogues on the process of disaggregation. The mechanism of disaggregation displayed by trypanosomes aggregated by anti-VSG antibody is proposed to form part of the parasite's defence against the host immune system and functions to aid survival of trypanosomes in the presence of antibody in the host prior to the occurrence of a VSG switching event.
Collapse
Affiliation(s)
- C O'Beirne
- Department of Biochemistry, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
33
|
Wiser MF, Lonsdale-Eccles JD, D'Alessandro A, Grab DJ. A cryptic protease activity from Trypanosoma cruzi revealed by preincubation with kininogen at low temperatures. Biochem Biophys Res Commun 1997; 240:540-4. [PMID: 9398600 DOI: 10.1006/bbrc.1997.7690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cysteine proteases have been identified in parasitic protozoa including the causative agent of Chagas' disease Trypanosoma cruzi. T. cruzi lysates subjected to substrate-containing SDS-polyacrylamide gel electrophoresis exhibit major bands of proteolytic activity in the 45-55 kDa molecular mass range (cruzipain activity). Paradoxically, addition of kininogen (a cystatin-like protease inhibitor) to the lysates before electrophoresis results in the appearance of additional bands of proteolytic activity in the 160-190 kDa molecular mass range. This inhibitor-activated protease activity depends upon the reaction conditions and exhibits novel properties. For example, a 24-48 hour preincubation at low temperature (-20 degrees C optimum) greatly enhances the proteolytic activity. The results suggest that a metastable complex forms between kininogen and a cryptic 30 kDa cysteine protease from T. cruzi and that this complex participates in the activation of proteolytic activity.
Collapse
Affiliation(s)
- M F Wiser
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana 70112, USA.
| | | | | | | |
Collapse
|
34
|
Santana JM, Grellier P, Schrével J, Teixeira AR. A Trypanosoma cruzi-secreted 80 kDa proteinase with specificity for human collagen types I and IV. Biochem J 1997; 325 ( Pt 1):129-37. [PMID: 9224638 PMCID: PMC1218537 DOI: 10.1042/bj3250129] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Specific interactions between parasites and extracellular matrix components are an important mechanism in the dissemination of Chagas' disease. Binding of the extracellular matrix proteins to Trypanosoma cruzi receptors has been described as a significant step in this phenomenon. In this study, a specific proteinase activity was identified in cell-free extracts of amastigote, trypomastigote and epimastigote forms of T. cruzi using the collagenase fluorogenic substrate N-Suc-Gly-Pro-Leu-Gly-Pro-7-amido-4-methylcoumarin. Isolation of this activity was achieved by a four-step FPLC procedure. Optimal enzyme activity was found to occur at pH 8.0 and was associated with a single T. cruzi 80 kDa protein (Tc 80 proteinase) on SDS/PAGE under reducing conditions. An internal peptide sequence of Tc 80 proteinase was obtained (AGDNYTPPE), and no similarity was found to previously described proteinases of T. cruzi. This enzyme activity is strongly inhibited by HgCl2, tosyl-lysylchloromethane ('TLCK') p-chloromercuribenzoate and benzyloxycarbonyl-Phe-Ala-diazomethane. The purified enzyme was able to hydrolyse purified human [14C]collagen types I and IV at neutral pH, but not 14C-labelled BSA, rat laminin, rabbit IgG or small proteins such as insulin or cytochrome c. In addition, Tc 80 proteinase activity was found to be secreted by T. cruzi forms infective to mammalian cells. Furthermore we demonstrated that purified Tc 80 proteinase mediates native collagen type I hydrolysis in rat mesentery. This feature is compared with that of Clostridium histolyticum collagenase. These findings suggest that Tc 80 proteinase may facilitate T. cruzi host-cell infection by degrading the collagens of the extracellular matrix and could represent a good target for Chagas' disease chemotherapy.
Collapse
Affiliation(s)
- J M Santana
- Laboratório Multidisciplinar de Pesquisa em Doença de Chagas, Departamentos de Biologia Celular e de Patologia, Universidade de Brasília, CP 04536, 70919-970, Brasília, DF, Brazil
| | | | | | | |
Collapse
|
35
|
Lomo PO, Coetzer TH, Lonsdale-Eccles JD. Characterization of a multicatalytic proteinase complex (20S proteasome) from Trypanosoma brucei brucei. IMMUNOPHARMACOLOGY 1997; 36:285-93. [PMID: 9228559 DOI: 10.1016/s0162-3109(97)00038-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
African trypanosomes are tsetse-transmitted protozoan parasites that cause sleeping sickness in humans and 'Nagana' in animals. A high relative molecular mass multicatalytic proteinase complex (MCP) was purified and biochemically characterized from the cytosolic fraction of Trypanosoma brucei brucei. The isolation procedure consisted of fractionation of the lysate by high speed centrifugation, chromatography on Q-sepharose molecular sieve filtration on Sephacryl S-300, chromatography on HA-Ultrogel and glycerol density gradient centrifugation (10-40%). The final enzyme preparation yielded a single protein band corresponding to a relative molecular mass of 630 kDa on a non-denaturing polyacrylamide gel. The enzyme hydrolyses a wide range of peptide substrates characteristic of chymotrypsin-like, trypsin-like, peptidylglutamylpeptide-hydrolysing activities determined by fluorogenic peptides, Z-Gly-Gly-Leu-NHMec, Z-Arg-Arg-NHMec and Z-Leu-Leu-Glu-beta NA, respectively. The enzyme was found to have a wide variation in pH optimal activity profile, with optimum activity against Z-Gly-Gly-Leu-NHMec at 7.8, Z-Arg-Arg-NHMec at pH 10.5 and Z-Leu-Leu-Glu-beta NA at pH 8.0, showing that the different activities are distinct. The enzyme hydrolysed oxidized proteins. In addition, the chymotryptic and trypsin-like activities were susceptible to inhibition by peptide aldehyde inhibitors with variable inhibition effects. The study demonstrates the presence of a non-lysosomal proteasome pathway of intracellular protein degradation in the bloodstream form of T. b. brucei. Further, the ability of the enzyme to hydrolyse most oxidized proteins, and the high immunogenicity exhibited suggests a possible involvement of the enzyme in pathogenesis of the disease.
Collapse
Affiliation(s)
- P O Lomo
- Department of Biochemistry, University of Natal, Scottsville, South Africa
| | | | | |
Collapse
|
36
|
Steenkamp DJ, Weldrick D, Spies HS. Studies on the biosynthesis of ovothiol A. Identification of 4-mercaptohistidine as an intermediate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:557-66. [PMID: 9022682 DOI: 10.1111/j.1432-1033.1996.0557r.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The recent discovery of N1-methyl-4-mercaptohistidine (ovothiol A), a small aromatic thiol, in Crithidia fasciculata made it possible to study its biosynthesis in an organism which can be cultured in large quantities and under defined growth conditions. Radiolabeling experiments using intact cells indicated that the methyl group in ovothiol A is derived from methionine, while 35S was incorporated from either cysteine or methionine. Three lines of evidence suggested that transsulfuration preceded the methylation step: (a) Crithidia fasciculata failed to convert radiolabeled N pi-methylhistidine to ovothiol A. (b) Ovothiol A was poorly separated from a component which was labeled by [14C]histidine and by [35S]cysteine, but not by [methyl-3H] methionine. (c) Dialysed crude extracts of C. fasciculata catalysed the conversion of histidine to a thiolated species in the presence of pyridoxal phosphate, iron and cysteine in the absence of S-adenosylmethionine. The product of the in vitro reaction was isolated as the bimane derivative. Structural analysis using 1H and 13C-NMR spectroscopy confirmed its identity as the bimane derivative of 4-mercaptohistidine.
Collapse
Affiliation(s)
- D J Steenkamp
- Department of Chemical Pathology, University of Cape Town Medical School, Observatory, South Africa.
| | | | | |
Collapse
|
37
|
Brickman MJ, Cook JM, Balber AE. Low temperature reversibly inhibits transport from tubular endosomes to a perinuclear, acidic compartment in African trypanosomes. J Cell Sci 1995; 108 ( Pt 11):3611-21. [PMID: 8586672 DOI: 10.1242/jcs.108.11.3611] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used electron microscopy and flow cytofluorimetry to study endocytosis and intracellular transport of fluid phase bovine serum albumen gold complexes and membrane bound concanavalin A through endosomal compartments of bloodstream forms of Trypanosoma brucei rhodesiense. Both markers were rapidly endocytosed from the flagellar pocket. Within 20 minutes at 37 degrees C the markers reached a large, vesicular, perinuclear compartment that stained heavily with the CB1 monoclonal antibody. Neither marker left the flagellar pocket and entered cells at 4 degrees C. When cells were incubated at 12 degrees C, both markers entered the cell and were transported to collecting tubules, a tubular endosomal compartment that receives endocytosed material from coated endocytic vesicles. However, no material was transported from collecting tubules to the late, perinuclear compartment at 12 degrees C. The morphology of collecting tubule membranes was specifically altered at 12 degrees C; tubules became shorter and were arrayed near the flagellar pocket. The morphological alteration and the block in transport of endocytic markers to the perinuclear compartment seen at 12 degrees C were reversed 10 minutes after cells were returned to 37 degrees C. We also used flow cytofluorimetric measurements of pH dependent fluorescence quenching to measure the pH of the terminal endocytic compartment. Fluoresceinated lectins accumulated in a terminal compartment with a pH of 6.0-6.1, a value considerably higher than that of mammalian lysosomes. Fluorescence from fluoresceinated lectins in this terminal endocytic compartment was dequenched when bloodstream forms were incubated in the presence of chloroquine.
Collapse
Affiliation(s)
- M J Brickman
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
38
|
Abstract
The kinetoplastid protozoa infect hosts ranging from invertebrates to plants and mammals, causing diseases of medical and economic importance. They are the earliest-branching organisms in eucaryotic evolution to have either mitochondria or peroxisome-like microbodies. Investigation of their protein trafficking enables us to identify characteristics that have been conserved throughout eucaryotic evolution and also reveals how far variations, or alternative mechanisms, are possible. Protein trafficking in kinetoplastids is in many respects similar to that in higher eucaryotes, including mammals and yeasts. Differences in signal sequence specificities exist, however, for all subcellular locations so far examined in detail--microbodies, mitochondria, and endoplasmic reticulum--with signals being more degenerate, or shorter, than those of their higher eucaryotic counterparts. Some components of the normal array of trafficking mechanisms may be missing in most (if not all) kinetoplastids: examples are clathrin-coated vesicles, recycling receptors, and mannose 6-phosphate-mediated lysosomal targeting. Other aspects and structures are unique to the kinetoplastids or are as yet unexplained. Some of these peculiarities may eventually prove to be weak points that can be used as targets for chemotherapy; others may turn out to be much more widespread than currently suspected.
Collapse
Affiliation(s)
- C Clayton
- Zentrum für Molekulare Biologie, Heidelberg, Germany
| | | | | |
Collapse
|
39
|
Coppens I, Levade T, Courtoy PJ. Host plasma low density lipoprotein particles as an essential source of lipids for the bloodstream forms of Trypanosoma brucei. J Biol Chem 1995; 270:5736-41. [PMID: 7890701 DOI: 10.1074/jbc.270.11.5736] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In contrast to mammalian cells, bloodstream forms of Trypanosoma brucei show no activity for fatty acid and sterol synthesis and critically depend on plasma low density lipoprotein (LDL) particles for their rapid growth. We report here that these parasites acquire such lipids by receptor-mediated endocytosis of LDL, subsequent lysosomal degradation of apoprotein B-LDL, and utilization of these lipids. Uptake of LDL-associated [3H]sphingomyelin and of LDL-associated [3H]cholesteryl oleate paralleled each other, and that of 125I-apoprotein B-LDL showed saturation and could be inhibited by unlabeled LDL or by anti-LDL receptor antibodies. Metabolism of lipids carried by LDL was abolished by chloroquine and by the thiol protease inhibitor, leupeptin. Sphingomyelin was cleaved by an acid sphingomyelinase to yield ceramide, which was itself split up into sphingosine and fatty acids. The latter were further incorporated into phosphatidylcholine, triacylglycerols, or cholesteryl esters. Similarly, cholesteryl oleate was hydrolyzed by an acid lipase to yield free cholesterol, which was reesterified with fatty acids, presumably in the cytosol. Like free cholesterol, LDL provided substrate for cholesterol esterification. In the culture-adapted procyclic form of T. brucei, which is capable of sterol synthesis, exogenous LDL-cholesterol rather than endogenously synthesized sterol was utilized for sterol esterification. Interference with exogenous supply of lipids via receptor-mediated endocytosis of LDL should be explored to fight against trypanosomiasis.
Collapse
Affiliation(s)
- I Coppens
- Cell Biology Unit, University of Louvain Medical School, Brussels, Belgium
| | | | | |
Collapse
|
40
|
Lonsdale-Eccles JD, Mpimbaza GW, Nkhungulu ZR, Olobo J, Smith L, Tosomba OM, Grab DJ. Trypanosomatid cysteine protease activity may be enhanced by a kininogen-like moiety from host serum. Biochem J 1995; 305 ( Pt 2):549-56. [PMID: 7832773 PMCID: PMC1136397 DOI: 10.1042/bj3050549] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
African trypanosomes contain cysteine proteases (trypanopains) the activity of which can be measured by in vitro digestion of fibrinogen, after electrophoresis in fibrinogen-containing SDS/polyacrylamide gels. When assessed by this procedure, trypanopain from Trypanosoma brucei (trypanopain-Tb) is estimated to have a molecular mass of 28 kDa. However, two additional bands of trypanopain activity (87 kDa and 105 kDa) are observed if serum is added to the trypanopain before electrophoresis. Formation of the 87 and 105 kDa bands is frequently accompanied by a reduction in the intensity of the 28 kDa activity which suggests that the extra bands are complexes of the 28 kDa trypanopain-Tb and a molecule from rat serum called rat trypanopain moledulator (rTM). The rTM-induced activation of cysteine proteases is not restricted to T. brucei as it is also observed with proteases from other protozoan parasites such as bloodstream forms of Trypanosoma congolense and the mammalian-infective in vitro-derived promastigote forms of Leishmania donovani and Leishmania major. The physical properties of rTM resemble those of the kininogen family of cysteine protease inhibitors. rTM is an acidic (pI 4.7) heat-stable 68 kDa glycoprotein with 15 kDa protease-susceptible domains. This resemblance between rTM and kininogens was confirmed by the positive, albeit weak, immunoreactivity between anti-(human low-molecular-mass kininogen) antibody and rTM as well as anti-rTM antibody and human low-molecular-mass kininogen. Furthermore, commercial preparations of human-low-molecular-mass kininogen and chicken egg white cystatin mimicked rTM by forming extra bands of proteolytic activity in the presence of trypanopain-Tb. In some instances, low-molecular-mass kininogen was also observed to increase the rate of hydrolysis of 7-(benzyloxycarbonyl-phenylalanyl-arginyl-amido)-4- methylcoumarin by live T. brucei. Although this effect was rather erratic, in no instance was significant inhibition observed when this putative cysteine protease inhibitor was used under these conditions. The activation of parasite cysteine proteases by commonly accepted cysteine protease inhibitors is unexpected and may have important pathological repercussions.
Collapse
Affiliation(s)
- J D Lonsdale-Eccles
- Department of Biochemistry, University of Natal, Pietermaritzburg, South Africa
| | | | | | | | | | | | | |
Collapse
|
41
|
Brickman MJ, Balber AE. Transport of a lysosomal membrane glycoprotein from the Golgi to endosomes and lysosomes via the cell surface in African trypanosomes. J Cell Sci 1994; 107 ( Pt 11):3191-200. [PMID: 7699016 DOI: 10.1242/jcs.107.11.3191] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
gp57/42 is a membrane glycoprotein localized in the trans-Golgi, flagellar pocket region of the cell surface, endosomes and lysosomes of bloodstream forms of Trypanosoma brucei rhodesiense. Pulse-chase immunoprecipitation experiments revealed that gp57/42 acquires a unique N-linked oligosaccharide recognized by the CB1 monoclonal antibody 20–30 minutes after protein synthesis, probably in the trans-Golgi. We refer to gp57/42 molecules that carry the CB1 epitope as CB1-gp. Pulse labeled CB1-gp contained only one core protein, p57, when chase times were 30 minutes or less. As time of chase increased from 30 to 60 minutes, a new polypeptide, p42, appeared in N-glycanase-treated CB1 immunoprecipitates. Since p57 and p42 share 10 of 13 methionyl peptides, we conclude that p42 is a fragment of p57. Cleavage of p57 to p42 was not inhibited when cells were chased in two thiol protease inhibitors or in 3,4-diisocoumarin, but was inhibited by leupeptin. Cell surface biotinylation was used to determine if newly synthesized CB1-gp was transported from the Golgi to the surface. When cells were pulse labeled and chased for 30 minutes, as much as 40% of the radiolabeled CB1-gp could be biotinylated on the cell surface. The amount of CB1-gp that could be biotinylated decreased when chases were extended from 30 to 60 minutes, suggesting that pulse labeled CB1-gp left the surface. In contrast, pulse labeled variant surface glycoprotein molecules continued to accumulate on the surface where they could be biotinylated between 30 and 60 minutes of chase. Biotinylated CB1-gp derived from cells chased for 30 minutes contained p57 but no p42. However, when labeled cells were biotinylated after a 30 minute chase and then incubated another 30 minutes at 37 degrees C, the biotinylated CB1-gp contained both p57 and p42. The p57 in biotinylated CB1-gp was not cleaved to p42 if the additional incubation was done at 4 or 12 degrees C. This suggests that transport to a compartment where processing occurs and/or the processing enzymes are inhibited by low temperature. When surface biotinylation was done after a 60 minute chase, p42 was detected in biotinylated CB1-gp, suggesting that CB1-gp molecules had passed through the processing compartment and then appeared on the cell surface. Thus, a major portion of the newly synthesized CB1-gp is routed from the Golgi to endocytic compartments via the cell surface. In trypanosomes this process involves a unique surface domain, the flagellar pocket.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M J Brickman
- Department of Immunology, Duke University Medical Center, Durham NC 27710
| | | |
Collapse
|
42
|
Ohkawa T, Majima K, Maeda S. A cysteine protease encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus. J Virol 1994; 68:6619-25. [PMID: 8083997 PMCID: PMC237082 DOI: 10.1128/jvi.68.10.6619-6625.1994] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sequence analysis of the BamHI F fragment of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) revealed an open reading frame whose deduced amino acid sequence had homology to those of cysteine proteases of the papain superfamily. The putative cysteine protease sequence (BmNPV-CP) was 323 amino acids long and showed 35% identity to a cysteine proteinase precursor from Trypanosoma brucei. Of 36 residues conserved among cathepsins B, H, L, and S and papain, 31 were identical in BmNPV-CP. In order to determine the activity and function of the putative cysteine protease, a BmNPV mutant (BmCysPD) was constructed by homologous recombination of the protease gene with a beta-galactosidase gene cassette. BmCysPD-infected BmN cell extracts were significantly reduced in acid protease activity compared with wild-type virus-infected cell extracts. The cysteine protease inhibitor E-64 [trans-epoxysuccinylleucylamido-(4-guanidino)butane] inhibited wild-type virus-expressed protease activity. Deletion of the cysteine protease gene had no significant effect on viral growth or polyhedron production in BmN cells, indicating that the cysteine protease was not essential for viral replication in vitro. However, B. mori larvae infected with BmCysPD showed symptoms different from those of wild-type BmNPV-infected larvae, e.g., less degradation of the body, including fat body cells, white body surface color due presumably to undegraded epidermal cells, and an increase in the number of polyhedra released into the hemolymph. This is the first report of (i) a virus-encoded protease with activity on general substrates and (ii) evidence that a virus-encoded protease may play a role in degradation of infected larvae to facilitate horizontal transmission of the virus.
Collapse
Affiliation(s)
- T Ohkawa
- Department of Entomology, University of California, Davis 95616
| | | | | |
Collapse
|
43
|
Coppens I, Baudhuin P, Opperdoes FR, Courtoy PJ. Role of acidic compartments in Trypanosoma brucei, with special reference to low-density lipoprotein processing. Mol Biochem Parasitol 1993; 58:223-32. [PMID: 8479447 DOI: 10.1016/0166-6851(93)90044-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the bloodstream form of Trypanosoma brucei, specific receptors mediate the endocytosis of host low-density lipoprotein particles. We have explored the fate of ligand and receptor with a biochemical approach, using inhibitors of the endocytotic apparatus. The weak base chloroquine rapidly accumulates in trypanosomes, its uptake is prevented by the proton ionophore monensin, and it induces the swelling of intracellular vacuoles, indicating that their content is acidic. Cell-associated LDL is rapidly degraded into intermediately sized fragments and TCA-soluble material that can be recovered in cell extracts and extracellular medium. Chloroquine, leupeptin and E64, but not PMSF, efficiently prevent LDL proteolysis, suggesting that degradation occurs in those acidic compartment(s) and is mediated by thiol-protease(s). Both monensin and chloroquine decrease the number of LDL receptors exposed at the cell surface, a phenomenon amplified in the presence of LDL. This provides indirect evidence that internalised LDL receptors are recycled at a rate which is slowed down by receptor occupancy and by agents that impair acidification of the endocytic organelles. Finally, chloroquine decreases by half the growth rate of procyclic trypanosomes in vitro at 5 micrograms ml-1. At 40 mg kg-1 per day, it also slows down the increase in parasitaemia and prolongs the survival time of infected mice by up to 2 days.
Collapse
Affiliation(s)
- I Coppens
- Cell Biology Unit, University of Louvain Medical School, Brussels, Belgium
| | | | | | | |
Collapse
|
44
|
Authié E, Muteti DK, Mbawa ZR, Lonsdale-Eccles JD, Webster P, Wells CW. Identification of a 33-kilodalton immunodominant antigen of Trypanosoma congolense as a cysteine protease. Mol Biochem Parasitol 1992; 56:103-16. [PMID: 1474989 DOI: 10.1016/0166-6851(92)90158-g] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A 33-kDa protein of Trypanosoma congolense is a major antigen in infected cattle and the production of antibody to this antigen appeared to correlate with enhanced resistance to trypanosomiasis [4]. Immunoelectron microscopy using a monoclonal antibody (mAb 4C5) raised against the 33-kDa antigen showed a lysosomal localisation, similar to that of a previously described 32-kDa cysteine protease of T. congolense. Both mAb 4C5 and anti-33 kDa antibody from infected cattle bound on Western blots to the cysteine protease that had been purified by affinity chromatography on cystatin-Sepharose. Sepharose-coupled mAb 4C5 was used to affinity purify the antigen from bloodstream forms of T. congolense. On sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), the affinity-purified antigen had a molecular mass of 33 kDa under non-reducing conditions, and 40 kDa under reducing conditions. Anti-33-kDa antibody from infected cattle bound to both non-reduced and reduced affinity-purified antigen on Western blots. Serum from a rabbit immunised with the biochemically purified enzyme also bound the affinity-purified antigen. The affinity-purified antigen displayed proteolytic activity in fibrinogen-containing SDS-PAGE and against Azocoll. It hydrolysed benzyloxycarbonyl-Phe-Arg-7-amino-methyl coumarin (Z-Phe-Arg-NHMec) with a Km similar to that of the biochemically purified enzyme. Proteolytic and peptidolytic activities of the antigen were inhibited by the inhibitors of cysteine proteases, cystatin and trans-epoxysuccinyl-L-leucyl-amido (4-guanidino)butane (E-64). On two-dimensional gel electrophoresis, the antigen displayed similar characteristics to those of the biochemically purified enzyme. We conclude that the 33-kDa antigen of T. congolense and the cysteine protease are the same molecule.
Collapse
Affiliation(s)
- E Authié
- International Laboratory for Research on Animal Diseases, Nairobi, Kenya
| | | | | | | | | | | |
Collapse
|
45
|
Healy N, Greig S, Enahoro H, Roberts H, Drake L, Shaw E, Ashall F. Detection of peptidases in Trypanosoma cruzi epimastigotes using chromogenic and fluorogenic substrates. Parasitology 1992; 104 ( Pt 2):315-22. [PMID: 1594295 DOI: 10.1017/s003118200006176x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Detergent extracts of Trypanosoma cruzi epimastigotes catalysed the hydrolysis of a range of amino-acyl and peptidyl p-nitro-anilides and aminomethylcoumarins. At least three enzymes were detected that cleave Z-Phe-Arg-MCA. Two of these were optimally active at alkaline pH, the other at pH 4.0. Of the two enzymes with alkaline pH optima, one was a cysteine peptidase and was unable to cleave Bz-Arg-MCA readily, whilst the other cleaved Bz-Arg-MCA and was inhibited by diisopropyl fluorophosphate. The acidic enzyme was similar to cathespin L of other eukaryotes with respect to its pH profile, substrate-specificity and inhibitor-sensitivity. Evidence was presented that epimastigotes contain a cysteine-type dipeptidyl aminopeptidase, one or more aminopeptidases, and a serine peptidase that cleaves Boc-Ala-Ala-pNA. Digitonin solubilization of the activities from cells supports the hypothesis that the cathespin L-like enzyme and the dipeptidyl aminopeptidase are lysosomal, whilst the Bz-Arg-MCA hydrolase, the aminopeptidases and the Boc-Ala-Ala-pNA serine peptidase are cytosolic.
Collapse
Affiliation(s)
- N Healy
- Department of Biology, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Mbawa ZR, Gumm ID, Shaw E, Lonsdale-Eccles JD. Characterisation of a cysteine protease from bloodstream forms of Trypanosoma congolense. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:371-9. [PMID: 1740149 DOI: 10.1111/j.1432-1033.1992.tb16646.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A cysteine protease (trypanopain-Tc) with cathepsin-L-like properties has been purified from Trypanosoma congolense. The enzyme has an apparent molecular mass of 31-32 kDa by SDS/PAGE and 66 kDa by gel chromatography. It has a pI 7.4 and a high affinity for concanavalin A. Trypanopain-Tc catalyses the limited proteolysis of a variety of protein substrates such as fibrinogen, serum albumin and trypanosome variant-surface glycoprotein. It has minimal or no activity against casein or elastin. A variety of peptidyl amidomethylcoumarins and peptidyl diazomethanes were used to test the specificity of trypanopain-Tc. The better substrates had Arg or Lys in P1 and hydrophobic amino acids in P2 and P3. The best substrate found for trypanopain-Tc was Z-Phe-Arg-NHMec (Z, benzyloxycarbonyl; NHMec, 7-amido-4-methylcoumarin). The kinetic constants for the hydrolysis of Z-Phe-Arg-NHMec were kcat = 17.4 s-1, Km = 4.4 microM, kcat/Km = 4.0 microM-1.s-1, which are very similar to those of cathepsin L with this substrate. The specific substrates for cathepsin B (Z-Arg-Arg-NHMec) and cathepsin H (Arg-NHMec) were not hydrolysed by trypanopain-Tc under the conditions tested. The pH optimum of trypanopain-Tc against Z-Phe-Arg-NHMec was pH 6.0 but it showed a broad peak of activity extending well into the alkaline region. The enzyme was activated by low-molecular-mass thiol compounds and inhibited by cystatin, L-trans-epoxysuccinyl-4-guanidinobutane (E-64) and a variety of peptidyl diazomethanes. The most effective diazomethane inhibitors (Z-Leu-Leu-Met-CHN2, Z-Leu-Met-CHN2 and Z-Leu-Lys-CHN2, were inhibitory at nanomolar concentrations and were trypanocidal in vitro after 24-48 h incubation in greater than or equal to 20 microM [inhibitor]. However, it is not clear whether the trypanocidal activity of these inhibitors is a consequence of the inhibition of trypanopains or of some other essential proteolytic activities within the parasites.
Collapse
Affiliation(s)
- Z R Mbawa
- International Laboratory for Research on Animal Diseases, Nairobi, Kenya
| | | | | | | |
Collapse
|
47
|
Kornblatt MJ, Mpimbaza GW, Lonsdale-Eccles JD. Characterization of an endopeptidase of Trypanosoma brucei brucei. Arch Biochem Biophys 1992; 293:25-31. [PMID: 1731636 DOI: 10.1016/0003-9861(92)90360-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A soluble 80-kDa endopeptidase has been isolated from Trypanosoma brucei brucei. The enzyme, which has a pI 5.1, is optimally active at about pH 8.2 and has apparent pKa values of 6.0 and greater than or equal to 10. It is inhibited by the serine protease inhibitor diisopropylfluorophosphate and by the serine protease mechanism-based inhibitor 3,4-dichloroisocoumarin. Unexpectedly, the enzyme is inhibited by the cysteine protease inhibitor benzyloxycarbonyl-Leu-Lys-CHN2 but not by the related diazomethane, butoxycarbonyl-Val-Leu-Gly-Lys-CHN2, nor by other cysteine protease specific compounds. Specificity studies with a variety of amidomethylcoumaryl (AMC) derivatives of small peptides show that the enzyme has a highly restricted trypsin-like specificity. The best substrate, based on the magnitude of kcat/Km, was benzyloxycarbonyl-Arg-Arg-AMC; other good substrates were benzyloxycarbonyl-Phe-Arg-AMC, benzoyl-Arg-AMC, and compounds with Arg at P1 and Ala or Gly at P2. The hydrolysis of most substrates obeyed classical Michaelis-Menton kinetics but several exhibited pronounced substrate inhibition. The enzyme did not activate plasminogen nor decrease blood clotting time; it was inhibited by aprotinin but not by chicken ovomucoid. We conclude that the enzyme is a trypsin-like serine endopeptidase with unusually restricted subsite specificities.
Collapse
Affiliation(s)
- M J Kornblatt
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
48
|
Mbawa ZR, Gumm ID, Fish WR, Lonsdale-Eccles JD. Endopeptidase variations among different life-cycle stages of African trypanosomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 195:183-90. [PMID: 1991468 DOI: 10.1111/j.1432-1033.1991.tb15693.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lysates of different life-cycle stages of Trypanosoma congolense, Trypanosoma vivax and Trypanosoma brucei were analysed for endopeptidase activity, using reaction conditions which permitted a distinction to be made between lysosomal and non-lysosomal activity [Lonsdale-Eccles, J. D. & Grab, D. J. (1987) Eur. J. Biochem. 169, 467-475]. Hydrolysis of Z-Arg-Arg-NHMec (Z = benzyloxycarbonyl, NHMec = 7-amino-4-methylcoumaryl) and Z-Gly-Gly-Arg-NHMec occurred predominantly at alkaline pH and was observed in lysates of both insect and mammalian infective forms of T. brucei and T. congolense. Compared to their other life-cycle stages, procyclic forms of T. brucei and epimastigote forms of T. congolense exhibited enhanced hydrolysis of these substrates. Low levels of hydrolysis of Z-Arg-Arg-NHMec were observed in the bloodstream and epimastigote forms of T. vivax. The hydrolysis of Z-Gly-Gly-Arg-NHMec in each of the life-cycle stages of T. vivax was generally below detectable levels. In lysates of T. congolense, proteolytic and Z-Phe-Arg-NHMec-hydrolytic activity in bloodstream forms greater than metacyclic greater than epimastigote greater than procyclic forms. In T. vivax Z-Phe-Arg-NHMec-hydrolytic activity differed slightly according to the origin of the parasite but, in general, followed the same pattern (i.e. bloodstream forms greater than epimastigote forms, with metacyclic forms usually intermediate between these two). In T. brucei, Z-Phe-Arg-NHMec-hydrolytic activity in bloodstream forms greater than procyclic forms. Upon differentiation of the long, slender bloodstream forms into short, stumpy forms the Z-Phe-Arg-NHMec-hydrolytic activity was elevated even further. Thus, during their life cycle, each of these African trypanosomes exhibits complex changes of endopeptidase activity, suggestive of an induction of lysosomal activity between the insect and mammalian forms.
Collapse
Affiliation(s)
- Z R Mbawa
- International Laboratory for Research on Animal Diseases, Nairobi, Kenya
| | | | | | | |
Collapse
|
49
|
Nene V, Gobright E, Musoke AJ, Lonsdale-Eccles JD. A single exon codes for the enzyme domain of a protozoan cysteine protease. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44709-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
50
|
Schell D, Stierhof YD, Overath P. Purification and characterization of a tartrate-sensitive acid phosphatase of Trypanosoma brucei. FEBS Lett 1990; 271:67-70. [PMID: 2226816 DOI: 10.1016/0014-5793(90)80373-q] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In search for invariant surface proteins in Trypanosoma brucei bloodstream forms, acid phosphatase was investigated. Earlier work had shown that part of the cellular phosphatase activity is associated with the flagellar pocket of the parasite. It is demonstrated that T. brucei contains at least two membrane-bound enzymes, one is sensitive to the inhibitor L-(+)-tartrate while the other is resistant. The tartrate-sensitive phosphatase was purified to homogeneity by monoclonal antibody affinity chromatography and shown to be a glycoprotein of low abundance (13,000 molecules/cell). It has an apparent molecular weight of 70,000 Da. The usefulness of acid phosphatase as a marker for characterizing the membrane lining the flagellar pocket is discussed.
Collapse
Affiliation(s)
- D Schell
- Max-Planck-Institut für Biologie, Tübingen, FRG
| | | | | |
Collapse
|