1
|
Wang L, Tan YS, Chen K, Ntakirutimana S, Liu ZH, Li BZ, Yuan YJ. Global regulator IrrE on stress tolerance: a review. Crit Rev Biotechnol 2024; 44:1439-1459. [PMID: 38246753 DOI: 10.1080/07388551.2023.2299766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 01/23/2024]
Abstract
Stress tolerance is a vital attribute for all living beings to cope with environmental adversities. IrrE (also named PprI) from Deinococcus radiodurans enhances resistance to extreme radiation stress by functioning as a global regulator, mediating the transcription of genes involved in deoxyribonucleic acid (DNA) damage response (DDR). The expression of IrrE augmented the resilience of various species to heat, radiation, oxidation, osmotic stresses and inhibitors, encompassing bacterial, fungal, plant, and mammalian cells. Moreover, IrrE was employed in a global regulator engineering strategy to broaden its applications in stress tolerance. The regulatory impacts of heterologously expressed IrrE have been investigated at the molecular and systems level, including the regulation of genes, proteins, modules, or pathways involved in DNA repair, detoxification proteins, protective molecules, native regulators and other aspects. In this review, we discuss the regulatory role and mechanism of IrrE in the antiradiation response of D. radiodurans. Furthermore, the applications and regulatory effects of heterologous expression of IrrE to enhance abiotic stress tolerance are summarized in particular.
Collapse
Affiliation(s)
- Li Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Yong-Shui Tan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Kai Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Samuel Ntakirutimana
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| |
Collapse
|
2
|
Washington EJ, Zhou Y, Hsu AL, Petrovich M, Tenor JL, Toffaletti DL, Guan Z, Perfect JR, Borgnia MJ, Bartesaghi A, Brennan RG. Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen Cryptococcus neoformans: A target for antifungals. Proc Natl Acad Sci U S A 2024; 121:e2314087121. [PMID: 39083421 PMCID: PMC11317593 DOI: 10.1073/pnas.2314087121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement toward the catalytic pocket by the N terminus upon ligand binding and identifies residues required for substrate binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved among Cryptococcal species and closely related basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.
Collapse
Affiliation(s)
- Erica J. Washington
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC27708
| | - Allen L. Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Matthew Petrovich
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Jennifer L. Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Dena L. Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
- Department of Computer Science, Duke University, Durham, NC27708
| | - Richard G. Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| |
Collapse
|
3
|
Pepelnjak M, Velten B, Näpflin N, von Rosen T, Palmiero UC, Ko JH, Maynard HD, Arosio P, Weber-Ban E, de Souza N, Huber W, Picotti P. In situ analysis of osmolyte mechanisms of proteome thermal stabilization. Nat Chem Biol 2024; 20:1053-1065. [PMID: 38424171 PMCID: PMC11288892 DOI: 10.1038/s41589-024-01568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
Organisms use organic molecules called osmolytes to adapt to environmental conditions. In vitro studies indicate that osmolytes thermally stabilize proteins, but mechanisms are controversial, and systematic studies within the cellular milieu are lacking. We analyzed Escherichia coli and human protein thermal stabilization by osmolytes in situ and across the proteome. Using structural proteomics, we probed osmolyte effects on protein thermal stability, structure and aggregation, revealing common mechanisms but also osmolyte- and protein-specific effects. All tested osmolytes (trimethylamine N-oxide, betaine, glycerol, proline, trehalose and glucose) stabilized many proteins, predominantly via a preferential exclusion mechanism, and caused an upward shift in temperatures at which most proteins aggregated. Thermal profiling of the human proteome provided evidence for intrinsic disorder in situ but also identified potential structure in predicted disordered regions. Our analysis provides mechanistic insight into osmolyte function within a complex biological matrix and sheds light on the in situ prevalence of intrinsically disordered regions.
Collapse
Affiliation(s)
- Monika Pepelnjak
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Britta Velten
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Centre for Organismal Studies (COS) & Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Nicolas Näpflin
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Tatjana von Rosen
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Jeong Hoon Ko
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Eilika Weber-Ban
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
| | - Natalie de Souza
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biological Laboratory, Heidelberg, Germany
| | - Paola Picotti
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Lorch MG, Valverde C, Agaras BC. Variability in Maize Seed Bacterization and Survival Correlating with Root Colonization by Pseudomonas Isolates with Plant-Probiotic Traits. PLANTS (BASEL, SWITZERLAND) 2024; 13:2130. [PMID: 39124248 PMCID: PMC11314135 DOI: 10.3390/plants13152130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Seed treatment with plant growth-promoting bacteria represents the primary strategy to incorporate them into agricultural ecosystems, particularly for crops under extensive management, such as maize. In this study, we evaluated the seed bacterization levels, root colonization patterns, and root competitiveness of a collection of autochthonous Pseudomonas isolates that have demonstrated several plant-probiotic abilities in vitro. Our findings indicate that the seed bacterization level, both with and without the addition of various protectants, is specific to each Pseudomonas strain, including their response to seed pre-hydration. Bacterization kinetics revealed that while certain isolates persisted on seed surfaces for up to 4 days post-inoculation (dpi), others experienced a rapid decline in viability after 1 or 2 dpi. The observed differences in seed bacterization levels were consistent with the root colonization densities observed through confocal microscopy analysis, and with root competitiveness quantified via selective plate counts. Notably, isolates P. protegens RBAN4 and P. chlororaphis subsp. aurantiaca SMMP3 demonstrated effective competition with the natural microflora for colonizing the maize rhizosphere and both promoted shoot and root biomass production in maize assessed at the V3 grown stage. Conversely, P. donghuensis SVBP6 was detected at very low levels in the maize rhizosphere, but still exhibited a positive effect on plant parameters, suggesting a growth-stimulatory effect during the early stages of plant development. In conclusion, there is a considerable strain-specific variability in the maize seed bacterization and survival capacities of Pseudomonas isolates with plant-probiotic traits, with a correlation in their root competitiveness under natural conditions. This variability must be understood to optimize their adoption as inputs for the agricultural system. Our experimental approach emphasizes the critical importance of tailoring seed bacterization treatments for each inoculant candidate, including the selection and incorporation of protective substances. It should not be assumed that all bacterial cells exhibit a similar performance.
Collapse
Affiliation(s)
- Melani G. Lorch
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina; (M.G.L.); (C.V.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Claudio Valverde
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina; (M.G.L.); (C.V.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Betina C. Agaras
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina; (M.G.L.); (C.V.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| |
Collapse
|
5
|
Washington EJ, Zhou Y, Hsu AL, Petrovich M, Tenor JL, Toffaletti DL, Guan Z, Perfect JR, Borgnia MJ, Bartesaghi A, Brennan RG. Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen Cryptococcus neoformans : a target for novel antifungals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.14.530545. [PMID: 36993618 PMCID: PMC10054996 DOI: 10.1101/2023.03.14.530545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of novel drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement towards the catalytic pocket by the N-terminus upon ligand binding and identifies residues required for substrate-binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved amongst Cryptococcal species and closely related Basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto , these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes. Significance Statement Fungal infections are responsible for over a million deaths worldwide each year. Biosynthesis of a disaccharide, trehalose, is required for multiple pathogenic fungi to transition from the environment to the human host. Enzymes in the trehalose biosynthesis pathway are absent in humans and, therefore, are potentially significant targets for novel antifungal therapeutics. One enzyme in the trehalose biosynthesis is trehalose-6-phosphate synthase (Tps1). Here, we describe the cryo-electron microscopy structures of the CnTps1 homo-tetramer in the unliganded form and in complex with a substrate and a product. These structures and subsequent biochemical analysis reveal key details of substrate-binding residues and substrate specificity. These structures should facilitate structure-guided design of inhibitors against CnTps1.
Collapse
|
6
|
Wang Y, Wang W, Zhang L, Chen G. The Protection of Enzyme Activity for the Preparation of Humanized Polymerized Hemoglobin-Superoxide Dismutase-Catalase-Carbonic Anhydrase. DOKL BIOCHEM BIOPHYS 2024; 516:73-82. [PMID: 38539011 DOI: 10.1134/s1607672923600483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 05/26/2024]
Abstract
This work finds suitable enzyme activity protectants to improve the recovery rate of enzyme activity in the preparation of human polymerized hemoglobin-superoxide dismutase-catalase-carbonic anhydrase (PolyHb-SOD-CAT-CA), including trehalose, sucrose, glucose, hydroxypropyl-β-cyclodextrin, and mannitol.Different types and concentrations of enzyme activity protective agents were added during polymerization to compare their protective ability to enzyme activity and the effect on the properties of hemoglobin. The study found that compared with trehalose, the protective effect of sucrose on CA enzyme activity is non-significant to that on hemoglobin, the recovery rate of SOD, and CAT enzyme activity has significant increased. Glucose, hydroxypropyl-β-cyclodextrin, and mannitol are unsuitable for the added enzyme activity protective agent of PolyHb-SOD-CAT-CA.The protective effect of sucrose on CA was non-significant with trehalose. The protective effect of sucrose on SOD and CAT enzyme activity was higher than trehalose, and the protective effect reached the maximum when the concentration reached 1.5%.
Collapse
Affiliation(s)
- Yaoxi Wang
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Wanjun Wang
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Lili Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai City, Guangdong Province, PR China
| | - Gang Chen
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai City, Guangdong Province, PR China.
- Beijing Pro-heme Biotech Co.ltd, Beijing, Changping District, PR China.
| |
Collapse
|
7
|
Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Laskowska E. Intracellular Protective Functions and Therapeutical Potential of Trehalose. Molecules 2024; 29:2088. [PMID: 38731579 PMCID: PMC11085779 DOI: 10.3390/molecules29092088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Trehalose is a naturally occurring, non-reducing saccharide widely distributed in nature. Over the years, research on trehalose has revealed that this initially thought simple storage molecule is a multifunctional and multitasking compound protecting cells against various stress factors. This review presents data on the role of trehalose in maintaining cellular homeostasis under stress conditions and in the virulence of bacteria and fungi. Numerous studies have demonstrated that trehalose acts in the cell as an osmoprotectant, chemical chaperone, free radical scavenger, carbon source, virulence factor, and metabolic regulator. The increasingly researched medical and therapeutic applications of trehalose are also discussed.
Collapse
Affiliation(s)
| | | | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.K.-W.); (K.S.-S.)
| |
Collapse
|
8
|
Prasad K, Sasi S, Weerasinghe J, Levchenko I, Bazaka K. Enhanced Antimicrobial Activity through Synergistic Effects of Cold Atmospheric Plasma and Plant Secondary Metabolites: Opportunities and Challenges. Molecules 2023; 28:7481. [PMID: 38005203 PMCID: PMC10673009 DOI: 10.3390/molecules28227481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The emergence of antibiotic resistant microorganisms possesses a great threat to human health and the environment. Considering the exponential increase in the spread of antibiotic resistant microorganisms, it would be prudent to consider the use of alternative antimicrobial agents or therapies. Only a sustainable, sustained, determined, and coordinated international effort will provide the solutions needed for the future. Plant secondary metabolites show bactericidal and bacteriostatic activity similar to that of conventional antibiotics. However, to effectively eliminate infection, secondary metabolites may need to be activated by heat treatment or combined with other therapies. Cold atmospheric plasma therapy is yet another novel approach that has proven antimicrobial effects. In this review, we explore the physiochemical mechanisms that may give rise to the improved antimicrobial activity of secondary metabolites when combined with cold atmospheric plasma therapy.
Collapse
Affiliation(s)
- Karthika Prasad
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Syamlal Sasi
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Janith Weerasinghe
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Igor Levchenko
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, Singapore 637616, Singapore
| | - Kateryna Bazaka
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| |
Collapse
|
9
|
Rivera-Morán MA, Sampedro JG. Isolation of the Sarcoplasmic Reticulum Ca 2+-ATPase from Rabbit Fast-Twitch Muscle. Methods Protoc 2023; 6:102. [PMID: 37888034 PMCID: PMC10608927 DOI: 10.3390/mps6050102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
The sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) is a membrane protein that is destabilized during purification in the absence of calcium ions. The disaccharide trehalose is a protein stabilizer that accumulates in the yeast cytoplasm when under stress. In the present work, SERCA was purified by including trehalose in the purification protocol. The purified SERCA showed high protein purity (~95%) and ATPase activity. ATP hydrolysis was dependent on the presence of Ca2+ and the enzyme kinetics showed a hyperbolic dependence on ATP (Km = 12.16 ± 2.25 μM ATP). FITC labeling showed the integrity of the ATP-binding site and the identity of the isolated enzyme as a P-type ATPase. Circular dichroism (CD) spectral changes at a wavelength of 225 nm were observed upon titration with ATP, indicating α-helical rearrangements in the nucleotide-binding domain (N-domain), which correlated with ATP affinity (Km). The presence of Ca2+ did not affect FITC labeling or the ATP-mediated structural changes at the N-domain. The use of trehalose in the SERCA purification protocol stabilized the enzyme. The isolated SERCA appears to be suitable for structural and ligand binding studies, e.g., for testing newly designed or natural inhibitors. The use of trehalose is recommended for the isolation of unstable enzymes.
Collapse
Affiliation(s)
| | - José G. Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Avenida Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico
| |
Collapse
|
10
|
Jiang Z, Dalby PA. Challenges in scaling up AAV-based gene therapy manufacturing. Trends Biotechnol 2023; 41:1268-1281. [PMID: 37127491 DOI: 10.1016/j.tibtech.2023.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Accelerating the scale up of adeno-associated virus (AAV) manufacture is highly desirable to meet the increased demand for gene therapies. However, the development of bioprocesses for AAV gene therapies remains time-consuming and challenging. The quality by design (QbD) approach ensures bioprocess designs that meet the desired product quality and safety profile. Rapid stress tests, developability screens, and scale-down technologies have the potential to streamline AAV product and manufacturing bioprocess development within the QbD framework. Here we review how their successful use for antibody manufacture development is translating to AAV, but also how this will depend critically on improved analytical methods and adaptation of the tools as more understanding is gained on the critical attributes of AAV required for successful therapy.
Collapse
Affiliation(s)
- Ziyu Jiang
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| | - Paul A Dalby
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Mitra A, Bhakta K, Kar A, Roy A, Mohid SA, Ghosh A, Ghosh A. Insight into the biochemical and cell biological function of an intrinsically unstructured heat shock protein, Hsp12 of Ustilago maydis. MOLECULAR PLANT PATHOLOGY 2023; 24:1063-1077. [PMID: 37434353 PMCID: PMC10423329 DOI: 10.1111/mpp.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 07/13/2023]
Abstract
Small heat shock proteins (sHsps) play diverse roles in the stress response and maintenance of cellular functions. The Ustilago maydis genome codes for few sHsps. Among these, Hsp12 has previously been demonstrated to be involved in the pathogenesis of the fungus by our group. In the present study we further investigated the biological function of the protein in the pathogenic development of U. maydis. Analysis of the primary amino acid sequence of Hsp12 in combination with spectroscopic methods to analyse secondary protein structures revealed an intrinsically disordered nature of the protein. We also carried out detailed analysis on the protein aggregation prevention activity associated with Hsp12. Our data suggest Hsp12 has trehalose-dependent protein aggregation prevention activity. Through assaying the interaction of Hsp12 with lipid membranes in vitro we also showed the ability of U. maydis Hsp12 to induce stability in lipid vesicles. U. maydis hsp12 deletion mutants exhibited defects in the endocytosis process and delayed completion of the pathogenic life cycle. Therefore, U. maydis Hsp12 contributes to the pathogenic development of the fungus through its ability to relieve proteotoxic stress during infection as well as its membrane-stabilizing function.
Collapse
Affiliation(s)
- Aroni Mitra
- Division of Plant BiologyBose InstituteKolkataIndia
| | | | - Ankita Kar
- Division of Plant BiologyBose InstituteKolkataIndia
| | - Anisha Roy
- Division of Plant BiologyBose InstituteKolkataIndia
| | | | | | | |
Collapse
|
12
|
Khotimah H, Astuti RI, Rafi M, Yuliana ND. Metabolomics Study Reveals Biomarker L-Proline as Potential Stress-Protectant Compound for High-Temperature Bioethanol Fermentation by Yeast Pichia kudriavzevii 1P4. Appl Biochem Biotechnol 2023; 195:5180-5198. [PMID: 37103737 DOI: 10.1007/s12010-023-04554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
High-temperature ethanol fermentation (> 40 °C) can be applied as effective bioprocess technology to increase ethanol production. Thermotolerant yeast Pichia kudriavzevii 1P4 showed the ability to produce ethanol at optimum 37 °C. Thus, this study evaluated the ethanol productivity of isolate 1P4 at high-temperature ethanol fermentation (42 and 45 °C) and the identification of metabolite biomarkers using untargeted metabolomics with liquid chromatography-tandem mass spectrometry (LC-MS/MS). 1P4 showed tolerance to temperature stress up to 45 °C and thus relevant for high-temperature fermentation. As measured by gas chromatography (GC), bioethanol production of 1P4 at 30, 37, 42, and 45 °C was 5.8 g/l, 7.1 g/l, 5.1 g/l, and 2.8 g/l, respectively. The classification of biomarker compounds was based on orthogonal projection analysis to latent structure discriminant analysis (OPLS-DA), resulting in L-proline being a suspected biomarker compound for isolate 1P4 tolerance against high-temperature stress. Indeed, supplementation of L-proline on fermentation medium supported the growth of 1P4 at high temperatures (> 40 °C) than without L-proline. The bioethanol production with the addition of the L-proline resulted in the highest ethanol concentration (7.15 g/l) at 42 °C. Supplementation of L-proline as a stress-protective compound increased ethanol productivity at high-temperature fermentation of 42 and 45 °C by 36.35% and 83.33%, respectively, compared without the addition of L-proline. Preliminary interpretation of these results indicates that bioprocess engineering through supplementation of stress-protective compounds L-proline increases the fermentation efficiency of isolate 1P4 at higher temperatures (42 °C and 45 °C).
Collapse
Affiliation(s)
- Husnul Khotimah
- Graduate School of Biotechnology, IPB University, Bogor, West Java, 16680, Indonesia
| | - Rika Indri Astuti
- Department of Biology, IPB University, Bogor, West Java, 16680, Indonesia.
- Biotechnology Research Center, IPB University, Bogor, West Java, Indonesia.
| | - Mohamad Rafi
- Department of Chemistry, IPB University, Bogor, West Java, 16680, Indonesia
- Advance Research Laboratory, IPB University, Bogor, West Java, 16680, Indonesia
| | - Nancy Dewi Yuliana
- Department of Food Science and Technology, IPB University, Bogor, West Java, 16680, Indonesia
| |
Collapse
|
13
|
Maushe D, Ogi V, Divakaran K, Verdecia Mogena AM, Himmighofen PA, Machado RAR, Towbin BD, Ehlers RU, Molina C, Parisod C, Maud Robert CA. Stress tolerance in entomopathogenic nematodes: Engineering superior nematodes for precision agriculture. J Invertebr Pathol 2023:107953. [PMID: 37336478 DOI: 10.1016/j.jip.2023.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Entomopathogenic nematodes (EPNs) are soil-dwelling parasitic roundworms commonly used as biocontrol agents of insect pests in agriculture. EPN dauer juveniles locate and infect a host in which they will grow and multiply until resource depletion. During their free-living stage, EPNs face a series of internal and environmental stresses. Their ability to overcome these challenges is crucial to determine their infection success and survival. In this review, we provide a comprehensive overview of EPN response to stresses associated with starvation, low/elevated temperatures, desiccation, osmotic stress, hypoxia, and ultra-violet light. We further report EPN defense strategies to cope with biotic stressors such as viruses, bacteria, fungi, and predatory insects. By comparing the genetic and biochemical basis of these strategies to the nematode model Caenorhabditis elegans, we provide new avenues and targets to select and engineer precision nematodes adapted to specific field conditions.
Collapse
Affiliation(s)
- Dorothy Maushe
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vera Ogi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Keerthi Divakaran
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | | | - Paul Anton Himmighofen
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Ricardo A R Machado
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Benjamin Daniel Towbin
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Ralf-Udo Ehlers
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Carlos Molina
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Christelle Aurélie Maud Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland.
| |
Collapse
|
14
|
Wei Y, Zhu B, Yao Z, Jiang L. Biochemical characterization and elucidation of the action mode of a GH16 family κ-carrageenase for efficient preparation of carrageenan oligosaccharides. World J Microbiol Biotechnol 2023; 39:222. [PMID: 37285044 DOI: 10.1007/s11274-023-03668-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
κ-Carrageenan oligosaccharides have a variety of biological activities. Degradation of κ-carrageenan by κ-carrageenase leads to degradation products with different degrees of polymerization (DPs). A novel gene (CecgkA) encoding a new κ-carrageenase was cloned from Colwellia echini and heterologously expressed in Escherichia coli BL21 (DE3). The enzyme is 1104 bp in length, encodes 367 amino acid residues and has a molecular weight of 41.30 kDa. Multiple alignment analysis showed that CeCgkA belongs to the glycoside hydrolase (GH16) family and has the highest homology with the κ-carrageenase of Rhodopirellula maiorica SM1, with 58% homology. The CeCgkA showed maximum activity (453.15 U/mg) at pH 8.0 and 35 °C. Determination of biochemical properties showed that CeCgkA was a thermal recovery enzyme, and 51.6% of the initial enzyme activity was recovered by immediately placing the sample at 35 °C for 60 min after enzymatic inactivation by boiling for 10 min. K+, Na+, and EDTA had an activating effect on the enzyme activity, while Ni2+, Cu2+, and Zn2+ inhibited the activity of the enzyme. In addition, TLC and ESI-MS analysis showed that the maximum recognition unit of CecgkA was decasaccharide and that the main degradation products were disaccharides, tetrasaccharides and hexasaccharides, indicating that the enzyme is an endo-type carrageenase.
Collapse
Affiliation(s)
- Yanshang Wei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| |
Collapse
|
15
|
Kyriakou M, Christodoulou M, Ioannou A, Fotopoulos V, Koutinas M. Improvement of stress multi-tolerance and bioethanol production by Saccharomyces cerevisiae immobilised on biochar: Monitoring transcription from defence-related genes. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
Foster B, Tyrawa C, Ozsahin E, Lubberts M, Krogerus K, Preiss R, van der Merwe G. Kveik Brewing Yeasts Demonstrate Wide Flexibility in Beer Fermentation Temperature Tolerance and Exhibit Enhanced Trehalose Accumulation. Front Microbiol 2022; 13:747546. [PMID: 35369501 PMCID: PMC8966892 DOI: 10.3389/fmicb.2022.747546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Traditional Norwegian Farmhouse ale yeasts, also known as kveik, have captured the attention of the brewing community in recent years. Kveik were recently reported as fast fermenting thermo- and ethanol tolerant yeasts with the capacity to produce a variety of interesting flavor metabolites. They are a genetically distinct group of domesticated beer yeasts of admixed origin with one parent from the “Beer 1” clade and the other unknown. While kveik are known to ferment wort efficiently at warmer temperatures, their range of fermentation temperatures and corresponding fermentation efficiencies, remain uncharacterized. In addition, the characteristics responsible for their increased thermotolerance remain largely unknown. Here we demonstrate variation in kveik strains at a wide range of fermentation temperatures and show not all kveik strains are equal in fermentation performance and stress tolerance. Furthermore, we uncovered an increased capacity of kveik strains to accumulate intracellular trehalose, which likely contributes to their increased thermo- and ethanol tolerances. Taken together our results present a clearer picture of the future opportunities presented by Norwegian kveik yeasts and offer further insight into their applications in brewing.
Collapse
Affiliation(s)
- Barret Foster
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Caroline Tyrawa
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Emine Ozsahin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Mark Lubberts
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | - George van der Merwe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Lipids and Trehalose Actively Cooperate in Heat Stress Management of Schizosaccharomyces pombe. Int J Mol Sci 2021; 22:ijms222413272. [PMID: 34948069 PMCID: PMC8707580 DOI: 10.3390/ijms222413272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 01/22/2023] Open
Abstract
Homeostatic maintenance of the physicochemical properties of cellular membranes is essential for life. In yeast, trehalose accumulation and lipid remodeling enable rapid adaptation to perturbations, but their crosstalk was not investigated. Here we report about the first in-depth, mass spectrometry-based lipidomic analysis on heat-stressed Schizosaccharomyces pombe mutants which are unable to synthesize (tps1Δ) or degrade (ntp1Δ) trehalose. Our experiments provide data about the role of trehalose as a membrane protectant in heat stress. We show that under conditions of trehalose deficiency, heat stress induced a comprehensive, distinctively high-degree lipidome reshaping in which structural, signaling and storage lipids acted in concert. In the absence of trehalose, membrane lipid remodeling was more pronounced and increased with increasing stress dose. It could be characterized by decreasing unsaturation and increasing acyl chain length, and required de novo synthesis of stearic acid (18:0) and very long-chain fatty acids to serve membrane rigidification. In addition, we detected enhanced and sustained signaling lipid generation to ensure transient cell cycle arrest as well as more intense triglyceride synthesis to accommodate membrane lipid-derived oleic acid (18:1) and newly synthesized but unused fatty acids. We also demonstrate that these changes were able to partially substitute for the missing role of trehalose and conferred measurable stress tolerance to fission yeast cells.
Collapse
|
18
|
Thomas MJ, Cassidy ER, Robinson DS, Walstrom KM. Kinetic characterization and thermostability of C. elegans cytoplasmic and mitochondrial malate dehydrogenases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1870:140722. [PMID: 34619358 DOI: 10.1016/j.bbapap.2021.140722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Malate dehydrogenase (MDH) catalyzes the conversion of NAD+ and malate to NADH and oxaloacetate in the citric acid cycle. Eukaryotes have one MDH isozyme that is imported into the mitochondria and one in the cytoplasm. We overexpressed and purified Caenorhabditis elegans cytoplasmic MDH-1 and mitochondrial MDH-2 in E. coli. Our goal was to compare the kinetic and structural properties of these enzymes because C. elegans can survive adverse environmental conditions, such as lack of food and elevated temperatures. In steady-state enzyme kinetics assays, we measured KM values for oxaloacetate of 54 and 52 μM and KM values for NADH of 61 and 107 μM for MDH-1 and MDH-2, respectively. We partially purified endogenous MDH-1 and MDH-2 from a mixed population of worms and separated them using anion exchange chromatography. Both endogenous enzymes had a KM for oxaloacetate similar to that of the corresponding recombinant enzyme. Recombinant MDH-1 and MDH-2 had maximum activity at 40 °C and 35 °C, respectively. In a thermotolerance assay, MDH-1 was much more thermostable than MDH-2. Protein homology modeling predicted that MDH-1 had more intersubunit salt-bridges than mammalian MDH1 enzymes, and these ionic interactions may contribute to its thermostability. In contrast, the MDH-2 homology model predicted fewer intersubunit ionic interactions compared to mammalian MDH2 enzymes. These results suggest that the increased stability of MDH-1 may facilitate its ability to remain active in adverse environmental conditions. In contrast, MDH-2 may use other strategies, such as protein binding partners, to function under similar conditions.
Collapse
Affiliation(s)
- Matthew J Thomas
- Department of Natural Sciences, State College of Florida, Bradenton, FL 34207, USA
| | - Emma R Cassidy
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA
| | - Devin S Robinson
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA
| | | |
Collapse
|
19
|
Rasulova M, Zečić A, Monje Moreno JM, Vandemeulebroucke L, Dhondt I, Braeckman BP. Elevated Trehalose Levels in C. elegans daf-2 Mutants Increase Stress Resistance, Not Lifespan. Metabolites 2021; 11:metabo11020105. [PMID: 33673074 PMCID: PMC7917784 DOI: 10.3390/metabo11020105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
The C. elegans insulin/IGF-1 (insulin-like growth factor 1) signaling mutant daf-2 recapitulates the dauer metabolic signature—a shift towards lipid and carbohydrate accumulation—which may be linked to its longevity and stress resistance phenotypes. Trehalose, a disaccharide of glucose, is highly upregulated in daf‑2 mutants and it has been linked to proteome stabilization and protection against heat, cold, desiccation, and hypoxia. Earlier studies suggested that elevated trehalose levels can explain up to 43% of the lifespan extension observed in daf-2 mutants. Here we demonstrate that trehalose accumulation is responsible for increased osmotolerance, and to some degree thermotolerance, rather than longevity in daf-2 mutants. This indicates that particular stress resistance phenotypes can be uncoupled from longevity.
Collapse
|
20
|
Dissook S, Putri SP, Fukusaki E. Metabolomic Analysis of Response to Nitrogen-Limiting Conditions in Yarrowia spp. Metabolites 2020; 11:metabo11010016. [PMID: 33383744 PMCID: PMC7823547 DOI: 10.3390/metabo11010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 11/26/2022] Open
Abstract
Yarrowia is a yeast genus that has been used as a model oleaginous taxon for a wide array of studies. However, information regarding metabolite changes within Yarrowia spp. under different environmental conditions is still limited. Among various factors affecting Yarrowia metabolism, nitrogen-limiting conditions have a profound effect on the metabolic state of yeast. In this study, a time-course LC-MS/MS-based metabolome analysis of Y. lipolytica was performed to determine the optimal cultivation time and carbon-to-nitrogen ratio for studying the effects of nitrogen-limiting conditions on Yarrowia; we found that cultivation time of 36 h and carbon-to-nitrogen ratio of 4:1 and 5:0 was suitable for studying the effects of nitrogen-limiting conditions on Yarrowia and these conditions were applied to six strains of Yarrowia. These six strains of Yarrowia showed similar responses to nitrogen-limiting conditions; however, each strain had a unique metabolomic profile. Purine and pyrimidine metabolism were the most highly affected biological pathways in nitrogen-limiting conditions, indicating that these conditions affect energy availability within cells. This stress leads to a shift in cells to the utilization of a less ATP-dependent biological pathway. This information will be beneficial for the development of Yarrowia strains for further scientific and industrial applications.
Collapse
|
21
|
Wang L, Wang X, He ZQ, Zhou SJ, Xu L, Tan XY, Xu T, Li BZ, Yuan YJ. Engineering prokaryotic regulator IrrE to enhance stress tolerance in budding yeast. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:193. [PMID: 33292418 PMCID: PMC7706047 DOI: 10.1186/s13068-020-01833-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Stress tolerance is one of the important desired microbial traits for industrial bioprocesses, and global regulatory protein engineering is an efficient approach to improve strain tolerance. In our study, IrrE, a global regulatory protein from the prokaryotic organism Deinococcus radiodurans, was engineered to confer yeast improved tolerance to the inhibitors in lignocellulose hydrolysates or high temperatures. RESULTS Three IrrE mutations were developed through directed evolution, and the expression of these mutants could improve the yeast fermentation rate by threefold or more in the presence of multiple inhibitors. Subsequently, the tolerance to multiple inhibitors of single-site mutants based on the mutations from the variants were then evaluated, and 11 mutants, including L65P, I103T, E119V, L160F, P162S, M169V, V204A, R244G, Base 824 Deletion, V299A, and A300V were identified to be critical for the improved representative inhibitors, i.e., furfural, acetic acid and phenol (FAP) tolerance. Further studies indicated that IrrE caused genome-wide transcriptional perturbation in yeast, and the mutant I24 led to the rapid growth of Saccharomyces cerevisiae by primarily regulating the transcription level of transcription activators/factors, protecting the intracellular environment and enhancing the antioxidant capacity under inhibitor environments, which reflected IrrE plasticity. Meanwhile, we observed that the expression of the wild-type or mutant IrrE could also protect Saccharomyces cerevisiae from the damage caused by thermal stress. The recombinant yeast strains were able to grow with glucose at 42 ℃. CONCLUSIONS IrrE from Deinococcus radiodurans can be engineered as a tolerance-enhancer for Saccharomyces cerevisiae. Systematic research on the regulatory model and mechanism of a prokaryotic global regulatory factor IrrE to increase yeast tolerance provided valuable insights for the improvements in microbial tolerance to complex industrial stress conditions.
Collapse
Affiliation(s)
- Li Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu P.R. China
| | - Zhi-Qiang He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Si-Jie Zhou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Li Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Xiao-Yu Tan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Tao Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 P.R. China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 P.R. China
| |
Collapse
|
22
|
Li S, He N, Han Q, Li X, Jung S, Suk Lee B, Kumar Mongre R, Wang ZP, Wang L, Lee MS. Production of a thermo-tolerant κ-carrageenase via a food-grade host and anti-oxidant activity of its enzymatic hydrolysate. Food Chem 2020; 339:128027. [PMID: 32949915 DOI: 10.1016/j.foodchem.2020.128027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
κ-Carrageenase cleaves the β-(1-4) linkages of κ-carrageenan into κ-carrageenan oligosaccharides (κ-COS), which exhibit various biological activities. In this study, a glycoside hydrolase (GH) family 16 κ-carrageenase gene, cgkA, was cloned from the marine bacterium Vibrio sp. SY01 and secretory expressed in a food-grade host, Yarrowia lipolytica. The specific activity of the purified CgkA was 12.5 U/mg. Determination of biochemical properties showed that CgkA was a thermo-tolerant enzyme, and 59.9% of the initial enzyme activity was recovered by immediately placing the sample at 20 °C for 30 min after enzymatic inactivation by boiling for 5 min. The recombinant CgkA was an endo-type enzyme, the main enzymatic product was κ-carradiaose (accounting for 87.6% of total products), and κ-carratetraose was the minimum substrate. Additionally, in vitro and in vivo analyses indicated that enzymatic κ-carradiaose possesses anti-oxidant activity. These features make CgkA as a promising candidate for biotechnological applications in the production of anti-oxidant κ-COS.
Collapse
Affiliation(s)
- Shangyong Li
- College of Basic Medicine, Qingdao University, Qingdao, China; Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, South Korea
| | - Ningning He
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Qi Han
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiao Li
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Samil Jung
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, South Korea
| | - Beom Suk Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, South Korea
| | - Raj Kumar Mongre
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, South Korea
| | - Zhi-Peng Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - Linna Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, South Korea.
| |
Collapse
|
23
|
Ianutsevich EA, Danilova OA, Tereshina VM. Combinatorial Action of Different Stress Factors on the Composition of Membrane Lipids and Osmolytes of Aspergillus niger. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720040153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
24
|
Abstract
The disaccharide trehalose is accumulated in the cytoplasm of some organisms in response to harsh environmental conditions. Trehalose biosynthesis and accumulation are important for the survival of such organisms by protecting the structure and function of proteins and membranes. Trehalose affects the dynamics of proteins and water molecules in the bulk and the protein hydration shell. Enzyme catalysis and other processes dependent on protein dynamics are affected by the viscosity generated by trehalose, as described by the Kramers’ theory of rate reactions. Enzyme/protein stabilization by trehalose against thermal inactivation/unfolding is also explained by the viscosity mediated hindering of the thermally generated structural dynamics, as described by Kramers’ theory. The analysis of the relationship of viscosity–protein dynamics, and its effects on enzyme/protein function and other processes (thermal inactivation and unfolding/folding), is the focus of the present work regarding the disaccharide trehalose as the viscosity generating solute. Finally, trehalose is widely used (alone or in combination with other compounds) in the stabilization of enzymes in the laboratory and in biotechnological applications; hence, considering the effect of viscosity on catalysis and stability of enzymes may help to improve the results of trehalose in its diverse uses/applications.
Collapse
|
25
|
Nuño-Cabanes C, Ugidos M, Tarazona S, Martín-Expósito M, Ferrer A, Rodríguez-Navarro S, Conesa A. A multi-omics dataset of heat-shock response in the yeast RNA binding protein Mip6. Sci Data 2020; 7:69. [PMID: 32109230 PMCID: PMC7046740 DOI: 10.1038/s41597-020-0412-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/10/2020] [Indexed: 11/25/2022] Open
Abstract
Gene expression is a biological process regulated at different molecular levels, including chromatin accessibility, transcription, and RNA maturation and transport. In addition, these regulatory mechanisms have strong links with cellular metabolism. Here we present a multi-omics dataset that captures different aspects of this multi-layered process in yeast. We obtained RNA-seq, metabolomics, and H4K12ac ChIP-seq data for wild-type and mip6Δ strains during a heat-shock time course. Mip6 is an RNA-binding protein that contributes to RNA export during environmental stress and is informative of the contribution of post-transcriptional regulation to control cellular adaptations to environmental changes. The experiment was performed in quadruplicate, and the different omics measurements were obtained from the same biological samples, which facilitates the integration and analysis of data using covariance-based methods. We validate our dataset by showing that ChIP-seq, RNA-seq and metabolomics signals recapitulate existing knowledge about the response of ribosomal genes and the contribution of trehalose metabolism to heat stress. Raw data, processed data and preprocessing scripts are made available.
Collapse
Grants
- PROMETEO/2016/093 Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- PROMETEO/2016/093 Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- PROMETEO/2016/093 Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- PROMETEO/2016/093 Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- PROMETEO/2016/093 Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
Collapse
Affiliation(s)
- Carme Nuño-Cabanes
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC). Jaume Roig, 11, E-46010, Valencia, Spain
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe, Eduardo Primo-Yúfera, E-46012, Valencia, Spain
| | - Manuel Ugidos
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC). Jaume Roig, 11, E-46010, Valencia, Spain
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe, Eduardo Primo-Yúfera, E-46012, Valencia, Spain
| | - Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València (UPV), Valencia, Spain
| | - Manuel Martín-Expósito
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC). Jaume Roig, 11, E-46010, Valencia, Spain
| | - Alberto Ferrer
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València (UPV), Valencia, Spain
| | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC). Jaume Roig, 11, E-46010, Valencia, Spain.
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe, Eduardo Primo-Yúfera, E-46012, Valencia, Spain.
| | - Ana Conesa
- Microbiology and Cell Science Department, University of Florida, Gainesville, Florida, USA.
- Institute for Food and Agricultural Reserach, University of Florida, Gainesville, Florida, USA.
- Genetics Institute, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
26
|
More than a Confinement: “Soft” and “Hard” Enzyme Entrapment Modulates Biological Catalyst Function. Catalysts 2019. [DOI: 10.3390/catal9121024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Catalysis makes chemical and biochemical reactions kinetically accessible. From a technological point of view, organic, inorganic, and biochemical catalysis is relevant for several applications, from industrial synthesis to biomedical, material, and food sciences. A heterogeneous catalyst, i.e., a catalyst confined in a different phase with respect to the reagents’ phase, requires either its physical confinement in an immobilization matrix or its physical adsorption on a surface. In this review, we will focus on the immobilization of biological catalysts, i.e., enzymes, by comparing hard and soft immobilization matrices and their effect on the modulation of the catalysts’ function. Indeed, unlike smaller molecules, the catalytic activity of protein catalysts depends on their structure, conformation, local environment, and dynamics, properties that can be strongly affected by the immobilization matrices, which, therefore, not only provide physical confinement, but also modulate catalysis.
Collapse
|
27
|
Wang S, Ouyang K, Wang K. Genome-Wide Identification, Evolution, and Expression Analysis of TPS and TPP Gene Families in Brachypodium distachyon. PLANTS (BASEL, SWITZERLAND) 2019; 8:E362. [PMID: 31547557 PMCID: PMC6843561 DOI: 10.3390/plants8100362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 11/17/2022]
Abstract
Trehalose biosynthesis enzyme homologues in plants contain two families, trehalose-6-phosphate synthases (TPSs) and trehalose-6-phosphate phosphatases (TPPs). Both families participate in trehalose synthesis and a variety of stress-resistance processes. Here, nine BdTPS and ten BdTPP genes were identified based on the Brachypodium distachyon genome, and all genes were classified into three classes. The Class I and Class II members differed substantially in gene structures, conserved motifs, and protein sequence identities, implying varied gene functions. Gene duplication analysis showed that one BdTPS gene pair and four BdTPP gene pairs are formed by duplication events. The value of Ka/Ks (non-synonymous/synonymous) was less than 1, suggesting purifying selection in these gene families. The cis-elements and gene interaction network prediction showed that many family members may be involved in stress responses. The quantitative real-time reverse transcription (qRT-PCR) results further supported that most BdTPSs responded to at least one stress or abscisic acid (ABA) treatment, whereas over half of BdTPPs were downregulated after stress treatment, implying that BdTPSs play a more important role in stress responses than BdTPPs. This work provides a foundation for the genome-wide identification of the B. distachyon TPS-TPP gene families and a frame for further studies of these gene families in abiotic stress responses.
Collapse
Affiliation(s)
- Song Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Kai Ouyang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
28
|
Ethanol Stimulates Trehalose Production through a SpoT-DksA-AlgU-Dependent Pathway in Pseudomonas aeruginosa. J Bacteriol 2019; 201:JB.00794-18. [PMID: 30936375 DOI: 10.1128/jb.00794-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa frequently resides among ethanol-producing microbes, making its response to the microbially produced concentrations of ethanol relevant to understanding its biology. Our transcriptome analysis found that genes involved in trehalose metabolism were induced by low concentrations of ethanol, and biochemical assays showed that levels of intracellular trehalose increased significantly upon growth with ethanol. The increase in trehalose was dependent on the TreYZ pathway but not other trehalose-metabolic enzymes (TreS or TreA). The sigma factor AlgU (AlgT), a homolog of RpoE in other species, was required for increased expression of the treZ gene and trehalose levels, but induction was not controlled by the well-characterized proteolysis of its anti-sigma factor, MucA. Growth with ethanol led to increased SpoT-dependent (p)ppGpp accumulation, which stimulates AlgU-dependent transcription of treZ and other AlgU-regulated genes through DksA, a (p)ppGpp and RNA polymerase binding protein. Ethanol stimulation of trehalose also required acylhomoserine lactone (AHL)-mediated quorum sensing (QS), as induction was not observed in a ΔlasR ΔrhlR strain. A network analysis using a model, eADAGE, built from publicly available P. aeruginosa transcriptome data sets (J. Tan, G. Doing, K. A. Lewis, C. E. Price, et al., Cell Syst 5:63-71, 2017, https://doi.org/10.1016/j.cels.2017.06.003) provided strong support for our model in which treZ and coregulated genes are controlled by both AlgU- and AHL-mediated QS. Consistent with (p)ppGpp- and AHL-mediated quorum-sensing regulation, ethanol, even when added at the time of culture inoculation, stimulated treZ transcript levels and trehalose production in cells from post-exponential-phase cultures but not in cells from exponential-phase cultures. These data highlight the integration of growth and cell density cues in the P. aeruginosa transcriptional response to ethanol.IMPORTANCE Pseudomonas aeruginosa is often found with bacteria and fungi that produce fermentation products, including ethanol. At concentrations similar to those produced by environmental microbes, we found that ethanol stimulated expression of trehalose-biosynthetic genes and cellular levels of trehalose, a disaccharide that protects against environmental stresses. The induction of trehalose by ethanol required the alternative sigma factor AlgU through DksA- and SpoT-dependent (p)ppGpp. Trehalose accumulation also required AHL quorum sensing and occurred only in post-exponential-phase cultures. This work highlights how cells integrate cell density and growth cues in their responses to products made by other microbes and reveals a new role for (p)ppGpp in the regulation of AlgU activity.
Collapse
|
29
|
Alblova M, Smidova A, Kalabova D, Lentini Santo D, Obsil T, Obsilova VO. Allosteric activation of yeast enzyme neutral trehalase by calcium and 14-3-3 protein. Physiol Res 2019; 68:147-160. [DOI: 10.33549/physiolres.933950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neutral trehalase 1 (Nth1) from Saccharomyces cerevisiae catalyzes disaccharide trehalose hydrolysis and helps yeast to survive adverse conditions, such as heat shock, starvation or oxidative stress. 14-3-3 proteins, master regulators of hundreds of partner proteins, participate in many key cellular processes. Nth1 is activated by phosphorylation followed by 14-3-3 protein (Bmh) binding. The activation mechanism is also potentiated by Ca(2+) binding within the EF-hand-like motif. This review summarizes the current knowledge about trehalases and the molecular and structural basis of Nth1 activation. The crystal structure of fully active Nth1 bound to 14-3-3 protein provided the first high-resolution view of a trehalase from a eukaryotic organism and showed 14-3-3 proteins as structural modulators and allosteric effectors of multi-domain binding partners.
Collapse
Affiliation(s)
- M. Alblova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.
| | | | | | | | | | | |
Collapse
|
30
|
Łopieńska-Biernat E, Stryiński R, Dmitryjuk M, Wasilewska B. Infective larvae of Anisakis simplex (Nematoda) accumulate trehalose and glycogen in response to starvation and temperature stress. Biol Open 2019; 8:bio040014. [PMID: 30824422 PMCID: PMC6451339 DOI: 10.1242/bio.040014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Anisakis simplex L3 larvae infect fish and other seafood species such as squid or octopi; therefore, humans consuming raw or undercooked fish may become accidental hosts for this parasite. These larvae are induced to enter hypometabolism by cold temperatures. It is assumed that sugars (in particular trehalose and glycogen) are instrumental for survival under environmental stress conditions. To elucidate the mechanisms of environmental stress response in A. simplex, we observed the effects of starvation and temperature on trehalose and glycogen content, the activity of enzymes metabolizing those sugars, and the relative expression of genes of trehalose and glycogen metabolic pathways. The L3 of A. simplex synthesize trehalose both in low (0°C) and high temperatures (45°C). The highest content of glycogen was observed at 45°C at 36 h of incubation. On the second day of incubation, tissue content of trehalose depended on the activity of the enzymes: TPS was more active at 45°C, and TPP was more active at 0°C. The changes in TPP activity were consistent with the transcript level changes of the TPP gene, and the trehalose level, while glycogen synthesis correlates with the expression of glycogen synthase gene at 45°C; this suggests that the synthesis of trehalose is more essential. These results show that trehalose plays a key role in providing energy during the thermotolerance and starvation processes through the molecular and biochemical regulation of trehalose and glycogen metabolism.
Collapse
Affiliation(s)
- Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Małgorzata Dmitryjuk
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Barbara Wasilewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
31
|
Temesvari LA, Klein G, Cotter DA. Environmental influence on trehalogenesis in amoebae of the cellular slime molds. Mycologia 2018. [DOI: 10.1080/00275514.1996.12026721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Lesly A. Temesvari
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Gerard Klein
- Centre d'Etudes Nucleaires, 85X, 38041 Grenoble Cedex, France
| | - David A. Cotter
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| |
Collapse
|
32
|
Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction. Cell Death Dis 2018; 9:712. [PMID: 29907758 PMCID: PMC6003909 DOI: 10.1038/s41419-018-0749-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 01/13/2023]
Abstract
Trehalose is a non-reducing disaccharide with two glucose molecules linked through an α, α-1,1-glucosidic bond. Trehalose has received attention for the past few decades for its role in neuroprotection especially in animal models of various neurodegenerative diseases, such as Parkinson and Huntington diseases. The mechanism underlying the neuroprotective effects of trehalose remains elusive. The prevailing hypothesis is that trehalose protects neurons by inducing autophagy, thereby clearing protein aggregates. Some of the animal studies showed activation of autophagy and reduced protein aggregates after trehalose administration in neurodegenerative disease models, seemingly supporting the autophagy induction hypothesis. However, results from cell studies have been less certain; although many studies claim that trehalose induces autophagy and reduces protein aggregates, the studies have their weaknesses, failing to provide sufficient evidence for the autophagy induction theory. Furthermore, a recent study with a thorough examination of autophagy flux showed that trehalose interfered with the flux from autophagosome to autolysosome, raising controversy on the direct effects of trehalose on autophagy. This review summarizes the fundamental properties of trehalose and the studies on its effects on neurodegenerative diseases. We also discuss the controversy related to the autophagy induction theory and seek to explain how trehalose works in neuroprotection.
Collapse
|
33
|
Recek N, Zhou R, Zhou R, Te'o VSJ, Speight RE, Mozetič M, Vesel A, Cvelbar U, Bazaka K, Ostrikov KK. Improved fermentation efficiency of S. cerevisiae by changing glycolytic metabolic pathways with plasma agitation. Sci Rep 2018; 8:8252. [PMID: 29844402 PMCID: PMC5974074 DOI: 10.1038/s41598-018-26227-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
Production of ethanol by the yeast Saccharomyces cerevisiae is a process of global importance. In these processes, productivities and yields are pushed to their maximum possible values leading to cellular stress. Transient and lasting enhancements in tolerance and performance have been obtained by genetic engineering, forced evolution, and exposure to moderate levels of chemical and/or physical stimuli, yet the drawbacks of these methods include cost, and multi-step, complex and lengthy treatment protocols. Here, plasma agitation is shown to rapidly induce desirable phenotypic changes in S. cerevisiae after a single treatment, resulting in improved conversion of glucose to ethanol. With a complex environment rich in energetic electrons, highly-reactive chemical species, photons, and gas flow effects, plasma treatment simultaneously mimics exposure to multiple environmental stressors. A single treatment of up to 10 minutes performed using an atmospheric pressure plasma jet was sufficient to induce changes in cell membrane structure, and increased hexokinase 2 activity and secondary metabolite production. These results suggest that plasma treatment is a promising strategy that can contribute to improving metabolic activity in industrial microbial strains, and thus the practicality and economics of industrial fermentations.
Collapse
Affiliation(s)
- Nina Recek
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia.,Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Ljubljana, SI-1000, Slovenia
| | - Renwu Zhou
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Rusen Zhou
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | | | - Robert E Speight
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Miran Mozetič
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Ljubljana, SI-1000, Slovenia
| | - Alenka Vesel
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Ljubljana, SI-1000, Slovenia
| | - Uros Cvelbar
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Ljubljana, SI-1000, Slovenia
| | - Kateryna Bazaka
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia. .,CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organisation, P. O. Box 218, Lindfield, NSW 2070, Australia.
| | - Kostya Ken Ostrikov
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia. .,CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organisation, P. O. Box 218, Lindfield, NSW 2070, Australia.
| |
Collapse
|
34
|
ROS and trehalose regulate sclerotial development in Rhizoctonia solani AG-1 IA. Fungal Biol 2018; 122:322-332. [DOI: 10.1016/j.funbio.2018.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 01/06/2023]
|
35
|
A Single-Nucleotide Insertion in a Drug Transporter Gene Induces a Thermotolerance Phenotype in Gluconobacter frateurii by Increasing the NADPH/NADP + Ratio via Metabolic Change. Appl Environ Microbiol 2018; 84:AEM.00354-18. [PMID: 29549098 DOI: 10.1128/aem.00354-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/09/2018] [Indexed: 11/20/2022] Open
Abstract
Thermotolerant microorganisms are beneficial to the fermentation industry because they reduce the need for cooling and offer other operational advantages. Previously, we obtained a thermally adapted Gluconobacter frateurii strain by experimental evolution. In the present study, we found only a single G insertion in the adapted strain, which causes a frameshift in a gene encoding a putative drug transporter. A mutant derivative strain with the single G insertion in the transporter gene (Wild-G) was constructed from the wild-type strain and showed increased thermotolerance. We found that the thermotolerant strains accumulated substantial intracellular trehalose and manifested a defect in sorbose assimilation, suggesting that the transporter is partly involved in trehalose efflux and sorbose uptake and that the defect in the transporter can improve thermotolerance. The ΔotsAB strain, constructed by elimination of the trehalose synthesis gene in the wild type, showed no trehalose production but, unexpectedly, much better growth than the adapted strain at high temperatures. The ΔotsAB mutant produced more acetate as the final metabolite than the wild-type strain did. We hypothesized that trehalose does not contribute to thermotolerance directly; rather, a metabolic change including increased carbon flux to the pentose phosphate pathway may be the key factor. The NADPH/NADP+ ratio was higher in strain Wild-G, and much higher in the ΔotsAB strain, than in the wild-type strain. Levels of reactive oxygen species (ROS) were lower in the thermotolerant strains. We propose that the defect of the transporter causes the metabolic flux to generate more NADPH, which may enhance thermotolerance in G. frateuriiIMPORTANCE The biorefinery industry has to ensure that microorganisms are robust and retain their viability and function at high temperatures. Here we show that Gluconobacterfrateurii, an industrially important member of the acetic acid bacteria, exhibited enhanced thermotolerance through the reduction of trehalose excretion after thermal adaptation. Although intracellular trehalose may play a key role in thermotolerance, the molecular mechanisms of action of trehalose in thermotolerance are a matter of debate. Our mutated strain that was defective in trehalose synthase genes, producing no trehalose but a larger amount of acetic acid as the end metabolite instead, unexpectedly showed higher thermotolerance than the wild type. Our adapted and mutated thermotolerant strains showed increased NADPH/NADP+ ratios and reductions in ROS levels. We concluded that in G. frateurii, trehalose does not contribute to thermotolerance directly; rather, the metabolic change increases the NADPH/NADP+ ratio to enhance thermotolerance.
Collapse
|
36
|
Yang F, Lu X, Zong H, Ji H, Zhuge B. Gene expression profiles of Candida glycerinogenes under combined heat and high-glucose stresses. J Biosci Bioeng 2018; 126:464-469. [PMID: 29724569 DOI: 10.1016/j.jbiosc.2018.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Abstract
Low cell tolerance is a basic issue in high-glucose fermentation under high temperature to economically obtain high product titer. Candida glycerinogenes, an industrial yeast, has excellent tolerance to the combined heat and high-glucose stress than Saccharomycescerevisiae. The potential mechanism responsible for the high tolerance was illustrated here. The transcription of the potential stress-responsive genes in two strains were varied under single stress (heat or high-glucose), especially the ribosome-related genes. Unlike S. cerevisiae, C. glycerinogenes up-regulated 17 genes, including most of the single stress responsive genes, and genes Avt1 and Pfk1 under the combined stress, indicating a more systematic stress-responsive system in C. glycerinogenes. Further down-regulating the 17 potential key responsive genes indicated that genes Dip5, Gpd1, Pfk1, Hxt4, Hxt6, and Ino4 are important for cell tolerance to the combined stress. Furthermore, most of the ribosomal function related genes, such as Mrt4, Nug1, Nop53, Rpa190, Rex4, and Nsr1, play important role in cell tolerance. Therefore, the wider responsive gene spectrum and the activated expression of ribosomal function related genes might be key and prerequisite factors for the excellent tolerance to the combined stress of C. glycerinogenes.
Collapse
Affiliation(s)
- Fei Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xinyao Lu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Hong Zong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Hao Ji
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Bin Zhuge
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
37
|
Hernández-Meza JM, Sampedro JG. Trehalose Mediated Inhibition of Lactate Dehydrogenase from Rabbit Muscle. The Application of Kramers' Theory in Enzyme Catalysis. J Phys Chem B 2018; 122:4309-4317. [PMID: 29595977 DOI: 10.1021/acs.jpcb.8b01656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lactate dehydrogenase (LDH) catalyzes the reduction of pyruvate to lactate by using NADH. LDH kinetics has been proposed to be dependent on the dynamics of a loop over the active site. Kramers' theory has been useful in the study of enzyme catalysis dependent on large structural dynamics. In this work, LDH kinetics was studied in the presence of trehalose and at different temperatures. In the absence of trehalose, temperature increase raised exponentially the LDH Vmax and revealed a sigmoid transition of Km toward a low-affinity state similar to protein unfolding. Notably, LDH Vmax diminished when in the presence of trehalose, while pyruvate affinity increased and the temperature-mediated binding site transition was hindered. The effect of trehalose on kcat was viscosity dependent as described by Kramers' theory since Vmax correlated inversely with the viscosity of the medium. As a result, activation energy ( Ea) for pyruvate reduction was dramatically increased by trehalose presence. This work provides experimental evidence that the dynamics of a structural component in LDH is essential for catalysis, i.e., the closing of the loop on the active site. While the trehalose mediated-increased of pyruvate affinity is proposed to be due to the compaction and/or increase of structural order at the binding site.
Collapse
Affiliation(s)
- Juan M Hernández-Meza
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria , C.P. 78290 San Luis Potosí , SLP , México
| | - José G Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria , C.P. 78290 San Luis Potosí , SLP , México
| |
Collapse
|
38
|
Portugal-Nunes DJ, Pawar SS, Lidén G, Gorwa-Grauslund MF. Effect of nitrogen availability on the poly-3-D-hydroxybutyrate accumulation by engineered Saccharomyces cerevisiae. AMB Express 2017; 7:35. [PMID: 28176283 PMCID: PMC5296263 DOI: 10.1186/s13568-017-0335-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/04/2022] Open
Abstract
Poly-3-d-hydroxybutyrate (or PHB) is a polyester which can be used in the production of biodegradable plastics from renewable resources. It is naturally produced by several bacteria as a response to nutrient starvation in the excess of a carbon source. The yeast Saccharomyces cerevisiae could be an alternative production host as it offers good inhibitor tolerance towards weak acids and phenolic compounds and does not depolymerize the produced PHB. As nitrogen limitation is known to boost the accumulation of PHB in bacteria, the present study aimed at investigating the effect of nitrogen availability on PHB accumulation in two recombinant S. cerevisiae strains harboring different xylose consuming and PHB producing pathways: TMB4443 expressing an NADPH-dependent acetoacetyl-CoA reductase and a wild-type S. stipitis XR with preferential use of NADPH and TMB4425 which expresses an NADH-dependent acetoacetyl-CoA reductase and a mutated XR with a balanced affinity for NADPH/NADH. TMB4443 accumulated most PHB under aerobic conditions and with glucose as sole carbon source, whereas the highest PHB concentrations were obtained with TMB4425 under anaerobic conditions and xylose as carbon source. In both cases, the highest PHB contents were obtained with high availability of nitrogen. The major impact of nitrogen availability was observed in TMB4425, where a 2.7-fold increase in PHB content was obtained. In contrast to what was observed in natural PHB-producing bacteria, nitrogen deficiency did not improve PHB accumulation in S. cerevisiae. Instead the excess available carbon from xylose was shunted into glycogen, indicating a significant gluconeogenic activity on xylose.
Collapse
|
39
|
Zhao G, Chen Y, Carey L, Futcher B. Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell Cycle in S. cerevisiae. Mol Cell 2017; 62:546-57. [PMID: 27203179 DOI: 10.1016/j.molcel.2016.04.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 03/17/2016] [Accepted: 04/21/2016] [Indexed: 01/15/2023]
Abstract
Cyclin-dependent kinases (CDKs) control cell division in eukaryotes by phosphorylating proteins involved in division. But successful proliferation requires co-ordination between division and cellular growth in mass. Previous proteomic studies suggested that metabolic proteins, as well as cell division proteins, could potentially be substrates of cyclin-dependent kinases. Here we focus on two metabolic enzymes of the yeast S. cerevisiae, neutral trehalase (Nth1) and glycogen phosphorylase (Gph1), and show that their activities are likely directly controlled by CDK activity, thus allowing co-ordinate regulation of carbohydrate metabolism with cell division processes. In this case, co-ordinate regulation may optimize the decision to undertake a final cell division as nutrients are being exhausted. Co-regulation of cell division processes and metabolic processes by CDK activity may be a general phenomenon important for co-ordinating the cell cycle with growth.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yuping Chen
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lucas Carey
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Futcher
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
40
|
Wang S, Zhang X, Wu G, Tian Z, Qian F. Optimization of high-concentration endostatin formulation: Harmonization of excipients' contributions on colloidal and conformational stabilities. Int J Pharm 2017; 530:173-186. [PMID: 28755991 DOI: 10.1016/j.ijpharm.2017.07.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/05/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022]
Abstract
Recently, increasing research efforts have been devoted into developing high-concentration protein drugs for subcutaneous injection, especially for those with short half-lives and high-dose requirement. Proteins at high concentrations normally present increased colloidal and structural instability, such as aggregation, fibrillation and gelation, which significantly challenges the high-concentration formulation development of protein drugs. Here we used endostatin, a 20kD recombinant protein, as a model drug for high-concentration formulation optimization. The colloidal and conformational stability of endostatin at high concentration of 30mg/mL were investigated in formulations containing various excipients, including saccharides (mannitol, sorbitol and sucrose), salts (ArgHCl and NaCl), and surfactants (tween 20 and 80). Protein fibrillation was characterized and semi-quantified by optical polarized light microscopy and transmission electron microscopy, and the amount of fiber formation at elevated temperature of 40°C was determined. The soluble protein aggregates were characterized by dynamic and static light scattering before and after dilution. The conformational stability were characterized by polyacrylamide gel electrophoresis, fluorescence, circular dichroism, and differential scanning calorimetry. We observed that the soluble aggregation, fibrillation and gelation, induced by conformational and colloidal instabilities of the protein solution, could be substantially optimized by using suitable stabilizers such as combinations of saccharides and surfactants; while formation of gel and soluble aggregates at high protein concentration (e.g., 30mg/mL) and elevated temperature (40°C) could be prevented by avoiding the usage of salts. It's worth emphasizing that some stabilizers, such as salts and surfactants, could show opposite contributions in conformational and colloidal stabilities of endostatin. Therefore, cautions are needed when one attempts to correlate the colloidal stability of high-concentration proteins with their conformational stability, and the colloidal and conformational protein stabilities must be harmonized by a balanced selection of various types of excipients.
Collapse
Affiliation(s)
- Shujing Wang
- School of Pharmaceutical Sciences & Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Xinyi Zhang
- School of Pharmaceutical Sciences & Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Guoliang Wu
- School of Pharmaceutical Sciences & Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Zhou Tian
- School of Pharmaceutical Sciences & Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Feng Qian
- School of Pharmaceutical Sciences & Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
41
|
Structural and In Vivo Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design. mBio 2017; 8:mBio.00643-17. [PMID: 28743811 PMCID: PMC5527307 DOI: 10.1128/mbio.00643-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The disaccharide trehalose is critical to the survival of pathogenic fungi in their human host. Trehalose-6-phosphate synthase (Tps1) catalyzes the first step of trehalose biosynthesis in fungi. Here, we report the first structures of eukaryotic Tps1s in complex with substrates or substrate analogues. The overall structures of Tps1 from Candida albicans and Aspergillus fumigatus are essentially identical and reveal N- and C-terminal Rossmann fold domains that form the glucose-6-phosphate and UDP-glucose substrate binding sites, respectively. These Tps1 structures with substrates or substrate analogues reveal key residues involved in recognition and catalysis. Disruption of these key residues severely impaired Tps1 enzymatic activity. Subsequent cellular analyses also highlight the enzymatic function of Tps1 in thermotolerance, yeast-hypha transition, and biofilm development. These results suggest that Tps1 enzymatic functionality is essential for the fungal stress response and virulence. Furthermore, structures of Tps1 in complex with the nonhydrolyzable inhibitor, validoxylamine A, visualize the transition state and support an internal return-like catalytic mechanism that is generalizable to other GT-B-fold retaining glycosyltransferases. Collectively, our results depict key Tps1-substrate interactions, unveil the enzymatic mechanism of these fungal proteins, and pave the way for high-throughput inhibitor screening buttressed and guided by the current structures and those of high-affinity ligand-Tps1 complexes. Invasive fungal diseases have emerged as major threats, resulting in more than 1.5 million deaths annually worldwide. This epidemic has been further complicated by increasing resistance to all major classes of antifungal drugs in the clinic. Trehalose biosynthesis is essential for the fungal stress response and virulence. Critically, this biosynthetic pathway is absent in mammals, and thus, the two enzymes that carry out trehalose biosynthesis, namely, trehalose-6-phosphate synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2), are prominent targets for antifungal intervention. Here, we report the first eukaryotic Tps1 structures from the pathogenic fungi Candida albicans and Aspergillus fumigatus in complex with substrates, substrate analogues, and inhibitors. These structures reveal key protein-substrate interactions, providing atomic-level scaffolds for structure-guided drug design of novel antifungals that target Tps1.
Collapse
|
42
|
Liu C, Dunaway-Mariano D, Mariano PS. Rational design of reversible inhibitors for trehalose 6-phosphate phosphatases. Eur J Med Chem 2017; 128:274-286. [PMID: 28192710 DOI: 10.1016/j.ejmech.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 11/19/2022]
Abstract
In some organisms, environmental stress triggers trehalose biosynthesis that is catalyzed collectively by trehalose 6-phosphate synthase, and trehalose 6-phosphate phosphatase (T6PP). T6PP catalyzes the hydrolysis of trehalose 6-phosphate (T6P) to trehalose and inorganic phosphate and is a promising target for the development of antibacterial, antifungal and antihelminthic therapeutics. Herein, we report the design, synthesis and evaluation of a library of aryl d-glucopyranoside 6-sulfates to serve as prototypes for small molecule T6PP inhibitors. Steady-state kinetic techniques were used to measure inhibition constants (Ki) of a panel of structurally diverse T6PP orthologs derived from the pathogens Brugia malayi, Ascaris suum, Mycobacterium tuberculosis, Shigella boydii and Salmonella typhimurium. The binding affinities of the most active inhibitor of these T6PP orthologs, 4-n-octylphenyl α-d-glucopyranoside 6-sulfate (9a), were found to be in the low micromolar range. The Ki of 9a with the B. malayi T6PP ortholog is 5.3 ± 0.6 μM, 70-fold smaller than the substrate Michaelis constant. The binding specificity of 9a was demonstrated using several representative sugar phosphate phosphatases from the HAD enzyme superfamily, the T6PP protein fold family of origin. Lastly, correlations drawn between T6PP active site structure, inhibitor structure and inhibitor binding affinity suggest that the aryl d-glucopyranoside 6-sulfate prototypes will find future applications as a platform for development of tailored second-generation T6PP inhibitors.
Collapse
Affiliation(s)
- Chunliang Liu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Debra Dunaway-Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Patrick S Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
43
|
Beg I, Minton AP, Islam A, Hassan MI, Ahmad F. The pH Dependence of Saccharides' Influence on Thermal Denaturation of Two Model Proteins Supports an Excluded Volume Model for Stabilization Generalized to Allow for Intramolecular Electrostatic Interactions. J Biol Chem 2016; 292:505-511. [PMID: 27909048 DOI: 10.1074/jbc.m116.757302] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/29/2016] [Indexed: 11/06/2022] Open
Abstract
The reversible thermal denaturation of apo α-lactalbumin (α-LA) and lysozyme was measured in the absence and presence of multiple concentrations of each of seven saccharides (glucose, galactose, fructose, sucrose, trehalose, raffinose, and stachyose) at multiple pH values. It was observed that with increasing pH, the absolute stability of α-LA decreased, whereas the stabilizing effect per mole of all saccharides increased, and that the absolute stability of lysozyme increased, whereas the stabilizing effect per mole of all saccharides decreased. All of the data may be accounted for quantitatively by straightforward electrostatic generalization of a previously introduced coarse-grained model for stabilization of proteins by sugars.
Collapse
Affiliation(s)
- Ilyas Beg
- From the Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India and
| | - Allen P Minton
- the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Asimul Islam
- From the Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India and
| | - Md Imtaiyaz Hassan
- From the Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India and
| | - Faizan Ahmad
- From the Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India and
| |
Collapse
|
44
|
Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: Characterization of aggregates and factors affecting aggregation. Eur J Pharm Biopharm 2016; 107:310-20. [DOI: 10.1016/j.ejpb.2016.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022]
|
45
|
Ghaedi B, Andrew NR. The physiological consequences of varied heat exposure events in adult Myzus persicae: a single prolonged exposure compared to repeated shorter exposures. PeerJ 2016; 4:e2290. [PMID: 27547583 PMCID: PMC4975027 DOI: 10.7717/peerj.2290] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 07/05/2016] [Indexed: 12/04/2022] Open
Abstract
The study of environmental stress tolerance in aphids has primarily been at low temperatures. In these cases, and in the rare cases of high temperature tolerance assessments, all exposures had been during a single stress event. In the present study, we examined the physiological consequences of repeated high temperature exposure with recovery periods between these stress events in Myzus persicae. We subjected individuals to either a single prolonged three hour heating event, or three one hour heating events with a recovery time of 24 h between bouts. Aphids exposed to repeated bouts of high temperatures had more glucose and higher expression of proteins and osmolyte compounds, such as glycerol, compared to the prolonged exposure group. However, aphids exposed to the repeated high temperature treatment had reduced sources of energy such as trehalose and triglyceride compounds than the prolonged exposure group. Recovery time had more physiological costs (based on production of more protein and consumption of more trehalose and triglyceride) and benefits (based on production of more osmolytes) in repeated high temperature treatments. As aphids are known to respond differently to constant versus ‘natural’ fluctuating temperature regimes, conclusions drawn from constant temperature data sets may be problematic. We suggest future experiments assessing insect responses to thermal stress incorporate a repeated stress and recovery pattern into their methodologies.
Collapse
Affiliation(s)
- Behnaz Ghaedi
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England , Armidale , NSW , Australia
| | - Nigel R Andrew
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England , Armidale , NSW , Australia
| |
Collapse
|
46
|
Structures of trehalose-6-phosphate phosphatase from pathogenic fungi reveal the mechanisms of substrate recognition and catalysis. Proc Natl Acad Sci U S A 2016; 113:7148-53. [PMID: 27307435 DOI: 10.1073/pnas.1601774113] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trehalose is a disaccharide essential for the survival and virulence of pathogenic fungi. The biosynthesis of trehalose requires trehalose-6-phosphate synthase, Tps1, and trehalose-6-phosphate phosphatase, Tps2. Here, we report the structures of the N-terminal domain of Tps2 (Tps2NTD) from Candida albicans, a transition-state complex of the Tps2 C-terminal trehalose-6-phosphate phosphatase domain (Tps2PD) bound to BeF3 and trehalose, and catalytically dead Tps2PD(D24N) from Cryptococcus neoformans bound to trehalose-6-phosphate (T6P). The Tps2NTD closely resembles the structure of Tps1 but lacks any catalytic activity. The Tps2PD-BeF3-trehalose and Tps2PD(D24N)-T6P complex structures reveal a "closed" conformation that is effected by extensive interactions between each trehalose hydroxyl group and residues of the cap and core domains of the protein, thereby providing exquisite substrate specificity. Disruption of any of the direct substrate-protein residue interactions leads to significant or complete loss of phosphatase activity. Notably, the Tps2PD-BeF3-trehalose complex structure captures an aspartyl-BeF3 covalent adduct, which closely mimics the proposed aspartyl-phosphate intermediate of the phosphatase catalytic cycle. Structures of substrate-free Tps2PD reveal an "open" conformation whereby the cap and core domains separate and visualize the striking conformational changes effected by substrate binding and product release and the role of two hinge regions centered at approximately residues 102-103 and 184-188. Significantly, tps2Δ, tps2NTDΔ, and tps2D705N strains are unable to grow at elevated temperatures. Combined, these studies provide a deeper understanding of the substrate recognition and catalytic mechanism of Tps2 and provide a structural basis for the future design of novel antifungal compounds against a target found in three major fungal pathogens.
Collapse
|
47
|
Gao L, Liu Y, Sun H, Li C, Zhao Z, Liu G. Advances in mechanisms and modifications for rendering yeast thermotolerance. J Biosci Bioeng 2016; 121:599-606. [DOI: 10.1016/j.jbiosc.2015.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
|
48
|
Ethanol Production from Sweet Sorghum Juice at High Temperatures Using a Newly Isolated Thermotolerant Yeast Saccharomyces cerevisiae DBKKU Y-53. ENERGIES 2016. [DOI: 10.3390/en9040253] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Depuydt G, Shanmugam N, Rasulova M, Dhondt I, Braeckman BP. Increased Protein Stability and Decreased Protein Turnover in the Caenorhabditis elegans Ins/IGF-1 daf-2 Mutant. J Gerontol A Biol Sci Med Sci 2016; 71:1553-1559. [PMID: 26865495 PMCID: PMC5106850 DOI: 10.1093/gerona/glv221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/11/2015] [Indexed: 01/07/2023] Open
Abstract
In Caenorhabditis elegans, cellular proteostasis is likely essential for longevity. Autophagy has been shown to be essential for lifespan extension of daf-2 insulin/IGF mutants. Therefore, it can be hypothesized that daf-2 mutants achieve this phenotype by increasing protein turnover. However, such a mechanism would exert a substantial energy cost. By using classical 35S pulse-chase labeling, we observed that protein synthesis and degradation rates are decreased in young adults of the daf-2 insulin/IGF mutants. Although reduction of protein turnover may be energetically favorable, it may lead to accumulation and aggregation of damaged proteins. As this has been shown not to be the case in daf-2 mutants, another mechanism must exist to maintain proteostasis in this strain. We observed that proteins isolated from daf-2 mutants are more soluble in acidic conditions due to increased levels of trehalose. This suggests that trehalose may decrease the potential for protein aggregation and increases proteostasis in the daf-2 mutants. We postulate that daf-2 mutants save energy by decreasing protein turnover rates and instead stabilize their proteome by trehalose.
Collapse
Affiliation(s)
- Geert Depuydt
- Laboratory for Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Belgium.,Laboratory for Functional Genomics and Proteomics, Department of Biology, KU Leuven, Belgium
| | - Nilesh Shanmugam
- Laboratory for Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Belgium
| | - Madina Rasulova
- Laboratory for Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Belgium
| | - Ineke Dhondt
- Laboratory for Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Belgium
| | - Bart P Braeckman
- Laboratory for Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Belgium.
| |
Collapse
|
50
|
Ozer Uyar E, Yücel M, Hamamcı H. Cloning and expression of trehalose-6-phosphate synthase 1 from Rhizopus oryzae. J Basic Microbiol 2015; 56:459-68. [PMID: 26567772 DOI: 10.1002/jobm.201500425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/18/2015] [Indexed: 11/11/2022]
Abstract
Trehalose is a reducing disaccharide acting as a protectant against environmental stresses in many organisms. In fungi, Trehalose-6-phosphate synthase 1 (TPS1) plays a key role in the biosynthesis of trehalose. In this study, a full-length cDNA from Rhizopus oryzae encoding TPS1 (designated as RoTPS1) was isolated. The RoTPS1 cDNA is composed of 2505 nucleotides and encodes a protein of 834 amino acids with a molecular mass of 97.8 kDa. The amino acid sequence of RoTPS1 has a relatively high homology with the TPS1s in several other filamentous fungi. RoTPS1 was cloned into Saccharomyces cerevisiae and secretively expressed.
Collapse
Affiliation(s)
- Ebru Ozer Uyar
- Arslanbey Vocational School, Kocaeli University, Kocaeli, Turkey.,Department of Biotechnology, Institute of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey
| | - Meral Yücel
- Department of Biotechnology, Institute of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.,Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey
| | - Haluk Hamamcı
- Department of Biotechnology, Institute of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.,Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|