1
|
He J, Hao Y, He Y, Li W, Shi Y, Khurshid M, Lai D, Ma C, Wang X, Li J, Cheng J, Fernie AR, Ruan J, Zhang K, Zhou M. Genome-wide associated study identifies FtPMEI13 gene conferring drought resistance in Tartary buckwheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39488739 DOI: 10.1111/tpj.17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Tartary buckwheat is known for its ability to adapt to intricate growth conditions and to possess robust stress-resistant properties. Nevertheless, it remains vulnerable to drought stress, which can lead to reduced crop yield. To identify potential genes involved in drought resistance, a genome-wide association study on drought tolerance in Tartary buckwheat germplasm was conducted. A gene encoding pectin methylesterase inhibitors protein (FtPMEI13) was identified, which is not only associated with drought tolerance but also showed induction during drought stress and abscisic acid (ABA) treatment. Further analysis revealed that overexpression of FtPMEI13 leads to improved drought tolerance by altering the activities of antioxidant enzymes and the levels of osmotically active metabolites. Additionally, FtPMEI13 interacts with pectin methylesterase (PME) and inhibits PME activity in response to drought stress. Our results suggest that FtPMEI13 may inhibit the activity of FtPME44/FtPME61, thereby affecting pectin methylesterification in the cell wall and modulating stomatal closure in response to drought stress. Yeast one-hybrid, dual-luciferase assays, and electrophoretic mobility shift assays demonstrated that an ABA-responsive transcription factor FtbZIP46, could bind to the FtPMEI13 promoter, enhancing FtPMEI13 expression. Further analysis indicated that Tartary buckwheat accessions with the genotype resulting in higher FtPMEI13 and FtbZIP46 expression exhibited higher drought tolerance compared to the others. This suggests that this genotype has potential for application in Tartary buckwheat breeding. Furthermore, the natural variation of FtPMEI13 was responsible for decreased drought tolerance during Tartary buckwheat domestication. Taken together, these results provide basic support for Tartary buckwheat breeding for drought tolerance.
Collapse
Affiliation(s)
- Jiayue He
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yanrong Hao
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yuqi He
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Wei Li
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yaliang Shi
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Muhammad Khurshid
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Dili Lai
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Chongzhong Ma
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiangru Wang
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jinbo Li
- LuoYang Normal University, Luoyang, People's Republic of China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Kaixuan Zhang
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Meiliang Zhou
- National Key Facility for Crop Gene Resources and Genetic lmprovement/Key laboratory Grain Crop Genetic Resources Evaluation anaUtlization Ministry of Agriculture and Rural Affairs. P. R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| |
Collapse
|
2
|
Stroppa N, Onelli E, Moreau P, Maneta-Peyret L, Berno V, Cammarota E, Ambrosini R, Caccianiga M, Scali M, Moscatelli A. Sterols and Sphingolipids as New Players in Cell Wall Building and Apical Growth of Nicotiana tabacum L. Pollen Tubes. PLANTS (BASEL, SWITZERLAND) 2022; 12:8. [PMID: 36616135 PMCID: PMC9824051 DOI: 10.3390/plants12010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Pollen tubes are tip-growing cells that create safe routes to convey sperm cells to the embryo sac for double fertilization. Recent studies have purified and biochemically characterized detergent-insoluble membranes from tobacco pollen tubes. These microdomains, called lipid rafts, are rich in sterols and sphingolipids and are involved in cell polarization in organisms evolutionarily distant, such as fungi and mammals. The presence of actin in tobacco pollen tube detergent-insoluble membranes and the preferential distribution of these domains on the apical plasma membrane encouraged us to formulate the intriguing hypothesis that sterols and sphingolipids could be a "trait d'union" between actin dynamics and polarized secretion at the tip. To unravel the role of sterols and sphingolipids in tobacco pollen tube growth, we used squalestatin and myriocin, inhibitors of sterol and sphingolipid biosynthesis, respectively, to determine whether lipid modifications affect actin fringe morphology and dynamics, leading to changes in clear zone organization and cell wall deposition, thus suggesting a role played by these lipids in successful fertilization.
Collapse
Affiliation(s)
- Nadia Stroppa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Elisabetta Onelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Patrick Moreau
- CNRS, Laboratoire de Biogenèse Membranaire, University of Bordeaux, UMR 5200, 71 Avenue Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Lilly Maneta-Peyret
- CNRS, Laboratoire de Biogenèse Membranaire, University of Bordeaux, UMR 5200, 71 Avenue Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Valeria Berno
- ALEMBIC Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, DIBIT 1, Via Olgettina 58, 20132 Milan, Italy
| | - Eugenia Cammarota
- ALEMBIC Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, DIBIT 1, Via Olgettina 58, 20132 Milan, Italy
| | - Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Marco Caccianiga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Monica Scali
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandra Moscatelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
3
|
Uchendu K, Njoku DN, Paterne A, Rabbi IY, Dzidzienyo D, Tongoona P, Offei S, Egesi C. Genome-Wide Association Study of Root Mealiness and Other Texture-Associated Traits in Cassava. FRONTIERS IN PLANT SCIENCE 2021; 12:770434. [PMID: 34975953 PMCID: PMC8719520 DOI: 10.3389/fpls.2021.770434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Cassava breeders have made significant progress in developing new genotypes with improved agronomic characteristics such as improved root yield and resistance against biotic and abiotic stresses. However, these new and improved cassava (Manihot esculenta Crantz) varieties in cultivation in Nigeria have undergone little or no improvement in their culinary qualities; hence, there is a paucity of genetic information regarding the texture of boiled cassava, particularly with respect to its mealiness, the principal sensory quality attribute of boiled cassava roots. The current study aimed at identifying genomic regions and polymorphisms associated with natural variation for root mealiness and other texture-related attributes of boiled cassava roots, which includes fibre, adhesiveness (ADH), taste, aroma, colour, and firmness. We performed a genome-wide association (GWAS) analysis using phenotypic data from a panel of 142 accessions obtained from the National Root Crops Research Institute (NRCRI), Umudike, Nigeria, and a set of 59,792 high-quality single nucleotide polymorphisms (SNPs) distributed across the cassava genome. Through genome-wide association mapping, we identified 80 SNPs that were significantly associated with root mealiness, fibre, adhesiveness, taste, aroma, colour and firmness on chromosomes 1, 4, 5, 6, 10, 13, 17 and 18. We also identified relevant candidate genes that are co-located with peak SNPs linked to these traits in M. esculenta. A survey of the cassava reference genome v6.1 positioned the SNPs on chromosome 13 in the vicinity of Manes.13G026900, a gene recognized as being responsible for cell adhesion and for the mealiness or crispness of vegetables and fruits, and also known to play an important role in cooked potato texture. This study provides the first insights into understanding the underlying genetic basis of boiled cassava root texture. After validation, the markers and candidate genes identified in this novel work could provide important genomic resources for use in marker-assisted selection (MAS) and genomic selection (GS) to accelerate genetic improvement of root mealiness and other culinary qualities in cassava breeding programmes in West Africa, especially in Nigeria, where the consumption of boiled and pounded cassava is low.
Collapse
Affiliation(s)
- Kelechi Uchendu
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, Accra, Ghana
- National Root Crops Research Institute (NRCRI), Umudike, Nigeria
| | | | - Agre Paterne
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | | - Daniel Dzidzienyo
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, Accra, Ghana
| | - Pangirayi Tongoona
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, Accra, Ghana
| | - Samuel Offei
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, Accra, Ghana
| | - Chiedozie Egesi
- National Root Crops Research Institute (NRCRI), Umudike, Nigeria
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
Amplification, sequencing and characterization of pectin methyl esterase inhibitor 51 gene in Tectona grandis L.f. Saudi J Biol Sci 2021; 28:5451-5460. [PMID: 34588855 PMCID: PMC8459126 DOI: 10.1016/j.sjbs.2021.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/25/2021] [Accepted: 07/04/2021] [Indexed: 11/25/2022] Open
Abstract
Tectona grandis L.f. (Teak), a very important source of incomparable timber, withstands a wide range of tropical deciduous conditions. We achieved partial amplification of pectin methylesterase inhibitor 51 (PMEI) gene in teak by E. pilularis cinnamoyl Co-A reductase (CCR) gene specific primer. The amplified teak gene was of 750 bp, 79% identity and 97% query cover with PMEI of Sesamum indicum. The phylogenetic tree clustered the amplified gene with PMEI of database plant species, Erythranthe guttata and Sesamum indicum (87% bootstrap value). On conversion to amino acid sequence, the obtained protein comprised 237 amino acids. However, PMEI region spanned from 24 to 171 amino acids, 15.94 kDa molecular weight, 8.97 pI value and C697H1117N199O211S9 molecular formula with four conserved cysteine residues as disulfide bridges. 25.9 % protein residues were hydrophilic, 42.7% hydrophobic and 31.2% neutral. Teak 3D PMEI protein structure corresponded well with Arabidopsis thaliana and Actinidia deliciosa PMEIs. The gene maintains integrity of pectin component of middle lamella of primary cell wall and confers tolerance against various kinds of stresses. Teak conferred with overexpression of PMEI may secure a wide adaptability as well as luxuriant timber productivity and quality in adverse/ fluctuating/ scarce climatic and environmental conditions of tropical forests.
Collapse
|
5
|
Zhu X, Tang C, Li Q, Qiao X, Li X, Cai Y, Wang P, Sun Y, Zhang H, Zhang S, Wu J. Characterization of the pectin methylesterase inhibitor gene family in Rosaceae and role of PbrPMEI23/39/41 in methylesterified pectin distribution in pear pollen tube. PLANTA 2021; 253:118. [PMID: 33961146 DOI: 10.1007/s00425-021-03638-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/01/2021] [Indexed: 05/02/2023]
Abstract
Pectin methylesterase inhibitor gene family in the seven Rosaceae species (including three pear cultivars) is characterized and three pectin methylesterase inhibitor genes are identified to regulate pollen tube growth in pear. Pectin methylesterase inhibitor (PMEI) participates in a variety of biological processes in plants. However, the information and function of PMEI genes in Rosaceae are largely unknown. In this study, a total of 423 PMEI genes are identified in the genomes of seven Rosaceae species. The PMEI genes in pear are categorized into five subfamilies based on structural analysis and evolutionary analysis. WGD and TD are the main duplication events in the PMEI gene family of pear. Quantitative real-time PCR analysis indicates that PbrPMEI23, PbrPMEI39, and PbrPMEI41 are increasingly expressed during pear pollen tube growth. Under the treatment of recombinant proteins PbrPMEI23, PbrPMEI39 or PbrPMEI41, the content of methylesterified pectin at the region 5-20 μm from the pollen tube tip significantly increases, and the growth of pear pollen tubes is promoted. These results indicate that PMEI regulates the growth of pollen tubes by changing the distribution of methylesterified pectin in the apex.
Collapse
Affiliation(s)
- Xiaoxuan Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qionghou Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yilin Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yangyang Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Zhang
- Shanghai Vocational College of Agriculture and Forestry, Shanghai, 201699, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China.
| |
Collapse
|
6
|
Bazaraa WA, Ammar AS, Aqlan AM. Effects of kiwi's pectin methylesterase inhibitor, nanomilling and pasteurization on orange juice quality. Food Sci Nutr 2020; 8:6367-6379. [PMID: 33312523 PMCID: PMC7723186 DOI: 10.1002/fsn3.1886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/11/2022] Open
Abstract
Endogenous pectin methylesterase (PME) is the enzyme responsible for phase separation and cloud loss in orange juice (OJ) manufacturing. The effect of kiwi's PME inhibitor (PMEI), nanomilling, and pasteurization on OJ quality was evaluated. The microbial quality, PME activity, OJ separation, pH, ascorbic acid content and the sensory characteristics of the juice were followed during 5 weeks storage (4°C). PMEI as freeze-dried kiwi powder (0.3%, w/w) succeeded in inhibiting 89.3% of the OJ PME without affecting the microbial and the sensory quality. Nanomilling of OJ pulp, to prepare nano-particles OJ (NPOJ), reduced the initial microbial load by 1.65 and 1.83 log for psychrotrophs and yeasts and molds, respectively; significantly (p < .05) inactivated 40.9% of the residual PME activity and the juice separation was significantly reduced by 48.3% (after 14 days of storage). Nanomilling exhibited no effect on OJ pH, but slight (p < .05) decrease in ascorbic acid content was noted. The combination of PMEI with NPOJ resulted in improved OJ stability with reduced separation to 36.4% of that of control. Such combination also allowed to use a lower pasteurization temperature at lower exposure time (60°C/5 min) needed to obtain new NPOJ with comparable high quality as fresh OJ and which has a shelf life of 3 weeks (4°C).
Collapse
Affiliation(s)
- Wael A. Bazaraa
- Department of Food ScienceFaculty of AgricultureCairo UniversityGizaEgypt
| | - Abdalla S. Ammar
- Department of Food ScienceFaculty of AgricultureCairo UniversityGizaEgypt
| | | |
Collapse
|
7
|
Ren A, Ahmed RI, Chen H, Han L, Sun J, Ding A, Guo Y, Kong Y. Genome-Wide Identification, Characterization and Expression Patterns of the Pectin Methylesterase Inhibitor Genes in Sorghum bicolor. Genes (Basel) 2019; 10:E755. [PMID: 31561536 PMCID: PMC6826626 DOI: 10.3390/genes10100755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Cell walls are basically complex with dynamic structures that are being involved in several growth and developmental processes, as well as responses to environmental stresses and the defense mechanism. Pectin is secreted into the cell wall in a highly methylesterified form. It is able to perform function after the de-methylesterification by pectin methylesterase (PME). Whereas, the pectin methylesterase inhibitor (PMEI) plays a key role in plant cell wall modification through inhibiting the PME activity. It provides pectin with different levels of degree of methylesterification to affect the cell wall structures and properties. The PME activity was analyzed in six tissues of Sorghum bicolor, and found a high level in the leaf and leaf sheath. PMEI families have been identified in many plant species. Here, a total of 55 pectin methylesterase inhibitor genes (PMEIs) were identified from S. bicolor whole genome, a more detailed annotation of this crop plant as compared to the previous study. Chromosomal localization, gene structures and sequence characterization of the PMEI family were analyzed. Moreover, cis-acting elements analysis revealed that each PMEI gene was regulated by both internal and environmental factors. The expression patterns of each PMEI gene were also clustered according to expression pattern analyzed in 47 tissues under different developmental stages. Furthermore, some SbPMEIs were induced when treated with hormonal and abiotic stress. Taken together, these results laid a strong foundation for further study of the functions of SbPMEIs and pectin modification during plant growth and stress responses of cereal.
Collapse
Affiliation(s)
- Angyan Ren
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Rana Imtiaz Ahmed
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Ayub Agricultural Research Institute, Faisalabad 38850, Pakistan.
| | - Huanyu Chen
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Shijiazhuang 050021, China.
| | - Linhe Han
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jinhao Sun
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Anming Ding
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yingzhen Kong
- College of Agronomy of Qing Dao Agricultural University, Qingdao 266108, China.
| |
Collapse
|
8
|
Wang ST, Feng YJ, Lai YJ, Su NW. Complex Tannins Isolated from Jelly Fig Achenes Affect Pectin Gelation through Non-Specific Inhibitory Effect on Pectin Methylesterase. Molecules 2019; 24:E1601. [PMID: 31018540 PMCID: PMC6515263 DOI: 10.3390/molecules24081601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/02/2022] Open
Abstract
Jelly fig (Ficus awkeotsang Makino) is used to prepare drinks and desserts in Asia, owing to the gelling capability of its pectin via endogenous pectin methylesterase (PE) catalyzation. Meanwhile, substances with PE inhibitory activity (SPEI) in jelly fig achenes (JFA) residue were noticed to be able to impede the gelation. In this study, we characterized and isolated SPEI from JFA by a series of PE inhibition-guided isolations. Crude aqueous extract of JFA residue was mixed with acetone, and 90% acetone-soluble matter was further fractionated by Diaion HP-20 chromatography. The retained fraction with dominant PE inhibitory activity was collected from 100% methanol eluate. Results from high-performance liquid chromatography mass spectrometry (HPLC/MS) and hydrolysis-induced chromogenic transition revealed the SPEI as complex tannins. Total tannins content was determined in each isolated fraction, and was closely related to PE inhibitory activity. In addition, SPEI in this study could inhibit activities of digestive enzymes in vitro and may, therefore, be assumed to act as non-specific protein binding agent.
Collapse
Affiliation(s)
- Shang-Ta Wang
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| | - You-Jiang Feng
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| | - Ying-Jang Lai
- Department of Food Science, National Quemoy University, No. 1, University Road, Jinning Township, Kinmen County 892, Taiwan.
| | - Nan-Wei Su
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
9
|
The Multifaceted Role of Pectin Methylesterase Inhibitors (PMEIs). Int J Mol Sci 2018; 19:ijms19102878. [PMID: 30248977 PMCID: PMC6213510 DOI: 10.3390/ijms19102878] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/30/2023] Open
Abstract
Plant cell walls are complex and dynamic structures that play important roles in growth and development, as well as in response to stresses. Pectin is a major polysaccharide of cell walls rich in galacturonic acid (GalA). Homogalacturonan (HG) is considered the most abundant pectic polymer in plant cell walls and is partially methylesterified at the C6 atom of galacturonic acid. Its degree (and pattern) of methylation (DM) has been shown to affect biomechanical properties of the cell wall by making pectin susceptible for enzymatic de-polymerization and enabling gel formation. Pectin methylesterases (PMEs) catalyze the removal of methyl-groups from the HG backbone and their activity is modulated by a family of proteinaceous inhibitors known as pectin methylesterase inhibitors (PMEIs). As such, the interplay between PME and PMEI can be considered as a determinant of cell adhesion, cell wall porosity and elasticity, as well as a source of signaling molecules released upon cell wall stress. This review aims to highlight recent updates in our understanding of the PMEI gene family, their regulation and structure, interaction with PMEs, as well as their function in response to stress and during development.
Collapse
|
10
|
Servillo L, Balestrieri ML, Giovane A, De Sio F, Cannavacciuolo M, Squitieri G, Ferrari G, Cautela D, Castaldo D. Improving diced tomato firmness by pulsed vacuum calcification. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Molecular Mechanisms Affecting Cell Wall Properties and Leaf Architecture. THE LEAF: A PLATFORM FOR PERFORMING PHOTOSYNTHESIS 2018. [DOI: 10.1007/978-3-319-93594-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
12
|
Val J, Gracia MA, Blanco A, Monge E, Pérez M. Polypeptide Pattern of Apple Tissues Affected by Calcium-related Physiopathologies. FOOD SCI TECHNOL INT 2016. [DOI: 10.1177/1082013206070217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polypeptides from the apple pulp of Smoothee Golden Delicious and White Renete apples were resolved by 1-D denaturing sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). According to the electropherograms, there were lower concentrations of 88, 74, 70.6 and 47.5-42kDa proteins in bitter pit spots. Proteins weighing 30 and 26kDa were rare in sound pulp but frequently appeared in pits and adjacent tissue. Finally, a novel 18kDa protein was found in bitter pit spots in both varieties, and also in chemically induced corky lesions either by magnesium infiltration or ammonium oxalate cortical injections. The available data suggested that the novel protein might be an inhibitor of pectinmethylesterase, a small heat stress protein (smHSP) or a product of the Ypr-10 gene family identified with ‘Mal d 1’, the main allergen of apples. To elucidate the possible smHSP nature of the 18kDa, a set of apples were heated at 40°C for 20h, developing this protein in both the oxidised tissue and in the adjacent.
Collapse
Affiliation(s)
- J. Val
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 202, 50080- Zaragoza, Spain,
| | - M. A. Gracia
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 202, 50080- Zaragoza, Spain
| | - A. Blanco
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 202, 50080- Zaragoza, Spain
| | - E. Monge
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 202, 50080- Zaragoza, Spain
| | - M. Pérez
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 202, 50080- Zaragoza, Spain
| |
Collapse
|
13
|
Bonavita A, Carratore V, Ciardiello MA, Giovane A, Servillo L, D'Avino R. Influence of pH on the Structure and Function of Kiwi Pectin Methylesterase Inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5866-76. [PMID: 27335009 DOI: 10.1021/acs.jafc.6b01718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pectin methylesterase is a pectin modifying enzyme that plays a key role in plant physiology. It is also an important quality-related enzyme in plant-based food products. The pectin methylesterase inhibitor (PMEI) from kiwifruit inhibits this enzyme activity and is widely used as an efficient tool for research purposes and also recommended in the context of fruit and vegetable processing. Using several methodologies of protein biochemistry, including circular dichroism and fluorescence spectroscopy, chemical modifications, direct protein-sequencing, enzyme activity, and bioinformatics analysis of the crystal structure, this study demonstrates that conformational changes occur in kiwi PMEI by the pH rising over 6.0 bringing about structure loosening, exposure, and cleavage of a natively buried disulfide bond, unfolding and aggregation, ultimately determining the loss of ability of kiwi PMEI to bind and inhibit PME. pH-induced structural changes are prevented when PMEI is already engaged in complex or is in a solution of high ionic strength.
Collapse
Affiliation(s)
| | - Vitale Carratore
- Institute of Biosciences and BioResources, C.N.R. , Napoli, Italy
| | | | - Alfonso Giovane
- Department of Biochemistry, Biophysics and General Pathology, Second University of Napoli , Napoli, Italy
| | - Luigi Servillo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Napoli , Napoli, Italy
| | - Rossana D'Avino
- Institute of Biosciences and BioResources, C.N.R. , Napoli, Italy
| |
Collapse
|
14
|
DÍAZ-CRUZ CA, REGALADO-GONZÁLEZ C, MORALES-SÁNCHEZ E, VELAZQUEZ G, GONZÁLEZ-JASSO E, AMAYA-LLANO SL. Thermal inactivation kinetics of partially purified mango pectin methylesterase. FOOD SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1590/1678-457x.02815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
|
16
|
Toda K, Hirata K, Masuda R, Yasui T, Yamada T, Takahashi K, Nagaya T, Hajika M. Relationship between Mutations of the Pectin Methylesterase Gene in Soybean and the Hardness of Cooked Beans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8870-8. [PMID: 26332752 DOI: 10.1021/acs.jafc.5b02896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hardness of cooked soybeans [Glycine max (L). Merr.] is an important attribute in food processing. We found one candidate gene, Glyma03g03360, to be associated with the hardness of cotyledons of cooked soybeans, based on a quantitative trait locus and fine-scale mapping analyses using a recombinant inbred line population developed from a cross between two Japanese cultivars, "Natto-shoryu" and "Hyoukei-kuro 3". Analysis of the DNA sequence of Glyma03g03360, a pectin methylesterase gene homologue, revealed three patterns of mutations, two of which result in truncated proteins and one of which results in an amino acid substitution. The truncated proteins are presumed to lack the enzymatic activity of Glyma03g03360. We classified 24 cultivars into four groups based on the sequence of Glyma03g03360. The texture analysis using the 22 cultivars grown in different locations indicated that protein truncation of Glyma03g03360 resulted in softer cotyledons of cooked soybeans, which was further confirmed by texture analysis performed using F2 populations of a cross between "Enrei" and "LD00-3309", and between "Satonohohoemi" and "Sakukei 98". A positive correlation between hardness and calcium content implies the possible effect of calcium binding to pectins on the hardness of cooked soybean cotyledons.
Collapse
Affiliation(s)
- Kyoko Toda
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Kaori Hirata
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Ryoichi Masuda
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Takeshi Yasui
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Tetsuya Yamada
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Koji Takahashi
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Taiko Nagaya
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Makita Hajika
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| |
Collapse
|
17
|
Lionetti V, Raiola A, Mattei B, Bellincampi D. The Grapevine VvPMEI1 Gene Encodes a Novel Functional Pectin Methylesterase Inhibitor Associated to Grape Berry Development. PLoS One 2015. [PMID: 26204516 PMCID: PMC4512722 DOI: 10.1371/journal.pone.0133810] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pectin is secreted in a highly methylesterified form and partially de-methylesterified in the cell wall by pectin methylesterases (PMEs). PME activity is expressed during plant growth, development and stress responses. PME activity is controlled at the post-transcriptional level by proteins named PME inhibitors (PMEIs). We have identified, expressed and characterized VvPMEI1, a functional PME inhibitor of Vitis vinifera. VvPMEI1 typically affects the activity of plant PMEs and is inactive against microbial PMEs. The kinetics of PMEI-PME interaction, studied by surface plasmon resonance, indicates that the inhibitor strongly interacts with PME at apoplastic pH while the stability of the complex is reduced by increasing the pH. The analysis of VvPMEI1 expression in different grapevine tissues and during grape fruit development suggests that this inhibitor controls PME activity mainly during the earlier phase of berry development. A proteomic analysis performed at this stage indicates a PME isoform as possible target of VvPMEI1.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Alessandro Raiola
- Dipartimento Territorio e Sistemi Agroforestali, Università di Padova, Legnaro (PD), Italy
| | - Benedetta Mattei
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Daniela Bellincampi
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
- * E-mail:
| |
Collapse
|
18
|
|
19
|
Mei X, Shpigelman A, Verrijssen TA, Kyomugasho C, Luo Y, Van Loey AM, Michiels C, Huang K, Hendrickx ME. Recombinant kiwi pectin methylesterase inhibitor: Purification and characterization of the interaction with plant pectin methylesterase during thermal and high-pressure processing. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Liu Q, Xu W, Han S, Cao D, He X, Huang K, Mei X. Production and optimization of a kiwi pectin methylesterase inhibitor in Pichia pastoris GS115. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0269-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Jamsazzadeh Kermani Z, Shpigelman A, Houben K, ten Geuzendam B, Van Loey AM, Hendrickx ME. Study of mango endogenous pectinases as a tool to engineer mango purée consistency. Food Chem 2014; 172:272-82. [PMID: 25442554 DOI: 10.1016/j.foodchem.2014.09.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/22/2014] [Accepted: 09/13/2014] [Indexed: 10/24/2022]
Abstract
The objective of this work was to evaluate the possibility of using mango endogenous pectinases to change the viscosity of mango purée. Hereto, the structure of pectic polysaccharide and the presence of sufficiently active endogenous enzymes of ripe mango were determined. Pectin of mango flesh had a high molecular weight and was highly methoxylated. Pectin methylesterase showed a negligible activity which is related to the confirmed presence of a pectin methylesterase inhibitor. Pectin contained relatively high amounts of galactose and considerable β-galactosidase (β-Gal) activity was observed. The possibility of stimulating β-Gal activity during processing (temperature/pressure, time) was investigated. β-Gal of mango was rather temperature labile but pressure stable relatively to the temperature and pressure levels used to inactivate destructive enzymes in industry. Creating processing conditions allowing endogenous β-Gal activity did not substantially change the consistency of mango purée.
Collapse
Affiliation(s)
- Zahra Jamsazzadeh Kermani
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium
| | - Avi Shpigelman
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium
| | - Ken Houben
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium
| | - Belinda ten Geuzendam
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium
| | - Ann M Van Loey
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium
| | - Marc E Hendrickx
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, Box 2457, 3001 Leuven, Belgium.
| |
Collapse
|
22
|
Vasu P, Savary BJ, Cameron RG. Purification and characterization of a papaya (Carica papaya L.) pectin methylesterase isolated from a commercial papain preparation. Food Chem 2012; 133:366-72. [DOI: 10.1016/j.foodchem.2012.01.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/14/2011] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
|
23
|
Reca IB, Lionetti V, Camardella L, D'Avino R, Giardina T, Cervone F, Bellincampi D. A functional pectin methylesterase inhibitor protein (SolyPMEI) is expressed during tomato fruit ripening and interacts with PME-1. PLANT MOLECULAR BIOLOGY 2012; 79:429-42. [PMID: 22610346 DOI: 10.1007/s11103-012-9921-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 05/03/2012] [Indexed: 05/18/2023]
Abstract
A pectin methylesterase inhibitor (SolyPMEI) from tomato has been identified and characterised by a functional genomics approach. SolyPMEI is a cell wall protein sharing high similarity with Actinidia deliciosa PMEI (AdPMEI), the best characterised inhibitor from kiwi. It typically affects the activity of plant pectin methylesterases (PMEs) and is inactive against a microbial PME. SolyPMEI transcripts were mainly expressed in flower, pollen and ripe fruit where the protein accumulated at breaker and turning stages of ripening. The expression of SolyPMEI correlated during ripening with that of PME-1, the major fruit specific PME isoform. The interaction of SolyPMEI with PME-1 was demonstrated in ripe fruit by gel filtration and by immunoaffinity chromatography. The analysis of the zonal distribution of PME activity and the co-localization of SolyPMEI with high esterified pectins suggest that SolyPMEI regulates the spatial patterning of distribution of esterified pectins in fruit.
Collapse
Affiliation(s)
- Ida Barbara Reca
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Vandevenne E, Christiaens S, Van Buggenhout S, Declerck PJ, Hendrickx ME, Gils A, Van Loey A. Immunological toolbox available for in situ exploration of pectic homogalacturonan and its modifying enzymes in fruits and vegetables and their derived food products. INNOV FOOD SCI EMERG 2012. [DOI: 10.1016/j.ifset.2012.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Jimenez-Lopez JC, Kotchoni SO, Rodríguez-García MI, Alché JD. Structure and functional features of olive pollen pectin methylesterase using homology modeling and molecular docking methods. J Mol Model 2012; 18:4965-84. [DOI: 10.1007/s00894-012-1492-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/04/2012] [Indexed: 01/08/2023]
|
26
|
Vandevenne E, Christiaens S, Van Buggenhout S, Jolie RP, González-Vallinas M, Duvetter T, Declerck PJ, Hendrickx ME, Gils A, Van Loey A. Advances in understanding pectin methylesterase inhibitor in kiwi fruit: an immunological approach. PLANTA 2011; 233:287-298. [PMID: 21046145 DOI: 10.1007/s00425-010-1307-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/17/2010] [Indexed: 05/30/2023]
Abstract
In order to gain insight into the in situ properties and localisation of kiwi pectin methylesterase inhibitor (PMEI), a toolbox of monoclonal antibodies (MA) towards PMEI was developed. Out of a panel of MA generated towards kiwi PMEI, three MA, i.e. MA-KI9A8, MA-KI15C12 and MA-KI15G7, were selected. Thorough characterisation proved that these MA bind specifically to kiwi PMEI and kiwi PMEI in complex with plant PME and recognise a linear epitope on PMEI. Extract screening of green kiwi (Actinidia deliciosa) and gold kiwi (Actinidia chinensis) confirmed the potential use of these MA as probes to screen for PMEI in other sources. Tissue printing revealed the overall presence of PMEI in pericarp and columella of ripe kiwi fruit. Further analysis on the cellular level showed PMEI label concentrated in the middle lamella and in the cell-wall region near the plasmalemma. Intercellular spaces, however, were either completely filled or lined with label. In conclusion, the developed toolbox of antibodies towards PMEI can be used as probes to localise PMEI on different levels, which can be of relevance for plant physiologists as well as food technologists.
Collapse
Affiliation(s)
- Evelien Vandevenne
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, Postbox 2457, 3001 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 2010; 345:2583-95. [DOI: 10.1016/j.carres.2010.10.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/30/2010] [Accepted: 10/03/2010] [Indexed: 11/23/2022]
|
28
|
Plant pectin methylesterase and its inhibitor from kiwi fruit: Interaction analysis by surface plasmon resonance. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.11.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Jolie RP, Duvetter T, Vandevenne E, Van Buggenhout S, Van Loey AM, Hendrickx ME. A pectin-methylesterase-inhibitor-based molecular probe for in situ detection of plant pectin methylesterase activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5449-5456. [PMID: 20380375 DOI: 10.1021/jf100248u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the quest of obtaining a molecular probe for in situ detection of pectin methylesterase (PME), the PME inhibitor (PMEI) was biotinylated and the biotinylated PMEI (bPMEI) was extensively characterized. Reaction conditions for single labeling of the purified PMEI with retention of its inhibitory capacity were identified. High-performance size-exclusion chromatography (HPSEC) analysis revealed that the bPMEI retained its ability to form a complex with plant PME and that it gained the capacity to strongly bind an avidin species. By means of dot-blot binding assays, the ability of the probe to recognize native and high-temperature or high-pressure denatured plant PMEs, coated on an absorptive surface, was investigated and compared to the binding characteristics of recently reported anti-PME monoclonal antibodies. Contrary to the antibodies, bPMEI only detected active PME molecules. Subsequently, both types of probes were used for PME localization in tissue-printing experiments. bPMEI proved its versatility by staining prints of carrot root, broccoli stem, and tomato fruit. Applying the tissue-printing technique on carrot roots after thermal treatment demonstrated the complementarity of bPMEI and anti-PME antibodies, with the former selectively detecting the remaining active PME and the latter staining both native and inactivated PME molecules.
Collapse
Affiliation(s)
- Ruben P Jolie
- Department of Microbial and Molecular Systems (M2S), Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Jolie RP, Duvetter T, Houben K, Clynen E, Sila DN, Van Loey AM, Hendrickx ME. Carrot pectin methylesterase and its inhibitor from kiwi fruit: Study of activity, stability and inhibition. INNOV FOOD SCI EMERG 2009. [DOI: 10.1016/j.ifset.2009.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Duvetter T, Sila D, Van Buggenhout S, Jolie R, Van Loey A, Hendrickx M. Pectins in Processed Fruit and Vegetables: Part I-Stability and Catalytic Activity of Pectinases. Compr Rev Food Sci Food Saf 2009. [DOI: 10.1111/j.1541-4337.2009.00070.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Laratta B, Masi LD, Minasi P, Giovane A. Pectin methylesterase in Citrus bergamia R.: purification, biochemical characterisation and sequence of the exon related to the enzyme active site. Food Chem 2008; 110:829-37. [DOI: 10.1016/j.foodchem.2008.02.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 12/28/2007] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
|
33
|
Expression, purification and characterization of pectin methylesterase inhibitor from kiwi fruit in Escherichia coli. Protein Expr Purif 2008; 60:221-4. [DOI: 10.1016/j.pep.2008.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 04/14/2008] [Accepted: 04/17/2008] [Indexed: 11/21/2022]
|
34
|
Texture changes of processed fruits and vegetables: potential use of high-pressure processing. Trends Food Sci Technol 2008. [DOI: 10.1016/j.tifs.2007.12.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Rautengarten C, Usadel B, Neumetzler L, Hartmann J, Büssis D, Altmann T. A subtilisin-like serine protease essential for mucilage release from Arabidopsis seed coats. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:466-80. [PMID: 18266922 DOI: 10.1111/j.1365-313x.2008.03437.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During Arabidopsis seed development large quantities of mucilage, composed of pectins, are deposited into the apoplast underneath the outer wall of the seed coat. Upon imbibition of mature seeds, the stored mucilage expands through hydration and breaks the outer cell wall that encapsulates the whole seed. Mutant seeds carrying loss-of-function alleles of AtSBT1.7 that encodes one of 56 Arabidopsis thaliana subtilisin-like serine proteases (subtilases) do not release mucilage upon hydration. Microscopic analysis of the mutant seed coat revealed no visible structural differences compared with wild-type seeds. Weakening of the outer primary wall using cation chelators triggered mucilage release from the seed coats of mutants. However, in contrast to mature wild-type seeds, the mutant's outer cell walls did not rupture at the radial walls of the seed coat epidermal cells, but instead opened at the chalazal end of the seed, and were released in one piece. In atsbt1.7, the total rhamnose and galacturonic acid contents, representing the backbone of mucilage, remained unchanged compared with wild-type seeds. Thus, extrusion and solubility, but not the initial deposition of mucilage, are affected in atsbt1.7 mutants. AtSBT1.7 is localized in the developing seed coat, indicating a role in testa development or maturation. The altered mode of rupture of the outer seed coat wall and mucilage release indicate that AtSBT1.7 triggers the accumulation, and/or activation, of cell wall modifying enzymes necessary either for the loosening of the outer primary cell wall, or to facilitate swelling of the mucilage, as indicated by elevated pectin methylesterase activity in developing atsbt1.7 mutant seeds.
Collapse
Affiliation(s)
- Carsten Rautengarten
- Institut für Biochemie und Biologie, Genetik, Universität Potsdam, 14476 Golm, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Nakagawa T, Nakatsuka A, Yano K, Yasugahira S, Nakamura R, Sun N, Itai A, Suzuki T, Itamura H. Expressed sequence tags from persimmon at different developmental stages. PLANT CELL REPORTS 2008; 27:931-938. [PMID: 18301901 DOI: 10.1007/s00299-008-0518-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 01/28/2008] [Accepted: 02/10/2008] [Indexed: 05/26/2023]
Abstract
Persimmon (Diospyros kaki Thunb.) is an important fruit in Asian countries, where it is eaten as a fresh fruit and is also used for many other purposes. To understand the molecular mechanism of fruit development and ripening in persimmon, we generated a total of 9,952 expressed sequence tags (ESTs) from randomly selected clones of two different cDNA libraries. One cDNA library was derived from fruit of "Saijo" persimmon at an early stage of development, and the other from ripening fruit. These ESTs were clustered into 6,700 non-redundant sequences. Of the 6,700 non-redundant sequences evaluated, the deduced amino acid sequences of 4,356 (65%) showed significant homology to known proteins, and 2,344 (35%) showed no significant similarity to any known proteins in Arabidopsis databases. We report comparison of genes identified in the two cDNA libraries and describe some putative genes involved in proanthocyanidin and carotenoid synthesis. This study provides the first global overview of a set of genes that are expressed during fruit development and ripening in persimmon.
Collapse
Affiliation(s)
- T Nakagawa
- Department of Molecular and Functional Genomics, Center for Integrated Research in Science, Shimane University, Matsue 690-8504, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ciardiello MA, D'Avino R, Amoresano A, Tuppo L, Carpentieri A, Carratore V, Tamburrini M, Giovane A, Pucci P, Camardella L. The peculiar structural features of kiwi fruit pectin methylesterase: Amino acid sequence, oligosaccharides structure, and modeling of the interaction with its natural proteinaceous inhibitor. Proteins 2008; 71:195-206. [DOI: 10.1002/prot.21681] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
González-Agüero M, Pavez L, Ibáñez F, Pacheco I, Campos-Vargas R, Meisel LA, Orellana A, Retamales J, Silva H, González M, Cambiazo V. Identification of woolliness response genes in peach fruit after post-harvest treatments. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1973-86. [PMID: 18453640 PMCID: PMC2413281 DOI: 10.1093/jxb/ern069] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 01/28/2008] [Accepted: 01/31/2008] [Indexed: 05/21/2023]
Abstract
Woolliness is a physiological disorder of peaches and nectarines that becomes apparent when fruit are ripened after prolonged periods of cold storage. This disorder is of commercial importance since shipping of peaches to distant markets and storage before selling require low temperature. However, knowledge about the molecular basis of peach woolliness is still incomplete. To address this issue, a nylon macroarray containing 847 non-redundant expressed sequence tags (ESTs) from a ripe peach fruit cDNA library was developed and used. Gene expression changes of peach fruit (Prunus persica cv. O'Henry) ripened for 7 d at 21 degrees C (juicy fruit) were compared with those of fruit stored for 15 d at 4 degrees C and then ripened for 7 d at 21 degrees C (woolly fruit). A total of 106 genes were found to be differentially expressed between juicy and woolly fruit. Data analysis indicated that the activity of most of these genes (>90%) was repressed in the woolly fruit. In cold-stored peaches (cv. O'Henry), the expression level of selected genes (cobra, endopolygalacturonase, cinnamoyl-CoA-reductase, and rab11) was lower than in the juicy fruit, and it remained low in woolly peaches after ripening, a pattern that was conserved in woolly fruit from two other commercial cultivars (cv. Flamekist and cv. Elegant Lady). In addition, the results of this study indicate that molecular changes during fruit woolliness involve changes in the expression of genes associated with cell wall metabolism and endomembrane trafficking. Overall, the results reported here provide an initial characterization of the transcriptome activity of peach fruit under different post-harvest treatments.
Collapse
Affiliation(s)
- Mauricio González-Agüero
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Millennium Nucleus Center for Genomics of the Cell (CGC), Santiago, Chile
| | - Leonardo Pavez
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Millennium Nucleus Center for Genomics of the Cell (CGC), Santiago, Chile
| | - Freddy Ibáñez
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Millennium Nucleus Center for Genomics of the Cell (CGC), Santiago, Chile
| | - Igor Pacheco
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Millennium Nucleus Center for Genomics of the Cell (CGC), Santiago, Chile
| | | | - Lee A. Meisel
- Millennium Nucleus in Plant Cell Biology and Plant Biotechnology Center, Andres Bello University, Santiago, Chile
| | - Ariel Orellana
- Millennium Nucleus in Plant Cell Biology and Plant Biotechnology Center, Andres Bello University, Santiago, Chile
| | - Julio Retamales
- Faculty of Agricultural Sciences, Universidad de Chile, Santiago, Chile
| | - Herman Silva
- Millennium Nucleus in Plant Cell Biology and Plant Biotechnology Center, Andres Bello University, Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Millennium Nucleus Center for Genomics of the Cell (CGC), Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Millennium Nucleus Center for Genomics of the Cell (CGC), Santiago, Chile
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Mei XH, Hao YL, Zhu HL, Gao HY, Luo YB. Cloning of pectin methylesterase inhibitor from kiwi fruit and its high expression in Pichia pastoris. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.07.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M, Favaron F, Cervone F, Bellincampi D. Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. PLANT PHYSIOLOGY 2007; 143:1871-80. [PMID: 17277091 PMCID: PMC1851811 DOI: 10.1104/pp.106.090803] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/26/2007] [Indexed: 05/13/2023]
Abstract
Pectin, one of the main components of plant cell wall, is secreted in a highly methylesterified form and is demethylesterified in muro by pectin methylesterase (PME). The action of PME is important in plant development and defense and makes pectin susceptible to hydrolysis by enzymes such as endopolygalacturonases. Regulation of PME activity by specific protein inhibitors (PMEIs) can, therefore, play a role in plant development as well as in defense by influencing the susceptibility of the wall to microbial endopolygalacturonases. To test this hypothesis, we have constitutively expressed the genes AtPMEI-1 and AtPMEI-2 in Arabidopsis (Arabidopsis thaliana) and targeted the proteins into the apoplast. The overexpression of the inhibitors resulted in a decrease of PME activity in transgenic plants, and two PME isoforms were identified that interacted with both inhibitors. While the content of uronic acids in transformed plants was not significantly different from that of wild type, the degree of pectin methylesterification was increased by about 16%. Moreover, differences in the fine structure of pectins of transformed plants were observed by enzymatic fingerprinting. Transformed plants showed a slight but significant increase in root length and were more resistant to the necrotrophic fungus Botrytis cinerea. The reduced symptoms caused by the fungus on transgenic plants were related to its impaired ability to grow on methylesterified pectins.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Dipartimento di Biologia Vegetale, Università di Roma La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Krichevsky A, Kozlovsky SV, Tian GW, Chen MH, Zaltsman A, Citovsky V. How pollen tubes grow. Dev Biol 2007; 303:405-20. [PMID: 17214979 DOI: 10.1016/j.ydbio.2006.12.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 11/16/2006] [Accepted: 12/02/2006] [Indexed: 10/23/2022]
Abstract
Sexual reproduction of flowering plants depends on delivery of the sperm to the egg, which occurs through a long, polarized projection of a pollen cell, called the pollen tube. The pollen tube grows exclusively at its tip, and this growth is distinguished by very fast rates and reaches extended lengths. Thus, one of the most fascinating aspects of pollen biology is the question of how enough cell wall material is produced to accommodate such rapid extension of pollen tube, and how the cell wall deposition and structure are regulated to allow for rapid changes in the direction of growth. This review discusses recent advances in our understanding of the mechanism of pollen tube growth, focusing on such basic cellular processes as control of cell shape and growth by a network of cell wall-modifying enzymes, molecular motor-mediated vesicular transport, and intracellular signaling by localized gradients of second messengers.
Collapse
Affiliation(s)
- Alexander Krichevsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Tian GW, Chen MH, Zaltsman A, Citovsky V. Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 2006; 294:83-91. [PMID: 16564517 DOI: 10.1016/j.ydbio.2006.02.026] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 11/28/2022]
Abstract
Pollen tube elongation in the pistil is a crucial step in the sexual reproduction of plants. Because the wall of the pollen tube tip is composed of a single layer of pectin and, unlike most other plant cell walls, does not contain cellulose or callose, pectin methylesterases (PMEs) likely play a central role in the pollen tube growth and determination of pollen tube morphology. Thus, the functional studies of pollen-specific PMEs, which are still in their infancy, are important for understanding the pollen development. We identified a new Arabidopsis pollen-specific PME, AtPPME1, characterized its native expression pattern, and used reverse genetics to demonstrate its involvement in determination of the shape of the pollen tube and the rate of its elongation.
Collapse
Affiliation(s)
- Guo-Wei Tian
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
43
|
ANJONGSINSIRI PB, KENNEY J, WICKER L. Detection of Vacuum Infusion of Pectinmethylesterase in Strawberry by Activity Staining. J Food Sci 2006. [DOI: 10.1111/j.1365-2621.2004.tb13354.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
da Silva FG, Iandolino A, Al-Kayal F, Bohlmann MC, Cushman MA, Lim H, Ergul A, Figueroa R, Kabuloglu EK, Osborne C, Rowe J, Tattersall E, Leslie A, Xu J, Baek J, Cramer GR, Cushman JC, Cook DR. Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. PLANT PHYSIOLOGY 2005; 139:574-97. [PMID: 16219919 PMCID: PMC1255978 DOI: 10.1104/pp.105.065748] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 07/28/2005] [Accepted: 08/04/2005] [Indexed: 05/04/2023]
Abstract
We report the analysis and annotation of 146,075 expressed sequence tags from Vitis species. The majority of these sequences were derived from different cultivars of Vitis vinifera, comprising an estimated 25,746 unique contig and singleton sequences that survey transcription in various tissues and developmental stages and during biotic and abiotic stress. Putatively homologous proteins were identified for over 17,752 of the transcripts, with 1,962 transcripts further subdivided into one or more Gene Ontology categories. A simple structured vocabulary, with modules for plant genotype, plant development, and stress, was developed to describe the relationship between individual expressed sequence tags and cDNA libraries; the resulting vocabulary provides query terms to facilitate data mining within the context of a relational database. As a measure of the extent to which characterized metabolic pathways were encompassed by the data set, we searched for homologs of the enzymes leading from glycolysis, through the oxidative/nonoxidative pentose phosphate pathway, and into the general phenylpropanoid pathway. Homologs were identified for 65 of these 77 enzymes, with 86% of enzymatic steps represented by paralogous genes. Differentially expressed transcripts were identified by means of a stringent believability index cutoff of > or =98.4%. Correlation analysis and two-dimensional hierarchical clustering grouped these transcripts according to similarity of expression. In the broadest analysis, 665 differentially expressed transcripts were identified across 29 cDNA libraries, representing a range of developmental and stress conditions. The groupings revealed expected associations between plant developmental stages and tissue types, with the notable exception of abiotic stress treatments. A more focused analysis of flower and berry development identified 87 differentially expressed transcripts and provides the basis for a compendium that relates gene expression and annotation to previously characterized aspects of berry development and physiology. Comparison with published results for select genes, as well as correlation analysis between independent data sets, suggests that the inferred in silico patterns of expression are likely to be an accurate representation of transcript abundance for the conditions surveyed. Thus, the combined data set reveals the in silico expression patterns for hundreds of genes in V. vinifera, the majority of which have not been previously studied within this species.
Collapse
|
45
|
Boudart G, Jamet E, Rossignol M, Lafitte C, Borderies G, Jauneau A, Esquerré-Tugayé MT, Pont-Lezica R. Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics 2005; 5:212-21. [PMID: 15593128 DOI: 10.1002/pmic.200400882] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Weakly bound cell wall proteins of Arabidopsis thaliana were identified using a proteomic and bioinformatic approach. An efficient protocol of extraction based on vacuum-infiltration of the tissues was developed. Several salts and a chelating agent were compared for their ability to extract cell wall proteins without releasing cytoplasmic contaminants. Of the 93 proteins that were identified, a large proportion (60%) was released by calcium chloride. From bioinformatics analysis, it may be predicted that most of them (87 out of 93) had a signal peptide, whereas only six originated from the cytoplasm. Among the putative apoplastic proteins, a high proportion (67 out of 87) had a basic pI. Numerous glycoside hydrolases and proteins with interacting domains were identified, in agreement with the expected role of the extracellular matrix in polysaccharide metabolism and recognition phenomena. Ten proteinases were also found as well as six proteins with unknown functions. Comparison of the cell wall proteome of rosettes with the previously published cell wall proteome of cell suspension cultures showed a high level of cell specificity, especially for the different members of several large multigenic families.
Collapse
Affiliation(s)
- Georges Boudart
- UMR 5546 CNRS-Université Paul Sabatier, Pôle de Biotechnologie Végétale, F-31326 Castanet-tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bosch M, Cheung AY, Hepler PK. Pectin methylesterase, a regulator of pollen tube growth. PLANT PHYSIOLOGY 2005; 138:1334-46. [PMID: 15951488 PMCID: PMC1176407 DOI: 10.1104/pp.105.059865] [Citation(s) in RCA: 277] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/15/2005] [Accepted: 03/15/2005] [Indexed: 05/02/2023]
Abstract
The apical wall of growing pollen tubes must be strong enough to withstand the internal turgor pressure, but plastic enough to allow the incorporation of new membrane and cell wall material to support polarized tip growth. These essential rheological properties appear to be controlled by pectins, which constitute the principal component of the apical cell wall. Pectins are secreted as methylesters and subsequently deesterified by the enzyme pectin methylesterase (PME) in a process that exposes acidic residues. These carboxyls can be cross-linked by calcium, which structurally rigidifies the cell wall. Here, we examine the role of PME in cell elongation and the regulation of its secretion and enzymatic activity. Application of an exogenous PME induces thickening of the apical cell wall and inhibits pollen tube growth. Screening a Nicotiana tabacum pollen cDNA library yielded a pollen-specific PME, NtPPME1, containing a pre-region and a pro-region. Expression studies with green fluorescent protein fusion proteins show that the pro-region participates in the correct targeting of the mature PME. Results from in vitro growth analysis and immunolocalization studies using antipectin antibodies (JIM5 and JIM7) provide support for the idea that the pro-region acts as an intracellular inhibitor of PME activity, thereby preventing premature deesterification of pectins. In addition to providing experimental data that help resolve the significance and function of the pro-region, our results give insight into the mechanism by which PME and its pro-region regulate the cell wall dynamics of growing pollen tubes.
Collapse
Affiliation(s)
- Maurice Bosch
- Biology Department , University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
47
|
Ly-Nguyen B, Van Loey AM, Smout C, Verlent I, Duvetter T, Hendrickx ME. Effect of intrinsic and extrinsic factors on the interaction of plant pectin methylesterase and its proteinaceous inhibitor from kiwi fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:8144-50. [PMID: 15612809 DOI: 10.1021/jf048954m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A proteinaceous pectin methylesterase inhibitor (PMEI) was isolated from kiwi fruit (Actinidia chinensiscv. Hayward) and purified by affinity chromatography on a cyanogen bromide (CNBr) Sepharose 4B-orange PME column. The optimal pH of banana PME activity was 7.0, whereas that for carrot and strawberry PME activity was 9.0. The optimal pH for the binding between kiwi fruit PMEI and these PMEs was 7.0. The kiwi fruit PMEI has a different affinity for PME depending on the plant source. The inhibition kinetics of kiwi fruit PMEI to banana and strawberry PME followed a noncompetitive type, whereas that to carrot PME followed a competitive type. The kiwi fruit PMEI was mixed with banana, carrot, and strawberry PME to obtain PMEI-PME complexes, which were then subjected to thermal (40-80 degrees C, atmospheric pressure) or high-pressure (10 degrees C, 100-600 MPa) treatment. Experimental data showed that the PMEI-PME complexes were easily dissociated by both thermal and high-pressure treatments.
Collapse
Affiliation(s)
- Binh Ly-Nguyen
- Laboratory of Food Technology, Department of Food and Microbial Technology, Faculty of Applied Bioscience and Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
Ciardiello MA, Tamburrini M, Tuppo L, Carratore V, Giovane A, Mattei B, Camardella L. Pectin methylesterase from kiwi and kaki fruits: purification, characterization, and role of pH in the enzyme regulation and interaction with the kiwi proteinaceous inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:7700-7703. [PMID: 15675822 DOI: 10.1021/jf0491963] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pectin methylesterase was purified from kiwi (Actinidia chinensis) and kaki fruit (Diospyros kaki). The pH values of the fruit homogenates were 3.5 and 6.2, respectively. The kiwi enzyme is localized in the cell wall and has a neutral-alkaline pI, whereas the kaki enzyme is localized in the soluble fraction and has a neutral-acidic pI. The molecular weights of the kiwi and kaki enzymes were 50 and 37 kDa, respectively. The two enzymes showed a similar salt and pH dependence of activity, and a different pH dependence of the inhibition by the kiwi proteinaceous inhibitor.
Collapse
|
49
|
Irifune K, Nishida T, Egawa H, Nagatani A. Pectin methylesterase inhibitor cDNA from kiwi fruit. PLANT CELL REPORTS 2004; 23:333-338. [PMID: 15365757 DOI: 10.1007/s00299-004-0835-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 06/15/2004] [Accepted: 06/16/2004] [Indexed: 05/24/2023]
Abstract
We have newly isolated one partial pectin methylesterase inhibitor (PMEI) and two full-length cDNA clones from a kiwi fruit cDNA library. The two full-length cDNA clones, Adpmei-1 and Adpmei-2, had an open reading frame of 185 amino acids, including a predicted signal peptide sequence necessary for localization in the cell-wall space. As the deduced amino acid sequence of the cloned fragment was almost same as the sequence of the previously purified PMEI protein (Camardella et al., Eur J Biochem 267:4561-4565), the clones were considered to be cDNAs encoding PMEI protein. Southern blot analysis indicated a low-copy number of the PMEI genes. Transgenic analysis of asparagus calli expressing a kiwi fruit PMEI gene driven by the CaMV 35S promoter demonstrated in vivo inhibition effects of PMEI on the endogenous pectin methylesterase (PME) activity. The relative expression levels of the PMEI genes in kiwi fruit, analyzed by competitive PCR, increased with the progression of fruit maturation. Given that PME activity also showed its highest level at the fully ripened stage of maturation, the increase in PMEI expression may not indicate direct inhibitory effects on the PME activity and fruit maturation process.
Collapse
Affiliation(s)
- Kohei Irifune
- School of Bioresources, Hiroshima Prefectural University, Nanatuka 562, Shobara, Hiroshima, 727-0023, Japan.
| | | | | | | |
Collapse
|
50
|
Giovane A, Servillo L, Balestrieri C, Raiola A, D'Avino R, Tamburrini M, Ciardiello MA, Camardella L. Pectin methylesterase inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:245-52. [PMID: 14871665 DOI: 10.1016/j.bbapap.2003.08.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 08/07/2003] [Indexed: 11/25/2022]
Abstract
Pectin methylesterase (PME) is the first enzyme acting on pectin, a major component of plant cell wall. PME action produces pectin with different structural and functional properties, having an important role in plant physiology. Regulation of plant PME activity is obtained by the differential expression of several isoforms in different tissues and developmental stages and by subtle modifications of cell wall local pH. Inhibitory activities from various plant sources have also been reported. A proteinaceous inhibitor of PME (PMEI) has been purified from kiwi fruit. The kiwi PMEI is active against plant PMEs, forming a 1:1 non-covalent complex. The polypeptide chain comprises 152 amino acid residues and contains five Cys residues, four of which are connected by disulfide bridges, first to second and third to fourth. The sequence shows significant similarity with the N-terminal pro-peptides of plant PME, and with plant invertase inhibitors. In particular, the four Cys residues involved in disulfide bridges are conserved. On the basis of amino acid sequence similarity and Cys residues conservation, a large protein family including PMEI, invertase inhibitors and related proteins of unknown function has been identified. The presence of at least two sequences in the Arabidopsis genome having high similarity with kiwi PMEI suggests the ubiquitous presence of this inhibitor. PMEI has an interest in food industry as inhibitor of endogenous PME, responsible for phase separation and cloud loss in fruit juice manufacturing. Affinity chromatography on resin-bound PMEI can also be used to concentrate and detect residual PME activity in fruit and vegetable products.
Collapse
Affiliation(s)
- A Giovane
- Department of Biochemistry and Biophysics, 2nd University of Napoli, Via Costantinopoli 16, I-80138, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|