1
|
Schalich KM, Koganti PP, Castillo JM, Reiff OM, Cheong SH, Selvaraj V. The uterine secretory cycle: recurring physiology of endometrial outputs that setup the uterine luminal microenvironment. Physiol Genomics 2024; 56:74-97. [PMID: 37694291 DOI: 10.1152/physiolgenomics.00035.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Conserved in female reproduction across all mammalian species is the estrous cycle and its regulation by the hypothalamic-pituitary-gonadal (HPG) axis, a collective of intersected hormonal events that are crucial for ensuring uterine fertility. Nonetheless, knowledge of the direct mediators that synchronously shape the uterine microenvironment for successive yet distinct events, such as the transit of sperm and support for progressive stages of preimplantation embryo development, remain principally deficient. Toward understanding the timed endometrial outputs that permit luminal events as directed by the estrous cycle, we used Bovidae as a model system to uniquely surface sample and study temporal shifts to in vivo endometrial transcripts that encode for proteins destined to be secreted. The results revealed the full quantitative profile of endometrial components that shape the uterine luminal microenvironment at distinct phases of the estrous cycle (estrus, metestrus, diestrus, and proestrus). In interpreting this comprehensive log of stage-specific endometrial secretions, we define the "uterine secretory cycle" and extract a predictive understanding of recurring physiological actions regulated within the uterine lumen in anticipation of sperm and preimplantation embryonic stages. This repetitive microenvironmental preparedness to sequentially provide operative support was a stable intrinsic framework, with only limited responses to sperm or embryos if encountered in the lumen within the cyclic time period. In uncovering the secretory cycle and unraveling realistic biological processes, we present novel foundational knowledge of terminal effectors controlled by the HPG axis to direct a recurring sequence of vital functions within the uterine lumen.NEW & NOTEWORTHY This study unravels the recurring sequence of changes within the uterus that supports vital functions (sperm transit and development of preimplantation embryonic stages) during the reproductive cycle in female Ruminantia. These data present new systems knowledge in uterine reproductive physiology crucial for setting up in vitro biomimicry and artificial environments for assisted reproduction technologies for a range of mammalian species.
Collapse
Affiliation(s)
- Kasey M Schalich
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Juan M Castillo
- Department of Clinical Sciences, Veterinary College, Cornell University, Ithaca, New York, United States
| | - Olivia M Reiff
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Soon Hon Cheong
- Department of Clinical Sciences, Veterinary College, Cornell University, Ithaca, New York, United States
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| |
Collapse
|
2
|
Expanding the Landscape of Amino Acid-Rich Antimicrobial Peptides: Definition, Deployment in Nature, Implications for Peptide Design and Therapeutic Potential. Int J Mol Sci 2022; 23:ijms232112874. [PMID: 36361660 PMCID: PMC9658076 DOI: 10.3390/ijms232112874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Unlike the α-helical and β-sheet antimicrobial peptides (AMPs), our knowledge on amino acid-rich AMPs is limited. This article conducts a systematic study of rich AMPs (>25%) from different life kingdoms based on the Antimicrobial Peptide Database (APD) using the program R. Of 3425 peptides, 724 rich AMPs were identified. Rich AMPs are more common in animals and bacteria than in plants. In different animal classes, a unique set of rich AMPs is deployed. While histidine, proline, and arginine-rich AMPs are abundant in mammals, alanine, glycine, and leucine-rich AMPs are common in amphibians. Ten amino acids (Ala, Cys, Gly, His, Ile, Lys, Leu, Pro, Arg, and Val) are frequently observed in rich AMPs, seven (Asp, Glu, Phe, Ser, Thr, Trp, and Tyr) are occasionally observed, and three (Met, Asn, and Gln) were not yet found. Leucine is much more frequent in forming rich AMPs than either valine or isoleucine. To date, no natural AMPs are simultaneously rich in leucine and lysine, while proline, tryptophan, and cysteine-rich peptides can simultaneously be rich in arginine. These findings can be utilized to guide peptide design. Since multiple candidates are potent against antibiotic-resistant bacteria, rich AMPs stand out as promising future antibiotics.
Collapse
|
3
|
Scavello F, Kharouf N, Lavalle P, Haikel Y, Schneider F, Metz-Boutigue MH. The antimicrobial peptides secreted by the chromaffin cells of the adrenal medulla link the neuroendocrine and immune systems: From basic to clinical studies. Front Immunol 2022; 13:977175. [PMID: 36090980 PMCID: PMC9452953 DOI: 10.3389/fimmu.2022.977175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing resistance to antibiotic treatments highlights the need for the development of new antimicrobial agents. Antimicrobial peptides (AMPs) have been studied to be used in clinical settings for the treatment of infections. Endogenous AMPs represent the first line defense of the innate immune system against pathogens; they also positively interfere with infection-associated inflammation. Interestingly, AMPs influence numerous biological processes, such as the regulation of the microbiota, wound healing, the induction of adaptive immunity, the regulation of inflammation, and finally express anti-cancer and cytotoxic properties. Numerous peptides identified in chromaffin secretory granules from the adrenal medulla possess antimicrobial activity: they are released by chromaffin cells during stress situations by exocytosis via the activation of the hypothalamo-pituitary axis. The objective of the present review is to develop complete informations including (i) the biological characteristics of the AMPs produced after the natural processing of chromogranins A and B, proenkephalin-A and free ubiquitin, (ii) the design of innovative materials and (iii) the involvement of these AMPs in human diseases. Some peptides are elective biomarkers for critical care medicine, may play an important role in the protection of infections (alone, or in combination with others or antibiotics), in the prevention of nosocomial infections, in the regulation of intestinal mucosal dynamics and of inflammation. They could play an important role for medical implant functionalization, such as catheters, tracheal tubes or oral surgical devices, in order to prevent infections after implantation and to promote the healing of tissues.
Collapse
Affiliation(s)
- Francesco Scavello
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- IRCCS Humanitas Research Hospital, Milan, Italy
- *Correspondence: Francesco Scavello,
| | - Naji Kharouf
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, Strasbourg, France
| | - Philippe Lavalle
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, Strasbourg, France
| | - Francis Schneider
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Médecine Intensive-Réanimation, Hautepierre Hospital, Hôpitaux Universitaires, Strasbourg, Federation of Translational Medicine, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Marie-Hélène Metz-Boutigue
- Department of Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de recherche (UMR) S 1121, Federation of Translational Medicine, Strasbourg University, Strasbourg, France
| |
Collapse
|
4
|
Galvin SG, Larraufie P, Kay RG, Pitt H, Bernard E, McGavigan AK, Brant H, Hood J, Sheldrake L, Conder S, Atherton-Kemp D, Lu VB, O'Flaherty EAA, Roberts GP, Ämmälä C, Jermutus L, Baker D, Gribble FM, Reimann F. Peptidomics of enteroendocrine cells and characterisation of potential effects of a novel preprogastrin derived-peptide on glucose tolerance in lean mice. Peptides 2021; 140:170532. [PMID: 33744371 PMCID: PMC8121762 DOI: 10.1016/j.peptides.2021.170532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To analyse the peptidomics of mouse enteroendocrine cells (EECs) and human gastrointestinal (GI) tissue and identify novel gut derived peptides. METHODS High resolution nano-flow liquid chromatography mass spectrometry (LC-MS/MS) was performed on (i) flow-cytometry purified NeuroD1 positive cells from mouse and homogenised human intestinal biopsies, (ii) supernatants from primary murine intestinal cultures, (iii) intestinal homogenates from mice fed high fat diet. Candidate bioactive peptides were selected on the basis of species conservation, high expression/biosynthesis in EECs and evidence of regulated secretionin vitro. Candidate novel gut-derived peptides were chronically administered to mice to assess effects on food intake and glucose tolerance. RESULTS A large number of peptide fragments were identified from human and mouse, including known full-length gut hormones and enzymatic degradation products. EEC-specific peptides were largely from vesicular proteins, particularly prohormones, granins and processing enzymes, of which several exhibited regulated secretion in vitro. No regulated peptides were identified from previously unknown genes. High fat feeding particularly affected the distal colon, resulting in reduced peptide levels from GCG, PYY and INSL5. Of the two candidate novel peptides tested in vivo, a peptide from Chromogranin A (ChgA 435-462a) had no measurable effect, but a progastrin-derived peptide (Gast p59-79), modestly improved glucose tolerance in lean mice. CONCLUSION LC-MS/MS peptidomic analysis of murine EECs and human GI tissue identified the spectrum of peptides produced by EECs, including a potential novel gut hormone, Gast p59-79, with minor effects on glucose tolerance.
Collapse
Affiliation(s)
- Sam G Galvin
- University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Pierre Larraufie
- University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Richard G Kay
- University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Haidee Pitt
- Animal Science and Technologies - UK, AstraZeneca, The Babraham Institute, Cambridge, UK
| | - Elise Bernard
- ADPE, AstraZeneca Ltd, Granta Park, Cambridge, CB21 6GH, UK
| | - Anne K McGavigan
- University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Helen Brant
- Animal Science and Technologies - UK, AstraZeneca, The Babraham Institute, Cambridge, UK
| | - John Hood
- Pharmacokinetics, AstraZeneca Ltd, Granta Park, Cambridge, UK
| | - Laura Sheldrake
- Animal Science and Technologies - UK, AstraZeneca, The Babraham Institute, Cambridge, UK
| | - Shannon Conder
- Animal Science and Technologies - UK, AstraZeneca, The Babraham Institute, Cambridge, UK
| | - Dawn Atherton-Kemp
- Animal Science and Technologies - UK, AstraZeneca, The Babraham Institute, Cambridge, UK
| | - Van B Lu
- University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Elisabeth A A O'Flaherty
- University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Geoffrey P Roberts
- University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Carina Ämmälä
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83 Mölndal, Sweden
| | - Lutz Jermutus
- Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Ltd, Cambridge, UK
| | - David Baker
- Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Ltd, Cambridge, UK
| | - Fiona M Gribble
- University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Frank Reimann
- University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
5
|
Miryala SK, Anbarasu A, Ramaiah S. Gene interaction network to unravel the role of gut bacterial species in cardiovascular diseases: E. coli O157:H7 host-bacterial interaction study. Comput Biol Med 2021; 133:104417. [PMID: 33901711 DOI: 10.1016/j.compbiomed.2021.104417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/17/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cardiovascular Disease (CVD) is one of the most common causes of mortality in humans. Presently, the role of pathogens in the initiation and progression of the CVDs is not clearly understood. Hence, it is essential to understand the molecular-level interactions between the human proteins and the microbial proteins to deduce their functional roles in the CVDs. METHOD The host-pathogen interactions (HPI) related to CVDs in the case of E. coli str. O157:H7 colonization were curated, and also the protein-protein interactions (PPI) between humans and E. coli were collected. Gene interaction network (GIN) and functional enrichment analyses (FEA) were utilized for this. RESULTS The GIN revealed dense interactions between the functional partners. The FEA indicated that the essential pathways played a significant role in humans as well as in E. coli. The primary responses against most of the bacterial pathogens in humans are different from that of E. coli; Terpenoid biosynthesis and production of secondary metabolite pathways aid the survival of the E. coli inside the host. Interestingly, network analysis divulged that the E. coli genes ksgA, rpsT, ispE, rpsI, ispH, and the human genes TP53, CASP3, CYCS, EP300, RHOA communicated by significant numbers in direct interactions. CONCLUSIONS The results obtained from the present study will help researchers understand the molecular-level interactions in the CVDs between the human and the E. coli genes. The important genes with vital interactions can be considered as hub molecules and can be exploited for new drug discovery.
Collapse
Affiliation(s)
- Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Esch T, Kream RM, Stefano GB. Emerging regulatory roles of opioid peptides, endogenous morphine, and opioid receptor subtypes in immunomodulatory processes: Metabolic, behavioral, and evolutionary perspectives. Immunol Lett 2020; 227:28-33. [DOI: 10.1016/j.imlet.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/06/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022]
|
7
|
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, Papadopoulos V, Troadec JD, Leprince J. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther 2020; 208:107386. [DOI: 10.1016/j.pharmthera.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
8
|
Elevation of Proenkephalin 143–183 in Cerebrospinal Fluid in Moyamoya Disease. World Neurosurg 2018; 109:e446-e459. [DOI: 10.1016/j.wneu.2017.09.204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 01/25/2023]
|
9
|
Abstract
Over the past two decades, cell-penetrating peptides (CPPs) have become increasingly popular both in research and in application. There have been numerous studies on the physiochemical characteristics and behavior of CPPs in various environments; likewise, the mechanisms of entry and delivery capabilities of these peptides have also been extensively researched. Besides the fundamental issues, there is an enormous interest in the delivery capabilities of the peptides as the family of CPPs is a promising and mostly non-toxic delivery vector candidate for numerous medical applications such as gene silencing, transgene delivery, and splice correction. Lately, however, there has been an emerging field of study besides the high-profile gene therapy applications-the use of peptides and CPPs to combat various infections caused by harmful bacteria, fungi, and viruses.In this chapter, we aim to provide a short overview of the history and properties of CPPs which is followed by more thorough descriptions of antimicrobial and antiviral peptides. To achieve this, we analyze the origin of such peptides, give an overview of the mechanisms of action and discuss the various practical applications which are ongoing or have been suggested based on research.
Collapse
Affiliation(s)
- Kalle Pärn
- Laboratory of Molecular Biotechnology, Institute of Technology, Tartu University, Nooruse 1/517, Tartu, 50411, Estonia,
| | | | | |
Collapse
|
10
|
Sturm S, Predel R. Serine phosphorylation of CAPA pyrokinin in cockroaches-a taxon-specific posttranslational modification. Peptides 2014; 57:52-8. [PMID: 24793144 DOI: 10.1016/j.peptides.2014.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
In insects, posttranslational modifications of neuropeptides are largely restricted to C- and N-terminal amino acids. The most common modifications, N-terminal pyroglutamate formation and C-terminal α-amidation, may prevent a fast degradation of these messenger molecules. This is particularly important for peptide hormones. Other common posttranslational modifications of proteins such as glycosylation and phosphorylation seem to be very rare in insect neuropeptides. To check this assumption, we used a computer algorithm to search an extensive data set of MALDI-TOF mass spectra from cockroach tissues for ion signal patterns indicating peptide phosphorylation. The results verify that phosphorylation is indeed very rare. However, a candidate was found and experimentally verified as phosphorylated CAPA pyrokinin (GGGGpSGETSGMWFGPRL-NH2) in the cockroach Lamproblatta albipalpus (Blattidae, Lamproblattinae). Tandem mass spectrometry revealed the phosphorylation site as Ser(5). Phosphorylated CAPA pyrokinin was then also detected in most other cockroach lineages (e.g. Blaberidae, Polyphagidae) but not in closely related blattid species such as Periplaneta americana. This is remarkable since the sequence of CAPA pyrokinin is identical in Lamproblatta and Periplaneta. A consensus sequence of CAPA pyrokinins of cockroaches revealed a conserved motif that suggests phosphorylation by a Four-jointed/FAM20C related kinase.
Collapse
Affiliation(s)
- Sebastian Sturm
- Cologne Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Reinhard Predel
- Cologne Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany.
| |
Collapse
|
11
|
Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 2014; 7:545-94. [PMID: 24828484 PMCID: PMC4035769 DOI: 10.3390/ph7050545] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/11/2022] Open
Abstract
As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between -3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc) are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
12
|
Antimicrobial peptides. Pharmaceuticals (Basel) 2013; 6:1543-75. [PMID: 24287494 PMCID: PMC3873676 DOI: 10.3390/ph6121543] [Citation(s) in RCA: 871] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 12/20/2022] Open
Abstract
The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics).
Collapse
|
13
|
Silva ON, Mulder KCL, Barbosa AEAD, Otero-Gonzalez AJ, Lopez-Abarrategui C, Rezende TMB, Dias SC, Franco OL. Exploring the pharmacological potential of promiscuous host-defense peptides: from natural screenings to biotechnological applications. Front Microbiol 2011; 2:232. [PMID: 22125552 PMCID: PMC3222093 DOI: 10.3389/fmicb.2011.00232] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/01/2011] [Indexed: 02/02/2023] Open
Abstract
In the last few years, the number of bacteria with enhanced resistance to conventional antibiotics has dramatically increased. Most of such bacteria belong to regular microbial flora, becoming a real challenge, especially for immune-depressed patients. Since the treatment is sometimes extremely expensive, and in some circumstances completely inefficient for the most severe cases, researchers are still determined to discover novel compounds. Among them, host-defense peptides (HDPs) have been found as the first natural barrier against microorganisms in nearly all living groups. This molecular class has been gaining attention every day for multiple reasons. For decades, it was believed that these defense peptides had been involved only with the permeation of the lipid bilayer in pathogen membranes, their main target. Currently, it is known that these peptides can bind to numerous targets, as well as lipids including proteins and carbohydrates, from the surface to deep within the cell. Moreover, by using in vivo models, it was shown that HDPs could act both in pathogens and cognate hosts, improving immunological functions as well as acting through multiple pathways to control infections. This review focuses on structural and functional properties of HDP peptides and the additional strategies used to select them. Furthermore, strategies to avoid problems in large-scale manufacture by using molecular and biochemical techniques will also be explored. In summary, this review intends to construct a bridge between academic research and pharmaceutical industry, providing novel insights into the utilization of HDPs against resistant bacterial strains that cause infections in humans.
Collapse
Affiliation(s)
- Osmar N Silva
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Protômicas e Bioquímicas, Universidade Católica de Brasília Brasília, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim JY, Park SC, Yoon MY, Hahm KS, Park Y. C-terminal amidation of PMAP-23: translocation to the inner membrane of Gram-negative bacteria. Amino Acids 2010; 40:183-95. [PMID: 20512598 DOI: 10.1007/s00726-010-0632-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 04/21/2010] [Indexed: 01/09/2023]
Abstract
PMAP-23 is a member of the cathelicidin family derived from pig myeloid cells and has potent antimicrobial activity. Amidation of the carboxyl terminus (C-terminus) of an antimicrobial peptide generally enhances its structural stability and antimicrobial activity or decreases its cytotoxicity. The aim of the present study was to investigate the effect of amidation on the mode of action in PMAP-23. Irrespective of amidation, PMAP-23 adopts a helix-hinge-helix structure in a membrane-mimetic environment. The antibacterial activities of PMAP-23C, which had a free C-terminus, and PMAP-23N, which had an amidated C-terminus, were similar against Gram-negative bacteria, reflecting a similar ability to neutralize lipopolysaccharide. However, PMAP-23N assumed a perpendicular orientation across the outer to the inner leaflet of the bacterial inner membrane, while PMAP-23C was orientated parallel to the lipid bilayer, as determined by following the blue shift in tryptophan fluorescence, as well as calcein release from liposomes and SYTOX Green uptake assays. These results suggest that N-terminal amidation of PMAP-23 provides structural stability and increases the peptide's cationic charge, facilitating translocation into the bacterial inner membrane.
Collapse
Affiliation(s)
- Jin-Young Kim
- Research Center for Proteineous Materials (RCPM), Chosun University, Kwangju, Korea
| | | | | | | | | |
Collapse
|
15
|
Akaddar A, Doderer-Lang C, Marzahn MR, Delalande F, Mousli M, Helle K, Van Dorsselaer A, Aunis D, Dunn BM, Metz-Boutigue MH, Candolfi E. Catestatin, an endogenous chromogranin A-derived peptide, inhibits in vitro growth of Plasmodium falciparum. Cell Mol Life Sci 2010; 67:1005-15. [PMID: 20043183 PMCID: PMC2827800 DOI: 10.1007/s00018-009-0235-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/03/2009] [Accepted: 12/11/2009] [Indexed: 02/06/2023]
Abstract
Catestatin, an endogenous peptide derived from bovine chromogranin A, and its active domain cateslytin display powerful antimicrobial activities. We have tested the activities of catestatin and other related peptides on the growth of Plasmodium falciparum in vitro. Catestatin inhibits growth of the chloroquine-sensitive strain of P. falciparum 3D7, exhibiting 88% inhibition at 20 microM. A similar partial inhibition of parasite growth was observed for the chloroquine-resistant strain, 7G8 (64%,) and the multidrug-resistant strain, W2 (62%). In the presence of parasite-specific lactate dehydrogenase, a specific protein-protein interaction between catestatin and plasmepsin II precursor was demonstrated. In addition, catestatin partially inhibited the parasite-specific proteases plasmepsin in vitro. A specific interaction between catestatin and plasmepsins II and IV from P. falciparum and plasmepsin IV from the three remaining species of Plasmodium known to infect man was observed, suggesting a catestatin-induced reduction in availability of nutrients for protein synthesis in the parasite.
Collapse
Affiliation(s)
- Aziza Akaddar
- Institut de Parasitologie et de Pathologie Tropicale, Université de Strasbourg, EA 4438, 67000 Strasbourg, France
| | - Cécile Doderer-Lang
- Institut de Parasitologie et de Pathologie Tropicale, Université de Strasbourg, EA 4438, 67000 Strasbourg, France
| | - Melissa R. Marzahn
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 100245 Gainesville, FL USA
| | - François Delalande
- Développement et Physiopathologie de l’Intestin et du Pancréas, Université de Strasbourg, INSERM U682, 67200 Strasbourg, France
| | - Marc Mousli
- Institut de Parasitologie et de Pathologie Tropicale, Université de Strasbourg, EA 4438, 67000 Strasbourg, France
| | - Karen Helle
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alain Van Dorsselaer
- Laboratoire de spectrométrie de masse BioOrganique, IPHC-DSA, UDS, CNRS, UMR178, 67087 Strasbourg, France
| | - Dominique Aunis
- Physiopathologie du Système Nerveux, Université de Strasbourg, INSERM U575, 67084 Strasbourg, France
| | - Ben M. Dunn
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 100245 Gainesville, FL USA
| | | | - Ermanno Candolfi
- Institut de Parasitologie et de Pathologie Tropicale, Université de Strasbourg, EA 4438, 67000 Strasbourg, France
| |
Collapse
|
16
|
Silva FD, Rezende CA, Rossi DCP, Esteves E, Dyszy FH, Schreier S, Gueiros-Filho F, Campos CB, Pires JR, Daffre S. Structure and mode of action of microplusin, a copper II-chelating antimicrobial peptide from the cattle tick Rhipicephalus (Boophilus) microplus. J Biol Chem 2009; 284:34735-46. [PMID: 19828445 DOI: 10.1074/jbc.m109.016410] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microplusin, a Rhipicephalus (Boophilus) microplus antimicrobial peptide (AMP) is the first fully characterized member of a new family of cysteine-rich AMPs with histidine-rich regions at the N and C termini. In the tick, microplusin belongs to the arsenal of innate defense molecules active against bacteria and fungi. Here we describe the NMR solution structure of microplusin and demonstrate that the protein binds copper II and iron II. Structured as a single alpha-helical globular domain, microplusin consists of five alpha-helices: alpha1 (residues Gly-9 to Arg-21), alpha2 (residues Glu-27 to Asn-40), alpha3 (residues Arg-44 to Thr-54), alpha4 (residues Leu-57 to Tyr-64), and alpha5 (residues Asn-67 to Cys-80). The N and C termini are disordered. This structure is unlike any other AMP structures described to date. We also used NMR spectroscopy to map the copper binding region on microplusin. Finally, using the Gram-positive bacteria Micrococcus luteus as a model, we studied of mode of action of microplusin. Microplusin has a bacteriostatic effect and does not permeabilize the bacterial membrane. Because microplusin binds metals, we tested whether this was related to its antimicrobial activity. We found that the bacteriostatic effect of microplusin was fully reversed by supplementation of culture media with copper II but not iron II. We also demonstrated that microplusin affects M. luteus respiration, a copper-dependent process. Thus, we conclude that the antibacterial effect of microplusin is due to its ability to bind and sequester copper II.
Collapse
Affiliation(s)
- Fernanda D Silva
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang D, Shooshtarizadeh P, Laventie BJ, Colin DA, Chich JF, Vidic J, de Barry J, Chasserot-Golaz S, Delalande F, Van Dorsselaer A, Schneider F, Helle K, Aunis D, Prévost G, Metz-Boutigue MH. Two chromogranin a-derived peptides induce calcium entry in human neutrophils by calmodulin-regulated calcium independent phospholipase A2. PLoS One 2009; 4:e4501. [PMID: 19225567 PMCID: PMC2639705 DOI: 10.1371/journal.pone.0004501] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 01/15/2009] [Indexed: 12/11/2022] Open
Abstract
Background Antimicrobial peptides derived from the natural processing of chromogranin A (CgA) are co-secreted with catecholamines upon stimulation of chromaffin cells. Since PMNs play a central role in innate immunity, we examine responses by PMNs following stimulation by two antimicrobial CgA-derived peptides. Methodology/Principal Findings PMNs were treated with different concentrations of CgA-derived peptides in presence of several drugs. Calcium mobilization was observed by using flow cytometry and calcium imaging experiments. Immunocytochemistry and confocal microscopy have shown the intracellular localization of the peptides. The calmodulin-binding and iPLA2 activating properties of the peptides were shown by Surface Plasmon Resonance and iPLA2 activity assays. Finally, a proteomic analysis of the material released after PMNs treatment with CgA-derived peptides was performed by using HPLC and Nano-LC MS-MS. By using flow cytometry we first observed that after 15 s, in presence of extracellular calcium, Chromofungin (CHR) or Catestatin (CAT) induce a concentration-dependent transient increase of intracellular calcium. In contrast, in absence of extra cellular calcium the peptides are unable to induce calcium depletion from the stores after 10 minutes exposure. Treatment with 2-APB (2-aminoethoxydiphenyl borate), a store operated channels (SOCs) blocker, inhibits completely the calcium entry, as shown by calcium imaging. We also showed that they activate iPLA2 as the two CaM-binding factors (W7 and CMZ) and that the two sequences can be aligned with the two CaM-binding domains reported for iPLA2. We finally analyzed by HPLC and Nano-LC MS-MS the material released by PMNs following stimulation by CHR and CAT. We characterized several factors important for inflammation and innate immunity. Conclusions/Significance For the first time, we demonstrate that CHR and CAT, penetrate into PMNs, inducing extracellular calcium entry by a CaM-regulated iPLA2 pathway. Our study highlights the role of two CgA-derived peptides in the active communication between neuroendocrine and immune systems.
Collapse
Affiliation(s)
- Dan Zhang
- INSERM U575, Physiopathologie du Système Nerveux, Strasbourg, France
- Département de Réanimation Médicale, Hôpital de Hautepierre, Strasbourg, France
- First Hospital, Chongqing University of Medical Sciences, Chongqing, China
| | | | - Benoît-Joseph Laventie
- UPRES-EA 3432, Institut de Bactériologie de la Faculté de Médecine, Université Louis Pasteur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Didier André Colin
- UPRES-EA 3432, Institut de Bactériologie de la Faculté de Médecine, Université Louis Pasteur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean-François Chich
- INSERM U575, Physiopathologie du Système Nerveux, Strasbourg, France
- INRA, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jasmina Vidic
- INRA, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jean de Barry
- Institut des Neurosciences Cellulaires et Intégratives, UMR 7168 CNRS-Université Louis Pasteur, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives, UMR 7168 CNRS-Université Louis Pasteur, Strasbourg, France
| | | | - Alain Van Dorsselaer
- Laboratoire de spectrométrie de masse BioOrganique, IPHC-DSA, ULP, CNRS, UMR7178, Strasbourg, France
| | - Francis Schneider
- Département de Réanimation Médicale, Hôpital de Hautepierre, Strasbourg, France
| | - Karen Helle
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Dominique Aunis
- INSERM U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Gilles Prévost
- UPRES-EA 3432, Institut de Bactériologie de la Faculté de Médecine, Université Louis Pasteur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | |
Collapse
|
18
|
Endogenous opiates, opioids, and immune function: Evolutionary brokerage of defensive behaviors. Semin Cancer Biol 2008; 18:190-8. [DOI: 10.1016/j.semcancer.2007.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Huang K, Ueda E, Chen Y, Walker AM. Paradigm-shifters: phosphorylated prolactin and short prolactin receptors. J Mammary Gland Biol Neoplasia 2008; 13:69-79. [PMID: 18219563 DOI: 10.1007/s10911-008-9072-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/04/2008] [Indexed: 11/28/2022] Open
Abstract
Since the discovery of physiologically-regulated prolactin (PRL) phosphorylation, one focus of the laboratory has been an examination of the different functions of the unmodified and phosphorylated hormone. In the mammary gland, unmodified PRL promotes growth activities, whereas phosphorylated or pseudophosphorylated PRL antagonizes this while also being a superior agonist for changes that favor differentiation. Phosphorylated PRL also increases expression of the short forms of the PRL receptor. These short forms of the receptor have functions beyond the accepted dominant negative and in mammary epithelial cells are capable of generating an intracellular signal leading to increased tight junction formation and beta-casein expression.
Collapse
Affiliation(s)
- KuangTzu Huang
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
20
|
Dashper SG, Liu SW, Reynolds EC. Antimicrobial Peptides and their Potential as Oral Therapeutic Agents. Int J Pept Res Ther 2007. [DOI: 10.1007/s10989-007-9094-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Mann K, Olsen JV, Macek B, Gnad F, Mann M. Phosphoproteins of the chicken eggshell calcified layer. Proteomics 2007; 7:106-15. [PMID: 17152097 DOI: 10.1002/pmic.200600635] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The chicken eggshell matrix is a complex mixture of proteins and proteoglycans. It also contains phosphoproteins that are thought to affect mineralization of the matrix. Several of the matrix phosphoproteins, such as the major component osteopontin, have already been identified as phosphoproteins in other tissues, but the phosphorylation status of the eggshell matrix forms was unknown. The phosphopeptides, obtained after cleavage of the matrix proteins with several different cleavage methods, were enriched by anion-exchange chromatography and reversible binding to titanium oxide and identified by LC-MS(n) or pseudo-MS(n) analysis following neutral loss scanning. Altogether we identified 39 phosphorylated matrix proteins, 22 of which were not known to be phosphorylated before. Eight of the proteins were identified as eggshell matrix components for the first time. Together these proteins contained more than 150 different phosphorylation sites, 103 of which were determined with high confidence. Among the major phosphorylated proteins of the chicken eggshell matrix were osteopontin and the eggshell-specific proteins ovocleidin-17, ovocleidin-116, and ovocalyxin-32.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max-Planck-Institute for Biochemistry, Department of Proteomics and Signal Transduction, Martinsried, Germany.
| | | | | | | | | |
Collapse
|
22
|
Engström L, Mackerlova L, Blomqvist A. Lipopolysaccharide induces preproenkephalin transcription in hypophysiotropic neurons of the rat paraventricular hypothalamic nucleus suggesting a neuroendocrine role for enkephalins during immune stress. Neuroscience 2006; 142:781-8. [PMID: 16949213 DOI: 10.1016/j.neuroscience.2006.06.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 06/21/2006] [Accepted: 06/27/2006] [Indexed: 11/18/2022]
Abstract
Opioids have impact on stress responses and possess immune modulatory functions. We have previously shown that immune stress elevates the levels of preproenkephalin transcript in a variety of autonomic structures in the rat brain, including the paraventricular hypothalamic nucleus. By using in situ hybridization with an intronic probe recognizing the preproenkephalin heteronuclear RNA combined with retrograde tract tracing, we examined the efferent target of the enkephalinergic neurons in the paraventricular hypothalamic nucleus that display induced transcriptional activity during immune challenge. Rats were first given i.p. injections of the tracer substance Fluoro-Gold, which following this route of administration is taken up only by nerve terminals residing outside the blood-brain barrier, and were then given an i.v. injection of lipopolysaccharide. Neuronal cell bodies retrogradely labeled with Fluoro-Gold were detected by immunohistochemistry, and-using a dual-labeling approach-the same cells were then examined for their expression of preproenkephalin heteronuclear RNA. We found that over 90% of the neurons that expressed preproenkephalin heteronuclear RNA also contained Fluoro-Gold. In addition, approximately 40% of the neurons expressing preproenkephalin heteronuclear RNA co-expressed mRNA for corticotropin-releasing hormone, the main adrenocorticotropic hormone secretagogue. These data show that the paraventricular hypothalamic neurons that display induced preproenkephalin transcription following immune challenge are almost exclusively hypophysiotropic neurons, indicating a role for enkephalin in the hypothalamic control of hormone release during infectious and inflammatory conditions.
Collapse
Affiliation(s)
- L Engström
- Department of Biomedicine and Surgery, Division of Cell Biology, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | | | | |
Collapse
|
23
|
Dennison SR, Howe J, Morton LHG, Brandenburg K, Harris F, Phoenix DA. Interactions of an anionic antimicrobial peptide with Staphylococcus aureus membranes. Biochem Biophys Res Commun 2006; 347:1006-10. [PMID: 16857163 DOI: 10.1016/j.bbrc.2006.06.181] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 06/30/2006] [Indexed: 11/17/2022]
Abstract
The antimicrobial activity of the anionic peptide, AP1 (GEQGALAQFGEWL), was investigated. AP1 was found to kill Staphylococcus aureus with an MLC of 3mM and to induce maximal surface pressure changes of 3.8 mN m(-1) over 1200s in monolayers formed from lipid extract of S. aureus membranes. FTIR spectroscopy showed the peptide to be alpha-helical (100%) in the presence of vesicles formed from this lipid extract and to induce increases in their fluidity (Deltanu circa 0.5 cm(-1)). These combined data show that AP1 is able to function as an alpha-helical antimicrobial peptide against Gram-positive bacteria and suggest that the killing mechanism used by the peptide involves interactions with the membrane lipid headgroup region. Moreover, this killing mechanism differs strongly from that previously reported for AP1 against Gram-negative bacteria, indicating the importance of considering the effects of membrane lipid composition when investigating the structure/function relationships of antimicrobial peptides.
Collapse
Affiliation(s)
- Sarah R Dennison
- Faculty of Science, University of Central Lancashire, Preston PR1 2HE, UK
| | | | | | | | | | | |
Collapse
|
24
|
Ernst A, Köhrle J, Bergmann A. Proenkephalin A 119-159, a stable proenkephalin A precursor fragment identified in human circulation. Peptides 2006; 27:1835-40. [PMID: 16621157 DOI: 10.1016/j.peptides.2006.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 02/27/2006] [Accepted: 03/06/2006] [Indexed: 11/22/2022]
Abstract
In this report, we describe a newly developed sandwich immunoassay using antibodies against the proenkephalin A 119-159 peptide (PENK A 119-159). PENK A 119-159 immunoreactivity was detectable in the circulation of human blood donors and in cerebrospinal fluid (CSF) of patients without a neurologic disorder. The concentration was about 100 times higher in CSF than in serum. Analytical reversed phase HPLC revealed that PENK A 119-159 is the main immunoreactivity in human circulation and CSF. Moreover, PENK A 119-159 is stable in vitro for at least 48 h at room temperature as compared to the low stability of the peptides methionine- and leucine-enkephalin. This suggests the use of PENK A 119-159 measurement as surrogate molecule for the release of the mature peptides derived from proenkephalin A.
Collapse
Affiliation(s)
- A Ernst
- SphingoTec GmbH, Tulpenweg 6, D-16556 Borgsdorf, Germany.
| | | | | |
Collapse
|
25
|
Glattard E, Angelone T, Strub JM, Corti A, Aunis D, Tota B, Metz-Boutigue MH, Goumon Y. Characterization of natural vasostatin-containing peptides in rat heart. FEBS J 2006; 273:3311-21. [PMID: 16857014 DOI: 10.1111/j.1742-4658.2006.05334.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromogranin A (CGA) is a protein that is stored and released together with neurotransmitters and hormones in the nervous, endocrine and diffuse neuroendocrine systems. As human vasostatins I and II [CGA(1-76) and CGA(1-113), respectively] have been reported to affect vessel motility and exert concentration-dependent cardiosuppressive effects on isolated whole heart preparations of eel, frog and rat (i.e. negative inotropism and antiadrenergic activity), we investigated the presence of vasostatin-containing peptides in rat heart. Rat heart extracts were purified by RP-HPLC, and the resulting fractions analyzed for the presence of CGA N-terminal fragments using dot-blot analysis. CGA-immunoreactive fractions were submitted to western blot and MS analysis using the TOF/TOF technique. Four endogenous N-terminal CGA-derived peptides [CGA(4-113), CGA(1-124), CGA(1-135) and CGA(1-199)] containing the vasostatin sequence were characterized. The following post-translational modifications of these fragments were identified: phosphorylation at Ser96, O-glycosylation (trisaccharide, NAcGal-Gal-NeuAc) at Thr126, and oxidation at three methionine residues. This first identification of CGA-derived peptides containing the vasostatin motif in rat heart supports their role in cardiac physiology by an autocrine/paracrine mechanism.
Collapse
Affiliation(s)
- Elise Glattard
- Inserm U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lansac G, Dong W, Dubois CM, Benlarbi N, Afonso C, Fournier I, Salzet M, Day R. Lipopolysaccharide mediated regulation of neuroendocrine associated proprotein convertases and neuropeptide precursor processing in the rat spleen. J Neuroimmunol 2005; 171:57-71. [PMID: 16337011 DOI: 10.1016/j.jneuroim.2005.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
Within the secretory pathway, the family of proprotein convertases cleave inactive precursors at paired basic residues to generate a myriad of biologically active peptides. Within the PC family, PC1/3 and PC2 are well known for their preferential expression within neuroendocrine cells. However, various data now indicate their potential expression in immune cells. The aim of our study was two fold: (1) survey PC expression in immune tissues, with emphasis on PC1/3 and PC2 and (2) examine PC expression under conditions that mimic an infectious state using lipopolysaccharide, known to activate immune cells via toll-like receptors. Spatial and temporal analyses of tissues from control and lipopolysaccharide treated rats were carried out using in situ hybridization histochemistry, Northern blot, mass spectrometry and antibacterial assays. Our tissue survey showed the basal expression of all PCs in the lymph nodes, thymus and spleen including PC1/3 and PC2. Focusing on the spleen, basal expression of PC1/3 was seen in the red pulp/marginal zone areas, suggesting expression within macrophages. Lipopolysaccharide treatment produced significant changes in PC1/3 expression and notably an induction in B lymphocytes within germinal centers. Similarly, PC2, which was undetectable in control spleens, was induced in germinal centers following lipopolysaccharide treatment. The PC1/3 and PC2 substrate proenkephalin was also induced following lipopolysaccharide treatment in the marginal zone, where PC1/3 expression was also found. Mass spectrometry analysis of spleen extracts demonstrated the presence of the antibacterial peptide enkelytin. Our studies confirmed that PC1/3 and PC2 expression was not restricted to neurons and endocrine cells, but was also found under basal conditions in both macrophage and lymphocytes. Additionally, plasticity of PC expression in immune cells was observed under conditions that mimic pathogen-like infections, suggesting a mechanistic link through Toll-like receptors. Collectively, these data clearly implicate PCs in immune responses, both innate and acquired.
Collapse
Affiliation(s)
- Guillaume Lansac
- Département de Pharmacologie, Faculté de médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ghia JE, Jean-Eric G, Pradaud I, Isabelle P, Crenner F, Francis C, Metz-Boutigue MH, Marie-Hélène MB, Aunis D, Dominique A, Angel F, Fabielle A. Effect of acetic acid or trypsin application on rat colonic motility in vitro and modulation by two synthetic fragments of chromogranin A. ACTA ACUST UNITED AC 2005; 124:27-35. [PMID: 15544838 DOI: 10.1016/j.regpep.2004.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 06/17/2004] [Accepted: 06/17/2004] [Indexed: 12/14/2022]
Abstract
The hypothesis that Chromogranin A (CgA)-derived peptides are involved in mechanisms modulating altered colonic motility was tested. Rat distal colonic strips were studied using an organ bath technique. Acetic acid (AA)-induced effects were characterized on spontaneous mechanical activities (SMA) in the presence of CgA4-16 or CgA47-66. In preparations with mucosa, AA induced a transient hyperactivity followed by a decrease in tone. The first phase is sensitive to tetrodotoxin (TTX) and capsaicin. The second phase was sensitive to BAYK8644 but insensitive to L-nitro-arginine-methyl-ester (L-Name)/apamin together. CgA4-16 or CgA47-66 alone produced no change on SMA. The administration of CgA4-16 prior to AA increased the duration of the excitatory component and reduced tone inhibition. CgA47-66 prior to AA only decreased duration of the excitatory phase. In preparations without mucosa, AA decreased tone. This effect was sensitive to BAYK8644 and CgA4-16. Trypsin decreased basal tone. This effect was suppressed by TTX, BAYK8644 or L-Name/apamin and were reduced by CgA4-16. AA-induced effects on rat colonic motility in vitro may be mediated through activation of primary afferents and an action at L-Type calcium channels. CgA-derived peptides are shown to decrease AA-induced effects on motility.
Collapse
Affiliation(s)
- Jean-Eric Ghia
- INSERM U575, Hôpital Civil Pavillon Poincaré, 67091 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dashper SG, O'Brien-Simpson NM, Cross KJ, Paolini RA, Hoffmann B, Catmull DV, Malkoski M, Reynolds EC. Divalent metal cations increase the activity of the antimicrobial Peptide kappacin. Antimicrob Agents Chemother 2005; 49:2322-8. [PMID: 15917528 PMCID: PMC1140507 DOI: 10.1128/aac.49.6.2322-2328.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kappacin, nonglycosylated kappa-casein(106-169), is a novel antimicrobial peptide produced from kappa-casein found in bovine milk. There are two major genetic forms of kappacin, A and B, and using synthetic peptides corresponding to the active region, kappa-casein(138-158), of these forms, we have shown that the Asp148 to Ala148 substitution is responsible for the lesser antibacterial activity of kappa-casein-B(106-169). Kappacin was shown to have membranolytic action at concentrations above 30 microM at acidic pH when tested against artificial liposomes. There was little membranolytic activity at neutral pH, which is consistent with the lack of antibacterial activity of kappacin against Streptococcus mutans at this pH. Kappacin specifically bound two zinc or calcium ions per mol, and this binding enhanced antibacterial activity at neutral pH. Nuclear magnetic resonance analysis indicated that a kappa-casein-A(138-158) synthetic peptide undergoes a conformational change in the presence of the membrane solvent trifluoroethanol and excess divalent metal ions. This change in conformation is presumably responsible for the increase in antibacterial activity of kappacin detected in the presence of excess zinc or calcium ions at neutral pH. When tested against the oral bacterial pathogen S. mutans cultured as a biofilm in a constant-depth film fermentor, a preparation of 10 g/liter kappacin and 20 mM ZnCl2 reduced bacterial viability by 3 log10 and suppressed recovery of viability. In contrast 20 mM ZnCl2 alone reduced bacterial viability by approximately 1 log10 followed by rapid recovery. In conclusion, kappacin has a membranolytic, antibacterial effect that is enhanced by the presence of divalent cations.
Collapse
Affiliation(s)
- Stuart G Dashper
- CRC for Oral Health Science, School of Dental Science, University of Melbourne, 711 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ghia JE, Crenner F, Metz-Boutigue MH, Aunis D, Angel F. Effects of a chromogranin-derived peptide (CgA 47-66) in the writhing nociceptive response induced by acetic acid in rats. ACTA ACUST UNITED AC 2005; 119:199-207. [PMID: 15120481 DOI: 10.1016/j.regpep.2004.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 01/16/2004] [Accepted: 02/05/2004] [Indexed: 11/30/2022]
Abstract
Chromogranin A (CgA) is an acidic protein identified within a large variety of endocrine cells. Colocalized with catecholamines in chromaffin cells, CgA is a prohormone precursor of small biologically active peptides. Vasostatin (CgA 1-76) is the most conserved fragment of CgA and chromogranin A 47-66 peptide (CgA 47-66) possesses potent antimicrobial activities. The aim of this study was to test the hypothesis that CgA 47-66 may be involved in mechanisms modulating nociception. Thus, we used acetic acid (AA) which produces a delayed inflammatory response and episodes of abdominal writhing, a marker of pain, when injected intraperitoneally (i.p.) to rats. Administration (i.p.) of CgA 47-66 induced specific opposite dose-dependent effects depending on concentration. That is, CgA 47-66 below 0.5 mg/kg produced antinociceptive effects, whereas at 2 mg/kg it produced a marked pronociceptive effect. The latter effect was blocked by diltiazem and indomethacin. CgA 47-66-induced antinociceptive effects on AA-induced responses were reversed when the corticotropin-releasing factor (CRF) antagonist alpha-helical CRF 9-41 was i.p. injected to animals prior to AA and CgA 47-66 administration. The administration of i.p. calcitonin gene-related peptide (CGRP) or substance P (SP) evoked dose-dependent abdominal writhing; this effect was abolished when CgA 47-66 was injected. The present data suggest, for the first time, that a fragment of CgA, CgA 47-66, possesses potent antinociceptive effects at low doses. Although the mechanism triggered by this peptide is unknown, CRF receptors are likely to be involved.
Collapse
Affiliation(s)
- Jean-Eric Ghia
- INSERM Unit 575, Hôpital Civil Pavillon Poincaré, 1 place de l'Hôpital, 67091 Strasbourg, France
| | | | | | | | | |
Collapse
|
30
|
Ghia JE, Crenner F, Metz-Boutigue MH, Aunis D, Angel F. The effect of a chromogranin A-derived peptide (CgA4-16) in the writhing nociceptive response induced by acetic acid in rats. Life Sci 2004; 75:1787-99. [PMID: 15302224 DOI: 10.1016/j.lfs.2004.02.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 02/25/2004] [Indexed: 12/31/2022]
Abstract
The nociceptive effects of i.p administration of a synthetic peptide (CgA4-16) derived from chromogranin A (CgA) were studied on a model of inflammatory (somato-visceral) pain. Inflammatory mediators participate in controlling the activity of enterochromaffin cells that store and release chromogranins. Adult male Wistar rats were injected i.p with diluted acetic acid (AA) to induce abdominal writhes. Pharmacological agents were injected prior to CgA4-16 and/or AA together. While i.p CgA4-16 alone did not produce any effect, the peptide increased the number of abdominal constrictions induced by i.p AA administration in a dose-related manner. To determine the possible mechanisms involved in CgA4-16 produced pronociceptive effect, i.p diltiazem or indomethacin were tested. The pronociceptive effect induced by CgA4-16 was blocked by pretreatment of either substance. I.p administration of CGRP, substance P (SP) or capsaicin evoked dose-related abdominal writhing. CgA4-16, 20 min prior to CGRP or capsaicin, potentiated the nociceptive effects induced by CGRP or capsaicin, but not those induced by SP. Taken together, these data suggest for the first time that a CgA-derived peptide may modulate inflammatory pain.
Collapse
Affiliation(s)
- Jean-Eric Ghia
- INSERM U575, Hôpital Civil Pavillon Poincaré, 1, place de l'Hôpital, 67091 Strasbourg, France
| | | | | | | | | |
Collapse
|
31
|
Ghia JE, Crenner F, Rohr S, Meyer C, Metz-Boutigue MH, Aunis D, Angel F. A role for chromogranin A (4–16), a vasostatin-derived peptide, on human colonic motility. An in vitro study. ACTA ACUST UNITED AC 2004; 121:31-9. [PMID: 15256271 DOI: 10.1016/j.regpep.2004.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 04/02/2004] [Accepted: 04/08/2004] [Indexed: 11/26/2022]
Abstract
The hypothesis that CgA-derived peptides may be involved in mechanisms modulating motility was tested. Human colonic smooth muscles were studied using an organ bath technique. Acetic acid (AA) effects were characterized on spontaneous mechanical activities (SMA) and on responses to transmural nerve stimulation (NS). AA induced a significant decrease in tone and abolished SMA; this effect was insensitive to either TTX or L-NAME/apamin. The AA-induced inhibitory effects were significantly reduced in the presence of CgA4-16. This effect was insensitive to TTX or L-NAME/apamin. Furthermore, AA-induced effects were blocked in the presence of BAYK8644 and CgA4-16 together. The inhibitory effect of nifedipine was delayed in the presence of CgA4-16. NS induced a triphasic response. Only the excitatory components were reduced in the presence of AA. This effect was dose-related and remained unchanged in the presence of CgA4-16 alone, but was blocked in the presence of simultaneous administration of CgA4-16 and L-NAME/apamin. AA application induced inhibition of human colon motility in vitro. This effect may be mediated through an action on L-type calcium channels. CgA4-16 may display a protective role, which prevents the inhibition of motility due to AA to occur, by acting on both smooth muscle and afferent terminals.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Acetic Acid/pharmacology
- Apamin/pharmacology
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/pharmacology
- Chromatography, High Pressure Liquid
- Chromogranin A
- Chromogranins/chemical synthesis
- Chromogranins/pharmacology
- Colon, Sigmoid/cytology
- Colon, Sigmoid/drug effects
- Colon, Sigmoid/innervation
- Electric Stimulation
- Gastrointestinal Motility/drug effects
- Humans
- Muscle, Smooth/cytology
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- NG-Nitroarginine Methyl Ester/pharmacology
- Nifedipine/pharmacology
- Organ Culture Techniques
- Peptide Fragments/chemical synthesis
- Peptide Fragments/pharmacology
- Tetrodotoxin/pharmacology
Collapse
Affiliation(s)
- Jean-Eric Ghia
- INSERM Unit 575 Pavillon Poincaré 1 place de l'Hôpital Civil 67091 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Haskins WE, Watson CJ, Cellar NA, Powell DH, Kennedy RT. Discovery and Neurochemical Screening of Peptides in Brain Extracellular Fluid by Chemical Analysis of in Vivo Microdialysis Samples. Anal Chem 2004; 76:5523-33. [PMID: 15362916 DOI: 10.1021/ac049363y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endogenous peptides from brain extracellular fluid of live rats were analyzed using capillary liquid chromatography (LC)-tandem mass spectrometry (MS2). A 4-mm-long microdialysis probe perfused at 0.6 microL/min implanted into the striatum of anesthetized male rats was used to collect 3.6 microL dialysate fractions that were injected on-line into the capillary LC-MS2 system for analysis. A total of 3349 MS2 spectra were collected from 13 different animals under basal conditions and during localized depolarization evoked by infusion of a high-K+ solution through the microdialysis probe. Subtractive analysis revealed a total of 859 MS2 spectra that were observed only during depolarization. From these spectra, 29 peptide sequences (25 were peptides not previously observed) from 6 different protein precursors were identified using database searching software. Proteins identified include precursors to neuropeptides, synaptic proteins, blood proteins, and transporters. The identified peptides represent candidates for neurotransmitters, neuromodulators, and markers of synaptic activity or brain tissue damage. A screen for neuroactivity of novel proenkephalin fragments that were found was performed by infusing the peptides into the brain while monitoring amino acid neurotransmitters by microdialysis sampling combined with capillary electrophoresis. Three of the six tested peptides evoked significant increases in various neuroactive amino acids. These results demonstrate that this combination of methods can identify novel neurotransmitter candidates and screen for potential neuroactivity.
Collapse
Affiliation(s)
- William E Haskins
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | |
Collapse
|
33
|
Metz-Boutigue MH, Kieffer AE, Goumon Y, Aunis D. Innate immunity: involvement of new neuropeptides. Trends Microbiol 2004; 11:585-92. [PMID: 14659691 DOI: 10.1016/j.tim.2003.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Secretory granules of chromaffin cells from the adrenal medulla store catecholamines and a variety of peptides that are secreted in the extracellular medium during exocytosis. Among these fragments, several natural peptides displaying antimicrobial activities at the micromolar range have been isolated and characterized. We have shown that these peptides, derived from the natural processing of chromogranins (CGs), proenkephalin-A (PEA) and free ubiquitin (Ub), are released into the circulation and display antibacterial and antifungal activities. In this review we focus on three naturally secreted antimicrobial peptides corresponding to CGA1-76 (vasostatin-I), the bisphosphorylated form of PEA209-237 (enkelytin) and Ub. In addition, the antimicrobial properties of the synthetic active domains of vasostatin-I (CGA47-66 or chromofungin) and Ub (Ub65-76 or ubifungin) are reported.
Collapse
Affiliation(s)
- M H Metz-Boutigue
- Unité Inserm U 575 "Physiopathologie du Système Nerveux", IFR 37, 5 rue Blaise Pascal, 67084 Cedex, Strasbourg, France.
| | | | | | | |
Collapse
|
34
|
Kieffer AE, Goumon Y, Ruh O, Chasserot-Golaz S, Nullans G, Gasnier C, Aunis D, Metz-Boutigue MH. The N- and C-terminal fragments of ubiquitin are important for the antimicrobial activities. FASEB J 2003; 17:776-8. [PMID: 12594174 DOI: 10.1096/fj.02-0699fje] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Secretory granules of chromaffin cells contain catecholamines and several antimicrobial peptides derived from chromogranins and proenkephalin-A. These peptides are secreted in the extracellular medium following exocytosis. Here, we show that ubiquitin is stored in secretory chromaffin granules and released into the circulation upon stimulation of chromaffin cells. We also show that the C-terminal fragment (residues 65-76) of ubiquitin displays, at the micromolar range, a lytic antifungal activity. Using confocal laser scan microscopy and rhodamine-labeled synthetic peptides, we could demonstrate that the C-terminal peptide (residues 65-76) is able to cross the cell wall and the plasma membrane of fungi and to accumulate in fungi, whereas the N-terminal peptide (residues 1-34) is stopped at the fungal wall level. Furthermore, these two peptides act synergistically to kill filamentous fungi. Because of the interaction of the C-terminal sequence of ubiquitin with calmodulin, the synthetic peptide (residues 65-76) was tested in vitro against calmodulin-dependent calcineurin, an enzyme crucial for fungal growth. This peptide was found to inhibit the phosphatase activity of calcineurin. Our data show a new property of ubiquitin C-terminal-derived peptide (65-76) that could be used with N-terminal peptide (1-34) as a new potent antifungal agent.
Collapse
Affiliation(s)
- Anne-Estelle Kieffer
- INSERM Unité 575, IFR 37, Physiopathologie du Système Nerveux, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tasiemski A, Hammad H, Vandenbulcke F, Breton C, Bilfinger TJ, Pestel J, Salzet M. Presence of chromogranin-derived antimicrobial peptides in plasma during coronary artery bypass surgery and evidence of an immune origin of these peptides. Blood 2002; 100:553-9. [PMID: 12091348 DOI: 10.1182/blood.v100.2.553] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromogranin A (CGA) and chromogranin B (CGB) are acidic proteins stored in secretory organelles of endocrine cells and neurons. In addition to their roles as helper proteins in the packaging of peptides, they may serve as prohormones to generate biologically active peptides such as vasostatin-1 and secretolytin. These molecules derived from CGA and CGB, respectively, possess antimicrobial properties. The present study demonstrates that plasmatic levels of both vasostatin-1 and secretolytin increase during surgery in patients undergoing cardiopulmonary bypass (CPB). Vasostatin-1 and secretolytin, initially present in plasma at low levels, are released just after skin incision. Consequently, they can be added to enkelytin, an antibacterial peptide derived from proenkephalin A, for the panoply of components acting as a first protective barrier against hypothetical invasion of pathogens, which may occur during surgery. CGA and CGB, more commonly viewed as markers for endocrine and neuronal cells, were also found to have an immune origin. RNA messengers coding for CGB were amplified by reverse transcription-polymerase chain reaction in human monocytes, and immunocytochemical analysis by confocal microscopy revealed the presence of CGA or CGB or both in monocytes and neutrophils. A combination of techniques including confocal microscopic analysis, mass spectrometry measurement, and antibacterial tests allowed for the identification of the positive role of interleukin 6 (IL-6) in the secretolytin release from monocytes in vitro. Because IL-6 release is known to be strongly enhanced during CPB, we suggest a possible relationship between IL-6 and the increased level of secretolytin in patients undergoing CPB.
Collapse
Affiliation(s)
- Aurélie Tasiemski
- Laboratoire de Neuroimmunologie des Annélides, Université des Sciences et Technologies de Lille, Villeneuve d'ascq, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Modulatory mechanism of the endogenous peptide catestatin on neuronal nicotinic acetylcholine receptors and exocytosis. J Neurosci 2002. [PMID: 11784782 DOI: 10.1523/jneurosci.22-02-00377.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The catestatin fragment of chromogranin A is the first known endogenous compound able to inhibit catecholamine release elicited by the activation of neuronal nicotinic acetylcholine receptors (nAChRs) of different animal species and catecholaminergic cell types. However, how catestatin regulates the receptor activity, which subunit combination of the heteropentameric forms of receptor is better blocked by the peptide, or how it affects the different stages of the exocytotic process have not yet been evaluated. To address these questions, we have assayed the effects of catestatin: (first) on the inward currents elicited by ACh (I(ACh)) in voltage-clamped oocytes expressing different combinations of nAChR subunits; and (second) on the cytosolic Ca2+ concentration, [Ca2+]c, and quantal release of catecholamines simultaneously monitored in single adrenal chromaffin cells stimulated with ACh. Catestatin potently blocks all the subtypes of nAChRs studied. Furthermore, it inhibits the alpha3beta4 current in a reversible, noncompetitive, voltage-, and use-dependent manner, a behavior compatible with open-channel blockade. In fura-2-loaded single chromaffin cells, the peptide reduced the [Ca2+]c signal and the total release of catecholamines elicited by ACh; however, catestatin did not modify the kinetics or the last step of the exocytotic process. Our results suggest that catestatin might play an autocrine regulatory role in neuroendocrine secretion through its interaction with different native nAChR subtypes; the extent of receptor blockade by the peptide could be acutely regulated by the intensity and duration of the presynaptic stimulus.
Collapse
|
37
|
Vizioli J, Bulet P, Hoffmann JA, Kafatos FC, Müller HM, Dimopoulos G. Gambicin: a novel immune responsive antimicrobial peptide from the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 2001; 98:12630-5. [PMID: 11606751 PMCID: PMC60105 DOI: 10.1073/pnas.221466798] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2001] [Indexed: 11/18/2022] Open
Abstract
A novel mosquito antimicrobial peptide, gambicin, and the corresponding gene were isolated in parallel through differential display-PCR, an expressed sequence tag (EST) project, and characterization of an antimicrobial activity in a mosquito cell line by reverse-phase chromatography. The 616-bp gambicin ORF encodes an 81-residue protein that is processed and secreted as a 61-aa mature peptide containing eight cysteines engaged in four disulfide bridges. Gambicin lacks sequence homology with other known proteins. Like other Anopheles gambiae antimicrobial peptide genes, gambicin is induced by natural or experimental infection in the midgut, fatbody, and hemocyte-like cell lines. Within the midgut, gambicin is predominantly expressed in the anterior part. Both local and systemic gambicin expression is induced during early and late stages of natural malaria infection. In vitro experiments showed that the 6.8-kDa mature peptide can kill both Gram-positive and Gram-negative bacteria, has a morphogenic effect on a filamentous fungus, and is marginally lethal to Plasmodium berghei ookinetes. An oxidized form of gambicin isolated from the cell line medium was more active against bacteria than the nonoxidized form from the same medium.
Collapse
Affiliation(s)
- J Vizioli
- Institut de Biologie Moléculaire et Cellulaire, 15 Rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
38
|
Dahma H, Gourlet P, Vandermeers A, Vandermeers-Piret MC, Robberecht P. Evidence that the chromogranin B fragment 368-417 extracted from a pheochromocytoma is phosphorylated. Peptides 2001; 22:1491-9. [PMID: 11514034 DOI: 10.1016/s0196-9781(01)00471-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A rabbit antiserum was raised against a synthetic peptide corresponding to residues 403 to 417 of human chromogranin B. This peptide was chosen to match the potential C-terminal end of a putative proteolytic fragment of the protein located between dibasic doublets in positions 366-367 and in positions 418-419 of the precursor. A radioimmunoassay based on this antiserum was developed and used to detect the protein or a fragment thereof in a pheochromocytoma tumor extract. One fragment was purified to homogeneity by successive reverse-phase HPLC chromatographies. The N-terminal sequence established by automated Edman degradation, was N-Y-P-S-L-E-L-D-K-M-A-H-G-Y-G-E-E-S-E-E-E-R corresponding to the 368-389 sequence of human chromogranin B. Taking into account the specificity of the antiserum used for peptide identification and alignment with the precursor sequence, we deduced that the purified peptide was chromogranin B (368-417) and represented a new peptide generated by limited proteolysis of chromogranin B. Combining electrospray mass-spectrometry and enzymatic dephosphorylation, we demonstrated that this peptide was phosphorylated.
Collapse
Affiliation(s)
- H Dahma
- Department of Biochemistry and Nutrition, Medical School, Université Libre de Bruxelles, B-1070, Brussels, Belgium
| | | | | | | | | |
Collapse
|
39
|
Malkoski M, Dashper SG, O'Brien-Simpson NM, Talbo GH, Macris M, Cross KJ, Reynolds EC. Kappacin, a novel antibacterial peptide from bovine milk. Antimicrob Agents Chemother 2001; 45:2309-15. [PMID: 11451690 PMCID: PMC90647 DOI: 10.1128/aac.45.8.2309-2315.2001] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2000] [Accepted: 05/09/2001] [Indexed: 11/20/2022] Open
Abstract
Caseinomacropeptide (CMP) is a heterogeneous C-terminal fragment (residues 106 to 169) of bovine milk kappa-casein composed of glycosylated and phosphorylated forms of different genetic variants. We have demonstrated that CMP has growth-inhibitory activity against the oral opportunistic pathogens Streptococcus mutans and Porphyromonas gingivalis and against Escherichia coli. CMP was fractionated using reversed-phase high-performance liquid chromatography (RP-HPLC), and each fraction was tested for activity against S. mutans in a 96-well-plate broth assay. Fractions were characterized by N-terminal sequence analysis and mass spectrometry. The active form of CMP was shown to be the nonglycosylated, phosphorylated kappa-casein (residues 106 to 169) [kappa-casein(106--169)], which we have designated kappacin. Endoproteinase Glu-C was used to hydrolyze CMP, and the generated peptides were separated using RP-HPLC and gel filtration-HPLC and then tested for activity against S. mutans. The peptide Ser(P)(149)kappa-casein-A(138--158) was the only peptide generated by endoproteinase Glu-C digestion that exhibited growth-inhibitory activity. Peptides corresponding to the sequences of the inhibitory peptide Ser(P)(149)kappa-casein-A(138--158) and its nonphosphorylated counterpart kappa-casein-A(138--158) were chemically synthesized and tested for antibacterial activity. The synthetic Ser(P)(149) kappa-casein-A(138--158) displayed growth-inhibitory activity against S. mutans (MIC, 59 microg/ml [26 microM]). The nonphosphorylated peptide, however, did not inhibit growth at the concentrations tested, indicating that phosphorylation is essential for activity.
Collapse
Affiliation(s)
- M Malkoski
- School of Dental Science, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Salzet M, Tasiemski A. Involvement of pro-enkephalin-derived peptides in immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:177-185. [PMID: 11164883 DOI: 10.1016/s0145-305x(00)00047-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It is widely accepted that all organisms have processes that maintain their state of health. Failure of these processes, such as those involving the naturally occurring antibacterial peptides, may lead to pathological events. Recent results demonstrate that these peptides, such as peptide B, appear in invertebrates and vertebrates (including humans) immediately after tissue trauma, and maintain themselves for long durations (over 4h). Their degradation products lead to other inflammatory peptides, such as Met-enkephalin-Arg-Phe. These newly described antibacterial peptides, which are released and not induced, are present on neuropeptide precursors such as proenkephalin. This is a new field of research, in that the same protein contains proposed neuropeptides, antibacterial peptides, and immune stimulatory peptides. The focus of this review is to describe how the pro-enkephalin derived peptides participate in immune processes.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire d'Endocrinologie des Annélides, UPRESA CNRS 8017, SN3, Université des Sciences et Technologies de Lille, 59650 Villeneuve d'Ascq Cedex, France.
| | | |
Collapse
|
41
|
Aunis D, Metz-Boutigue MH. Chromogranins: current concepts. Structural and functional aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 482:21-38. [PMID: 11192582 DOI: 10.1007/0-306-46837-9_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- D Aunis
- Unité Biologie de la Communication Cullulaire, INSERM U-338 Centre de Neurochimie, 67084 Strasbourg, France
| | | |
Collapse
|
42
|
Metz-Boutigue MH, Lugardon K, Goumon Y, Raffner R, Strub JM, Aunis D. Antibacterial and antifungal peptides derived from chromogranins and proenkephalin-A. From structural to biological aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 482:299-315. [PMID: 11192590 DOI: 10.1007/0-306-46837-9_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- M H Metz-Boutigue
- Unité INSERM U-338, Biologie de la Communication Cellulaire, Centre de Neurochimie, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
In vertebrates the neuroendocrine system is based on chemical signaling between neural and endocrine structures. Final outcomes may be realized via chemical messengers traveling through circulatory conduits to their specific target sites. This process may rely, in part, on neurosecretion of the signaling molecules. The complexity of this system can be readily visualized when one considers the way in which interactions among classical neurotransmitters, cytokines, growth factors, and neuroendocrine hormones, in combination with autocrine and paracrine communication, can regulate cells and tissues. Apart from the neuroendocrine system there is also neuroimmune communication, consisting of reciprocal signaling between neuroendocrine and immune cells, which use the same molecules to coordinate their activity. Thus, our concept of the neuroendocrine system is constantly growing, despite its complexity, but it may be simply summarized as allowing bidirectional communication between neural and endocrine structures over distances greater than that achieved by synaptic communication. In the light of this, I demonstrate in this review that annelids, which are considered "simple" animals, also possess a neuroendocrine system.
Collapse
|
44
|
Dhainaut A, Scaps P. Immune defense and biological responses induced by toxics in Annelida. CAN J ZOOL 2001. [DOI: 10.1139/z00-196] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phylum Annelida comprises primitive coelomates that possess specially developed cellular immunity against pathogens. Active phagocytosis by coelomocytes occurs in the struggle against bacteria in Polychaeta and Oligochaeta. Encapsulation plays an important role in defense against parasites, and experimental studies have demonstrated that cooperation between different coelomocyte populations occurs in this process. Spontaneous cytotoxicity of coelomocytes against xenogenic or allogenic cells is analogous with that of vertebrate natural killer cells. Graft rejection is a model for studying the activity of these cells. Accelerated rejection following multiple transplantation reveals that the cellular immune defense system has a short-term memory. In humoral immunity, agglutinins aggregate foreign material and their level is enhanced by antigens; in Annelida, however, no specificity analogous to vertebrate antibodies has been revealed, except for weak specificity of some antigen-binding proteins. Hemolytic substances have been detected, particularly in Oligochaeta, where a fetidin possesses bactericidal activity. Lysozyme and some antibacterial proteins also occur in Polychaeta. Annelida react to physical and chemical insults by various processes. These responses are mainly due to synthesis of stress-induced proteins, inhibition of enzyme activity, and modulation (inhibition or stimulation) of the activity of enzymes involved in the detoxification of xenobiotics. Moreover, these responses frequently differ from those of vertebrates, particularly in terms of the nature of inducers. In other respects, these responses are extremely variable in Annelida, even in closely related species.
Collapse
|
45
|
Goumon Y, Lugardon K, Gadroy P, Strub JM, Welters ID, Stefano GB, Aunis D, Metz-Boutigue MH. Processing of proenkephalin-A in bovine chromaffin cells. Identification of natural derived fragments by N-terminal sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Biol Chem 2000; 275:38355-62. [PMID: 10988298 DOI: 10.1074/jbc.m007557200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large variety of proenkephalin-A-derived peptides (PEAPs) are present in bovine adrenal medulla secretory granules that are cosecreted with catecholamines upon stimulation of chromaffin cells. In the present paper, after reverse phase high performance liquid chromatography of intragranular soluble material, PEAPs were immunodetected with antisera raised against specific proenkephalin-A (PEA) sequences (PEA63-70 and PEA224-237) and analyzed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Thirty PEAPs were characterized in addition to enkephalins and whole PEA, indicating that preferential proteolytic attacks occurred at both N- and C-terminal regions. A similar approach was used to characterize PEA-derived fragments exocytotically released into the extracellular space that showed five additional minor PEAPs. Among all these naturally generated peptides, enkelytin, the antibacterial bisphos- phorylated C-terminal peptide (PEA209-237), was predominantly generated, as shown by MALDI-TOF mass spectrometry analysis, which constituted an efficient method for its identification. Finally, the data on PEA intragranular and extracellular processing in adrenal medulla are discussed in regard to the known enzymatic processing mechanisms. We note the high conservation of the cleavage points in evolutionarily diverse organisms, highlighting an important biological function for the released PEAPs.
Collapse
Affiliation(s)
- Y Goumon
- INSERM Unité 338, Biologie de la Communication Cellulaire, 67084 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Salzet M, Vieau D, Day R. Crosstalk between nervous and immune systems through the animal kingdom: focus on opioids. Trends Neurosci 2000; 23:550-5. [PMID: 11074264 DOI: 10.1016/s0166-2236(00)01642-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the course of evolution invertebrates and vertebrates have maintained common signaling molecules, such as neuropeptides. For example, complete hormonal-enzymatic systems for the biosynthesis of opioid peptides have been found in both the CNS and immune systems of these animals. These signaling molecules have been found in the blood circulation and act as immunomodulators. In vertebrates, release of the signaling molecules occurs during stress (cognitive or pathogens), which triggers the hypothalamo-hypophysial-adrenal axis. Similarly, these neuropeptides are used as messengers to initiate and stimulate the innate immune response in invertebrates. Thus, the crosstalk between nervous and immune systems has an ancient evolutionary origin and the messengers used have been conserved during the course of evolution reflecting their vital importance.
Collapse
Affiliation(s)
- M Salzet
- The Laboratoire d'Endocrinologie des Annélides, UPRES-A CNRS 8017, SN3, Université des Sciences et Technologies de Lille, 59655, Villeneuve d'Ascq, France
| | | | | |
Collapse
|
47
|
Tasiemski A, Salzet M, Benson H, Fricchione GL, Bilfinger TV, Goumon Y, Metz-Boutigue MH, Aunis D, Stefano GB. The presence of antibacterial and opioid peptides in human plasma during coronary artery bypass surgery. J Neuroimmunol 2000; 109:228-35. [PMID: 10996225 DOI: 10.1016/s0165-5728(00)00314-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antibacterial peptides, found in both invertebrates and vertebrates, represent a potential innate defense mechanism against microbial infections. However, it is unknown whether this process occurs in humans during surgery. We looked for evidence of release of antibacterial peptides during coronary artery bypass grafting (CABG). We used immunological techniques and antibacterial assays combined with high-performance gel-permeation chromatography, reverse-phase HPLC, N-terminal sequencing and comparison with synthetic standards to characterize the peptide B/enkelytin. We show the presence of anionic antibacterial peptide, the peptide B/enkelytin which correspond to the C-terminal part of proenkephalin A, from the plasma of patients undergoing CABG. Our studies show that peptide B/enkelytin is initially present at low levels in plasma and is then released in increased amounts just after skin incision. Antibacterial assays confirmed that the peptides specifically target gram-positive bacteria. We also demonstrate that peptide B/enkelytin is metabolized in vivo to the opioid peptides methionine-enkephalin-Arg-Phe and methionine-enkephalin, peptides that we show have granulocyte chemotactic activity. These findings suggest that in humans, surgical incision leads to the release of antibacterial peptides. Furthermore, these antibacterial peptides can be metabolized into compounds that have immune-activating properties.
Collapse
Affiliation(s)
- A Tasiemski
- Laboratoire d'Endocrinologie des Annélides, UPRESA CNRS 8017, SN3, Université des Sciences et Technologies de Lille, F-59655 Cédex, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Antibiotic peptides are a key component of the innate immune systems of most multicellular organisms. Despite broad divergences in sequence and taxonomy, most antibiotic peptides share a common mechanism of action, i.e., membrane permeabilization of the pathogen. This review provides a general introduction to the subject, with emphasis on aspects such as structural types, post-translational modifications, mode of action or mechanisms of resistance. Some of these questions are treated in depth in other reviews in this issue. The review also discusses the role of antimicrobial peptides in nature, including several pathological conditions, as well as recent accounts of their application at the preclinical level.
Collapse
Affiliation(s)
- D Andreu
- Department of Organic Chemistry, Universitat de Barcelona, Spain.
| | | |
Collapse
|
49
|
Tasiemski A, Verger-Bocquet M, Cadet M, Goumon Y, Metz-Boutigue MH, Aunis D, Stefano GB, Salzet M. Proenkephalin A-derived peptides in invertebrate innate immune processes. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:237-52. [PMID: 10762699 DOI: 10.1016/s0169-328x(00)00005-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Lipopolysaccharides (LPS) injection into the coelomic fluid of the leech Theromyzon tessulatum stimulates release of proenkephalin A (PEA)-derived peptides as determined by immunoprecipitation and Western blot analyses. This release occurs in the first 15 min after LPS exposure and yields a 5.3-kDa peptide fragment corresponding to the C-terminal part of the precursor. This fragment is then cleaved to free an antibacterial peptide related to mammals arginine phenylalanine extended enkelytin: the peptide B. These PEA processing peptides were characterized using a combination of techniques including reversed-phase HPLC, microsequencing and mass spectrometry. The isolated invertebrate peptide B presents a high sequence homology with the bovine's and the same activity against Gram+bacteria. Titrations revealed the simultaneous appearance of Methionine-enkephalin (ME) and peptide B in invertebrates after stimulation by LPS (in a dose-dependent manner), surgical trauma or electrical stimulations to neural tissues of the mussel. Furthermore, peptide B processing in vitro yields Methionine-enkephalin arginine phenylalanine (MERF), which exhibits via the delta receptors, immunocyte excitatory properties, i.e., movement and conformational changes, but no antibacterial activity. We surmise that this unified response to the various stimuli is a survival strategy for organism by providing immediate antibacterial activity and immunocyte stimulation, thereby reducing any immune latency period needed for an adequate immune response.
Collapse
Affiliation(s)
- A Tasiemski
- Laboratoire d'Endocrinologie des Annélides, UPRES-A CNRS 8017, SN3, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq Cédex, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bauer SH, Zhang XY, Van Dongen W, Claeys M, Przybylski M. Chromogranin A from bovine adrenal medulla: molecular characterization of glycosylations, phosphorylations, and sequence heterogeneities by mass spectrometry. Anal Biochem 1999; 274:69-80. [PMID: 10527498 DOI: 10.1006/abio.1999.4244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromogranin A (CGA) is a member of a family of acidic glycoproteins present in endocrine and neuroendocrine tissues. One of its suggested physiological roles is being a precursor molecule for several peptide hormons. Further interest in this protein has recently originated from its potential role in pathophysiological processes of Alzheimer's disease. The concentration of CGA in the brain has been used for diagnosis of this disease, and CGA as an insoluble deposit has been found in the extracellular beta-amyloid plaques. By developing a new purification procedure we were able to isolate abundant CGA in high purity from bovine chromaffin cells. A MALDI-MS analysis of the intact protein revealed a heterogeneous molecular mass of ca. 50 kDa, indicating several structure modifications. By use of several subsequent proteolytic/chemical cleavage steps, HPLC isolation, a newly developed deglycosylation procedure, and several MS and MS-MS fragmentation approaches, the complete primary structure of CGA including four sequence heterogeneities, two O-glycosylations, five phosphorylations, and one disulfide bridge could be characterized. For both glycans six different forms could be identified. Ser167 was found to be mainly glycosylated by a trisaccharide, and Thr231 was found to be mainly glycosylated by a tetrasaccharide. Ser81, Ser124, and Ser297 residues were partially phosphorylated, whereas Ser372 and Ser377 were found completely phosphorylated. Sequence heterogeneities were identified in positions 293 (H/R), 301 (K/E), and 373 (Q/R) and at the partly missing C-terminal residue. Furthermore, a disulfide bridge between Cys17 and Cys38 was ascertained.
Collapse
Affiliation(s)
- S H Bauer
- Department of Chemistry, University of Konstanz, Konstanz, D-78457, Germany
| | | | | | | | | |
Collapse
|