1
|
Laakmann K, Eckersberg JM, Hapke M, Wiegand M, Bierwagen J, Beinborn I, Preußer C, Pogge von Strandmann E, Heimerl T, Schmeck B, Jung AL. Bacterial extracellular vesicles repress the vascular protective factor RNase1 in human lung endothelial cells. Cell Commun Signal 2023; 21:111. [PMID: 37189117 DOI: 10.1186/s12964-023-01131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Sepsis is one of the leading causes of death worldwide and characterized by blood stream infections associated with a dysregulated host response and endothelial cell (EC) dysfunction. Ribonuclease 1 (RNase1) acts as a protective factor of vascular homeostasis and is known to be repressed by massive and persistent inflammation, associated to the development of vascular pathologies. Bacterial extracellular vesicles (bEVs) are released upon infection and may interact with ECs to mediate EC barrier dysfunction. Here, we investigated the impact of bEVs of sepsis-related pathogens on human EC RNase1 regulation. METHODS bEVs from sepsis-associated bacteria were isolated via ultrafiltration and size exclusion chromatography and used for stimulation of human lung microvascular ECs combined with and without signaling pathway inhibitor treatments. RESULTS bEVs from Escherichia coli, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium significantly reduced RNase1 mRNA and protein expression and activated ECs, while TLR2-inducing bEVs from Streptococcus pneumoniae did not. These effects were mediated via LPS-dependent TLR4 signaling cascades as they could be blocked by Polymyxin B. Additionally, LPS-free ClearColi™ had no impact on RNase1. Further characterization of TLR4 downstream pathways involving NF-кB and p38, as well as JAK1/STAT1 signaling, revealed that RNase1 mRNA regulation is mediated via a p38-dependent mechanism. CONCLUSION Blood stream bEVs from gram-negative, sepsis-associated bacteria reduce the vascular protective factor RNase1, opening new avenues for therapeutical intervention of EC dysfunction via promotion of RNase1 integrity. Video Abstract.
Collapse
Affiliation(s)
- Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Jorina Mona Eckersberg
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Moritz Hapke
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Marie Wiegand
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Jeff Bierwagen
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Christian Preußer
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Department of Pulmonary and Critical Care Medicine, Philipps-University Marburg, Marburg, Germany
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
2
|
Singh M, Thakur M, Mishra M, Yadav M, Vibhuti R, Menon AM, Nagda G, Dwivedi VP, Dakal TC, Yadav V. Gene regulation of intracellular adhesion molecule-1 (ICAM-1): A molecule with multiple functions. Immunol Lett 2021; 240:123-136. [PMID: 34715236 DOI: 10.1016/j.imlet.2021.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023]
Abstract
Intracellular adhesion molecule 1 (ICAM-1) is one of the most extensively studied inducible cell adhesion molecules which is responsible for several immune functions like T cell activation, extravasation, inflammation, etc. The molecule is constitutively expressed over the cell surface and is regulated up / down in response to inflammatory mediators like cellular stress, proinflammatory cytokines, viral infection. These stimuli modulate the expression of ICAM-1 primarily through regulating the ICAM-1 gene transcription. On account of the presence of various binding sites for NF-κB, AP-1, SP-1, and many other transcription factors, the architecture of the ICAM-1 promoter become complex. Transcription factors in union with other transcription factors, coactivators, and suppressors promote their assembly in a stereospecific manner on ICAM-1 promoter which mediates ICAM-1 regulation in response to different stimuli. Along with transcriptional regulation, epigenetic modifications also play a pivotal role in controlling ICAM-1 expression on different cell types. In this review, we summarize the regulation of ICAM-1 expression both at the transcriptional as well as post-transcriptional level with an emphasis on transcription factors and signaling pathways involved.
Collapse
Affiliation(s)
- Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067 India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Manish Mishra
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Manisha Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Rajkamal Vibhuti
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Athira M Menon
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Girima Nagda
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan-313001 India
| | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi-110067 India
| | - Tikam Chand Dakal
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| |
Collapse
|
3
|
Kwon OK, Lee JW, Xuezhen X, Harmalkar DS, Song JG, Park JW, Hwang D, Min JH, Kim JH, Han HK, Jeong HG, Oh SR, Ahn KS, Lee K. DK-1108 exerts anti-inflammatory activity against phorbol 12-myristate 13-acetate-induced inflammation and protective effect against OVA-induced allergic asthma. Biomed Pharmacother 2020; 132:110950. [PMID: 33254440 DOI: 10.1016/j.biopha.2020.110950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022] Open
Abstract
There is an increasing interest in natural products and their derivatives with therapeutic benefits and less side effects compared to steroid therapy. Benzofuran derivatives display biological effects including anti-inflammatory effects. The present study aims to investigate whether (3-(7-methoxy-2-p-tolyl benzofuran-5-yl) propan-1-ol) (DK-1108), new synthetic benzofuran compound exerts anti-asthmatic effects in vitro and in vivo. DK-1108 strongly reduced the production of inflammatory mediators, cytokines and chemokines in RAW264.7 and A549 cells. DK-1108 significantly regulated the levels of AKT/MAPKs/c-Jun activation, AP-1 luciferase activity and ICAM-1 expression. Furthermore, DK-1108 effectively suppressed the adhesion of A549 and EOL-1 cells. In OVA-induced asthmatic mice, DK-1108 decreased the levels of IL-5/IL-13/IgE production, eosinophils/macrophages influx, ICAM-1/MCP-1 expression, mucus secretion and airway hyperresponsiveness (AHR). These effects of DK-1108 were accompanied by downregulation of MAPKs activation. Therefore, we suggest that DK-1108 exerts protective effect against airway inflammation and mucus overproduction, and therefore could be valuable therapeutic agent for treatment in asthma.
Collapse
Affiliation(s)
- Ok-Kyoung Kwon
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea; Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk, 28116, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk, 28116, Republic of Korea
| | - Xu Xuezhen
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Dipesh S Harmalkar
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Jae Geun Song
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk, 28116, Republic of Korea
| | - Daseul Hwang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Jung-Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk, 28116, Republic of Korea
| | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Hye-Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk, 28116, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk, 28116, Republic of Korea.
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
4
|
Kam A, Loo S, Fan JS, Sze SK, Yang D, Tam JP. Roseltide rT7 is a disulfide-rich, anionic, and cell-penetrating peptide that inhibits proteasomal degradation. J Biol Chem 2019; 294:19604-19615. [PMID: 31727740 DOI: 10.1074/jbc.ra119.010796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/02/2019] [Indexed: 12/21/2022] Open
Abstract
Disulfide-rich plant peptides with molecular masses of 2-6 kDa represent an expanding class of peptidyl-type natural products with diverse functions. They are structurally compact, hyperstable, and underexplored as cell-penetrating agents that inhibit intracellular functions. Here, we report the discovery of an anionic, 34-residue peptide, the disulfide-rich roseltide rT7 from Hibiscus sabdariffa (of the Malvaceae family) that penetrates cells and inhibits their proteasomal activities. Combined proteomics and NMR spectroscopy revealed that roseltide rT7 is a cystine-knotted, six-cysteine hevein-like cysteine-rich peptide. A pair-wise comparison indicated that roseltide rT7 is >100-fold more stable against protease degradation than its S-alkylated analog. Confocal microscopy studies and cell-based assays disclosed that after roseltide rT7 penetrates cells, it causes accumulation of ubiquitinated proteins, inhibits human 20S proteasomes, reduces tumor necrosis factor-induced IκBα degradation, and decreases expression levels of intercellular adhesion molecule-1. Structure-activity studies revealed that roseltide rT7 uses a canonical substrate-binding mechanism for proteasomal inhibition enabled by an IIML motif embedded in its proline-rich and exceptionally long intercysteine loop 4. Taken together, our results provide mechanistic insights into a novel disulfide-rich, anionic, and cell-penetrating peptide, representing a potential lead for further development as a proteasomal inhibitor in anti-cancer or anti-inflammatory therapies.
Collapse
Affiliation(s)
- Antony Kam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
5
|
Huang WC, Wu LY, Hu S, Wu SJ. Spilanthol Inhibits COX-2 and ICAM-1 Expression via Suppression of NF-κB and MAPK Signaling in Interleukin-1β-Stimulated Human Lung Epithelial Cells. Inflammation 2019; 41:1934-1944. [PMID: 29959625 DOI: 10.1007/s10753-018-0837-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spilanthol a phytochemical derived from the Spilanthes acmella plant has antimicrobial, antioxidant, and anti-inflammatory properties. This study evaluated its effects on the expression of intercellular adhesion molecule 1 (ICAM-1) and inflammation-related mediators in IL-1β-stimulated human lung epithelial A549 cells. Human lung epithelial A549 cells were pretreated with various concentrations of spilanthol (3-100 μM) followed by treatment with IL-1β to induce inflammation. The protein levels of pro-inflammatory cytokines, chemokines, and prostaglandin E2 (PGE2) were measured using ELISA. Cyclooxygenase-2 (COX-2), heme oxygenase (HO-1), nuclear transcription factor kappa-B (NF-κB), and mitogen-activated protein kinase (MAPK) were measured by immunoblotting. The mRNA expression levels of ICAM-1 and MUC5AC were determined by real-time polymerase chain reaction. Spilanthol decreased the expression of PGE2, COX-2, TNF-α, and MCP-1. It also decreased ICAM-1 expression and suppressed monocyte adhesion to IL-1β-stimulated A549 cells. Spilanthol also significantly inhibited the phosphorylation of MAPK and I-κB. These results suggest that spilanthol exerts anti-inflammatory effects by inhibiting the expression of the pro-inflammatory cytokines, COX-2, and ICAM-1 by inhibiting the NF-κB and MAPK signaling pathways. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33303, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan, 33303, Taiwan
| | - Ling-Yu Wu
- Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33303, Taiwan
| | - Sindy Hu
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan, 33303, Taiwan.,Department of Cosmetic Science, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33303, Taiwan
| | - Shu-Ju Wu
- Graduate Institute of Health Industry Technology, Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33303, Taiwan. .,Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33303, Taiwan. .,Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan, 33303, Taiwan.
| |
Collapse
|
6
|
Sim TY, Harith HH, Tham CL, Md Hashim NF, Shaari K, Sulaiman MR, Israf DA. The Protective Effects of a Synthetic Geranyl Acetophenone in a Cellular Model of TNF-α-Induced Pulmonary Epithelial Barrier Dysfunction. Molecules 2018; 23:molecules23061355. [PMID: 29874809 PMCID: PMC6100020 DOI: 10.3390/molecules23061355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 01/19/2023] Open
Abstract
Alveolar epithelial barrier dysfunction contributes to lung edema and can lead to acute lung injury (ALI). The features include increased epithelial permeability, upregulation of inflammatory mediators and downregulation of junctional complex molecules; these changes are often induced by inflammation. tHGA is an acetophenone analogue with therapeutic potential in asthma. Its therapeutic potential in ALI is presently unknown. Herein, the effects of tHGA on epithelial barrier dysfunction were determined in TNF-α-induced human alveolar epithelial cells. The anti-inflammatory properties of tHGA were assessed by monocyte adhesion assay and analysis of MCP-1 and ICAM-1 expression. The epithelial barrier function was assessed by paracellular permeability and transepithelial electrical resistance (TEER) assays, and analysis of junctional complex molecules expression. To elucidate the mechanism of action, the effects of tHGA on the NF-κB and MAPK pathways were determined. Gene and protein expression were analyzed by RT-PCR and Western blotting or ELISA, respectively. tHGA suppressed leukocyte adhesion to TNF-α-induced epithelium and reduced MCP-1 and ICAM-1 gene expression and secretion. tHGA also increased TEER readings, reduced epithelial permeability and enhanced expression of junctional complex molecules (zona occludens-1, occludin and E-cadherin) in TNF-α-induced cells. Correspondingly, the NF-κB, ERK and p38 MAPK pathways were also inhibited by tHGA. These findings suggest that tHGA is able to preserve alveolar epithelial barrier function in response to acute inflammation, via its anti-inflammatory activity and stabilization of epithelial barrier integrity, mediated by NF-κB, ERK and p38 MAPK signaling.
Collapse
Affiliation(s)
- Tee Yee Sim
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Khozirah Shaari
- Natural Products Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Protocatechuic acid methyl ester ameliorates fluoride toxicity in A549 cells. Food Chem Toxicol 2017; 109:941-950. [DOI: 10.1016/j.fct.2016.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 12/30/2022]
|
8
|
Shah S, King EM, Mostafa MM, Altonsy MO, Newton R. DUSP1 Maintains IRF1 and Leads to Increased Expression of IRF1-dependent Genes: A MECHANISM PROMOTING GLUCOCORTICOID INSENSITIVITY. J Biol Chem 2016; 291:21802-21816. [PMID: 27551049 DOI: 10.1074/jbc.m116.728964] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/19/2016] [Indexed: 11/06/2022] Open
Abstract
Although the mitogen-activated protein kinase (MAPK) phosphatase, DUSP1, mediates dexamethasone-induced repression of MAPKs, 14 of 46 interleukin-1β (IL1B)-induced mRNAs were significantly enhanced by DUSP1 overexpression in pulmonary A549 cells. These include the interferon regulatory factor, IRF1, and the chemokine, CXCL10. Of these, DUSP1-enhanced mRNAs, 10 including CXCL10, were IRF1-dependent. MAPK inhibitors and DUSP1 overexpression prolonged IRF1 expression by elevating transcription and increasing IRF1 mRNA and protein stability. Conversely, DUSP1 silencing increased IL1B-induced MAPK phosphorylation while significantly reducing IRF1 protein expression at 4 h. This confirms a regulatory network whereby DUSP1 switches off MAPKs to maintain IRF1 expression. There was no repression of IRF1 expression by dexamethasone in primary human bronchial epithelial cells, and in A549 cells IL1B-induced IRF1 protein was only modestly and transiently repressed. Although dexamethasone did not repress IL1B-induced IRF1 protein expression at 4-6 h, silencing of IL1B plus dexamethasone-induced DUSP1 significantly reduced IRF1 expression. IL1B-induced expression of CXCL10 was largely insensitive to dexamethasone, whereas other DUSP1-enhanced, IRF1-dependent mRNAs showed various degrees of repression. With IL1B plus dexamethasone, CXCL10 expression was also IRF1-dependent, and expression was reduced by DUSP1 silencing. Thus, IL1B plus dexamethasone-induced DUSP1 maintains expression of IRF1 and the IRF1-dependent gene, CXCL10. This is supported by chromatin immunoprecipitation showing IRF1 recruitment to be essentially unaffected by dexamethasone at the CXCL10 promoter or at the promoters of more highly repressed IRF1-dependent genes. Since IRF1-dependent genes, such as CXCL10, are central to host defense, these data may help explain the reduced effectiveness of glucocorticoids during asthma exacerbations.
Collapse
Affiliation(s)
- Suharsh Shah
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4Z6 and
| | - Elizabeth M King
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4Z6 and
| | - Mahmoud M Mostafa
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4Z6 and
| | - Mohammed O Altonsy
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4Z6 and.,Department of Zoology, Sohag University, Sohag 825224, Egypt
| | - Robert Newton
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4Z6 and
| |
Collapse
|
9
|
Nader MA, Gamiel NM, El-Kashef H, Zaghloul MS. Effect of agmatine on experimental vascular endothelial dysfunction. Hum Exp Toxicol 2015; 35:573-82. [PMID: 26424770 DOI: 10.1177/0960327115597311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study was designed to investigate the effect of agmatine sulfate (AG, CAS2482-00-0) in nicotine (NIC)-induced vascular endothelial dysfunction (VED) in rabbits. NIC was administered to produce VED in rabbits with or without AG for 6 weeks. Serum lipid profile, serum thiobarbituric acid reactive substances, reduced glutathione, superoxide dismutase generation, serum nitrite/nitrate, serum vascular cellular adhesion molecule-1 (VCAM-1), and aortic nuclear factor κB (NF-κB) levels were analyzed.Treatment with AG markedly improves lipid profile and prevented NIC-induced VED and oxidative stress. The mechanism of AG in improving NIC-induced VED may be due to the significant reduction in serum VCAM-1 levels and aortic NF-κB. Thus, it may be concluded that AG reduces the oxidative stress, nitric oxide production, VCAM-1 levels, and aortic NF-κB expression, thereby consequently improving the integrity of vascular endothelium.
Collapse
MESH Headings
- Agmatine/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Glutathione/blood
- Lipid Peroxidation/drug effects
- Male
- Nicotine/toxicity
- Nitric Oxide/blood
- Oxidative Stress/drug effects
- Rabbits
- Superoxide Dismutase/blood
- Triglycerides/blood
Collapse
Affiliation(s)
- M A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia Governorate, Egypt Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munawarah, Kingdom of Saudi Arabia
| | - N M Gamiel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| | - H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| | - M S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| |
Collapse
|
10
|
Amin MA, Campbell PL, Ruth JH, Isozaki T, Rabquer BJ, Alex Stinson W, O'Brien M, Edhayan G, Ohara RA, Vargo J, Domino SE, Koch AE. A key role for Fut1-regulated angiogenesis and ICAM-1 expression in K/BxN arthritis. Ann Rheum Dis 2015; 74:1459-66. [PMID: 24665114 DOI: 10.1136/annrheumdis-2013-204814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/28/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Angiogenesis contributes to the pathogenesis of rheumatoid arthritis. Fucosyltransferases (Futs) are involved in angiogenesis and tumour growth. Here, we examined the role of Fut1 in angiogenesis and K/BxN serum transfer arthritis. METHODS We examined Fut1 expression in human dermal microvascular endothelial cells (HMVECs) by quantitative PCR. We performed a number of angiogenesis assays to determine the role of Fut1 using HMVECs, Fut1 null (Fut1(-/-)), and wild type (wt) endothelial cells (ECs) and mice. K/BxN serum transfer arthritis was performed to determine the contribution of Fut1-mediated angiogenesis in Fut1(-/-) and wt mice. A static adhesion assay was implemented with RAW264.7 (mouse macrophage cell line) and mouse ECs. Quantitative PCR, immunofluorescence and flow cytometry were performed with Fut1(-/-) and wt ECs for adhesion molecule expression. RESULTS Tumour necrosis factor-α induced Fut1 mRNA and protein expression in HMVECs. HMVECs transfected with Fut1 antisense oligodeoxynucleotide and Fut1(-/-) ECs formed significantly fewer tubes on Matrigel. Fut1(-/-) mice had reduced angiogenesis in Matrigel plug and sponge granuloma angiogenesis assays compared with wt mice. Fut1(-/-) mice were resistant to K/BxN serum transfer arthritis and had decreased angiogenesis and leucocyte ingress into inflamed joints. Adhesion of RAW264.7 cells to wt mouse ECs was significantly reduced when Fut1 was lacking. Fut1(-/-) ECs had decreased intercellular adhesion molecule-1 (ICAM-1) expression at mRNA and protein levels compared with wt ECs. ICAM-1 was also decreased in Fut1(-/-) arthritic ankle cryosections compared with wt ankles. CONCLUSIONS Fut1 plays an important role in regulating angiogenesis and ICAM-1 expression in inflammatory arthritis.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/physiopathology
- Cell Adhesion/physiology
- Cell Line
- Cells, Cultured
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Fucosyltransferases/deficiency
- Fucosyltransferases/genetics
- Fucosyltransferases/physiology
- Humans
- Intercellular Adhesion Molecule-1/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Knockout
- Neovascularization, Pathologic/physiopathology
- RNA, Messenger/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- Galactoside 2-alpha-L-fucosyltransferase
Collapse
Affiliation(s)
- Mohammad A Amin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Phillip L Campbell
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jeffrey H Ruth
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Takeo Isozaki
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bradley J Rabquer
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - W Alex Stinson
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Martin O'Brien
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gautam Edhayan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ray A Ohara
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jonathon Vargo
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven E Domino
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alisa E Koch
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA Veteran's Administration, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Iron overload-modulated nuclear factor kappa-B activation in human endometrial stromal cells as a mechanism postulated in endometriosis pathogenesis. Fertil Steril 2014; 103:439-47. [PMID: 25500022 DOI: 10.1016/j.fertnstert.2014.10.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/19/2014] [Accepted: 10/24/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To evaluate the effect of iron overload on nuclear factor kappa-B (NF-κB) activation in human endometrial stromal cells (ESCs). DESIGN Experimental study. SETTING University hospital research laboratory. PATIENT(S) Ten healthy women. INTERVENTION(S) Isolated ESCs from endometrial biopsies were incubated with 50 μM FeSO(4) or vehicle. The NF-κB inhibitor [5-(p-fluorophenyl)-2-ureido] thiophene-3-carboxamide (TPCA-1), which inhibits IKKβ, the kinase of IκBα (inhibitory protein of NF-κB), was used to prevent iron overload-stimulated NF-κB changes in ESCs. MAIN OUTCOME MEASURE(S) NF-κB activation was assessed by p65:DNA-binding activity immunodetection assay. IκBα, p65, and intercellular adhesion molecule (ICAM)-1 proteins expression was evaluated by Western blots. ESC soluble ICAM (sICAM)-1 secretion was measured by ELISA using conditioned medium. RESULT(S) Iron overload increased p65:DNA-binding activity and decreased IκBα and p65 cytoplasmic expression in ESCs after 30 minutes of incubation as compared with the basal condition. ESC ICAM-1 expression and sICAM-1 secretion were higher after 24 hours of iron overload treatment than in the absence of treatment. TPCA-1 prevented the iron overload-induced increase of p65:DNA binding and IκBα degradation. CONCLUSION(S) Iron overload activates IKKβ in ESCs, stimulating the NF-κB pathway and increasing ICAM-1 expression and sICAM-1 secretion. These results suggest that iron overload induces a proendometriotic phenotype on healthy ESCs, which could participate in endometriosis pathogenesis and development.
Collapse
|
12
|
Shah S, King EM, Chandrasekhar A, Newton R. Roles for the mitogen-activated protein kinase (MAPK) phosphatase, DUSP1, in feedback control of inflammatory gene expression and repression by dexamethasone. J Biol Chem 2014; 289:13667-79. [PMID: 24692548 DOI: 10.1074/jbc.m113.540799] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glucocorticoids act on the glucocorticoid receptor (NR3C1) to repress inflammatory gene expression. This is central to their anti-inflammatory effectiveness and rational improvements in therapeutic index depend on understanding the mechanism. Human pulmonary epithelial A549 cells were used to study the role of the mitogen-activated protein kinase (MAPK) phosphatase, dual-specificity phosphatase 1 (DUSP1), in the dexamethasone repression of 11 inflammatory genes induced, in a MAPK-dependent manner, by interleukin-1β (IL1B). Adenoviral over-expression of DUSP1 inactivated MAPK pathways and reduced expression of all 11 inflammatory genes. IL1B rapidly induced DUSP1 expression and RNA silencing revealed a transient role in feedback inhibition of MAPKs and inflammatory gene expression. With dexamethasone, which induced DUSP1 expression, plus IL1B (co-treatment), DUSP1 expression was further enhanced. At 1 h, this was responsible for the dexamethasone inhibition of IL1B-induced MAPK activation and CXCL1 and CXCL2 mRNA expression, with a similar trend for CSF2. Whereas, CCL20 mRNA was not repressed by dexamethasone at 1 h, repression of CCL2, CXCL3, IL6, and IL8 was unaffected, and PTGS2 repression was partially affected by DUSP1 knockdown. At later times, dexamethasone repression of MAPKs was unaffected by DUSP1 silencing. Likewise, 6 h post-IL1B, dexamethasone repression of all 11 mRNAs was essentially unaffected by DUSP1 knockdown. Qualitatively similar data were obtained for CSF2, CXCL1, IL6, and IL8 release. Thus, despite general roles in feedback inhibition, DUSP1 plays a transient, often partial, role in the dexamethasone-dependent repression of certain inflammatory genes. Therefore this also illustrates key roles for DUSP1-independent effectors in mediating glucocorticoid-dependent repression.
Collapse
Affiliation(s)
- Suharsh Shah
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | | | | | | |
Collapse
|
13
|
IL-36 cytokine expression and its relationship with p38 MAPK and NF-κB pathways in psoriasis vulgaris skin lesions. ACTA ACUST UNITED AC 2013; 33:594-599. [DOI: 10.1007/s11596-013-1164-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/18/2013] [Indexed: 12/13/2022]
|
14
|
Al-Sadi R, Guo S, Ye D, Dokladny K, Alhmoud T, Ereifej L, Said HM, Ma TY. Mechanism of IL-1β modulation of intestinal epithelial barrier involves p38 kinase and activating transcription factor-2 activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:6596-606. [PMID: 23656735 DOI: 10.4049/jimmunol.1201876] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The defective intestinal epithelial tight junction (TJ) barrier has been postulated to be an important pathogenic factor contributing to intestinal inflammation. It has been shown that the proinflammatory cytokine IL-1β causes an increase in intestinal permeability; however, the signaling pathways and the molecular mechanisms involved remain unclear. The major purpose of this study was to investigate the role of the p38 kinase pathway and the molecular processes involved. In these studies, the in vitro intestinal epithelial model system (Caco-2 monolayers) was used to delineate the cellular and molecular mechanisms, and a complementary in vivo mouse model system (intestinal perfusion) was used to assess the in vivo relevance of the in vitro findings. Our data indicated that the IL-1β increase in Caco-2 TJ permeability correlated with an activation of p38 kinase. The activation of p38 kinase caused phosphorylation and activation of p38 kinase substrate, activating transcription factor (ATF)-2. The activated ATF-2 translocated to the nucleus where it attached to its binding motif on the myosin L chain kinase (MLCK) promoter region, leading to the activation of MLCK promoter activity and gene transcription. Small interfering RNA induced silencing of ATF-2, or mutation of the ATF-2 binding motif prevented the activation of MLCK promoter and MLCK mRNA transcription. Additionally, in vivo intestinal perfusion studies also indicated that the IL-1β increase in mouse intestinal permeability required p38 kinase-dependent activation of ATF-2. In conclusion, these studies show that the IL-1β-induced increase in intestinal TJ permeability in vitro and in vivo was regulated by p38 kinase activation of ATF-2 and by ATF-2 regulation of MLCK gene activity.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Xanthohumol attenuates tumour cell-mediated breaching of the lymphendothelial barrier and prevents intravasation and metastasis. Arch Toxicol 2013; 87:1301-12. [DOI: 10.1007/s00204-013-1028-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/25/2013] [Indexed: 01/09/2023]
|
16
|
Kastamoulas M, Chondrogiannis G, Kanavaros P, Vartholomatos G, Bai M, Briasoulis E, Arvanitis D, Galani V. Cytokine effects on cell survival and death of A549 lung carcinoma cells. Cytokine 2013; 61:816-25. [DOI: 10.1016/j.cyto.2013.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 11/04/2012] [Accepted: 01/19/2013] [Indexed: 12/13/2022]
|
17
|
Ursolic Acid Inhibits Na+/K+-ATPase Activity and Prevents TNF-α-Induced Gene Expression by Blocking Amino Acid Transport and Cellular Protein Synthesis. Biomolecules 2011; 1:32-47. [PMID: 24970122 PMCID: PMC4030829 DOI: 10.3390/biom1010032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 12/16/2022] Open
Abstract
Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, induce the expression of a wide variety of genes, including intercellular adhesion molecule-1 (ICAM-1). Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) was identified to inhibit the cell-surface ICAM-1 expression induced by pro-inflammatory cytokines in human lung carcinoma A549 cells. Ursolic acid was found to inhibit the TNF-α-induced ICAM-1 protein expression almost completely, whereas the TNF-α-induced ICAM-1 mRNA expression and NF-κB signaling pathway were decreased only partially by ursolic acid. In line with these findings, ursolic acid prevented cellular protein synthesis as well as amino acid uptake, but did not obviously affect nucleoside uptake and the subsequent DNA/RNA syntheses. This inhibitory profile of ursolic acid was similar to that of the Na+/K+-ATPase inhibitor, ouabain, but not the translation inhibitor, cycloheximide. Consistent with this notion, ursolic acid was found to inhibit the catalytic activity of Na+/K+-ATPase. Thus, our present study reveals a novel molecular mechanism in which ursolic acid inhibits Na+/K+-ATPase activity and prevents the TNF-α-induced gene expression by blocking amino acid transport and cellular protein synthesis.
Collapse
|
18
|
Synthesis and bio-evaluation of human macrophage migration inhibitory factor inhibitor to develop anti-inflammatory agent. Bioorg Med Chem 2011; 19:7365-73. [PMID: 22088307 DOI: 10.1016/j.bmc.2011.10.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 01/12/2023]
Abstract
Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine, is involved in the development of an array of inflammatory disorders including rheumatoid arthritis, inflammatory bowel disease, psoriasis, multiple sclerosis and sepsis. The synthesis of MIF-inhibitor is a rationale approach to develop novel anti-inflammatory agent to treat multitude of inflammatory diseases. In this work, we have synthesized and evaluated MIF-inhibitory activity of a series of small molecules containing isoxazoline skeleton. Mode of binding of this inhibitor to human MIF (huMIF) was determined by docking studies. The synthesized molecules inhibit tautomerase activity of huMIF. The anti-inflammatory activity of the most active inhibitor, 4-((3-(4-hydroxy-3-methoxyphenyl)-4, 5-dihydroisoxazol-5-yl) methoxy) benzaldehyde (4b) was evaluated against huMIF-induced inflammation in a cellular model (RAW 264.7 cell). Compound 4b significantly inhibits huMIF-mediated NF-κB translocation to the nucleus, up-regulation of inducible nitric oxide synthase and nitric oxide production in RAW 264.7 cell which are the markers for inflammation. The compound 4b is not cytotoxic as evident from cell viability assay. Hence, the compound 4b has potential to be a novel anti-inflammatory agent.
Collapse
|
19
|
Cytotrienin A, a translation inhibitor that induces ectodomain shedding of TNF receptor 1 via activation of ERK and p38 MAP kinase. Eur J Pharmacol 2011; 667:113-9. [PMID: 21663740 DOI: 10.1016/j.ejphar.2011.05.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/02/2011] [Accepted: 05/22/2011] [Indexed: 12/31/2022]
Abstract
Cytotrienin A, a member of the triene-ansamycin family, was initially identified to be an inducer of apoptosis and recently shown to be an inhibitor of translation that interferes with eukaryotic elongation factor 1A function. In human lung carcinoma A549 cells, cytotrienin A was found to inhibit more strongly the cell-surface expression of intercellular adhesion molecule-1 (ICAM-1) induced by tumor necrosis factor (TNF)-α than the expression induced by interleukin (IL)-1α. Cytotrienin A induced the ectodomain shedding of TNF receptor 1 by TNF-α-converting enzyme (TACE). The TACE inhibitor TAPI-2 antagonized the selective inhibitory effect of cytotrienin A on inhibitor of nuclear factor-κB-α (IκBα) degradation as well as ICAM-1 expression in TNF-α-stimulated cells. The MEK inhibitor U0126 and the p38 MAP kinase inhibitor SB203580, but not the JNK inhibitor SP600125, prevented the ectodomain shedding of TNF receptor 1 induced by cytotrienin A and reversed the inhibitory effects of cytotrienin A on the TNF-α-induced IκBα degradation. In the presence of both U0126 and SB203580, cytotrienin A inhibited TNF-α- and IL-1α-induced ICAM-1 expression at almost equivalent concentrations. Thus, our present results demonstrate that cytotrienin A is a translation inhibitor that triggers ribotoxic stress response and selectively inhibits the TNF-α-induced ICAM-1 expression by inducing the ectodomain shedding of TNF receptor 1 via the activation of ERK and p38 MAP kinase.
Collapse
|
20
|
McMillan DH, Baglole CJ, Thatcher TH, Maggirwar S, Sime PJ, Phipps RP. Lung-targeted overexpression of the NF-κB member RelB inhibits cigarette smoke-induced inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:125-33. [PMID: 21703398 DOI: 10.1016/j.ajpath.2011.03.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/21/2011] [Accepted: 03/21/2011] [Indexed: 01/13/2023]
Abstract
Acute lung inflammation can be caused by a variety of respirable agents, including cigarette smoke. Long-term cigarette smoke exposure can cause chronic obstructive pulmonary disease (COPD), a serious illness that affects >10 million Americans. Cigarette smoke is a known inducer of inflammation and is responsible for approximately 90% of all COPD cases. RelB, a member of the NF-κB family, attenuates cigarette smoke-induced inflammatory mediator production in mouse lung fibroblasts in vitro. We hypothesized that overexpression of RelB in the airways of mice would dampen acute smoke-induced pulmonary inflammation. Mice received a recombinant adenovirus encoding RelB by intranasal aspiration to induce transient RelB overexpression in the lungs and were subsequently exposed to mainstream cigarette smoke. Markers of inflammation were analyzed after smoke exposure. Neutrophil infiltration, normally increased by smoke exposure, was significantly and potently decreased after RelB overexpression. Cigarette smoke-induced proinflammatory cytokine and chemokine production, cyclooxygenase-2 expression, and prostaglandin E(2) production were also significantly decreased in the context of RelB overexpression. The expression of intercellular adhesion molecule 1, an NF-κB-dependent protein, was decreased, indicating a potential mechanism through which RelB can regulate inflammatory cell migration. Therefore, increased expression and/or activation of RelB could be a novel therapeutic strategy against acute lung inflammation caused by respirable agents and possibly against chronic injury, such as COPD.
Collapse
Affiliation(s)
- David H McMillan
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
21
|
Lee H, Han AR, Kim Y, Choi SH, Ko E, Lee NY, Jeong JH, Kim SH, Bae H. A new compound, 1H,8H-pyrano[3,4-c]pyran-1,8-dione, suppresses airway epithelial cell inflammatory responses in a murine model of asthma. Int J Immunopathol Pharmacol 2009; 22:591-603. [PMID: 19822076 DOI: 10.1177/039463200902200305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Clinical and experimental studies have established eosinophilia as a sign of allergic disorders. Activation of eosinophils in the airways is believed to cause epithelial tissue injury, contraction of airway smooth muscle and increased bronchial responsiveness. As part of the search for new antiasthmatic agents produced by medicinal plants, the effects of 270 standardized medicinal plant extracts on cytokine-activated A549 human lung epithelial cells were evaluated. After several rounds of activity-guided screening, the new natural compound, 1H,8H-Pyrano[3,4-c]pyran-1,8-dione (PPY), was isolated from Vitex rotundifolia L. To elucidate the mechanism by which the anti-asthmatic responses of PPY occurred in vitro, lung epithelial cells (A549 cell) were stimulated with TNF-alpha, IL-4 and IL-1beta to induce the expression of chemokines and adhesion molecules involved in eosinophil chemotaxis. PPY treatments reduced the expression of eotaxin, IL-8, IL-16 and VCAM-1 mRNA significantly. Additionally, PPY reduced eotaxin secretion in a dose-dependent manner and significantly inhibited eosinophil migration toward A549 medium. In addition, PPY treatment suppressed the phosphorylation of p65 and ERK1/2, suggesting that it can inhibit the MAPK/NF-KB pathway. To clarify the anti-inflammatory and antiasthmatic effects of PPY in vivo, we examined the influence of PPY on the development of pulmonary eosinophilic inflammation in a murine model of asthma. To accomplish this, mice were sensitized and challenged with ovalbumin (OVA) and then examined for the following typical asthmatic reactions: an increase in the number of eosinophils in BALF; the presence of Th2 cytokines such as IL-4 and IL-5 in the BALF; the presence of allergen-specific IgE in the serum; and a marked influx of inflammatory cells into the lung. Taken together, our results revealed that PPY exerts profound inhibitory effects on the accumulation of eosinophils into the airways while reducing the levels of IL-4, IL-5, and IL-13 in the BALF. Therefore, these results suggest that PPY may be useful as a new therapeutic drug for the treatment of allergic asthma.
Collapse
Affiliation(s)
- H Lee
- Department of Physiology, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tsutsui C, Yamada Y, Ando M, Toyama D, Wu JL, Wang L, Taketani S, Kataoka T. Peperomins as anti-inflammatory agents that inhibit the NF-κB signaling pathway. Bioorg Med Chem Lett 2009; 19:4084-7. [DOI: 10.1016/j.bmcl.2009.06.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
|
23
|
Hypertonic saline attenuates TNF-alpha-induced NF-kappaB activation in pulmonary epithelial cells. Shock 2009; 31:466-72. [PMID: 18948845 DOI: 10.1097/shk.0b013e31818ec47d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Resuscitation with hypertonic saline (HTS) attenuates acute lung injury (ALI) and modulates postinjury hyperinflammation. TNF-alpha-stimulated pulmonary epithelium is a major contributor to hemorrhage-induced ALI. We hypothesized that HTS would inhibit TNF-alpha-induced nuclear factor (NF)-kappaB proinflammatory signaling in pulmonary epithelial cells. Therefore, we pretreated human pulmonary epithelial cells (A549) with hypertonic medium (180 mM NaCl) for 30 min, followed by TNF-alpha stimulation (10 ng/mL). Key regulatory steps and protein concentrations in this pathway were assessed for significant alterations. Hypertonic saline significantly reduced TNF-alpha-induced intercellular adhesion molecule 1 levels and NF-kappaB nuclear localization. The mechanism is attenuated phosphorylation and delayed degradation of IkappaB alpha. Hypertonic saline did not alter TNF-alpha-induced p38 mitogen-activated protein kinase phosphorylation or constitutive vascular endothelial growth factor expression, suggesting that the observed inhibition is not a generalized suppression of protein phosphorylation or cellular function. These results show that HTS inhibits TNF-alpha-induced NF-kappaB activation in the pulmonary epithelium and, further, our understanding of its beneficial effects in hemorrhage-induced ALI.
Collapse
|
24
|
Takada Y, Matsuo K, Ogura H, Bai L, Toki A, Wang L, Ando M, Kataoka T. Odoroside A and ouabain inhibit Na+/K+-ATPase and prevent NF-kappaB-inducible protein expression by blocking Na+-dependent amino acid transport. Biochem Pharmacol 2009; 78:1157-66. [PMID: 19559678 DOI: 10.1016/j.bcp.2009.06.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/13/2009] [Accepted: 06/16/2009] [Indexed: 11/30/2022]
Abstract
Inflammatory cytokines, such as tumor necrosis factor (TNF)-alpha and interleukin-1 (IL-1), trigger the activation of transcription factor NF-kappaB that induces the expression of a variety of genes, including intercellular adhesion molecule (ICAM)-1. Odoroside A [3beta-O-(beta-D-diginosyl)-14-hydroxy-5beta,14beta-card-20(22)-enolide] was found to inhibit the cell-surface expression of ICAM-1 induced by TNF-alpha and IL-1 at comparable concentrations in human lung carcinoma A549 cells. In this study, the molecular mechanism underlying the inhibition of TNF-alpha-induced cell-surface ICAM-1 expression by odoroside A together with the specific Na(+)/K(+)-ATPase inhibitor ouabain was further investigated. Odoroside A and ouabain neither prevented IkappaBalpha degradation nor NF-kappaB translocation to the nucleus upon TNF-alpha stimulation. While odoroside A and ouabain had no inhibitory effect on the induction of ICAM-1 mRNA, they inhibited the TNF-alpha-induced ICAM-1 expression at the protein level. Consistent with these results, odoroside A and ouabain potently reduced de novo protein synthesis, largely due to its ability to block Na(+)-dependent transport of amino acids across the plasma membrane, but not to interfering with the translation machinery. As a direct molecular target, odoroside A was found to inhibit the ATP-hydrolyzing activity of Na(+)/K(+)-ATPase as potently as ouabain. These results clearly demonstrate that odoroside A and ouabain prevent NF-kappaB-inducible protein expression by blocking the Na(+)-dependent amino acid transport.
Collapse
Affiliation(s)
- Yohei Takada
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ming XF, Rajapakse AG, Carvas JM, Ruffieux J, Yang Z. Inhibition of S6K1 accounts partially for the anti-inflammatory effects of the arginase inhibitor L-norvaline. BMC Cardiovasc Disord 2009; 9:12. [PMID: 19284655 PMCID: PMC2664787 DOI: 10.1186/1471-2261-9-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 03/13/2009] [Indexed: 01/22/2023] Open
Abstract
Background Pharmacological inhibition of endothelial arginase-II has been shown to improve endothelial nitric oxide synthase (eNOS) function and reduce atherogenesis in animal models. We investigated whether the endothelial arginase II is involved in inflammatory responses in endothelial cells. Methods Human endothelial cells were isolated from umbilical veins and stimulated with TNFα (10 ng/ml) for 4 hours. Endothelial expression of the inflammatory molecules i.e. vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin were assessed by immunoblotting. Results The induction of the expression of endothelial VCAM-1, ICAM-1 and E-selectin by TNFα was concentration-dependently reduced by incubation of the endothelial cells with the arginase inhibitor L-norvaline. However, inhibition of arginase by another arginase inhibitor S-(2-boronoethyl)-L-cysteine (BEC) had no effects. To confirm the role of arginase-II (the prominent isoform expressed in HUVECs) in the inflammatory responses, adenoviral mediated siRNA silencing of arginase-II knocked down the arginase II protein level, but did not inhibit the up-regulation of the adhesion molecules. Moreover, the inhibitory effect of L-norvaline was not reversed by the NOS inhibitor L-NAME and L-norvaline did not interfere with TNFα-induced activation of NF-κB, JNK, p38mapk, while it inhibited p70s6k (S6K1) activity. Silencing S6K1 prevented up-regulation of E-selectin, but not that of VCAM-1 or ICAM-1 induced by TNFα. Conclusion The arginase inhibitor L-norvaline exhibits anti-inflammatory effects independently of inhibition of arginase in human endothelial cells. The anti-inflammatory properties of L-norvaline are partially attributable to its ability to inhibit S6K1.
Collapse
Affiliation(s)
- Xiu-Fen Ming
- Vascular Biology, Department of Medicine, Division of Physiology, University of Fribourg, Switzerland.
| | | | | | | | | |
Collapse
|
26
|
Rajan S, Ye J, Bai S, Huang F, Guo YL. NF-kappaB, but not p38 MAP kinase, is required for TNF-alpha-induced expression of cell adhesion molecules in endothelial cells. J Cell Biochem 2009; 105:477-86. [PMID: 18613029 DOI: 10.1002/jcb.21845] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to inflammation stimuli, tumor necrosis factor-alpha (TNF-alpha) induces expression of cell adhesion molecules (CAMs) in endothelial cells (ECs). Studies have suggested that the nuclear factor-kappaB (NF-kappaB) and the p38 MAP kinase (p38) signaling pathways play central roles in this process, but conflicting results have been reported. The objective of this study is to determine the relative contributions of the two pathways to the effect of TNF-alpha. Our initial data indicated that blockade of p38 activity by chemical inhibitor SB203580 (SB) at 10 microM moderately inhibited TNF-alpha-induced expression of three types of CAMs; ICAM-1, VCAM-1 and E-selectin, indicating that p38 may be involved in the process. However, subsequent analysis revealed that neither 1 microM SB that could completely inhibit p38 nor specific knockdown of p38alpha and p38beta with small interference RNA (siRNA) had an apparent effect, indicating that p38 activity is not essential for TNF-alpha-induced CAMs. The most definitive evidence to support this conclusion was from the experiments using cells differentiated from p38alpha knockout embryonic stem cells. We could show that deletion of p38alpha gene did not affect TNF-alpha-induced ICAM-1 and VCAM-1 expression when compared with wild-type cells. We further demonstrated that inhibition of NF-kappaB completely blocked TNF-alpha-induced expression of ICAM-1, VCAM-1 and E-selectin. Taken together, our results clearly demonstrate that NF-kappaB, but not p38, is critical for TNF-alpha-induced CAM expression. The inhibition of SB at 10 microM on TNF-alpha-induced ICAM-1, VCAM-1 and E-selectin is likely due to the nonspecific effect of SB.
Collapse
Affiliation(s)
- Suja Rajan
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | | | | | | | | |
Collapse
|
27
|
Manzel LJ, Chin CL, Behlke MA, Look DC. Regulation of bacteria-induced intercellular adhesion molecule-1 by CCAAT/enhancer binding proteins. Am J Respir Cell Mol Biol 2008; 40:200-10. [PMID: 18703796 DOI: 10.1165/rcmb.2008-0104oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Direct interaction between bacteria and epithelial cells may initiate or amplify the airway response through induction of epithelial defense gene expression by nuclear factor-kappaB (NF-kappaB). However, multiple signaling pathways modify NF-kappaB effects to modulate gene expression. In this study, the effects of CCAAT/enhancer binding protein (C/EBP) family members on induction of the leukocyte adhesion glycoprotein intercellular adhesion molecule-1 (ICAM-1) was examined in primary cultures of human tracheobronchial epithelial cells incubated with nontypeable Haemophilus influenzae. Increased ICAM-1 gene transcription in response to H. influenzae required gene sequences located at -200 to -135 in the 5'-flanking region that contain a C/EBP-binding sequence immediately upstream of the NF-kappaB enhancer site. Constitutive C/EBPbeta was found to have an important role in epithelial cell ICAM-1 regulation, while the adjacent NF-kappaB sequence binds the RelA/p65 and NF-kappaB1/p50 members of the NF-kappaB family to induce ICAM-1 expression in response to H. influenzae. The expression of C/EBP proteins is not regulated by p38 mitogen-activated protein kinase activation, but p38 affects gene transcription by increasing the binding of TATA-binding protein to TATA-box-containing gene sequences. Epithelial cell ICAM-1 expression in response to H. influenzae was decreased by expressing dominant-negative protein or RNA interference against C/EBPbeta, confirming its role in ICAM-1 regulation. Although airway epithelial cells express multiple constitutive and inducible C/EBP family members that bind C/EBP sequences, the results indicate that C/EBPbeta plays a central role in modulation of NF-kappaB-dependent defense gene expression in human airway epithelial cells after exposure to H. influenzae.
Collapse
Affiliation(s)
- Lori J Manzel
- University of Iowa Carver College of Medicine, Department of Internal Medicine, 200 Hawkins Drive, C33-GH, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
28
|
Shen A, Yang J, Gu Y, Zhou D, Sun L, Qin Y, Chen J, Wang P, Xiao F, Zhang L, Cheng C. Lipopolysaccharide-evoked activation of p38 and JNK leads to an increase in ICAM-1 expression in Schwann cells of sciatic nerves. FEBS J 2008; 275:4343-53. [DOI: 10.1111/j.1742-4658.2008.06577.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Whiteman SC, Spiteri MA. IFN-gamma regulation of ICAM-1 receptors in bronchial epithelial cells: soluble ICAM-1 release inhibits human rhinovirus infection. JOURNAL OF INFLAMMATION-LONDON 2008; 5:8. [PMID: 18534017 PMCID: PMC2427029 DOI: 10.1186/1476-9255-5-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 06/05/2008] [Indexed: 11/10/2022]
Abstract
Background Intercellular adhesion molecule-1 (ICAM-1) is a critical target-docking molecule on epithelial cells for 90% of human rhinovirus (HRV) serotypes. Two forms of ICAM-1 exist, membranous (mICAM-1) and soluble (sICAM-1), both expressed by bronchial epithelial cells. Interferon-gamma (IFN-γ), a crucial Th-1 immuno-regulatory mediator, can modulate mICAM-1 expression; however its simultaneous effects on mICAM-1: sICAM-1 levels and their consequent outcome on cell infectivity have not been previously explored. Methods Primary normal human bronchial epithelial cells were pre-stimulated with IFN-γ (1 ng/ml for 24 h) and subsequently inoculated with HRV-14 or HRV-1b (TCID50 10 2.5). Epithelial surface ICAM-1 expression and soluble ICAM-1 release were measured at the protein and gene level by immunofluorescence and ELISA respectively; mRNA levels were semi-quantified using RT-PCR. Molecular mechanisms regulating ICAM-1 isoform expression and effects on epithelial cell infectivity were explored. Results In IFN-γ-biased cells infected with HRV-14, but not HRV-1b, mICAM-1 expression is down-regulated, with simultaneous induction of sICAM-1 release. This differential effect on HRV-14 receptor isoforms appears to be related to a combination of decreased IFN-γ-induced JAK-STAT signalling and proteolytic receptor cleavage of the membranous form in IFN-γ-biased HRV-14 infected cells. The observed changes in relative mICAM-1: sICAM-1 expression levels are associated with reduced HRV-14 viral titres. Conclusion These findings support the hypothesis that in epithelial cells conditioned to IFN-γ and subsequently exposed to HRV-14 infection, differential modulation in the ratio of ICAM-1 receptors prevails in favour of an anti-viral milieu, appearing to limit further target cell viral attachment and propagation.
Collapse
|
30
|
Kwon BC, Sohn MH, Kim KW, Kim ES, Kim KE, Shin MH. House dust mite induces expression of intercellular adhesion molecule-1 in EoL-1 human eosinophilic leukemic cells. J Korean Med Sci 2007; 22:815-9. [PMID: 17982228 PMCID: PMC2693846 DOI: 10.3346/jkms.2007.22.5.815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF-kappaB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF-kappaB and JNK.
Collapse
Affiliation(s)
- Byoung Chul Kwon
- Department of Pediatrics and Institute of Allergy, Biomolecule Secretion Research Center, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics and Institute of Allergy, Biomolecule Secretion Research Center, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics and Institute of Allergy, Biomolecule Secretion Research Center, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Soo Kim
- Department of Pediatrics and Institute of Allergy, Biomolecule Secretion Research Center, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyu-Earn Kim
- Department of Pediatrics and Institute of Allergy, Biomolecule Secretion Research Center, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Myeong Heon Shin
- Department of Parasitology, Institute of Tropical Medicine, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Cirillo P, Pacileo M, De Rosa S, Calabrò P, Gargiulo A, Angri V, Prevete N, Fiorentino I, Ucci G, Sasso L, Petrillo G, Musto D'Amore S, Chiariello M. HMG-CoA Reductase Inhibitors Reduce Nicotine-Induced Expression of Cellular Adhesion Molecules in Cultured Human Coronary Endothelial Cells. J Vasc Res 2007; 44:460-70. [PMID: 17657162 DOI: 10.1159/000106464] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 05/16/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Smoking predisposes to the development of atherosclerosis and of its complications. The mechanisms responsible for these effects are not completely understood. We have investigated whether nicotine might promote a proatherosclerotic state in human coronary endothelial cells (HCAECs), studying the role of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors in preventing these phenomena. METHODS AND RESULTS Real-time PCR showed that nicotine induced a dose-dependent increase in mRNA levels for vascular cellular adhesion molecule-1 (VCAM-1)/intercellular adhesion molecule-1 (ICAM-1). Fluorescent-activated cell sorting analysis showed that nicotine induced expression of functionally active VCAM-1/ICAM-1, since they increased leukocyte adherence to HCAECs. Oxygen free radicals, Rho A and nuclear factor kappaB (NF-kappaB) play a pivotal role in modulating these effects. Indeed, nicotine caused oxygen free radical production as well as activation of Rho A and NF-kappaB pathways, evaluated by malondialdehyde levels, pulldown assay and by electrophoretic mobility shift assay, respectively. Superoxide dimutase, Rho A (Y-27639) and NF-kappaB inhibitors (pyrrolidine dithiocarbamate ammonium, Bay 11-7082) suppressed nicotine effects on CAM expression. HMG-CoA reductase inhibitors prevented these nicotine-mediated effects by inhibiting free radical generation and by modulating activation of Rho A and NF-kappaB pathways. CONCLUSIONS Nicotine promotes CAM expression on HCAECs, shifting them toward a proatherosclerotic state. These effects might explain, at least in part, the deleterious cardiovascular consequences of cigarette smoking. HMG-CoA reductase inhibitors play an important role in preventing these phenomena.
Collapse
Affiliation(s)
- Plinio Cirillo
- Division of Cardiology, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bao Z, Lim S, Liao W, Lin Y, Thiemermann C, Leung BP, Wong WSF. Glycogen synthase kinase-3beta inhibition attenuates asthma in mice. Am J Respir Crit Care Med 2007; 176:431-8. [PMID: 17556716 DOI: 10.1164/rccm.200609-1292oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Persistent activation of nuclear factor-kappaB has been associated with the development of asthma. Glycogen synthase kinase-3beta is known to regulate the activity of nuclear factor-kappaB. OBJECTIVES We hypothesized that inhibition of glycogen synthase kinase-3beta may have anti-inflammatory effects in allergic asthma. METHODS BALB/c mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and for cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and for the expression of inflammatory biomarkers. Serum immunoglobulin E levels were determined by enzyme-linked immunosorbant assay. Airway hyperresponsiveness was monitored by direct airway resistance analysis. MEASUREMENTS AND MAIN RESULTS Intravenous administration of 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), a selective glycogen synthase kinase-3beta inhibitor, significantly inhibited ovalbumin-induced increases in total cell counts, eosinophil counts, and IL-5, IL-13, and eotaxin levels recovered in bronchoalveolar lavage fluid in a dose-dependent manner. TDZD-8 substantially reduced the serum levels of ovalbumin-specific IgE. Histologic studies showed that TDZD-8 dramatically inhibited ovalbumin-induced lung tissue eosinophilia and airway mucus production. TDZD-8 also markedly suppressed ovalbumin-induced mRNA expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, Muc5ac, and three members of the chitinase family (acidic mammalian chitinase, Ym1, and Ym2). In addition, TDZD-8 significantly reduced ovalbumin-induced airway hyperresponsiveness to inhaled methacholine. Western blot analysis of whole lung lysates revealed that TDZD-8 markedly attenuated the phosphorylation of the nuclear factor-kappaB subunit p65 from ovalbumin-challenged mice. CONCLUSIONS Our findings suggest that inhibition of glycogen synthase kinase-3beta may provide a novel means for the treatment of allergic airway inflammation.
Collapse
Affiliation(s)
- Zhang Bao
- Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore
| | | | | | | | | | | | | |
Collapse
|
33
|
Nie Z, Nelson CS, Jacoby DB, Fryer AD. Expression and regulation of intercellular adhesion molecule-1 on airway parasympathetic nerves. J Allergy Clin Immunol 2007; 119:1415-22. [PMID: 17418379 DOI: 10.1016/j.jaci.2007.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 02/09/2007] [Accepted: 03/02/2007] [Indexed: 11/18/2022]
Abstract
BACKGROUND Eosinophils cluster along airway nerves in patients with asthma and release eosinophil major basic protein, an antagonist of inhibitory M2 muscarinic receptors on nerves. Blocking M2 function increases bronchoconstriction, leading to airway hyperreactivity. Intercellular adhesion molecule-1 (ICAM-1) mediates eosinophil adhesion to nerves. OBJECTIVE We investigated mechanisms of ICAM-1 expression by parasympathetic nerves. METHODS ICAM-1 expression was examined by immunocytochemistry of lung sections from ovalbumin-sensitized and challenged guinea pigs. ICAM-1 was measured in parasympathetic nerves isolated from subjects and guinea pigs and in human neuroblastoma cells by real-time RT-PCR, immunocytochemistry, and Western blot. RESULTS ICAM-1 was not detected in control airway parasympatheric nerves in vivo or in cultured cells. ICAM-1 was expressed throughout antigen-challenged guinea pig lung tissue and was selectively decreased by dexamethasone only in nerves. ICAM-1 was induced in human and guinea pig parasympathetic nerves by TNF-alpha and IFN-gamma and was inhibited by dexamethasone and by an inhibitor of nuclear factor-kappaB (NF-kappaB). In neuroblastoma cell lines TNF-alpha and IFN-gamma-induced ICAM-1 was blocked by an inhibitor of NF-kappaB but not by inhibitors of mitogen-activated protein kinases. Dexamethasone did not inhibit ICAM-1 expression in neuroblastoma cells. CONCLUSIONS ICAM-1 induced in nerves by antigen challenge and proinflammatory cytokines is sensitive to dexamethasone. ICAM-1 expression is also sensitive to inhibitors of NF-kappaB. Neuroblastoma cells mimic many, but not all, characteristics of ICAM-1 expression in parasympathetic nerves. CLINICAL IMPLICATIONS Dexamethasone and NF-kappaB inhibitors could prevent eosinophils from adhering to nerves by blocking ICAM-1 expression on parasympathetic nerves, thus protecting inhibitory M2 muscarinic receptors and making this pathway a potential target for asthma treatment.
Collapse
Affiliation(s)
- Zhenying Nie
- Division of Physiology and Pharmacology, Oregon Health & Science University, Portland, Ore., USA
| | | | | | | |
Collapse
|
34
|
Zhou Z, Connell MC, MacEwan DJ. TNFR1-induced NF-kappaB, but not ERK, p38MAPK or JNK activation, mediates TNF-induced ICAM-1 and VCAM-1 expression on endothelial cells. Cell Signal 2007; 19:1238-48. [PMID: 17292586 DOI: 10.1016/j.cellsig.2006.12.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 12/27/2006] [Indexed: 01/08/2023]
Abstract
Tumour necrosis factor (TNF) is a pro-inflammatory cytokine, whose primary targets include vascular endothelial cells. TNF-mediated adhesion molecule expression has been shown to play a central role in endothelial cells inflammatory responses and disorders such as atherosclerosis. However it is not fully understand how the TNF receptor subtypes, namely TNFR1 and TNFR2, regulate inflammatory responses in endothelial cells. The aim of this study was to elucidate the kinase signalling pathways that TNF receptors activate, and determine the pathways responsible for downstream expression of adhesion molecules, intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in human endothelial cells. Using human umbilical vein endothelial cells (HUVEC), we demonstrated that TNF activates a range of mitogen-activated protein kinases (MAPKs), including the extracellular-regulated kinase (ERK) pathway and the p38MAPK and c-Jun N-terminal kinase (JNK) stress kinase pathways. Human endothelial cells express both TNF receptor subtypes at low levels, however using TNFR-specific agonistic agents, we uncovered that TNF acts through its TNFR1 receptor subtype to activate NF-kappaB transcriptional pathways. Further investigation revealed that ICAM-1 and VCAM-1 mRNA and protein are induced by TNFR1 (but not TNFR2) in a wholly NF-kappaB-dependent manner. These findings reveal for the first time that TNF stimulation of adhesion molecules ICAM-1 and VCAM-1 in human endothelial cells occurs through the TNFR1 subtype and is mediated by the NF-kappaB pathway, but not the ERK, p38MAPK or JNK kinase pathways.
Collapse
Affiliation(s)
- Zhigang Zhou
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | | | |
Collapse
|
35
|
Clarke CJ, Truong TG, Hannun YA. Role for neutral sphingomyelinase-2 in tumor necrosis factor alpha-stimulated expression of vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM) in lung epithelial cells: p38 MAPK is an upstream regulator of nSMase2. J Biol Chem 2006; 282:1384-96. [PMID: 17085432 DOI: 10.1074/jbc.m609216200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neutral sphingomyelinases (N-SMases) are major candidates for stress-induced ceramide production. However, there is little information on the physiological regulation and roles of the cloned N-SMase enzyme, nSMase2. In this study, nSMase2 was found to translocate acutely to the plasma membrane of A549 epithelial cells in response to tumor necrosis factor alpha (TNF-alpha) in a time- and dose-dependent manner. Additionally, TNF-alpha increased N-SMase activity rapidly and transiently both endogenously and in cells overexpressing nSMase2. Furthermore, the translocation of nSMase2 was regulated by p38-alpha MAPK, but not ERK or JNK, and the increase in endogenous N-SMase activity was abrogated by p38 MAPK inhibition. In addition, both p38-alpha MAPK and nSMase2 were implicated in the TNF-alpha-stimulated up-regulation of the adhesion proteins vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM), but this was largely independent of NF-kappaB activation. These data reveal p38 MAPK as an upstream regulator of nSMase2 and indicate a role for nSMase2 in pro-inflammatory responses induced by TNF-alpha as a regulator of adhesion proteins.
Collapse
Affiliation(s)
- Christopher J Clarke
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
36
|
Suchankova J, Voprsalova M, Kottova M, Semecky V, Visnovsky P. Effects of oral alpha-tocopherol on lung response in rat model of allergic asthma. Respirology 2006; 11:414-21. [PMID: 16771910 DOI: 10.1111/j.1440-1843.2006.00864.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE AND BACKGROUND Asthma is a chronic inflammatory disease in which an oxidant/antioxidant imbalance plays an important role. d-alpha-tocopherol (biologically the most active form of vitamin E) has redox properties and by scavenging the free radicals can act as an antioxidant. The aim of this study was to examine the effects of orally administered alpha-tocopherol in a rat model of allergic asthma. METHODOLOGY Actively sensitized rats (OA) were treated with alpha-tocopherol (400 mg/kg/day for 10 days) or vehicle; 1 h after the last dose, they were challenged with antigen aerosol. The antigen-induced airway hyperresponsiveness to direct bronchoconstrictor (serotonin), the inflammatory cell infiltrate and histological changes were determined 1 or 24 h after the antigen challenge. RESULTS Alpha-tocopherol pretreatment was not significantly effective at reducing the studied parameters when compared with controls, even though there was a tendency to a reduction in bronchial responsiveness and in eosinophil and neutrophil infiltration. CONCLUSION Alpha-tocopherol when administered in the chosen study design in an animal model of asthma had no major effect on airway inflammation. The effect of antioxidants deserves further evaluation.
Collapse
Affiliation(s)
- Jana Suchankova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Catley MC, Sukkar MB, Chung KF, Jaffee B, Liao SM, Coyle AJ, Haddad EB, Barnes PJ, Newton R. Validation of the anti-inflammatory properties of small-molecule IkappaB Kinase (IKK)-2 inhibitors by comparison with adenoviral-mediated delivery of dominant-negative IKK1 and IKK2 in human airways smooth muscle. Mol Pharmacol 2006; 70:697-705. [PMID: 16687566 DOI: 10.1124/mol.106.023150] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are characterized by chronic airway inflammation. However, because patients with COPD and certain patients with asthma show little or no therapeutic benefit from existing corticosteroid therapies, there is an urgent need for novel anti-inflammatory strategies. The transcription factor nuclear factor-kappaB (NF-kappaB) is central to inflammation and is necessary for the expression of numerous inflammatory genes. Proinflammatory cytokines, including interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha, activate the IkappaB kinase complex (IKK) to promote the degradation of inhibitory IkappaB proteins and activate NF-kappaB. This pathway and, in particular, the main IkappaB kinase, IKK2, are now considered prime targets for novel anti-inflammatory drugs. Therefore, we have used adenoviral overexpression to demonstrate NF-kappaB and IKK2 dependence of key inflammatory genes, including intercellular adhesion molecule (ICAM)-1, cyclooxygenase-2, IL-6, IL-8, granulocyte macrophage-colony-stimulating factor (GM-CSF), regulated on activation normal T cell expressed and secreted (RANTES), monocyte chemotactic protein-1 (MCP-1), growth-regulated oncogene-alpha (GROalpha), neutrophil-activating protein-2 (NAP-2), and epithelial neutrophil activating peptide 78 (ENA-78) in primary human airways smooth muscle cells. Because this cell type is central to the pathogenesis of airway inflammatory diseases, these data predict a beneficial effect of IKK2 inhibition. These validated outputs were therefore used to evaluate the novel IKK inhibitors N-(6-chloro-9H-beta-carbolin-8-yl) nicotinamide (PS-1145) and N-(6-chloro-7-methoxy-9H-beta-carbolin-8-yl)-2-methyl-nicotinamide (ML120B) on IL-1beta and TNFalpha-induced expression, and this was compared with the corticosteroid dexamethasone. As observed above, ICAM-1, IL-6, IL-8, GM-CSF, RANTES, MCP-1, GROalpha, NAP-2, and ENA-78 expression was reduced by the IKK inhibitors. Furthermore, this inhibition was either as effective, or for ICAM-1, MCP-1, GROalpha, and NAP-2, more effective, than a maximally effective concentration of dexamethasone. We therefore suggest that IKK inhibitors may be of considerable benefit in inflammatory airways diseases, particularly in COPD or severe asthma, in which corticosteroids are ineffective.
Collapse
Affiliation(s)
- Matthew C Catley
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Amin MA, Haas CS, Zhu K, Mansfield PJ, Kim MJ, Lackowski NP, Koch AE. Migration inhibitory factor up-regulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 via Src, PI3 kinase, and NFkappaB. Blood 2006; 107:2252-61. [PMID: 16317091 PMCID: PMC1472703 DOI: 10.1182/blood-2005-05-2011] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 11/07/2005] [Indexed: 01/16/2023] Open
Abstract
Cell adhesion molecules are critical in monocyte (MN) recruitment in immune-mediated and hematologic diseases. We investigated the novel role of recombinant human migration inhibitory factor (rhMIF) in up-regulating vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) and their signaling pathways in human MNs. rhMIF-induced expression of VCAM-1 and ICAM-1 was significantly higher compared with nonstimulated MNs. rhMIF induced MN VCAM-1 and ICAM-1 expression in a concentration-dependent manner (P < .05). Antisense oligodeoxynucleotides (ODNs) and inhibitors of Src, PI3K, p38, and NFkappaB significantly reduced rhMIF-induced MN VCAM-1 and ICAM-1 expression (P < .05). However, Erk1/2 and Jak2 were not involved. Silencing RNA directed against MIF, and inhibitors of Src, PI3K, NFkappaB, anti-VCAM-1, and anti-ICAM-1 significantly inhibited rhMIF-induced adhesion of HL-60 cells to human dermal microvascular endothelial cells (HMVECs) or an endothelial cell line, HMEC-1, in cell adhesion assays, suggesting the functional significance of MIF-induced adhesion molecules (P < .05). rhMIF also activated MN phospho-Src, -Akt, and -NFkappaB in a time-dependent manner. rhMIF induced VCAM-1 and ICAM-1 up-regulation in 12 hours via Src, PI3K, and NFkappaB as shown by Western blotting and immunofluorescence. MIF and MIF-dependent signaling pathways may be a potential target for treating diseases characterized by up-regulation of cell adhesion molecules.
Collapse
Affiliation(s)
- M Asif Amin
- Department of Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Barnes PJ. Novel signal transduction modulators for the treatment of airway diseases. Pharmacol Ther 2005; 109:238-45. [PMID: 16171872 DOI: 10.1016/j.pharmthera.2005.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/02/2005] [Indexed: 11/29/2022]
Abstract
Multiple signal transduction pathways are involved in the inflammatory process in the airways of patients with asthma and chronic obstructive pulmonary disease (COPD), hence modulators of these pathways may result in novel anti-inflammatory treatments. The advantage of this approach is that these pathways are activated in many inflammatory and structural cells of the airways, hence a broad spectrum of anti-inflammatory effects may be possible. However, this also makes it more likely that side effects may be limiting, but this may not be a problem if the signal transduction pathway is selectively activated in disease and the therapeutic index may be increased by inhaled delivery. Phosphodiesterase-4 (PDE4) inhibitors are the most advanced treatment in this category as anti-inflammatory treatment for asthma and COPD, although side effects are dose limiting. Other promising approaches are inhibitors of p38 mitogen-activated protein (MAP) kinase, inhibitor of nuclear factor-kappaB kinase-2 (IKK2), and Syk kinase, all of which are in clinical development. Several other kinases and transcription factors are also targets for novel drug development. It is likely that modulators of signal transduction pathways may lead to the development of several novel anti-inflammatory treatments for asthma and COPD in the future.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College School of Medicine, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
41
|
Neff SB, Z'graggen BR, Neff TA, Jamnicki-Abegg M, Suter D, Schimmer RC, Booy C, Joch H, Pasch T, Ward PA, Beck-Schimmer B. Inflammatory response of tracheobronchial epithelial cells to endotoxin. Am J Physiol Lung Cell Mol Physiol 2005; 290:L86-96. [PMID: 16100285 DOI: 10.1152/ajplung.00391.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Respiratory epithelial cells play a crucial role in the inflammatory response in endotoxin-induced lung injury, an experimental model for acute lung injury. To determine the role of epithelial cells in the upper respiratory compartment in the inflammatory response to endotoxin, we exposed tracheobronchial epithelial cells (TBEC) to lipopolysaccharide (LPS). Expression of inflammatory mediators was analyzed, and the biological implications were assessed using chemotaxis and adherence assays. Epithelial cell necrosis and apoptosis were determined to identify LPS-induced cell damage. Treatment of TBEC with LPS induced enhanced protein expression of cytokines and chemokines (increases of 235-654%, P < 0.05), with increased chemotactic activity regarding neutrophil recruitment. Expression of the intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was enhanced by 52-101% (P < 0.0001). This upregulation led to increased adhesion of neutrophils, with >95% adherence to TBEC after LPS stimulation, which could be blocked by either ICAM-1 (69%) or VCAM-1 antibodies (55%) (P < 0.05). Enhanced neutrophil-induced necrosis of TBEC was observed when TBEC were exposed to LPS. Reduced neutrophil adherence by ICAM-1 or VCAM-1 antibodies resulted in significantly lower TBEC death (52 and 34%, respectively, P < 0.05). Therefore, tight adherence of neutrophils to TBEC appears to promote epithelial cell killing. In addition to indirect effector cell-induced TBEC death, direct LPS-induced cell damage was seen with increased apoptosis rate in LPS-stimulated TBEC (36% increase of caspase-3, P < 0.01). These data provide evidence that LPS induces TBEC killing in a necrosis- and apoptosis-dependent manner.
Collapse
Affiliation(s)
- Simona B Neff
- Institute of Anesthesiology, University of Zurich Medical School, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li H, Nord EP. CD40/CD154 ligation induces mononuclear cell adhesion to human renal proximal tubule cells via increased ICAM-1 expression. Am J Physiol Renal Physiol 2005; 289:F145-53. [PMID: 15713910 DOI: 10.1152/ajprenal.00317.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The role of CD40/CD154 ligation in the upregulation of genes of the proinflammatory nuclear factor-κB (NF-κB) signal transduction pathway was explored in primary cultures of human renal proximal tubule epithelial cells. Using a cDNA gene array specific for human NF-κB signal pathway genes, 38 genes were upregulated at 1 h, and 7 of these genes remained upregulated at 3 h. Of these genes, intercellular adhesion molecule-1 (ICAM-1) was explored in further detail. Quantitative real-time PCR for ICAM-1 mRNA expression confirmed the gene array findings. Western blot analysis and quantitative sandwich-enzyme ELISA confirmed this observation at the protein level. A cell-surface ELISA assay showed that ICAM-1 expression doubled by 48 h of CD154 exposure, and fluorescence-activated cell sorter analysis suggested that both the number of cells expressing ICAM-1 and the expression of ICAM-1 on these cells had increased. A cell adhesion assay using fluorescein-labeled human peripheral mononuclear cells showed that ICAM-1 upregulation resulted in increased mononuclear cell adhesion to the monolayer, which was abrogated by pretreatment of the monolayer with a neutralizing ICAM-1 antibody. The p38 mitogen-activated protein kinase (MAPK) inhibitor SB-203580 but not the extracellular signal-regulated kinase 1/2 inhibitor (PD-98059) nor the protein kinase C inhibitor (calphostin) blunted ICAM-1 expression and mononuclear cell adhesion to the monolayer. We conclude that, in human renal proximal tubule epithelial cells, CD40 activation upregulates ICAM-1 (and other NF-κB pathway genes) expression with concomitant enhanced adhesion of mononuclear cells, which is mediated via the p38 MAPK signal transduction pathway.
Collapse
Affiliation(s)
- Hongye Li
- Division of Nephrology, Dept. of Medicine, School of Medicine, State University of New York at Stony Brook, NY 11794, USA
| | | |
Collapse
|
43
|
Heiman AS, Abonyo BO, Darling-Reed SF, Alexander MS. Cytokine-stimulated human lung alveolar epithelial cells release eotaxin-2 (CCL24) and eotaxin-3 (CCL26). J Interferon Cytokine Res 2005; 25:82-91. [PMID: 15695929 DOI: 10.1089/jir.2005.25.82] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Asthma is a complex inflammatory disease characterized by a prolonged underlying airway inflammation resulting from cytokine-orchestrated signaling between many types of cells, including airway epithelial cells. Trafficking, recruitment, and activation of cells in airway disease are, in part, modulated by the newly discovered CC subfamily of chemokines, eotaxin (CCL11), eotaxin-2 (CCL24) and eotaxin-3 (CCL26), which transduce signals by acting as agonists for the CCR3 receptor. The specific cytokine stimuli that modulate CCL24 and CCL26 release in airway epithelial cells remain poorly defined. Thus, human 549 alveolar type II epithelium-like cells were stimulated singly and with combinations of 1-100 ng/ml tumor necrosis-factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and IL-4, cytokines known to be elevated in the airways of asthmatics. Release of CCL11, CCL24, and CCL26 was quantified by ELISA, and CCR3 receptors monitored by immunocytochemistry and FACS analysis. Results suggest that epithelial cells release CCL11 during the first 24 h of stimulation, in contrast to a significant increase in CCL24 and CCL26 release after 24-48 h of stimulation. Differential release of the eotaxins in response to cytokine combinations was noted. The alveolar type II epithelial cells were found to possess constitutive CCR3 receptors, which increased after proinflammatory cytokine stimulation. The airway epithelium CCR3 receptor/eotaxin ligand signal transduction system may be an important target for development of novel mechanism-based adjunctive therapies designed to interrupt the underlying chronic inflammation in allergic and inflammatory disorders.
Collapse
Affiliation(s)
- Ann S Heiman
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, FL 32307, USA.
| | | | | | | |
Collapse
|
44
|
Wong CK, Wang CB, Ip WK, Tian YP, Lam CWK. Role of p38 MAPK and NF-kB for chemokine release in coculture of human eosinophils and bronchial epithelial cells. Clin Exp Immunol 2005; 139:90-100. [PMID: 15606618 PMCID: PMC1809270 DOI: 10.1111/j.1365-2249.2005.02678.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2004] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are principal effector cells of inflammation in allergic asthma, characterized by their accumulation and infiltration at inflammatory sites mediated by the chemokine eotaxin and their interaction with adhesion molecules expressed on bronchial epithelial cells. We investigated the modulation of nuclear factor-kappaB (NF-kappaB) and the mitogen-activated protein kinase (MAPK) pathway on the in vitro release of chemokines including regulated upon activation normal T cell expressed and secreted (RANTES), monokine induced by interferon-gamma (MIG), monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-8, and interferon-inducible protein-10 (IP-10) upon the interaction of human bronchial epithelial BEAS-2B cells and eosinophils. Gene expression of chemokines was evaluated by RT-PCR and the induction amount of chemokines quantified by cytometric bead array. NF-kappaB and p38 MAPK activities were assessed by electrophoretic mobility shift assay and Western blot, respectively. The interaction of eosinophils and BEAS-2B cells was found to up-regulate the gene expression of the chemokines IL-8, MCP-1, MIG, RANTES and IP-10 expression in BEAS-2B cells, and to significantly elevate the release of the aforementioned chemokines except RANTES in a coculture of BEAS-2B cells and eosinophils. IkappaB-alpha phosphorylation inhibitor, BAY 11-7082, and p38 MAPK inhibitor, SB 203580 could decrease the release of IL-8, IP-10 and MCP-1 in the coculture. Together, the above results show that the induction of the release of chemokines in a coculture of epithelial cells and eosinophils are regulated by p38 MAPK and NF-kappaB activities of BEAS-2B cells, at least partly, through intercellular contact. Our findings therefore shed light on the future development of more effective agents for allergic and inflammatory diseases.
Collapse
Affiliation(s)
- C K Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | | | | | | | | |
Collapse
|