1
|
Beauchemin KA, Kebreab E, Cain M, VandeHaar MJ. The Path to Net-Zero in Dairy Production: Are Pronounced Decreases in Enteric Methane Achievable? Annu Rev Anim Biosci 2025; 13:325-341. [PMID: 39546409 DOI: 10.1146/annurev-animal-010324-113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Achieving net-zero greenhouse gas (GHG) emissions in dairy production will require >50% reduction in enteric methane (CH4) emissions together with elimination of emissions from feed production, additional carbon sequestration, reduction in manure emissions, anaerobic digestion of manure, and decreased reliance on fossil fuel energy. Over past decades, improved production efficiency has reduced GHG intensity of milk production (i.e., emissions per unit of milk) in the United States, but this trend can continue only if cows are bred for increased efficiency. Genetic selection of low-CH4-producing animals, diet reformulation, use of feed additives, and vaccination show tremendous potential for enteric CH4 mitigation; however, few mitigation strategies are currently available, and added cost without increased revenue is a major barrier to implementation. Complete elimination of CH4 emissions from dairying is likely not possible without negatively affecting milk production; thus, offsets and removals of other GHGs will be needed to achieve net-zero milk production.
Collapse
Affiliation(s)
- Karen A Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada;
| | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, California, USA
| | - Michelle Cain
- Cranfield Environment Centre, Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, United Kingdom
| | - Michael J VandeHaar
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Vastolo A, Mora B, Kiatti DD, Nocerino M, Haroutounian S, Baka RD, Ligda P, Cutrignelli MI, Niderkorn V, Calabrò S. Assessment of the effect of agro-industrial by-products rich in polyphenols on in vitro fermentation and methane reduction in sheep. Front Vet Sci 2025; 12:1530419. [PMID: 39950086 PMCID: PMC11821959 DOI: 10.3389/fvets.2025.1530419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction This study aimed to evaluate, using the in vitro gas production technique, the effect of including eight agro-industrial by-products (carob, grape, two types of olive pomace, citrus pulp, tomato, and hazelnut skin) on fermentation end-products, ruminal degradability, and methane production in sheep diets. Methods The by-products were included at 10% dry matter in the control (CTR) diet, commonly adopted for adult sheep (80% natural grassland and 20% concentrate), and incubated at 39°C under anaerobic conditions. Result and discussion After 24 h of the incubation, the organic matter degradability (OMD24h) and methane production were assessed. After 120 h of the incubation, the organic matter degradability (OMD120h), volume of gas produced (OMCV), fermentation kinetics, pH, volatile fatty acids (VFAs), and ammonia were evaluated. Dunnett's test was used to compare the differences between the control and experimental diets, and multivariate analysis was performed to highlight the differences among the diets based on their in vitro characteristics. The results indicated that the inclusion of the by-products decreased the degradability and increased gas production after 120 h of the incubation. The by-products from the hazelnuts, citrus, grapes, and tomatoes significantly (p < 0.001) reduced the methane production, whereas the pomegranate, grape, 3-phase olive cake, tomato, and hazelnut by-products significantly (p < 0.001) increased the acetate production. The multivariate analysis showed that the butyrate concentration was a determining factor in the differences between the diets. The concentration of polyphenols in the selected agro-industrial by-products could modify fermentation parameters and metabolic pathways, leading to reduced methane production.
Collapse
Affiliation(s)
- Alessandro Vastolo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| | - Blandine Mora
- NRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Dieu donné Kiatti
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| | - Martina Nocerino
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| | - Serkos Haroutounian
- Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece
| | - Rania D. Baka
- Veterinary Research Institute, Hellenic Agricultural Organization (ELGO) – DIMITRA, Thessaloniki, Greece
| | - Panagiota Ligda
- Veterinary Research Institute, Hellenic Agricultural Organization (ELGO) – DIMITRA, Thessaloniki, Greece
| | | | - Vincent Niderkorn
- NRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Serena Calabrò
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
3
|
Waters SM, Roskam E, Smith PE, Kenny DA, Popova M, Eugène M, Morgavi DP. The role of rumen microbiome in the development of methane mitigation strategies for ruminant livestock. J Dairy Sci 2025:S0022-0302(25)00043-8. [PMID: 39890073 DOI: 10.3168/jds.2024-25778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/30/2024] [Indexed: 02/03/2025]
Abstract
Ruminants play an important role in global food security and nutrition. The rumen microbial community provides ruminants with a unique ability to convert human indigestible plant matter, into high quality edible protein. However, enteric CH4 produced in the rumen is both a potent GHG and a metabolizable energy loss for ruminants. As the rumen microbiome constitutes 15-40% of the inter-animal variation in enteric CH4 emissions, understanding the microbiological mechanisms underpinning ruminal methanogenesis and its interaction with the host animal, is crucial for developing CH4 mitigation strategies. Variation in the relative abundance of different microbial species has been observed in cattle with contrasting residual CH4 emission and CH4 yield with up to 20% of the variation in inter-animal CH4 emissions attributable to the presence of a small number of microbial species. The demonstration of ruminotypes associated with high or low CH4 emissions suggests that interactions within complex microbial consortia and with their host are a major source of variation in CH4 emissions. Consequently, microbiome-assisted genomic approaches are being developed to select low CH4 emitting cattle, with breeding values for enteric CH4 being included as part of national breeding programmes. Generating rumen microbiome data for use in selection programs is expensive, therefore, identifying microbial biomarkers in milk or plasma to develop predictive models which include microbial predictors in equations based on animal related data, is required. A better understanding of the rumen microbiome has also aided the development and refinements of anti-methanogenic feed additives. However, these strategies, which increase the amount of reducing equivalents in the rumen ecosystem, do not generally result in an enrichment of propionate or an improvement in animal performance. Current research aims to provide alternative sinks to reducing equivalents and to stimulate activity of commensal microbes or the supplementation of direct fed microbials to capture lost energy. Furthering our knowledge of the rumen microbiome and its interaction with the host, will aid in the development of CH4 mitigation strategies for ruminant livestock.
Collapse
Affiliation(s)
- S M Waters
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway.
| | - E Roskam
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway; Animal and Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - P E Smith
- Animal and Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - D A Kenny
- Animal and Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - M Popova
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France
| | - M Eugène
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France
| | - D P Morgavi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France
| |
Collapse
|
4
|
Hristov AN, Bannink A, Battelli M, Belanche A, Cajarville Sanz MC, Fernandez-Turren G, Garcia F, Jonker A, Kenny DA, Lind V, Meale SJ, Meo Zilio D, Muñoz C, Pacheco D, Peiren N, Ramin M, Rapetti L, Schwarm A, Stergiadis S, Theodoridou K, Ungerfeld EM, van Gastelen S, Yáñez-Ruiz DR, Waters SM, Lund P. Feed additives for methane mitigation: Recommendations for testing enteric methane-mitigating feed additives in ruminant studies. J Dairy Sci 2025; 108:322-355. [PMID: 39725501 DOI: 10.3168/jds.2024-25050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 12/28/2024]
Abstract
There is a need for rigorous and scientifically-based testing standards for existing and new enteric methane mitigation technologies, including antimethanogenic feed additives (AMFA). The current review provides guidelines for conducting and analyzing data from experiments with ruminants intended to test the antimethanogenic and production effects of feed additives. Recommendations include study design and statistical analysis of the data, dietary effects, associative effect of AMFA with other mitigation strategies, appropriate methods for measuring methane emissions, production and physiological responses to AMFA, and their effects on animal health and product quality. Animal experiments should be planned based on clear hypotheses, and experimental designs must be chosen to best answer the scientific questions asked, with pre-experimental power analysis and robust post-experimental statistical analyses being important requisites. Long-term studies for evaluating AMFA are currently lacking and are highly needed. Experimental conditions should be representative of the production system of interest, so results and conclusions are applicable and practical. Methane-mitigating effects of AMFA may be combined with other mitigation strategies to explore additivity and synergism, as well as trade-offs, including relevant manure emissions, and these need to be studied in appropriately designed experiments. Methane emissions can be successfully measured, and efficacy of AMFA determined, using respiration chambers, the sulfur hexafluoride method, and the GreenFeed system. Other techniques, such as hood and face masks, can also be used in short-term studies, ensuring they do not significantly affect feed intake, feeding behavior, and animal production. For the success of an AMFA, it is critically important that representative animal production data are collected, analyzed, and reported. In addition, evaluating the effects of AMFA on nutrient digestibility, animal physiology, animal health and reproduction, product quality, and how AMFA interact with nutrient composition of the diet is necessary and should be conducted at various stages of the evaluation process. The authors emphasize that enteric methane mitigation claims should not be made until the efficacy of AMFA is confirmed in animal studies designed and conducted considering the guidelines provided herein.
Collapse
Affiliation(s)
- Alexander N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802.
| | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Marco Battelli
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| | - Alejandro Belanche
- Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | | | - Gonzalo Fernandez-Turren
- IPAV, Facultad de Veterinaria, Universidad de la Republica, 80100 San José, Uruguay; Instituto Nacional de Investigación Agropecuaria (INIA), Sistema Ganadero Extensivo, Estación Experimental INIA Treinta y Tres, 33000 Treinta y Tres, Uruguay
| | - Florencia Garcia
- Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, 5000 Córdoba, Argentina
| | - Arjan Jonker
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - David A Kenny
- Teagasc Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath C15PW93, Ireland
| | - Vibeke Lind
- Norwegian Institute of Bioeconomy Research, NIBIO, NO-1431 Aas, Norway
| | - Sarah J Meale
- University of Queensland, Gatton, QLD 4343, Australia
| | - David Meo Zilio
- CREA-Research Center for Animal Production and Aquaculture, 00015 Monterotondo (RM), Italy
| | - Camila Muñoz
- Centro Regional de Investigación Remehue, Instituto de Investigaciones Agropecuarias, 5290000 Osorno, Los Lagos, Chile
| | - David Pacheco
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Nico Peiren
- Flanders Research Institute for Agriculture, Fisheries and Food, 9090 Melle, Belgium
| | - Mohammad Ramin
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences Umeå 90183, Sweden
| | - Luca Rapetti
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| | | | - Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire RG6 6EU, United Kingdom
| | - Katerina Theodoridou
- Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Emilio M Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias, 4880000 Vilcún, La Araucanía, Chile
| | - Sanne van Gastelen
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | | | - Sinead M Waters
- School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Peter Lund
- Department of Animal and Veterinary Sciences, Aarhus University, AU Viborg - Research Centre Foulum, 8830 Tjele, Denmark.
| |
Collapse
|
5
|
Hartinger T, Mahmood M, Khiaosa-Ard R. The impact of citrus pulp inclusion on milk performance of dairy cows: A meta-analysis. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100216. [PMID: 39252765 PMCID: PMC11381455 DOI: 10.1016/j.fochms.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/26/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Considering sustainability and circular economy, citrus pulp could become a common dairy feedstuff. Yet, there is no clear indication of the amount of citrus pulp that can be fed without compromising milk performance or that could deliver benefits. In our meta-analysis, we investigated the impact of varying citrus pulp inclusion levels, i.e., no (0 %), low (>0-10 %), medium (>10-20 %), and high (>20 %), on milk performance variables. Replacing cereal grains with citrus pulp increased pectins and sugars while decreasing starch. At the low inclusion level, citrus pulp increased milk yield without affecting feed intake. At higher inclusion levels, citrus pulp reduced feed intake and milk yield but with higher fat contents, the milk energy content was similar to no inclusion. Concluding, citrus pulp is a good energy source with lipogenic properties in dairy cows. We encourage research to fill in the existing gap of knowledge at the rumen and systemic levels.
Collapse
Affiliation(s)
- Thomas Hartinger
- Centre for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Mubarik Mahmood
- Department of Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Subcampus Jhang, Jhang 35200, Pakistan
| | - Ratchaneewan Khiaosa-Ard
- Centre for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna 1210, Austria
| |
Collapse
|
6
|
Battelli M, Colombini S, Crovetto GM, Galassi G, Abeni F, Petrera F, Manfredi MT, Rapetti L. Condensed tannins fed to dairy goats: Effects on digestibility, milk production, blood parameters, methane emission, and energy and nitrogen balances. J Dairy Sci 2024; 107:3614-3630. [PMID: 38246549 DOI: 10.3168/jds.2023-24076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024]
Abstract
Condensed tannins (CT) are plant polyphenols that can affect feed digestibility and are potentially able to reduce enteric CH4 emissions in ruminants. In this in vivo trial with 8 lactating goats, we investigated the effects of 4 levels of inclusion of a commercial CT extract from quebracho (0%, 2%, 4%, and 6% on dry matter basis; CON, Q2, Q4, and Q6, respectively). The experimental design was a repeated 4 × 4 Latin square with 28-d periods (24 d of diet adaptation and 4 d of sample collection) using metabolic cages and 4 open-circuit respiration chambers. The inclusion of CT in the diets did not affect the dry matter intake (DMI) but caused a linear decrease in diet digestibility, with reductions up to -11% for dry matter, -21% for crude protein (CP), -23% for α-amylase- and sodium sulfite-treated neutral detergent fiber corrected for insoluble ash (aNDFom), and -13% for gross energy, when comparing the Q6 and CON diets. However, ruminal total volatile fatty acids (VFA) concentration was not affected by CT, although there were changes in VFA proportions. Milk yield was highest for Q4 (3,371 g/d) and lowest for Q6 (3,066 g/d). In terms of milk composition, CT induced a linear reduction of fat and CP concentrations. The reduction in CP digestibility resulted in a linear reduction in the milk urea level, up to -37% with Q6. Positively, CT linearly reduced the somatic cells count expressed as linear score. The feed efficiency was linearly decreased by CT inclusion. Furthermore, a shift from urinary to fecal nitrogen excretion was observed with CT. The retained nitrogen was always negative (on average -1.93 g/d). The CH4 yield (on average 19.2 g of CH4/kg DMI) was linearly reduced by CT inclusion, up to -18% with Q6. Regarding the CH4 intensity, CT induced a linear reduction when expressed per kilogram of milk, but not per kilogram of fat and protein-corrected milk. Moreover, the CH4 production per kilogram of digestible aNDFom was linearly increased by CT. The metabolizable energy intake (MEI) was not affected by the treatments, but the metabolizability (q = MEI/gross energy intake) was reduced as CT inclusion increased. From the results of the present study, it turned out that CT have a negative impact on feed digestibility and feed use efficiency. Condensed tannins can lower CH4 emissions from ruminants; however, the main mechanism of action is likely the decrease in feed digestibility. Furthermore, CT did not improve the N use efficiency. According to these findings, the positive environmental impacts of CT are only related to the shift from urinary to fecal N excretion.
Collapse
Affiliation(s)
- M Battelli
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Milan 20133, Italy.
| | - S Colombini
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Milan 20133, Italy
| | - G M Crovetto
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Milan 20133, Italy
| | - G Galassi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Milan 20133, Italy
| | - F Abeni
- CREA Research Center for Animal Production and Aquaculture, Lodi 26900, Italy
| | - F Petrera
- CREA Research Center for Animal Production and Aquaculture, Lodi 26900, Italy
| | - M T Manfredi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi 26900, Italy
| | - L Rapetti
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Milan 20133, Italy
| |
Collapse
|
7
|
Homem BGC, Borges LPC, de Lima IBG, Guimarães BC, Spasiani PP, Ferreira IM, Meo-Filho P, Berndt A, Alves BJR, Urquiaga S, Boddey RM, Casagrande DR. Forage peanut legume as a strategy for improving beef production without increasing livestock greenhouse gas emissions. Animal 2024; 18:101158. [PMID: 38703756 DOI: 10.1016/j.animal.2024.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024] Open
Abstract
The transformation of pastures from a degraded state to sustainable productivity is a major challenge in tropical livestock production. Stoloniferous forage legumes such as Arachis pintoi (forage peanut) are one of the most promising alternatives for intensifying pasture-based beef livestock operations with reduced greenhouse gas (GHG) emissions. This 2-year study assessed beef cattle performance, nutrient intake and digestibility, and balance of GHG emissions in three pasture types (PT): (1) mixed Palisade grass - Urochloa brizantha (Hochst. ex A. Rich.) R.D. Webster (syn. Brachiaria brizantha Stapf cv. Marandu) and forage peanut (A. pintoi Krapov. & W.C. Greg. cv. BRS Mandobi) pastures (Mixed), (2) monoculture Palisade grass pastures with 150 kg of N/ha per year (Fertilised), and (3) monoculture Palisade grass without N fertiliser (Control). Continuous stocking with a variable stocking rate was used in a randomised complete block design, with four replicates per treatment. The average daily gain and carcass gain were not influenced by the PT (P = 0.439 and P = 0.100, respectively) and were, on average, 0.433 kg/animal per day and 83.4 kg/animal, respectively. Fertilised and Mixed pastures increased by 102 and 31.5%, respectively, the liveweight gain per area (kg/ha/yr) compared to the Control pasture (P < 0.001). The heifers in the Mixed pasture had lower CH4 emissions (g/animal per day; P = 0.009), achieving a reduction of 12.6 and 10.1% when compared to the Fertilised and Control pastures, respectively. Annual (N2O) emissions (g/animal) and per kg carcass weight gain were 59.8 and 63.1% lower, respectively, in the Mixed pasture compared to the Fertilised pasture (P < 0.001). Mixed pasture mitigated approximately 23% of kg CO2eq/kg of carcass when substituting 150 kg of N/ha per year via fertiliser. Mixed pastures with forage peanut are a promising solution to recover degraded tropical pastures by providing increased animal production with lower GHG emissions.
Collapse
Affiliation(s)
- B G C Homem
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil; Embrapa Agrobiologia, Rodovia BR-465, km 7, Seropédica 23897-970 RJ, Brazil
| | - L P C Borges
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil
| | - I B G de Lima
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil
| | - B C Guimarães
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil
| | - P P Spasiani
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil
| | - I M Ferreira
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil
| | - P Meo-Filho
- Embrapa Southeast Livestock, Rodovia Washington Luiz, km 234, Sao Carlos, SP 13560-970, Brazil
| | - A Berndt
- Embrapa Southeast Livestock, Rodovia Washington Luiz, km 234, Sao Carlos, SP 13560-970, Brazil
| | - B J R Alves
- Embrapa Agrobiologia, Rodovia BR-465, km 7, Seropédica 23897-970 RJ, Brazil
| | - S Urquiaga
- Embrapa Agrobiologia, Rodovia BR-465, km 7, Seropédica 23897-970 RJ, Brazil
| | - R M Boddey
- Department of Soil Science, Federal Rural University of Rio de Janeiro, Rodovia BR 465, km 7, Seropédica, RJ 23897-000, Brazil
| | - D R Casagrande
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil.
| |
Collapse
|
8
|
Pepeta BN, Hassen A, Tesfamariam EH. Quantifying the Impact of Different Dietary Rumen Modulating Strategies on Enteric Methane Emission and Productivity in Ruminant Livestock: A Meta-Analysis. Animals (Basel) 2024; 14:763. [PMID: 38473148 DOI: 10.3390/ani14050763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
A meta-analysis was conducted with an aim to quantify the beneficial effects of nine different dietary rumen modulating strategies which includes: the use of plant-based bioactive compounds (saponin, tannins, oils, and ether extract), feed additives (nitrate, biochar, seaweed, and 3-nitroxy propanol), and diet manipulation (concentrate feeding) on rumen fermentation, enteric methane (CH4) production (g/day), CH4 yield (g/kg dry matter intake) and CH4 emission intensity (g/kg meat or milk), and production performance parameters (the average daily gain, milk yield and milk quality) of ruminant livestock. The dataset was constructed by compiling global data from 110 refereed publications on in vivo studies conducted in ruminants from 2005 to 2023 and anlayzed using a meta-analytical approach.. Of these dietary rumen manipulation strategies, saponin and biochar reduced CH4 production on average by 21%. Equally, CH4 yield was reduced by 15% on average in response to nitrate, oils, and 3-nitroxy propanol (3-NOP). In dairy ruminants, nitrate, oils, and 3-NOP reduced the intensity of CH4 emission (CH4 in g/kg milk) on average by 28.7%. Tannins and 3-NOP increased on average ruminal propionate and butyrate while reducing the acetate:propionate (A:P) ratio by 12%, 13.5% and 13%, respectively. Oils increased propionate by 2% while reducing butyrate and the A:P ratio by 2.9% and 3.8%, respectively. Use of 3-NOP increased the production of milk fat (g/kg DMI) by 15% whereas oils improved the yield of milk fat and protein (kg/d) by 16% and 20%, respectively. On the other hand, concentrate feeding improved dry matter intake and milk yield (g/kg DMI) by 23.4% and 19%, respectively. However, feed efficiency was not affected by any of the dietary rumen modulating strategies. Generally, the use of nitrate, saponin, oils, biochar and 3-NOP were effective as CH4 mitigating strategies, and specifically oils and 3-NOP provided a co-benefit of improving production parameters in ruminant livestock. Equally concentrate feeding improved production parameters in ruminant livestock without any significant effect on enteric methane emission. Therefore, it is advisable to refine further these strategies through life cycle assessment or modelling approaches to accurately capture their influence on farm-scale production, profitability and net greenhouse gas emissions. The adoption of the most viable, region-specific strategies should be based on factors such as the availability and cost of the strategy in the region, the specific goals to be achieved, and the cost-benefit ratio associated with implementing these strategies in ruminant livestock production systems.
Collapse
Affiliation(s)
- Bulelani N Pepeta
- Department of Animal Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Abubeker Hassen
- Department of Animal Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Eyob H Tesfamariam
- Department of Plant and Soil Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
9
|
Roques S, Martinez-Fernandez G, Ramayo-Caldas Y, Popova M, Denman S, Meale SJ, Morgavi DP. Recent Advances in Enteric Methane Mitigation and the Long Road to Sustainable Ruminant Production. Annu Rev Anim Biosci 2024; 12:321-343. [PMID: 38079599 DOI: 10.1146/annurev-animal-021022-024931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Mitigation of methane emission, a potent greenhouse gas, is a worldwide priority to limit global warming. A substantial part of anthropogenic methane is emitted by the livestock sector, as methane is a normal product of ruminant digestion. We present the latest developments and challenges ahead of the main efficient mitigation strategies of enteric methane production in ruminants. Numerous mitigation strategies have been developed in the last decades, from dietary manipulation and breeding to targeting of methanogens, the microbes that produce methane. The most recent advances focus on specific inhibition of key enzymes involved in methanogenesis. But these inhibitors, although efficient, are not affordable and not adapted to the extensive farming systems prevalent in low- and middle-income countries. Effective global mitigation of methane emissions from livestock should be based not only on scientific progress but also on the feasibility and accessibility of mitigation strategies.
Collapse
Affiliation(s)
- Simon Roques
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France; , ,
| | | | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Spain;
| | - Milka Popova
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France; , ,
| | - Stuart Denman
- Agriculture and Food, CSIRO, St. Lucia, Queensland, Australia; ,
| | - Sarah J Meale
- School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Gatton, Queensland, Australia;
| | - Diego P Morgavi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France; , ,
| |
Collapse
|
10
|
de Kássia Gomes F, Homem BGC, Guimaraes BC, de Arruda Camargo Danes M, Broderick GA, Alves BJR, Boddey RM, Casagrande DR. Carbohydrates and protein digestive traits in beef cattle grazing fertilised or mixed tropical pasture. Arch Anim Nutr 2024; 78:60-77. [PMID: 38488818 DOI: 10.1080/1745039x.2024.2319936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/01/2024] [Indexed: 04/30/2024]
Abstract
This study was performed to investigate the nitrogen (N) and carbohydrate digestive traits of grazing heifers. The experiment was carried out at the Federal University of Lavras. The treatments were a Marandu palisadegrass (Urochloa brizantha [Syn, Brachiaria brizantha] Stapf. A. Rich. cv. Marandu) monoculture fertilised with 150 kg N/[ha ∙ year] (FP) or Marandu palisadegrass mixed pasture with forage peanut (MP). The pastures were grazed by six rumen-cannulated zebu heifers. A double cross-over design was used in four periods. Nutritive value, intake and apparent digestibility of forage, ruminal traits and kinetics and N balance were evaluated. Apparent total-tract digestibility of dry matter (DM) and neutral detergent fibre (NDF) were greater for FP than for MP. There was no effect in apparent total-tract digestibility of N. The estimated intestinal digestibility of nutrients was greater on MP than FP. Even though N intake and faecal N output were greater on MP than FP, there was no effect in urine N output. The N balance tended to be greater on MP than FP. The forage peanut, which contains condensed tannins, decreased ruminal fibre degradation, apparent digestibility and ruminal protein degradation, increased N flow from the rumen. Inclusion of forage peanut in the mixed pasture decreased the ruminal fibre degradability but increased N retention by the animals.
Collapse
|
11
|
Woodmartin S, Smith PE, Creighton P, Boland TM, Dunne E, McGovern FM. Sward type alters enteric methane emissions, nitrogen output and the relative abundance of the rumen microbial ecosystem in sheep. J Anim Sci 2024; 102:skae256. [PMID: 39252598 PMCID: PMC11439154 DOI: 10.1093/jas/skae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/18/2024] [Indexed: 09/11/2024] Open
Abstract
Observed improvements in animal and sward performance, coupled with a desire for more sustainable pasture-based feeding systems, has triggered a surge in the implementation of more botanically diverse pastures. However, thus far, there has been limited research investigating the effects of botanically diverse sward types on enteric methane (CH4) or nitrogen (N) excretion, alongside the ruminal microbiota and fermentation profile, in sheep. Hence, this study investigates the effect of sward type on CH4 production and N excretion, in addition to assessing the rumen microbiome, volatile fatty acid proportions, and ammonia nitrogen (NH3-N) concentration in sheep. A 5 × 5 Latin square design experiment was implemented to investigate 5 dietary treatments; perennial ryegrass (Lolium perenne L.; PRG) only or PRG plus white clover (Trifolium repens L.; PRG + WC), red clover (Trifolium pratense L.; PRG + RC), chicory (Chicorium intybus L.; PRG + Chic) or plantain (Plantago lanceolata L.; PRG + Plan). Diets were mixed at a ratio of 75% PRG and 25% of the respective companion forage and 100% PRG for the PRG treatment, on a dry matter basis. Twenty castrated male sheep were housed in metabolism crates across 5 feeding periods. Methane measurements were acquired utilizing portable accumulation chambers. Rumen fluid was harvested using a transoesophageal sampling device. Microbial rumen DNA was extracted and subjected to 16S rRNA amplicon sequencing and fermentation analysis. Data were analyzed using PROC MIXED in SAS. Results show that animals consuming PRG + WC ranked lower for CH4 production (g/d) than sheep offered PRG, PRG + Chic or PRG + Plan (P < 0.01) while the addition of any companion forage ranked CH4 yield (g/kg dry matter intake (DMI)) lower (P < 0.001) than PRG. There was a moderate positive correlation between DMI and CH4 (g/d; r = 0.51). Ruminal NH3-N was lowest in animals consuming the PRG diet (P < 0.01). There was a greater abundance of Methanobrevibacter and reduced abundance of Methanosphaera (P < 0.001) in sheep offered PRG, compared with any binary sward. On average, herb diets (PRG + Chic or PRG + Plan) reduced the urinary nitrogen concentration of sheep by 34% in comparison to legume diets (PRG + WC or PRG + RC) and 13% relative to the PRG diet (P < 0.001). Sheep offered PRG + Chic had a greater dietary nitrogen use efficiency than PRG + RC (P < 0.05). This study demonstrates the potential for sward type to influence rumen function and the microbial community, along with CH4 and N output from sheep.
Collapse
Affiliation(s)
- Sarah Woodmartin
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Mellows Campus, Athenry, Co. Galway, Ireland
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul E Smith
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - Philip Creighton
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Mellows Campus, Athenry, Co. Galway, Ireland
| | - Tommy M Boland
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin Dunne
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Mellows Campus, Athenry, Co. Galway, Ireland
| | - Fiona M McGovern
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Mellows Campus, Athenry, Co. Galway, Ireland
| |
Collapse
|
12
|
Van den Bossche T, Goossens K, Haesaert G, Wambacq E, Vandaele L, De Boever JL. Autumn grass treated with a hydrolysable tannin extract versus lactic acid bacteria inoculant: Effects on silage fermentation characteristics and nutritional value and on performance of lactating dairy cows. J Anim Physiol Anim Nutr (Berl) 2024; 108:111-125. [PMID: 37602531 DOI: 10.1111/jpn.13871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
Hydrolysable tannins (HT) show potential as silage additive for autumn herbage silages, high in (rumen degradable) protein, as they may reduce proteolysis. Additionally, they have abilities to form pH-reversible tannin-protein complexes, non-degradable in the rumen but degradable in the abomasum and intestines of ruminants. Therefore they can improve milk N efficiency and shift N excretions from urine to faeces, possibly mitigating the environmental impact of ruminants. In this study, two small bunker silos were filled with autumn grass. One was treated with 20 g/kg DM HT extract (TAN) (TannoSan-L), the other with 8 mg/kg DM inoculant containing lactic acid bacteria (INO) (Bonsilage Fit G). Secondly, micro-silos (2.75 L) were filled with four treatments; (1) grass without additive (CON) (n = 5); (2) TAN (n = 5); (3) INO (n = 5); and (4) TAN + INO (n = 5). The bunker silos were used in a cross-over feeding experiment with periods of 4 weeks involving 22 lactating Holstein cows (average ± SD: 183 ± 36.3 days in milk, 665 ± 71.0 kg body weight, and 33.8 ± 3.91 kg/day milk yield). The HT dose was insufficient to reduce proteolysis or alter chemical composition and nutritional value in the micro- and bunker silages. Including grass silage added with TAN (3.2 g HT/kg DM) in the diet, did not affect feed intake nor fat and protein corrected milk yield in comparison to feeding the grass silage added with INO in a similar diet. The TAN-fed cows had an increased faecal N excretion and decreased apparent total-tract N and organic matter digestibility, but no improvement in the cows' N utilization could be confirmed in milk and blood urea levels. Overall, feeding an autumn grass silage treated with 20 g/kg chestnut HT extract did not affect the performance of dairy cows in comparison to feeding an autumn grass silage treated with a lactic acid bacteria inoculant.
Collapse
Affiliation(s)
- Tine Van den Bossche
- Flanders Research Center for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Karen Goossens
- Flanders Research Center for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Ghent University, Gent, Belgium
| | | | - Leen Vandaele
- Flanders Research Center for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Johan L De Boever
- Flanders Research Center for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| |
Collapse
|
13
|
Irawan A, Jayanegara A, Niderkorn V. Impacts of red clover and sainfoin silages on the performance, nutrient utilization and milk fatty acids profile of ruminants: A meta-analysis. J Anim Physiol Anim Nutr (Berl) 2024; 108:13-26. [PMID: 37395331 DOI: 10.1111/jpn.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023]
Abstract
Inclusion of plants rich in secondary metabolites into grass ensiling offers multiple benefits for ruminants, from improving productive performance to health-promoting effects as well as helping to reduce environment pollution. The present meta-analysis summarizes the dietary inclusion levels of red clover silage (RCS) and sainfoin silages (SS) as well as the types of silages fed to dairy cows and small ruminants. A total of 37 in vivo studies (26 articles in dairy cows and 11 articles in small ruminants) were aggregated after being strictly selected using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A mixed model methodology was used to examine our objectives. This method declares the subject 'study' as random effects and 'inclusion level' as fixed effects. Results indicated that RCS proportion was not associated with nutrient digestibility except for a quadratic effect (p < 0.05) on neutral detergent fibre digestibility. Higher RCS inclusion linearly increased (p < 0.05) nitrogen (N) intake but had no effect on dairy cows' production. Increasing RCS proportion altered milk fatty acid profile where the concentration of conjugated linolenic acid (CLA), C18:3 α-linolenic acid (ALA) and C18:0 linearly increased (p < 0.01). In small ruminants, SS proportion had no relationship with nutrient digestibility, N metabolism and growth performance (p > 0.05). However, a combination of dietary RCS + SS resulted in significantly higher (p < 0.05) CLA and ALA concentration in cow milk and average daily gain (ADG) in small ruminants compared to diets composed from either grass silage or alfalfa silage. Altogether, this meta-analysis highlights the synergistic effects of a combination of SS + RCS inclusion in improving milk fatty acids (FA) profile of dairy cows and ADG of small ruminants.
Collapse
Affiliation(s)
- Agung Irawan
- Vocational School, Universitas Sebelas Maret, Surakarta, Indonesia
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, West Java, Indonesia
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Anuraga Jayanegara
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, West Java, Indonesia
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
| | - Vincent Niderkorn
- INRAE, VetAgro Sup, UMRH, Université Clermont Auvergne, Saint-Genès-Champanelle, France
| |
Collapse
|
14
|
Schilling-Hazlett A, Raynor EJ, Thompson L, Velez J, Place S, Stackhouse-Lawson K. On-Farm Methane Mitigation and Animal Health Assessment of a Commercially Available Tannin Supplement in Organic Dairy Heifers. Animals (Basel) 2023; 14:9. [PMID: 38200739 PMCID: PMC10777985 DOI: 10.3390/ani14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of this experiment was to demonstrate the effectiveness of a commercially available tannin product (Silvafeed® ByPro, 70% tannic acid) as an enteric methane (CH4) mitigation and preventative animal health strategy in Holstein heifers (BW = 219 ± 17 kg; 9 mo), reared under organic production system requirements. Twenty heifers were randomly assigned to one of four commercial tannin supplementation treatments as follows: 0% (0 g/hd/d; CON), 0.075% (~5 g/hd/d; LOW), 0.15% (~10 g/hd/d; MED), and 0.30% (~21 g/hd/d; HIG) of dry matter intake (DMI). Heifers received their treatment in individual animal feeding stanchions and were fed a basal total mixed ration (TMR) through four SmartFeed Pro intake measurement bunk systems (C-Lock Inc., Rapid City, SD, USA) for 45 d. An automatic head chamber system (AHCS; i.e., GreenFeed, C-Lock Inc., Rapid City, SD, USA) was used to continuously evaluate enteric CH4 production. No effect was observed among the treatments for CH4 emissions (p ≥ 0.55), animal performance (p ≥ 0.38), or oxidative stress biomarker concentration (p ≥ 0.55). Superoxide dismutase (SOD) and reduced glutathione (GSH) concentrations exhibited a linear response to increasing tannin dose (p = 0.003), indicating a potential tannin effect on the antioxidant status of dairy heifers. This observation may encourage future tannin research relating to animal health, which may be of particular interest to organic dairy systems. The results of this study suggest that tannin supplementation at 0%, 0.075%, 0.15%, and 0.30% of DMI, did not alter CH4 emissions, animal performance, or oxidative stress biomarker concentration in organic Holstein heifers when assessed under an on-farm research approach. Further, the results of this study affirm the challenges associated with on-farm research and the development of climate-smart strategies that are capable of mitigating climate impacts in less controlled environments under standard working conditions.
Collapse
Affiliation(s)
- Ashley Schilling-Hazlett
- CSU AgNext, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Edward J. Raynor
- CSU AgNext, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Logan Thompson
- Department of Animal Science and Industry, Kansas State University, Manhattan, KS 66502, USA
| | - Juan Velez
- Aurora Organic Dairy, Boulder, CO 80302, USA
| | - Sara Place
- CSU AgNext, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Kim Stackhouse-Lawson
- CSU AgNext, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
15
|
Qiu Q, Wei X, Zhang L, Li Y, Qu M, Ouyang K. Effect of dietary inclusion of tea residue and tea leaves on ruminal fermentation characteristics and methane production. Anim Biotechnol 2023; 34:825-834. [PMID: 34730482 DOI: 10.1080/10495398.2021.1998092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of this study was to compare the differences of dietary tea leaves (TL) and tea residue (TR) inclusion on rumen fermentation characteristics and to explore whether TR could be an alternative feedstuff of ruminants. For these purposes, seven treatments consisted of two inclusion types (TL vs. TR) and three inclusion levels (g/g of dry matter basis) of 10% (TL10/TR10), 20% (TL20/TR20), and 30% (TL30/TR30) in each inclusion type, plus control group with inclusion of 0% (CON) were designed, with four replicates in each group, to conduct an in vitro ruminal fermentation test. Results showed that the contents of crude protein, neutral detergent fiber, and acid detergent fiber were higher in TR than TL, while TL contained more ether extract and crude ash than TR. Interaction effects between inclusion type and inclusion level were observed in concentrations of isobutyrate and microbial crude protein (MCP), as well as in gas production and digestibility of organic matter. Fermentation characteristics were significantly influenced by TL and TR depending on the inclusion level, except for the concentration of total branched-chain volatile fatty acid. These significant differences of fermentation characteristics due to inclusion level mainly focused on CON and tea inclusion, with higher values in CON than TR or TL groups. The total gas production during the 48-h incubation showed no differences among CON, TL10, and TR10. The inclusion of TR and TL decreased the production of methane. The concentration of MCP in CON, TR10 and TR30 was lower than TR20 and all TL groups. In conclusion, dietary inclusion of TR and TL possessed equivalent effect on rumen fermentation characteristics and methane production, substituting diet with TR or TL for over 10% would inhibit rumen fermentation despite positive effects in TR20 and all TL groups regarding more MCP and less methane production. This study indicates that special attention should be paid to the inclusion level of TR and TL when considering them as alternative feedstuffs of ruminants. Further in vivo study is needed to evaluate the applicability of tea residue as a feedstuff for production of ruminants.
Collapse
Affiliation(s)
- Qinghua Qiu
- Animal Nutrition and Feed Safety Innovation Team, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiao Wei
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Li Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yanjiao Li
- Animal Nutrition and Feed Safety Innovation Team, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Kehui Ouyang
- Animal Nutrition and Feed Safety Innovation Team, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
16
|
He T, Yi G, Li J, Wu Z, Guo Y, Sun F, Liu J, Tang C, Long S, Chen Z. Dietary Supplementation of Tannic Acid Promotes Performance of Beef Cattle via Alleviating Liver Lipid Peroxidation and Improving Glucose Metabolism and Rumen Fermentation. Antioxidants (Basel) 2023; 12:1774. [PMID: 37760076 PMCID: PMC10526014 DOI: 10.3390/antiox12091774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to investigate the effects of dietary tannic acid (TAN) on the gas production, growth performance, antioxidant capacity, rumen microflora, and fermentation function of beef cattle through in vitro and in vivo experiments. TAN was evaluated at 0.15% (dry matter basis, DM) in the in vitro experiment and 0.20% (DM basis) in the animal feeding experiment. The in vitro results revealed that compared with control (CON, basal diet without TAN), the addition of TAN significantly increased the cumulative gas production and asymptotic gas production per 0.20 g dry matter substrate (p < 0.01), with a tendency to reduce methane concentration after 96 h of fermentation (p = 0.10). Furthermore, TAN supplementation significantly suppressed the relative abundance of Methanosphaera and Methanobacteriaceae in the fermentation fluid (LDA > 2.50, p < 0.05). The in vivo experiment showed that compared with CON, the dietary TAN significantly improved average daily gain (+0.15 kg/d), dressing percent (+1.30%), net meat percentage (+1.60%), and serum glucose concentration (+23.35%) of beef cattle (p < 0.05), while it also significantly reduced hepatic malondialdehyde contents by 25.69% (p = 0.02). Moreover, the TAN group showed significantly higher alpha diversity (p < 0.05) and increased relative abundance of Ruminococcus and Saccharomonas (LDA > 2.50, p < 0.05), while the relative abundance of Prevotellaceae in rumen microbial community was significantly decreased (p < 0.05) as compared to that of the CON group. In conclusion, the dietary supplementation of TAN could improve the growth and slaughter performance and health status of beef cattle, and these favorable effects might be attributed to its ability to alleviate liver lipid peroxidation, enhance glucose metabolism, and promote a balanced rumen microbiota for optimal fermentation.
Collapse
Affiliation(s)
- Tengfei He
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Guang Yi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Jiangong Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Zhenlong Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Yao Guo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Fang Sun
- Institute of Animal Huabandry, Hei Longjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Jijun Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | | | - Shenfei Long
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| | - Zhaohui Chen
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.H.); (G.Y.); (J.L.); (Z.W.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing 100193, China
| |
Collapse
|
17
|
van Gastelen S, Jan van Dooren H, Bannink A. Enteric and manure emissions from Holstein-Friesian dairy cattle fed grass silage-based or corn silage-based diets. J Dairy Sci 2023; 106:6094-6113. [PMID: 37479574 DOI: 10.3168/jds.2022-22378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 03/06/2023] [Indexed: 07/23/2023]
Abstract
This study aimed to evaluate trade-offs between enteric and manure CH4 emissions, and the size of synergistic effects for CH4 and nitrogenous emissions (NH3 and N2O). Sixty-four Holstein-Friesian cows were blocked in groups of 4 based on parity, lactation stage, and milk yield. Cows within a block were randomly allocated to a dietary sequence in a crossover design with a grass silage-based diet (GS) and a corn silage-based diet (CS). The GS diet consisted of 50% grass silage and 50% concentrate, and CS consisted of 10% grass silage, 40% corn silage, and 50% concentrate (dry matter basis). The composition of the concentrate was identical for both diets. Cows were housed in groups of 16 animals, in 4 mechanically ventilated barn units for independent emission measurement. Treatment periods were composed of a 2-wk adaptation period followed by a 5-wk measurement period, 1 wk of which was without cows to allow separation of enteric and manure emissions. In each barn unit, ventilation rates and concentrations of CH4, CO2, NH3, and N2O in incoming and outgoing air were measured. Cow excretion of organic matter was higher for CS compared with GS. Enteric CH4 and cow-associated NH3 and N2O emissions (i.e., manure emissions excluded) were lower for CS compared with GS (-11, -40, and -45%, respectively). The CH4 and N2O emissions from stored manure (i.e., in absence of cows) were not affected by diet, whereas that of NH3 emission tended to be lower for CS compared with GS. In conclusion, there was no trade-off between enteric and manure CH4 emissions, and there were synergistic effects for CH4 and nitrogenous emissions when grass silage was exchanged for corn silage, without balancing the diets for crude protein content, in this short-term study.
Collapse
Affiliation(s)
- Sanne van Gastelen
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands.
| | - Hendrik Jan van Dooren
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands
| | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands
| |
Collapse
|
18
|
Acosta-Lozano N, Barros-Rodríguez M, Guishca-Cunuhay C, Andrade-Yucailla V, Contreras-Barros K, Sandoval-Castro C, Elghandour MMMY, Zeidan Mohamed Salem A. Potential Effect of Dietary Supplementation of Tannin-Rich Forage on Mitigation of Greenhouse Gas Production, Defaunation and Rumen Function. Vet Sci 2023; 10:467. [PMID: 37505871 PMCID: PMC10383649 DOI: 10.3390/vetsci10070467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/20/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
This experiment evaluated the effect of including Acacia mearnsii leaves in a high-fiber diet (corn stover), on ruminal degradation kinetics, digestibility, microbial biomass production, and gas, CH4, and CO2 production. Four experimental diets were tested, including a control with 100% corn stover (T1), and three additional diets with corn stover supplemented at 15% A. mearnsii leaves (T2), 30% A. mearnsii leaves (T3) and 45% of A. mearnsii leaves (T4). The highest dry matter in situ degradation (p ≤ 0.001) and in vitro digestibility (p ≤ 0.001) was found in T1 (80.6 and 53.4%, respectively) and T2 (76.4 and 49.6%, respectively) diets. A higher population of holotrich and entodiniomorph ruminal protozoa was found (p = 0.0001) in T1 at 12 and 24 h. Diets of T1 and T2 promoted a higher (p = 0.0001) microbial protein production (314.5 and 321.1 mg/0.5 g DM, respectively). Furthermore, a lower amount of CH4 was found (p < 0.05) with T2, T3 and T4. It is concluded that it is possible to supplement up to 15% of A. mearnsii leaves (30.5 g TC/kg DM) in ruminant's diets. This decreased the population of protozoa (holotrich and entodiniomorph) as well as the CH4 production by 35.8 and 18.5%, respectively, without generating adverse effects on the ruminal degradation kinetics, nutrient digestibility and microbial protein production.
Collapse
Affiliation(s)
- Néstor Acosta-Lozano
- Centro de Investigaciones Agropecuarias, Facultad de Ciencias Agrarias, Universidad Estatal Península de Santa Elena, La Libertad 240204, Ecuador
| | - Marcos Barros-Rodríguez
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato, Sector el Tambo-La Universidad, vía a Quero, Cevallos 1801334, Ecuador
- Department of Animal Nutrition and Rumen Biotechnology, Ruminant Feedlot Ranch-PROCESA, Street Playita-Estero Hondo, La Mana 050202, Ecuador
| | - Carlos Guishca-Cunuhay
- Department of Animal Nutrition and Rumen Biotechnology, Ruminant Feedlot Ranch-PROCESA, Street Playita-Estero Hondo, La Mana 050202, Ecuador
| | - Veronica Andrade-Yucailla
- Centro de Investigaciones Agropecuarias, Facultad de Ciencias Agrarias, Universidad Estatal Península de Santa Elena, La Libertad 240204, Ecuador
| | - Katherine Contreras-Barros
- Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Campus El Dorado-Itchimbía, Quito 170403, Ecuador
| | - Carlos Sandoval-Castro
- Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5. Apdo. 4-116 Itzimná, Mérida 97100, Mexico
| | | | | |
Collapse
|
19
|
Hazelnut and its by-products: A comprehensive review of nutrition, phytochemical profile, extraction, bioactivities and applications. Food Chem 2023; 413:135576. [PMID: 36745946 DOI: 10.1016/j.foodchem.2023.135576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
As output of hazelnut increases worldwide, so does the amount of by-products, leading to huge waste and environmental stress. This paper focuses on the varieties of hazelnut that have been studied more in the past two decades, and summarizes the research status of hazelnut and its by-products from the aspects of nutritional value, phytochemicals, extraction methods, biological functions and applications. Hazelnut and its by-products are rich in a variety of bioactive constituents, mainly polyphenols, which have antioxidant, antibacterial and prebiotic effects. Moreover, hazelnut shells, husks, and leaves contain taxanes such as paclitaxel, which can inhibit the proliferation of cancer cells. They are potentially good natural sources of paclitaxel compared to the slower growing yew. Therefore, it is essential to further integrate the extraction techniques and health-promoting properties of these nutrients and bioactive substances to expand their application and enhance their value.
Collapse
|
20
|
Oliveira LN, Pereira MAN, Oliveira CDS, Oliveira CC, Silva RB, Pereira RAN, DeVries TJ, Pereira MN. Effect of low dietary concentrations of Acacia mearnsii tannin extract on chewing, ruminal fermentation, digestibility, nitrogen partition, and performance of dairy cows. J Dairy Sci 2023; 106:3203-3216. [PMID: 37028971 DOI: 10.3168/jds.2022-22521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/14/2022] [Indexed: 04/08/2023]
Abstract
The supplementation of dairy cows with tannins can reduce the ruminal degradation of dietary protein and urine N excretion, but high concentration in the diet can impair ruminal function, diet digestibility, feed intake, and milk yield. This study evaluated the effect of low concentrations (0, 0.14, 0.29, or 0.43% of diet in DM basis) of a tannin extract from the bark of Acacia mearnsii (TA) on milking performance, dry matter intake (DMI), digestibility, chewing behavior, ruminal fermentation, and N partition of dairy cows. Twenty Holstein cows (34.7 ± 4.8 kg/d, 590 ± 89 kg, and 78 ± 33 d in lactation) were individually fed a sequence of 4 treatments in 5, 4 × 4 Latin squares (with 21-d treatment periods, each with a 14-d adaptation period). The TA replaced citrus pulp in the total mixed ration and other feed ingredients were kept constant. Diets had 17.1% crude protein, mostly from soybean meal and alfalfa haylage. The TA had no detected effect on DMI (22.1 kg/d), milk yield (33.5 kg/d), and milk components. The proportions in milk fat of mixed origin fatty acids (16C and 17C) and the daily secretion of unsaturated fatty acids were linearly reduced and the proportion of de novo fatty acids was increased by TA. Cows fed TA had linear increase in the molar proportion of butyrate and linear reduction in propionate in ruminal fluid, whereas acetate did not differ. There was a tendency for the ratio of acetate to propionate to be linearly increased by TA. Cows fed TA had a linear reduction in the relative ruminal microbial yield, estimated by the concentrations of allantoin and creatinine in urine and body weight. The total-tract apparent digestibility of neutral detergent fiber, starch, and crude protein also did not differ. The TA induced a linear increase in meal size and duration of the first daily meal and reduced meal frequency. Rumination behavior did not differ with treatment. Cows fed 0.43% TA selected against feed particles >19 mm in the morning. There were tendencies for linear decreases in milk urea N (16.1-17.3 mg/dL), urine N (153-168 g/d and 25.5-28.7% of N intake), and plasma urea N at 6, 18, and 21 h postmorning feeding, and plasma urea N 12 h postfeeding was reduced by TA. The proportion of N intake in milk (27.1%) and feces (21.4%) did not differ with treatment. Reductions in urine N excretion and milk and plasma urea N suggest that TA reduced ruminal AA deamination, whereas lactation performance did not differ. Overall, TA up to 0.43% of DM did not affect DMI and lactation performance, while there was a tendency to reduce urine N excretion.
Collapse
Affiliation(s)
- Liniker N Oliveira
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, MG 37200-900, Brazil
| | | | - Cecília D S Oliveira
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, MG 37200-900, Brazil
| | - Cássia C Oliveira
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, MG 37200-900, Brazil
| | - Rayana B Silva
- Better Nature Research Center, Lavras, MG 37203-016, Brazil
| | - Renata A N Pereira
- Empresa de Pesquisa Agropecuária de Minas Gerais, Lavras, MG 37200-970, Brazil
| | - Trevor J DeVries
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Marcos N Pereira
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, MG 37200-900, Brazil.
| |
Collapse
|
21
|
Effects of palm kernel cake on nutrient utilization and performance of grazing and confined cattle: a meta-analysis. Trop Anim Health Prod 2023; 55:110. [PMID: 36917341 DOI: 10.1007/s11250-023-03530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
A meta-analysis was conducted to evaluate the effects of dietary palm kernel cake inclusion (PKCInclusion) on the nutrient intake and digestibility, as well as on the performance of cattle under grazing and confined systems. Additionally, potential maximum safe levels (MSL) for PKCInclusion were explored for cattle under those systems using a broken-line approach. Overall, 22 studies for 85 treatment means and 747 experimental units were included in the dataset used for the meta-analysis in which, quantitative responses to increasing PKCInclusion levels were fitted using a mixed model, considering the study as a random effect. Additionally, all studies tested a treatment without the inclusion of PKC (PKCInclusion = 0 g/kg DM) in the concentrate and total mixed ration fed to grazing and confined animals, respectively. In grazing animals, intake, and digestibility of dry matter (DM), as well as intake of total digestible nutrient (TDN) and digestibility of crude protein (CP) decreased linearly (P < 0.01) as PKCInclusion increased. Conversely, the intake and digestibility of neutral detergent fiber (NDF) increased linearly (P < 0.01). Additionally, the intake of CP showed a quadratic decreasing pattern (P < 0.01) with the increase in dietary PKCInclusion. In confined animals, intake of DM, CP, NDF, and TDN revealed quadratic patterns (P < 0.01) as PKCInclusion increased. The digestibility of DM, CP, NDF, as well as TDN concentration showed a linear decreasing pattern (P < 0.05) as PKCInclusion increased. For performance, data revealed that average daily gain (ADG) decreased linearly (P < 0.01) in grazing and confined animals with the increase in PKCInclusion. Feed efficiency (FE) decreased linearly (P < 0.01) in grazing animals, whereas it showed a linear increase (P < 0.05) in confined animals. Exploration of the quadratic relationships of intake of DM, CP, NDF, and TDN with PKCInclusion in confined animals revealed MSL values for PKC ranging from 85.56 ± 14.2 to 126.4 ± 14.7 g PKC/kg DM. In grazing animals, exploration of the quadratic relationship of intake of CP with PKCInclusion, revealed an MSL value of 96.23 ± 9.01 g PKC/kg DM. In conclusion, data revealed that the use of PKC in both confined and grazing systems reduces the nutrient utilization and performance of cattle in a dose-dependent manner without a maximum safe level that does not reduce animal performance.
Collapse
|
22
|
El-Sanafawy HA, Maggiolino A, El-Esawy GS, Riad WA, Zeineldin M, Abdelmegeid M, Seboussi R, EL-Nawasany LI, Elghandour MMMY, De Palo P, Salem AZM. Effect of mango seeds as an untraditional source of energy on the productive performance of dairy Damascus goats. Front Vet Sci 2023; 10:1058915. [PMID: 36865440 PMCID: PMC9971558 DOI: 10.3389/fvets.2023.1058915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Eighteen dairy Damascus goats weighing 38-45 kg live body weight and aged 3-4 years were divided into three groups according to their body weight, with six goats in each group. Yellow corn grain in their concentrate feed mixture was replaced with mango seeds (MS) at levels of 0% MS in group 1 (G1, control), 20% MS in group 2 (G2), and 40% MS in group 3 (G3). The digestibility coefficients of the organic matter, dry matter, crude fiber, crude protein, ether extract, nitrogen-free extract, and total digestible nutrients increased (P < 0.05) upon feeding MS to G2 and G3. The amounts of dry matter, total digestible nutrients, and digestible crude protein required per 1 kg 3.5% fat-corrected milk (FCM) were lower (P < 0.05) in G2 and G3 vs. G1. Actual milk and 3.5% FCM yield increased (P < 0.05) with the increasing MS dietary level. G2 and G3 had the highest significant (P < 0.05) total solids, total protein, non-protein nitrogen, casein, ash, fat, solids not fat, lactose, and calcium contents compared with G1. Replacing yellow corn grain with MS in G2 and G3 significantly (P < 0.05) decreased the cholesterol concentration and AST activity. Feeding MS increased the concentrations of caprioc, caprylic, capric, stearic, oleic, elaidic, and linoleic acids and decreased the concentrations of butyric, laueic, tridecanoic, myristic, myristoleic, pentadecanoic, heptadecanoic, cis-10-Heptadecanoic, cis-11-eicosenoic, linolenic, arachidonic, and lignoseric acids in the milk fat. The results show that the replacement of corn grain with MS improved the digestibility, milk yield, feed conversion, and economic efficiency, with no adverse effects on the performance of Damascus goats.
Collapse
Affiliation(s)
- Heba A. El-Sanafawy
- Agricultural Research Center, Animal Production Research Institute, Giza, Egypt
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, Bari, Italy,Aristide Maggiolino ✉
| | - Ghada S. El-Esawy
- Agricultural Research Center, Animal Production Research Institute, Giza, Egypt
| | - Wasef A. Riad
- Agricultural Research Center, Animal Production Research Institute, Giza, Egypt
| | - Mohamed Zeineldin
- Department of Animal Medicine, College of Veterinary Medicine, Benha University, Benha, Egypt
| | - Mohamed Abdelmegeid
- Department of Animal Medicine, College of Veterinary Medicine, Kafr-Elsheikh University, Kafr el-Sheikh, Egypt,Higher Colleges of Technology, Health Sciences Division, Abu Dhabi, United Arab Emirates
| | - Rabiha Seboussi
- Higher Colleges of Technology, Health Sciences Division, Abu Dhabi, United Arab Emirates
| | | | - Mona M. M. Y. Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, Bari, Italy
| | - Abdelfattah Z. M. Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico,*Correspondence: Abdelfattah Z. M. Salem ✉
| |
Collapse
|
23
|
Rumen protozoa population and carbohydrate-digesting enzymes in sheep fed a diet supplemented with hydrolysable tannins. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
The aim of the study was to compare the effect of adding different sources of hydrolysable tannins to the sheep diet on protozoa population and carbohydrate digestion in the rumen. The study was performed in 3 Polish Lowland ewes fistulated to the rumen in a 3 × 3 Latin -square design. Control sheep (CON) received (g/d): meadow hay (600), barley meal (300), soybean meal (100) and vitamin-mineral premix (20). Sheep from the experimental groups were additionally administered 12.6 g/kg DM oak bark extract (OAK) and 3.91 g/kg DM tannic acid (TAN). The net consumption of tannins was approx. 0.4% DM for both additives. Regarding the count of protozoa, a significant interaction between diet and sampling time was documented for all ciliates (P<0.01), with a significant effect of both factors when considered separately. Experimental diets reduced the number of total protozoa and Entodinium spp. (before, 2 and 4 h after feeding; P<0.01), while increasing the abundance of Isotricha spp. population (4 h after feeding; P<0.01) in the rumen. Interestingly, the count of Ophryoscolex spp. after feeding the TAN diet increased before feeding and 2 h after feeding in comparison to the CON and OAK groups, respectively, and subsequently decreased compared to the CON diet (4 and 8 h after feeding, P<0.01). A significant interaction between the diet and sampling time was observed for xylanolytic activity (P<0.01) in the rumen, with a significant effect of sampling time, which decreased its activity in CON (after feeding) and OAK sheep (2 h after feeding; P<0.01). For amylolytic activity (P<0.10), there was a trend towards a significant interaction between experimental factors, with a significant effect on both diet and sampling time. Detailed analysis showed that the TAN diet significantly reduced amylolytic activity 2 h after feeding compared to the CON group (P<0.05). In conclusion, the TAN diet significantly reduced the number of total protozoa and Entodinium spp., which consequently reduced amylolytic activity in the rumen, without any significant effect on pH and carbohydrate fermentation in the rumen.
Collapse
|
24
|
OPTIMIZING AMLA (PHYLLANTHUS EMBLICA) FRUIT POWDER SUPPLEMENTATION in liquid feed fed to Holstein dairy calves: Insights from growth performance and health events. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
25
|
Rodríguez-Hernández P, Reyes-Palomo C, Sanz-Fernández S, Rufino-Moya PJ, Zafra R, Martínez-Moreno FJ, Rodríguez-Estévez V, Díaz-Gaona C. Antiparasitic Tannin-Rich Plants from the South of Europe for Grazing Livestock: A Review. Animals (Basel) 2023; 13:201. [PMID: 36670741 PMCID: PMC9855007 DOI: 10.3390/ani13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Internal parasites are one of the main causes of health threats in livestock production, especially in extensive livestock farming. Despite the environmental toxic effects (loss of dung beetles, biodiversity, and other issues) and resistance phenomenon derived from their prolonged use, anti-parasitic chemical pharmaceuticals are frequently used, even in organic farming. Such a situation within the context of climate change requires urgent exploration of alternative compounds to solve these problems and apparent conflicts between organic farming objectives regarding the environment, public health, and animal health. This review is focused on some plants (Artemisia spp., Cichorium intybus L., Ericaceae family, Hedysarum coronarium L., Lotus spp., Onobrychis viciifolia Scop.) that are well known for their antiparasitic effect, are voluntarily grazed and ingested, and can be spontaneously found or cultivated in southern Europe and other regions with a Mediterranean climate. The differences found between effectiveness, parasite species affected, in vitro/in vivo experiments, and active compounds are explored. A total of 87 papers where antiparasitic activity of those plants have been studied are included in this review; 75% studied the effect on ruminant parasites, where gastrointestinal nematodes were the parasite group most studied (70%), and these included natural (31%) and experimental (37%) infections.
Collapse
Affiliation(s)
- Pablo Rodríguez-Hernández
- Department of Animal Production, Cátedra de Producción Ecológica Ecovalia-Clemente Mata, UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Carolina Reyes-Palomo
- Department of Animal Production, Cátedra de Producción Ecológica Ecovalia-Clemente Mata, UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Santos Sanz-Fernández
- Department of Animal Production, Cátedra de Producción Ecológica Ecovalia-Clemente Mata, UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Pablo José Rufino-Moya
- Animal Health Department (Parasitology and Parasitic Diseases), UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Rafael Zafra
- Animal Health Department (Parasitology and Parasitic Diseases), UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Francisco Javier Martínez-Moreno
- Animal Health Department (Parasitology and Parasitic Diseases), UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Vicente Rodríguez-Estévez
- Department of Animal Production, Cátedra de Producción Ecológica Ecovalia-Clemente Mata, UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Cipriano Díaz-Gaona
- Department of Animal Production, Cátedra de Producción Ecológica Ecovalia-Clemente Mata, UIC ENZOEM, Faculty of Veterinary Medicine, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| |
Collapse
|
26
|
Magnani E, Silva TH, Sakamoto L, Manella MQ, Dias FMGN, Mercadante ME, Henry D, Marcatto JOS, Paula EM, Branco RH. Tannin-based product in feedlot diet as a strategy to reduce enteric methane emissions of Nellore cattle finished under tropical conditions. Transl Anim Sci 2023; 7:txad048. [PMID: 37256191 PMCID: PMC10226682 DOI: 10.1093/tas/txad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
A total of 120 Nellore bulls, [initial body weight (BW) = 307 ± 11.6 kg and 12 mo of age] were allocated into 12 collective pens (10 bulls per pen) in a commercial feedlot to evaluate the effects of a specific blend of tannin and saponins on enteric methane (CH4) emissions. The study was a completely randomized design, in which pens were considered the experimental units (N = 6 pens per treatment) and were randomly allocated into one of two treatments: 1) Control (CON), a basal diet with monensin supplementation (25 mg/kg dry matter [DM]; Rumensin, Elanco Animal Health, Greenfield, IN, USA), or 2) Control + a specific blend of tannin and saponins (TAN; 7 g/kg DM; composed of quebracho and chestnut tannin extracts along with carriers from cereals rich in saponins; SilvaFeed BX, Silvateam, San Michele Mondovi, CN, Italy). After the adaptation period (20 d), the experiment was divided into two phases: growing phase (21 to 53 d; total of 33 d) and fattening phase (54 to 139 d; total of 86 d). Enteric methane emissions were estimated using the sulfur hexafluoride (SF6) tracer gas technique. Interactions between treatment and period (growing vs. fattening) were detected for daily CH4 emissions, in which animals fed TAN reduced CH4 emissions by 17.3% during the fattening period compared to bulls fed CON (P = 0.05). In addition, bulls fed TAN had lower CH4 emissions expressed by dry matter intake (DMI) during the fattening period compared to bulls fed CON (P = 0.06). The findings presented herein indicate that a specific blend of tannin and saponins can be used as a strategy to reduce enteric CH4 emissions and its intensity of Nellore bulls finished in feedlot systems under tropical conditions.
Collapse
Affiliation(s)
- Elaine Magnani
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP 14160-970, Brazil
| | - Thiago H Silva
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP 14160-970, Brazil
| | - Leandro Sakamoto
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP 14160-970, Brazil
| | - Marcelo Q Manella
- Division of Research and Development, Silva Team Brasil, Estância Velha, RS 93600-000, Brazil
| | - Fabio M G N Dias
- Division of Research and Development, JBS Friboi, São Paulo, SP 05118-100, Brazil
| | - Maria E Mercadante
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP 14160-970, Brazil
| | - Darren Henry
- Department of Animal and Dairy Sciences, University of Georgia, Tifton, GA 31793-89557, USA
| | - Juliana O S Marcatto
- Department of Global Climate Change and Agriculture, Embrapa Environment, Jaguariuna, SP 13820, Brazil
| | - Eduardo M Paula
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP 14160-970, Brazil
| | - Renata H Branco
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, SP 14160-970, Brazil
| |
Collapse
|
27
|
Perna Junior F, Galbiatti Sandoval Nogueira R, Ferreira Carvalho R, Cuellar Orlandi Cassiano E, Mazza Rodrigues PH. Use of tannin extract as a strategy to reduce methane in Nellore and Holstein cattle and its effect on intake, digestibility, microbial efficiency and ruminal fermentation. J Anim Physiol Anim Nutr (Berl) 2023; 107:89-102. [PMID: 35298842 DOI: 10.1111/jpn.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/12/2022] [Accepted: 02/19/2022] [Indexed: 01/10/2023]
Abstract
This study was carried out to evaluate the use of tannin extract from Acacia mearnsii as a strategy to reduce methane (CH4 ) in two distinct cattle genotypes and its effect on intake, digestibility, microbial efficiency and ruminal fermentation. Four Nellore (Bos indicus) and four Holstein (Bos taurus) dry cows fitted with rumen cannula were assigned to two 4 × 4 Latin square design, in a 2 × 4 factorial arrangement, where each genotype represented a square receiving four tannin levels (commercial extract of A. mearnsii) in the diet (0%, 0.5%, 1.0% and 1.5% of dry matter). Tannin levels used did not cause a reduction in feed intake or rumen passage rate for both genotypes (p > 0.05), although there was a linear reduction in the degradation rate and ruminal disappearance of diet (p < 0.05). The increase in tannin levels reduced the amount of entodiniomorph protozoa in the Nellore cattle (p < 0.05). There was no change in N retention or microbial efficiency (p > 0.05), despite the linear reduction of nutrient digestibility and the synthesis of microbial nitrogen (p < 0.05). The ruminal CH4 production was reduced (p < 0.05) without reducing the short-chain fatty acid production. The threshold of 0.72% of tannin in the diet was estimated as the starting point for the reduction of ruminal CH4 production with long-term efficacy. Therefore, the use of low levels of tannin extract from A. mearnsii is a potential option to manipulate rumen fermentation in Nellore and Holstein cattle and needs to be further investigated.
Collapse
Affiliation(s)
- Flavio Perna Junior
- Department of Animal Nutrition and Production, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP, Brazil
| | - Ricardo Galbiatti Sandoval Nogueira
- Department of Animal Nutrition and Production, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP, Brazil
| | - Roberta Ferreira Carvalho
- Department of Animal Nutrition and Production, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP, Brazil
| | - Eduardo Cuellar Orlandi Cassiano
- Department of Animal Nutrition and Production, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP, Brazil
| | - Paulo Henrique Mazza Rodrigues
- Department of Animal Nutrition and Production, College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
28
|
Battelli M, Colombini S, Parma P, Galassi G, Crovetto GM, Spanghero M, Pravettoni D, Zanzani SA, Manfredi MT, Rapetti L. In vitro effects of different levels of quebracho and chestnut tannins on rumen methane production, fermentation parameters, and microbiota. Front Vet Sci 2023; 10:1178288. [PMID: 37152691 PMCID: PMC10154982 DOI: 10.3389/fvets.2023.1178288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Both condensed and hydrolysable tannins (CTs and HTs, respectively) have the ability to reduce enteric CH4 production in ruminants. However, the precise mechanism of action is not fully understood. Among the proposed hypotheses are the reduction of ruminal digestibility, direct control action on protozoa, reduction of archaea, and a hydrogen sink mechanism. In this in vitro study, which simulated rumen fermentation, two additives, one containing CTs (70% based on DM) from quebracho and one with HTs (75% based on DM) from chestnut, at four levels of inclusion (2, 4, 6, 8% on an as-fed basis) were added to the fermentation substrate and tested against a negative control. Both types of tannins significantly reduced total gas (GP) and CH4 (ml/g DM) production during the 48 h of incubation. The lower GP and CH4 production levels were linked to the reduction in dry matter digestibility caused by CTs and HTs. Conversely, no significant differences were observed for the protozoan and archaeal populations, suggesting a low direct effect of tannins on these rumen microorganisms in vitro. However, both types of tannins had negative correlations for the families Bacteroidales_BS11 and F082 and positive correlations for the genera Prevotella and Succinivibrio. Regarding the fermentation parameters, no differences were observed for pH and total volatile fatty acid production, while both CTs and HTs linearly reduced the NH3 content. CTs from quebracho were more effective in reducing CH4 production than HTs from chestnut. However, for both types of tannins, the reduction in CH4 production was always associated with a lower digestibility without any changes in archaea or protozoa. Due to the high variability of tannins, further studies investigating the chemical structure of the compounds and their mechanisms of action are needed to understand the different results reported in the literature.
Collapse
Affiliation(s)
- Marco Battelli
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Stefania Colombini
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Pietro Parma
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Gianluca Galassi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Gianni Matteo Crovetto
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Mauro Spanghero
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Davide Pravettoni
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | | | - Maria Teresa Manfredi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Luca Rapetti
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
- *Correspondence: Luca Rapetti,
| |
Collapse
|
29
|
Foggi G, Terranova M, Conte G, Mantino A, Amelchanka SL, Kreuzer M, Mele M. In vitro screening of the ruminal methane and ammonia mitigating potential of mixtures of either chestnut or quebracho tannins with blends of essential oils as feed additives. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2130832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Giulia Foggi
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Pisa, Italy
| | | | - Giuseppe Conte
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Pisa, Italy
- Centro di Ricerche Agro-ambientali “E. Avanzi”, University of Pisa, Pisa, Italy
| | - Alberto Mantino
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
| | | | - Michael Kreuzer
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Marcello Mele
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Pisa, Italy
- Centro di Ricerche Agro-ambientali “E. Avanzi”, University of Pisa, Pisa, Italy
| |
Collapse
|
30
|
Ghasemi-Sadabadi M, Ebrahimnezhad Y, Maheri-Sis N, Shaddel-Teli A, Ghalehkandi JG, Veldkamp T. Effects of supplementation of pomegranate processing by-products and waste cooking oils as alternative feed resources in broiler nutrition. Sci Rep 2022; 12:21216. [PMID: 36481691 PMCID: PMC9731951 DOI: 10.1038/s41598-022-25761-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Agricultural residues can be used as alternative feed sources in industrial chicken production. The impacts of different levels of pomegranate peel and waste cooking oil as an agricultural residue on broilers' nutrition were investigated. Results showed that the replacement of 8% pomegranate peel in diets decreased the growth performance of broilers. Supplementing 8% pomegranate peel in diets reduced apparent nutrient digestibility. The highest level of waste oil inclusion in broiler diets indicated negative impacts on apparent zmetabolizable energy and crude fat apparent nutrients digestibility. Broilers fed the diet containing 4% pomegranate peel had a higher Lactobacillus population. The results showed that the Lactobacillus population was lower in broilers fed 8% pomegranate peel powder and 4% waste oil in diets. The inclusion of 8% pomegranate peel powder in diets showed lower villus height and crypt depth in the duodenum, jejunum, and ileum. The inclusion of 4% pomegranate peel decreased the peroxide value (PV) of meat. Dietary inclusion of 4% waste oil raised the PV of meat. Alpha-tocopherol supplementation decreased the PV of meat. Finally, the results provide information that 4% of pomegranate peel and 4% waste oil could be used as an alternative feed ingredient in broiler diets without adverse effects.
Collapse
Affiliation(s)
- Mohammad Ghasemi-Sadabadi
- grid.464601.1Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, East Azerbaijan Iran
| | - Yahya Ebrahimnezhad
- grid.464601.1Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, East Azerbaijan Iran
| | - Naser Maheri-Sis
- grid.464601.1Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, East Azerbaijan Iran
| | - Abdolahad Shaddel-Teli
- grid.464601.1Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, East Azerbaijan Iran
| | - Jamshid Ghiasi Ghalehkandi
- grid.464601.1Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, East Azerbaijan Iran
| | - Teun Veldkamp
- grid.4818.50000 0001 0791 5666Wageningen University & Research, Wageningen Livestock Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
31
|
Bhatt R, Sarkar S, Sharma P, Soni L, Sahoo A. Comparing the efficacy of forage combinations with different hydrolysable and condensed tannin levels to improve production and lower methane emission in finisher lambs. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Rumen methane abatement by phlorotannin derivatives (phlorofucofuroeckol-A, dieckol, and 8,8′-bieckol) and its relationship with the hydroxyl group and ether linkage. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Bačėninaitė D, Džermeikaitė K, Antanaitis R. Global Warming and Dairy Cattle: How to Control and Reduce Methane Emission. Animals (Basel) 2022; 12:2687. [PMID: 36230428 PMCID: PMC9559257 DOI: 10.3390/ani12192687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Agriculture produces greenhouse gases. Methane is a result of manure degradation and microbial fermentation in the rumen. Reduced CH4 emissions will slow climate change and reduce greenhouse gas concentrations. This review compiled studies to evaluate the best ways to decrease methane emissions. Longer rumination times reduce methane emissions and milk methane. Other studies have not found this. Increasing propionate and reducing acetate and butyrate in the rumen can reduce hydrogen equivalents that would otherwise be transferred to methanogenesis. Diet can reduce methane emissions. Grain lowers rumen pH, increases propionate production, and decreases CH4 yield. Methane generation per unit of energy-corrected milk yield reduces with a higher-energy diet. Bioactive bromoform discovered in the red seaweed Asparagopsis taxiformis reduces livestock intestinal methane output by inhibiting its production. Essential oils, tannins, saponins, and flavonoids are anti-methanogenic. While it is true that plant extracts can assist in reducing methane emissions, it is crucial to remember to source and produce plants in a sustainable manner. Minimal lipid supplementation can reduce methane output by 20%, increasing energy density and animal productivity. Selecting low- CH4 cows may lower GHG emissions. These findings can lead to additional research to completely understand the impacts of methanogenesis suppression on rumen fermentation and post-absorptive metabolism, which could improve animal productivity and efficiency.
Collapse
Affiliation(s)
- Dovilė Bačėninaitė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | | | | |
Collapse
|
34
|
Beauchemin KA, Ungerfeld EM, Abdalla AL, Alvarez C, Arndt C, Becquet P, Benchaar C, Berndt A, Mauricio RM, McAllister TA, Oyhantçabal W, Salami SA, Shalloo L, Sun Y, Tricarico J, Uwizeye A, De Camillis C, Bernoux M, Robinson T, Kebreab E. Invited review: Current enteric methane mitigation options. J Dairy Sci 2022; 105:9297-9326. [DOI: 10.3168/jds.2022-22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/23/2022] [Indexed: 11/06/2022]
|
35
|
Ibrahim SL, Hassen A. Effect of non-encapsulated and encapsulated mimosa (Acacia mearnsii) tannins on growth performance, nutrient digestibility, methane and rumen fermentation of South African mutton Merino ram lambs. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Foliage of Tropical Trees and Shrubs and Their Secondary Metabolites Modify In Vitro Ruminal Fermentation, Methane and Gas Production without a Tight Correlation with the Microbiota. Animals (Basel) 2022; 12:ani12192628. [PMID: 36230369 PMCID: PMC9559637 DOI: 10.3390/ani12192628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Ruminants, mainly cattle, contribute to greenhouse gases (GHG) emissions as methane (CH4) is produced by ruminal fermentation. Hence, various anti-methanogenic feed strategies have been studied, including the use of plants with secondary metabolites. This study evaluated in vitro ruminal fermentation metrics, microbial composition by digital droplet PCR (ddPCR) and the CH4 production of the foliage of several tropical trees and shrubs: Leucaena leucocephala, Moringa oleifera, Albizia lebbeck, Enterolobium cyclocarpum, Piscidia piscipula, Brosimum alicastrum, Lysiloma latisiliquum, Guazuma ulmifolia, Cnidoscolus aconitifolius, Gliricidia sepium and Bursera simaruba, using Cynodon plectostachyus grass as control. The results showed a wide variation in the chemical composition of the foliage, as well as in the ruminal microbiota. The crude protein (CP) content ranged from 11 to 25%, whereas the content of condensed tannins (CT) and saponins (S) was from 0.02 to 7%, and 3.2 to 6.6%, respectively. The greatest dry matter degradability (DMD) after 72 h was 69% and the least 35%, the latter coinciding with the least gas production (GP). A negative correlation was found between the CT and CH4 production, also between protozoa and fungi with the SGMT group of archaea. We concluded that the foliage of some tropical trees and shrubs has a high nutritional value and the potential to decrease CH4 production due to its CT content.
Collapse
|
37
|
Pereira FC, Gregorini P. Applying spatio-chemical analysis to grassland ecosystems for the illustration of chemoscapes and creation of healthscapes. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.927568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Grasslands are heterogeneous landscapes composed of a diversity of herbaceous and shrub vegetation that varies not only taxonomically, but biochemically in terms of primary and secondary compounds. Plant Secondary Compounds (PSC) have specific nutritional, medicinal, and prophylactic properties, to which benefits depend upon dosage, type, arrangements, and concentration that changes between and within plants across time and space. The knowledge of the plant content of PSC and their distribution in grazing environments would therefore contribute to the design and creation of healthier foodscapes for ruminants; in other words, healthscapes. Geographic information systems (GIS) have been used extensively for landscape visualization and assessment, through several spatial analysis techniques applied for the creation of virtual maps to add valuable information to a particular environment. Given the knowledge of plants and their composition, GIS emerges as a readily available and low-cost tool to assess and evaluate the distribution of plants with beneficial PSC in large and heterogeneous foodscapes. We present and propose for the very first time, the application and use of GIS to determine the spatial distribution of PSC rich plants with nutraceutical properties to illustrate, visualize, and generate healthscapes for grazing ruminants. We present healthscape maps created using botanical composition analyses and advanced image classification methods to illustrate the distribution of plants regarding their PSC and nutraceutical properties. Such maps add an extra dimension and perspective to plant chemical composition, enabling graziers to visualize in space and time centers of nutrition and prophylactics or medicines, contributing to advanced grazing management decisions toward more productive, sustainable, and healthy grazing systems. The valuable information behind the mapped PSC advances the understanding of the nutritional ecology of grazing environments and foodscapes, introducing a new dimension to the holistic management of pastoral livestock production systems.
Collapse
|
38
|
Comparisons of Ramie and Corn Stover Silages: Effects on Chewing Activity, Rumen Fermentation, Microbiota and Methane Emissions in Goats. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study aimed to investigate the nutritional value of ramie (Boehmeria nivea) silage, and its consequences for chewing activity, rumen fermentation, and enteric methane (CH4) emissions in goats, by comparing it with corn stover (CS) silage. An in vitro ruminal experiment was firstly performed to investigate the substrate degradation and fermentation of CS and ramie silage. The ramie silage diet was formulated by replacing 60% of CS silage with ramie silage (dry matter (DM) basis). Eight female Xiangdong Black goats (a local breed in Southern China, 1 to 1.2 years of age) with BW of 21.0 ± 1.05 kg were used for this experiment and were randomly assigned to either one of the two dietary treatments in a cross-over design. The ramie silage had higher crude protein (CP) and ash content and lower hemicellulose content, together with decreased (p < 0.05) nutrient degradation and methane production and increased (p < 0.05) acetate molar percentage and acetate to propionate ratio through in vitro ruminal fermentation. Feeding the ramie silage diet did not alter feed intake (p > 0.05), decreased (p < 0.05) nutrient digestibility, and increased (p < 0.05) chewing activity and rumination activity, with reductions (p < 0.05) in eating activity and idle activity. Although feeding the ramie silage diet caused a greater (p < 0.05) molar percentage of acetate and lower molar percentage of propionate, it decreased the rumen-dissolved CH4 concentration and enteric CH4 emissions (p < 0.05). Feeding the ramie silage diet did not alter (p > 0.05) the population of bacteria, protozoa, and fungi; it increased the 16S rRNA gene copies of Ruminococcus flavefaciens (p < 0.05). Further 16SrRNA gene amplicon analysis indicated a distinct bacterial composition between the two treatments (p < 0.05). Feeding the ramie silage diet led to a lower abundance of genera Lawsonibacter, Sedimentibacter, Saccharofermentans, Sediminibacterium, and Bifidobacterium (p < 0.05). Ramie can be an alternative forage resource to stimulate chewing activity and reduce CH4 emissions in ruminants.
Collapse
|
39
|
Vargas-Ortiz L, Andrade-Yucailla V, Barros-Rodríguez M, Lima-Orozco R, Macías-Rodríguez E, Contreras-Barros K, Guishca-Cunuhay C. Influence of Acacia Mearnsii Fodder on Rumen Digestion and Mitigation of Greenhouse Gas Production. Animals (Basel) 2022; 12:2250. [PMID: 36077970 PMCID: PMC9454763 DOI: 10.3390/ani12172250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, the worrying generation of GHG from ruminant production has generated widespread interest in exploring nutritional strategies focused on reducing these gases, presenting the use of bioactive compounds (tannins) as an alternative in the diet. The aim of this research was to determine the effect of the addition of different levels of Acacia mearnsii on ruminal degradation, nutrient digestibility, and mitigation of greenhouse gas production. A completely randomized design with four treatments and six repetitions was used. The treatments were: T1, T2, T3, and T4 diets with, respectively, 0%, 20%, 40%, and 60% A. mearnsii. The rumen degradation kinetic and in vitro digestibility, and the production of gas, CH4, and CO2 were evaluated. In situ rumen degradation and in vitro digestibility of DM and OM showed differences between treatments, with T1 being higher (p < 0.05) in the degradation of the soluble fraction (A), potential degradation (A + B), and effective degradation for the different passage rates in percent hour (0.02, 0.05, and 0.08), compared to the other treatments. Rumen pH did not show differences (p > 0.05) between treatments. The lowest (p < 0.05) gas, CH4, and CO2 production was observed in treatments T1 and T2 with an approximate mean of 354.5 mL gas/0.500 g fermented DM, 36.5 mL CH4/0.500 g fermented DM, and 151.5 mL CO2/0.500 g fermented DM, respectively, compared to treatments T3 and T4. Under the conditions of this study, it was concluded that it is possible to replace traditional forages with up to 20% of A. mearnsii, without observing changes in the production of greenhouse gases with respect to the control treatment (0% of A. mearnsii); however, A. mearnsii is not usable because it significantly decreases rumen degradability of DM and OM, which would considerably affect the production in animals.
Collapse
Affiliation(s)
- Luis Vargas-Ortiz
- Departamento de Producción Animal, Instituto Superior Tecnológico Benjamín Araujo, Patate 180403, Ecuador
- Centro de Investigaciones Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, Santa Clara 50100, Cuba
| | - Veronica Andrade-Yucailla
- Centro de Investigaciones Agropecuarias, Facultad de Ciencias Agrarias, Universidad Estatal Península de Santa Elena, La Libertad 240204, Ecuador
| | - Marcos Barros-Rodríguez
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato, Sector el Tambo-La Universidad, vía a Quero, Cevallos 1801334, Ecuador
| | - Raciel Lima-Orozco
- Centro de Investigaciones Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, Santa Clara 50100, Cuba
| | - Edis Macías-Rodríguez
- Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Portoviejo 130701, Ecuador
| | - Katherine Contreras-Barros
- Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Campus El Dorado-Itchimbía, Quito 170403, Ecuador
| | - Carlos Guishca-Cunuhay
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato, Sector el Tambo-La Universidad, vía a Quero, Cevallos 1801334, Ecuador
| |
Collapse
|
40
|
Keum SH, Kim WS, Ghassemi Nejad J, Lee JS, Jo YH, Park KY, Kim YR, Jo JH, Lee HG. Evaluation of the Feed Nutritional Value of Noni ( Morinda citrifolia) Meal for Holstein Dairy Cows. Animals (Basel) 2022; 12:ani12172196. [PMID: 36077915 PMCID: PMC9455032 DOI: 10.3390/ani12172196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
In three consecutive studies, we evaluated the effects of noni (Morinda citrifolia) meal on rumen fermentation and degradation characteristics, production performance, physiological parameters, and milk fatty acid profile in Holstein dairy cows. In in vitro (first study) and in situ (second study) experiments, rumen fluids from two fistulated Holstein dairy cows were used. The concentration of noni meal added was 0 (control), 1, 3, 5, or 7% of the basal diet (DM basis). In the in situ experiment, wheat bran was used as a control. Triplicated bags were incubated for 0, 4, 8, 12, 24, 48, 72, or 96 h. In an in vivo experiment (third study), 38 Holstein cows (145 ± 87 days DIM; 1.8 ± 0.9 parity; 35.4 ± 6.3 kg/day milk yield) were equally assigned to the control and treatment groups (19 cows each). Basal feed and noni meal pellets (1.5% of total feed DM basis) were fed to the treatment group. The control group was also fed the basal feed and pellets containing 0% noni meal. There were no significant differences in in vitro dry matter digestibility, pH, total gas production (TGP), CH4, NH3-N, and volatile fatty acids (p > 0.05). In the in situ experiments, the crude protein (CP) rapidly soluble fraction ‘a’ (CP-a) was higher in noni meal than in wheat bran, and rumen degradable protein was also higher in noni meal than in wheat bran. In the in vivo experiments, when noni meal pellets were fed, there was no significant difference in milk yield and composition, but the triglyceride levels decreased (p < 0.05), the C18:1 fatty acid level increased (p < 0.05), and the C18:0 fatty acid level decreased (p < 0.05). Collectively, noni meal can be used as a feed ingredient up to 1.5% (total feed DM basis) in Holstein dairy cows and as feed supplementation to increase the C18:1 fatty acid level in milk.
Collapse
Affiliation(s)
- Sang-Hoon Keum
- Department of Animal Science, Konkuk University, Seoul 05029, Korea
| | - Won-Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | | - Jae-Sung Lee
- Department of Animal Science, Konkuk University, Seoul 05029, Korea
| | - Yong-Ho Jo
- Department of Animal Science, Konkuk University, Seoul 05029, Korea
| | - Ki-Yeon Park
- Department of Animal Science, Konkuk University, Seoul 05029, Korea
| | - Yoo-Rae Kim
- Department of Animal Science, Konkuk University, Seoul 05029, Korea
| | - Jang-Hoon Jo
- Department of Animal Science, Konkuk University, Seoul 05029, Korea
| | - Hong-Gu Lee
- Department of Animal Science, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-0523
| |
Collapse
|
41
|
Korir D, Eckard R, Goopy J, Arndt C, Merbold L, Marquardt S. Effects of replacing Brachiaria hay with either Desmodium intortum or dairy concentrate on animal performance and enteric methane emissions of low-yielding dairy cows. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.963323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Africa, cattle are often fed low quality tropical roughages resulting in low-yielding animals with high methane (CH4) emission intensity (EI, g CH4/per unit of product). Supplementation with protein is known to improve the nutritive value of the otherwise low-quality diets. However, animal nutrition studies in East Africa that are accompanied by CH4 emission measurements are lacking. Thus, an animal experiment was conducted to quantify the effect of supplementing cattle fed mainly on low-quality Urochloa brizantha hay (control diet; CON; crude protein (CP) = 7.4%) or supplemented with either a tannin-rich leguminous fodder, Desmodium intortum hay (DES) or a commercial dairy concentrate (CUBES) on voluntary dry matter intake (DMI), nutrient apparent total tract digestibility, nitrogen (N) retention, enteric CH4 production and animal performance (milk and average daily gain). Twelve mid-lactating crossbred (Friesian × Boran) cows (initial liveweight = 335 kg) were used in a 3×3 (Period × Diet) Latin square design with each period running for four weeks. Compared to CON, DES decreased nutrient (DM, OM, CP) intake, apparent total tract digestibility and daily milk yield. In contrast, CUBES increased nutrient intake and animal performance compared to CON, while nutrients’ apparent total tract digestibility was not different, except for CP digestibility that increased. Compared to CON, DES and CUBES improved overall N retention by the animals as a proportion of N intake. The DES diet compared with CON and CUBES, shifted the proportion of N excretion via urine to the fecal route, likely because of its tannin content. Both DES and CUBES, compared to CON, reduced methane yield (MY, g CH4/kg DMI) by 15% and 9%, respectively. The DES diet reduced absolute enteric CH4 emissions by 26% while CUBES increased emissions by 11% compared to CON. Based on the present findings, high supplementation levels (>50%) of Desmodium intortum hay is not recommended especially when the basal diet is low in CP content. Supplementation with lower levels of better managed Desmodium intortum forage however, need to be investigated to establish optimal inclusion levels that will improve animal productivity and reduce environmental impact of livestock in smallholder tropical contexts.
Collapse
|
42
|
Response of Phytogenic Additives on Enteric Methane Emissions and Animal Performance of Nellore Bulls Raised in Grassland. SUSTAINABILITY 2022. [DOI: 10.3390/su14159395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of this study was to evaluate the intake and digestibility of nutrients, emission of enteric CH4, and productive performance of Nellore bulls grazing Urochloa brizantha cv. Marandu palisade grass pastures during the rainy season, receiving an energy supplement or mineral supplement, with or without the inclusion of phytogenic additives. Forty-eight Nellore bulls were treated with: (1) energy supplement without the inclusion of phytogenic additives; (2) energy supplement with the inclusion of phytogenic additives; (3) mineral supplement without the inclusion of phytogenic additives; and (4) mineral supplement with the inclusion of phytogenic additives. Consumption of total dry matter (DM), crude protein (CP), apNDF, and energy; digestibility of DM, CP, and energy; average daily gain; stocking rate; and gain per area were higher in animals consuming energy supplements than those consuming mineral supplements. Digestibility of DM, NDF, and energy levels were lower in animals that consumed phytogenic additives. Compared with mineral supplements, the supply of energy supplements provides higher nutrient intake, increases enteric CH4 emission, and improves nutrient digestibility, providing a greater productive performance. The inclusion of phytogenic additives negatively affected nutrient intake and digestibility, did not reduce enteric CH4 emission, and influenced productive performance.
Collapse
|
43
|
Hristov AN, Melgar A, Wasson D, Arndt C. Symposium review: Effective nutritional strategies to mitigate enteric methane in dairy cattle. J Dairy Sci 2022; 105:8543-8557. [PMID: 35863922 DOI: 10.3168/jds.2021-21398] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/27/2022] [Indexed: 11/19/2022]
Abstract
Intensive research in the past decade has resulted in a better understanding of factors driving enteric methane (CH4) emissions in ruminants. Meta-analyses of large databases, developed through the GLOBAL NETWORK project, have identified successful strategies for mitigation of CH4 emissions. Methane inhibitors, alternative electron sinks, vegetable oils and oilseeds, and tanniferous forages are among the recommended strategies for mitigating CH4 emissions from dairy and beef cattle and small ruminants. These strategies were also effective in decreasing CH4 emissions yield and intensity. However, a higher inclusion rate of oils may negatively affect feed intake, rumen function, and animal performance, specifically milk components in dairy cows. In the case of nitrates (electron sinks), concerns with animal health may be impeding their adoption in practice, and potential emission trade-offs have to be considered. Tannins and tanniferous forages may have a negative effect on nutrient digestibility, and more research is needed to confirm their effects on overall animal performance in long-term experiments with high-producing animals. A meta-analysis of studies with dairy cows fed the CH4 inhibitor 3-nitrooxypropanol (3-NOP) at the Pennsylvania State University showed (1) a consistent 28 to 32% decrease in daily CH4 emissions or emissions yield and intensity; (2) no effect on dry matter intake, milk production, body weight, or body weight change, and a slight increase in milk fat concentration and yield (0.19 percentage units and 90 g/d, respectively); 3-NOP also appears to increase milk urea nitrogen concentration; (3) an exponential decrease in the mitigation effect of the inhibitor with increasing its dose (from 40 to 200 mg/kg of feed dry matter, corresponding to 3-NOP intake of 1 to 4.8 g/cow per day); and (4) a potential decrease in the efficacy of 3-NOP over time, which needs to be further investigated in long-term, full-lactation or multiple-lactation studies. The red macroalga Asparagopsis taxiformis has a strong CH4 mitigation effect, but studies are needed to determine its feasibility, long-term efficacy, and effects on animal production and health. We concluded that widespread adoption of mitigation strategies with proven effectiveness by the livestock industries will depend on cost, government policies and incentives, and willingness of consumers to pay a higher price for animal products with decreased carbon footprint.
Collapse
Affiliation(s)
- A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - D Wasson
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C Arndt
- International Livestock Research Institute, PO Box 30709, Nairobi 00100, Kenya
| |
Collapse
|
44
|
Makmur M, Zain M, Sholikin MM, Suharlina, Jayanegara A. Modulatory effects of dietary tannins on polyunsaturated fatty acid biohydrogenation in the rumen: A meta-analysis. Heliyon 2022; 8:e09828. [PMID: 35815140 PMCID: PMC9263859 DOI: 10.1016/j.heliyon.2022.e09828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/21/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022] Open
Abstract
Background Tannins are a group of phenolic compounds that can modify the rumen biohydrogenation (BH) of polyunsaturated fatty acids (PUFA), but to date results obtained have been inconsistent. This study therefore aims to conduct a meta-analysis of the scientific literature related to the effects of tannins on rumen BH and fermentation. Methods A total of 28 articles were collected from various scientific databases, such as Scopus, Science Direct and Google Scholar, and the data were analysed using a random effects model and meta-regression for rumen BH. The publication bias on the main variables of rumen fermentation was assessed using a funnel plot and Egger's test. Results An increase in tannin levels significantly reduced methane production (p < 0.001) and the population of Butyrivibrio fibrisolvens (p < 0.05). Dietary tannins also decreased the SFA proportion (p < 0.001) and increased (p < 0.001) the rumen monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) proportions. In additions, there were negative relationships between dietary tannin levels and BH rates of C18:2 n-6 and C18:3 n-3 (p < 0.05). Conclusion Dietary tannins modulate the rumen fermentation profile, mitigate methane emissions, and inhibit rumen BH of PUFA.
Collapse
|
45
|
Gao J, Zhao G. Potentials of using dietary plant secondary metabolites to mitigate nitrous oxide emissions from excreta of cattle: Impacts, mechanisms and perspectives. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:327-334. [PMID: 35647327 PMCID: PMC9118128 DOI: 10.1016/j.aninu.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas as well as the key component depleting the ozone sphere of the earth. Cattle have high feed and water intakes and excrete large amounts of urine and feces. N2O can be produced from cattle excreta during storage and use as fertilizer. Mitigating the N2O emissions from cattle excreta during production is important for protecting the environment and the sustainable development of the cattle industry. Feeding cattle with low-protein diets increases N utilization rates, decreases N excretion and consequently reduces N2O emissions. However, this approach cannot be applied in the long term because of its negative impact on animal performance. Recent studies showed that dietary inclusion of some plant secondary metabolites such as tannins, anthocyanins, glucosinolates and aucubin could manipulate the N excretion and the urinary components and consequently regulate N2O emissions from cattle excreta. This review summarized the recent developments in the effects of dietary tannins, anthocyanins and glucosinolates on the metabolism of cattle and the N2O emissions from cattle excreta and concluded that dietary inclusion of tannins or anthocyanins could considerably reduce N2O emissions from cattle excreta.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193 Beijing, China
| | - Guangyong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
46
|
Zain M, Wijaya Setia Ningrat R, Suryani H, Jamarun N. Effect of Various Feed Additives on the Methane Emissions from Beef Cattle Based on an Ammoniated Palm Frond Feeds. Vet Med Sci 2022. [DOI: 10.5772/intechopen.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Methane gas has a very significant contribution to the increase in greenhouse gases (GHG) globally. The livestock sector, especially ruminants, causes the issue of increasing GHG concentrations. The chapter presents the issue of reducing methane gas production from cattle. Various experiments to reduce methane gas production from ruminants have been carried out and have shown varying results. This series of results of the author\'s research on reducing methane gas production in livestock in beef cattle based on agriculture by-product to animal feed is addressed with this background. Agriculture by-products such as oil palm fronds and rice straw can be used to feed beef cattle in Indonesia. However, agriculture by-product as animal feed can reduce feed efficiency and increase methane gas production due to the high lignin content. Therefore, various alternatives are carried out to optimize the utilization of this plantation waste. One of them is the use of feed additives and methanogenesis inhibitors. The author\'s series of research using feed additives (direct-fed microbial) and various methanogenesis inhibitors (plant bioactive compounds and dietary lipids) were tested to determine their effect on nutrient digestibility and methane gas production in feed based on plantation waste. Experiments were carried out in vitro and in vivo on various types of ruminants. Plant bioactive compounds such as tannins are proven to reduce methane production through their ability to defaunate in the rumen. Tannins may also have direct effect on methanogens and indirectly by reducing fiber digestion. In addition, direct-fed microbial (DFM) feed additives such as Saccharomyces cerevisiae, Bacillus amyloliquifaciens, and Aspergillus oryzae can be used in ruminants to increase livestock productivity. Furthermore, virgin coconut oil as a dietary lipid contains medium-chain fatty acids, mainly lauric acid, which can inhibit the development of ciliates of protozoa and methanogenic bacteria that produce methane in the rumen.
Collapse
|
47
|
Ban C, Paengkoum S, Yang S, Tian X, Thongpea S, Purba RAP, Paengkoum P. Feeding meat goats mangosteen ( Garcinia mangostana L.) peel rich in condensed tannins, flavonoids, and cinnamic acid improves growth performance and plasma antioxidant activity under tropical conditions. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2068557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chao Ban
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Siwaporn Paengkoum
- Program in Agriculture, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | - Shenglin Yang
- College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| | - Xingzhou Tian
- College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| | - Sorasak Thongpea
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Rayudika Aprilia Patindra Purba
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
48
|
Zhang X, Ke W, Ding Z, Xu D, Wang M, Chen M, Guo X. Microbial mechanisms of using feruloyl esterase-producing Lactobacillus plantarum A1 and grape pomace to improve fermentation quality and mitigate ruminal methane emission of ensiled alfalfa for cleaner animal production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114637. [PMID: 35124318 DOI: 10.1016/j.jenvman.2022.114637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
This study was conducted to investigate the influence of feruloyl esterase-producing Lactobacillus plantarum A1 (Lp A1) and grape pomace (GP) alone, or in combination (LG) on ensiling characteristics and bacterial community, in vitro ruminal fermentation, methane (CH4) emission, and the microbiota of ensiled alfalfa. Alfalfa at 42% dry matter (DM) was treated in a 2 × 2 factorial design: with the application of Lp A1 at 0 (control) or 1 × 106 cfu/g of fresh forage, and GP at 0 or 5% of fresh forage. After 60 d of ensiling, a decrease in nonprotein nitrogen (NPN) was observed in GP treated silage. Lp A1 inoculated silage had a lower fiber content than silages without Lp A1. The lowest NPN was found in silage treated with LG, and an obvious increase in the relative abundance of Lactobacillus paracasei was detected in silages treated with Lp A1 and LG, respectively. In vitro ruminal experiments indicated that, although the application of GP deceased ruminal total gas, CH4 production, nitrogen degradation and the number of methanogenic archaea in alfalfa silage, it also reduced silage DM digestibility. In contrast, inoculation with Lp A1 not only increased DM digestibility and populations of ruminal Ruminococcus flavefaciens and fungi, but also improved ruminal total gas and CH4 production. As expected, LG treatment decreased alfalfa silage ruminal total gas and CH4 production relative to Lp A1 treatment alone, and increased silage DM digestibility compared with GP treated silage. In conclusion, the application of LG before ensiling alfalfa, balanced silage proteolysis, feed digestibility, and CH4 emission, and could be a promising strategy for using food industry by-products to produce a nutritional and environmentally-friendly legume silage that will mitigate N and greenhouse gas emissions from ruminants.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Probiotics and Bio-feed Research Center, Lanzhou University, Lanzhou, 730020, PR China
| | - Wencan Ke
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Probiotics and Bio-feed Research Center, Lanzhou University, Lanzhou, 730020, PR China
| | - Zitong Ding
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Probiotics and Bio-feed Research Center, Lanzhou University, Lanzhou, 730020, PR China
| | - Dongmei Xu
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Probiotics and Bio-feed Research Center, Lanzhou University, Lanzhou, 730020, PR China
| | - Musen Wang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Probiotics and Bio-feed Research Center, Lanzhou University, Lanzhou, 730020, PR China
| | - Menyan Chen
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Probiotics and Bio-feed Research Center, Lanzhou University, Lanzhou, 730020, PR China
| | - Xusheng Guo
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China; Probiotics and Bio-feed Research Center, Lanzhou University, Lanzhou, 730020, PR China.
| |
Collapse
|
49
|
Fouts JQ, Honan MC, Roque BM, Tricarico JM, Kebreab E. Board Invited Review: Enteric methane mitigation interventions. Transl Anim Sci 2022; 6:txac041. [PMID: 35529040 PMCID: PMC9071062 DOI: 10.1093/tas/txac041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mitigation of enteric methane (CH4) presents a feasible approach to curbing agriculture’s contribution to climate change. One intervention for reduction is dietary reformulation, which manipulates the composition of feedstuffs in ruminant diets to redirect fermentation processes toward low CH4 emissions. Examples include reducing the relative proportion of forages to concentrates, determining the rate of digestibility and passage rate from the rumen, and dietary lipid inclusion. Feed additives present another intervention for CH4 abatement and are classified based on their mode of action. Through inhibition of key enzymes, 3-nitrooxypropanol (3-NOP) and halogenated compounds directly target the methanogenesis pathway. Rumen environment modifiers, including nitrates, essential oils, and tannins, act on the conditions that affect methanogens and remove the accessibility of fermentation products needed for CH4 formation. Low CH4-emitting animals can also be directly or indirectly selected through breeding interventions, and genome-wide association studies are expected to provide efficient selection decisions. Overall, dietary reformulation and feed additive inclusion provide immediate and reversible effects, while selective breeding produces lasting, cumulative CH4 emission reductions.
Collapse
Affiliation(s)
- Julia Q Fouts
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
| | - Mallory C Honan
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
| | - Breanna M Roque
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
- FutureFeed Pty Ltd Townsville, QLD, Australia
| | | | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
50
|
Cidrini IA, Granja-Salcedo YT, Prados LF, Kishi LT, Siqueira GR, Resende FD. Effect of tannin extract associated with two levels of non-protein nitrogen in the supplement on performance, ruminal parameters, and microbial diversity of grazing Nellore cattle during the growing phase at dry season. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|