1
|
Gobbo A, Messina A, Vallortigara G. Swimming through asymmetry: zebrafish as a model for brain and behavior lateralization. Front Behav Neurosci 2025; 19:1527572. [PMID: 39906337 PMCID: PMC11788415 DOI: 10.3389/fnbeh.2025.1527572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
The left and right sides of the brain show anatomical, neurochemical and functional differences. In the past century, brain and behavior lateralization was considered a human peculiarity associated with language and handedness. However, nowadays lateralization is known to occur among all vertebrates, from primates to fish. Fish, especially zebrafish (Danio rerio), have emerged as a crucial model for exploring the evolution and mechanisms of brain asymmetry. This review summarizes recent advances in zebrafish research on brain lateralization, highlighting how genetic tools, imaging, and transgenic methods have been used to investigate left-right asymmetries and their impact on sensory, cognitive, and social behaviors including possible links to neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | |
Collapse
|
2
|
Bajracharya A, Timilsina S, Cao R, Jiang Q, Dickey BA, Wasti A, Xi J, Weingartner M, Baerson SR, Roman GW, Han Y, Qiu Y. Developing affordable and efficient heating devices for enhanced live cell imaging in confocal microscopy. FRONTIERS IN PLANT SCIENCE 2025; 15:1499831. [PMID: 39866313 PMCID: PMC11760603 DOI: 10.3389/fpls.2024.1499831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025]
Abstract
Temperature control is crucial for live cell imaging, particularly in studies involving plant responses to high ambient temperatures and thermal stress. This study presents the design, development, and testing of two cost-effective heating devices tailored for confocal microscopy applications: an aluminum heat plate and a wireless mini-heater. The aluminum heat plate, engineered to integrate seamlessly with the standard 160 mm × 110 mm microscope stage, supports temperatures up to 36°C, suitable for studies in the range of non-stressful warm temperatures (e.g., 25-27°C for Arabidopsis thaliana) and moderate heat stress (e.g., 30-36°C for A. thaliana). We also developed a wireless mini-heater that offers rapid, precise heating directly at the sample slide, with a temperature increase rate over 30 times faster than the heat plate. The wireless heater effectively maintained target temperatures up to 50°C, ideal for investigating severe heat stress and heat shock responses in plants. Both devices performed well in controlled studies, including the real-time analysis of heat shock protein accumulation and stress granule formation in A. thaliana. Our designs are effective and affordable, with total construction costs lower than $300. This accessibility makes them particularly valuable for small laboratories with limited funding. Future improvements could include enhanced heat uniformity, humidity control to mitigate evaporation, and more robust thermal management to minimize focus drift during extended imaging sessions. These modifications would further solidify the utility of our heating devices in live cell imaging, offering researchers reliable, budget-friendly tools for exploring plant thermal biology.
Collapse
Affiliation(s)
| | - Sampada Timilsina
- Department of Biology, University of Mississippi, University, MS, United States
| | - Ruofan Cao
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, United States
| | - Qingrui Jiang
- Department of Mechanical Engineering, University of Mississippi, University, MS, United States
| | - Berry A. Dickey
- Department of Biology, University of Mississippi, University, MS, United States
| | - Anupa Wasti
- Department of Biology, University of Mississippi, University, MS, United States
| | - Jing Xi
- Natural Products Utilization Research Unit, U.S. Department of Agriculture, Agricultural Research Service, University, MS, United States
| | - Magdalena Weingartner
- Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| | - Scott R. Baerson
- Natural Products Utilization Research Unit, U.S. Department of Agriculture, Agricultural Research Service, University, MS, United States
| | - Gregg W. Roman
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, United States
| | - Yiwei Han
- Department of Mechanical Engineering, University of Mississippi, University, MS, United States
| | - Yongjian Qiu
- Department of Biology, University of Mississippi, University, MS, United States
| |
Collapse
|
3
|
Tomoi T, Yoshida Y, Ohe S, Kabeya Y, Hasebe M, Morohoshi T, Murata T, Sakamoto J, Tamada Y, Kamei Y. Infrared laser-induced gene expression in single cells characterized by quantitative imaging in Physcomitrium patens. Commun Biol 2024; 7:1448. [PMID: 39506095 PMCID: PMC11541703 DOI: 10.1038/s42003-024-07141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
A spatiotemporal understanding of gene function requires the precise control of gene expression in each cell. Here, we use an infrared laser-evoked gene operator (IR-LEGO) system to induce gene expression at the single-cell level in the moss Physcomitrium patens by heating a living cell with an IR laser and thereby activating the heat shock response. We identify the laser irradiation conditions that provide higher inducibility with lower invasiveness by changing the laser power and irradiation duration. Furthermore, we quantitatively characterize the induction profile of the heat shock response using a heat-induced fluorescence reporter system after the IR laser irradiation of single cells under different conditions. Our data indicate that IR laser irradiation with long duration leads to higher inducibility according to increase in the laser power but not vice versa, and that the higher laser power even without conferring apparent damage to the cells decelerates and/or delayed gene induction. We define the temporal shift in expression as a function of onset and duration according to laser power and irradiation duration. This study contributes to the versatile application of IR-LEGO in plants and improves our understanding of heat shock-induced gene expression.
Collapse
Affiliation(s)
- Takumi Tomoi
- Innovation Department, Center for Innovation Support, Institute for Social Innovation and Cooperation, Utsunomiya University, Utsunomiya, Japan.
- School of Engineering, Utsunomiya University, Utsunomiya, Japan.
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan.
| | - Yuka Yoshida
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Japan
| | - Suguru Ohe
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
| | - Yukiko Kabeya
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Tomohiro Morohoshi
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Japan
| | - Takashi Murata
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Japan
| | - Joe Sakamoto
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Japan
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya, Japan.
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Japan.
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Japan.
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.
- Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Japan.
- Robotics, Engineering and Agriculture-technology Laboratory (REAL), Utsunomiya University, Utsunomiya, Japan.
| | - Yasuhiro Kamei
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan.
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.
- Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Japan.
- Optics and Imaging Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan.
| |
Collapse
|
4
|
Shimizu R, Sakamoto J, Adhitama N, Fujikawa M, Religia P, Kamei Y, Watanabe H, Kato Y. Spatiotemporal control of transgene expression using an infrared laser in the crustacean Daphnia magna. Sci Rep 2024; 14:25696. [PMID: 39465323 PMCID: PMC11514169 DOI: 10.1038/s41598-024-77458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
The crustacean Daphnia magna is an emerging model for ecological and toxicological genomics. However, the lack of methods for spatial and temporal control of gene expression has impaired the elucidation of molecular mechanisms underlying responses to environments in vivo. Here we report local activation of the hsp70 promoter-driven gene cassette in D. magna by the infrared laser-evoked gene operator (IR-LEGO), a method for heating the target cells with infrared irradiation. We identified the heat-inducible promoter upstream of the D. magna hsp70-A gene. Using this promoter, we generated a transgenic Daphnia harboring the heat-shock responsive GFP reporter gene and confirmed that the GFP gene responds to heat treatment not only in juveniles and adults but also in embryos. We collected embryos from the reporter line and irradiated four different regions of interest in the embryos: a proximal region of the third thoracic segment, a part of the midline, a second maxilla, and a distal region of the endopodite of the second antenna, all of which increased GFP fluorescence with an infrared laser. Our results suggest that the IR-LEGO method is useful for spatial and temporal control of gene expression and would advance the functional genomics in D. magna.
Collapse
Grants
- 22NIBB505, 21-405, 20-509, 19-511 NIBB Collaborative Research Project for Integrative Imaging
- 23K21753, 21H03602 Japan Society for the Promotion of Science
- 24H01367 , 23K23964, 23K18048, 22H05598, 22H02701, 20H04923, 19H05423 Japan Society for the Promotion of Science
Collapse
Affiliation(s)
- Rina Shimizu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Joe Sakamoto
- Optics and Imaging Facility, National Institute for Basic Biology, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Nikko Adhitama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Mana Fujikawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Pijar Religia
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yasuhiro Kamei
- Optics and Imaging Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
5
|
Zilliox M, Tillement V, Mangeat T, Polès S, Blader P, Batut J. Protocol to locally express cxcl12a during zebrafish olfactory organ development by combining IR-LEGO with live imaging. STAR Protoc 2023; 4:102538. [PMID: 37624700 PMCID: PMC10463262 DOI: 10.1016/j.xpro.2023.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Temporal and spatial regulation of gene expression is crucial for proper embryonic development. Infrared laser-evoked gene operator (IR-LEGO) can provide information for various developmental processes. Here, we present a protocol to locally express cxcl12a during zebrafish olfactory organ development1 using a combination of IR-LEGO and live imaging. We describe steps for implementing IR-LEGO, biological sample preparation, live imaging, data collection, and analysis. This protocol can be applied to virtually any genetically modified experimental organism.
Collapse
Affiliation(s)
- Marie Zilliox
- Unité de biologie Moléculaire, Cellulaire et du Développement (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| | - Vanessa Tillement
- LITC Core Facility, Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| | - Sophie Polès
- Unité de biologie Moléculaire, Cellulaire et du Développement (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| | - Patrick Blader
- Unité de biologie Moléculaire, Cellulaire et du Développement (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France.
| | - Julie Batut
- Unité de biologie Moléculaire, Cellulaire et du Développement (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
6
|
Larsen B, Hofmann R, Camacho IS, Clarke RW, Lagarias JC, Jones AR, Jones AM. Highlighter: An optogenetic system for high-resolution gene expression control in plants. PLoS Biol 2023; 21:e3002303. [PMID: 37733664 PMCID: PMC10513317 DOI: 10.1371/journal.pbio.3002303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
Optogenetic actuators have revolutionized the resolution at which biological processes can be controlled. In plants, deployment of optogenetics is challenging due to the need for these light-responsive systems to function in the context of horticultural light environments. Furthermore, many available optogenetic actuators are based on plant photoreceptors that might crosstalk with endogenous signaling processes, while others depend on exogenously supplied cofactors. To overcome such challenges, we have developed Highlighter, a synthetic, light-gated gene expression system tailored for in planta function. Highlighter is based on the photoswitchable CcaS-CcaR system from cyanobacteria and is repurposed for plants as a fully genetically encoded system. Analysis of a re-engineered CcaS in Escherichia coli demonstrated green/red photoswitching with phytochromobilin, a chromophore endogenous to plants, but also revealed a blue light response likely derived from a flavin-binding LOV-like domain. We deployed Highlighter in transiently transformed Nicotiana benthamiana for optogenetic control of fluorescent protein expression. Using light to guide differential fluorescent protein expression in nuclei of neighboring cells, we demonstrate unprecedented spatiotemporal control of target gene expression. We implemented the system to demonstrate optogenetic control over plant immunity and pigment production through modulation of the spectral composition of broadband visible (white) light. Highlighter is a step forward for optogenetics in plants and a technology for high-resolution gene induction that will advance fundamental plant biology and provide new opportunities for crop improvement.
Collapse
Affiliation(s)
- Bo Larsen
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Roberto Hofmann
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Ines S. Camacho
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, United Kingdom
| | - Richard W. Clarke
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, United Kingdom
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Alex R. Jones
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, United Kingdom
| | - Alexander M. Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Tomoi T, Tameshige T, Betsuyaku E, Hamada S, Sakamoto J, Uchida N, Torii K, Shimizu KK, Tamada Y, Urawa H, Okada K, Fukuda H, Tatematsu K, Kamei Y, Betsuyaku S. Targeted single-cell gene induction by optimizing the dually regulated CRE/ loxP system by a newly defined heat-shock promoter and the steroid hormone in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1171531. [PMID: 37351202 PMCID: PMC10283073 DOI: 10.3389/fpls.2023.1171531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 06/24/2023]
Abstract
Multicellular organisms rely on intercellular communication systems to organize their cellular functions. In studies focusing on intercellular communication, the key experimental techniques include the generation of chimeric tissue using transgenic DNA recombination systems represented by the CRE/loxP system. If an experimental system enables the induction of chimeras at highly targeted cell(s), it will facilitate the reproducibility and precision of experiments. However, multiple technical limitations have made this challenging. The stochastic nature of DNA recombination events, especially, hampers reproducible generation of intended chimeric patterns. Infrared laser-evoked gene operator (IR-LEGO), a microscopic system that irradiates targeted cells using an IR laser, can induce heat shock-mediated expression of transgenes, for example, CRE recombinase gene, in the cells. In this study, we developed a method that induces CRE/loxP recombination in the target cell(s) of plant roots and leaves in a highly specific manner. We combined IR-LEGO, an improved heat-shock-specific promoter, and dexamethasone-dependent regulation of CRE. The optimal IR-laser power and irradiation duration were estimated via exhaustive irradiation trials and subsequent statistical modeling. Under optimized conditions, CRE/loxP recombination was efficiently induced without cellular damage. We also found that the induction efficiency varied among tissue types and cellular sizes. The developed method offers an experimental system to generate a precisely designed chimeric tissue, and thus, will be useful for analyzing intercellular communication at high resolution in roots and leaves.
Collapse
Affiliation(s)
- Takumi Tomoi
- Center for Innovation Support, Institute for Social Innovation and Cooperation, Utsunomiya University, Utsunomiya, Japan
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research (KIBR), Yokohama City University, Yokohama, Japan
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Eriko Betsuyaku
- Department of Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Saki Hamada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Joe Sakamoto
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Japan
| | - Naoyuki Uchida
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Keiko U. Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Molecular Biosciences and Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, United States
| | - Kentaro K. Shimizu
- Kihara Institute for Biological Research (KIBR), Yokohama City University, Yokohama, Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Japan
- Robotics, Engineering and Agriculture-Technology Laboratory (REAL), Utsunomiya University, Utsunomiya, Japan
| | - Hiroko Urawa
- Faculty of Education, Gifu Shotoku Gakuen University, Gifu, Japan
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Japan
| | - Kiyotaka Okada
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Japan
- Ryukoku Extention Center Shiga, Ryukoku University, Otsu, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kyoto, Japan
| | - Kiyoshi Tatematsu
- Laboratory of Plant Organ Development, National Institute for Basic Biology, Okazaki, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Yasuhiro Kamei
- Laboratory for Biothermology, National Institute for Basic Biology, Okazaki, Japan
- Robotics, Engineering and Agriculture-Technology Laboratory (REAL), Utsunomiya University, Utsunomiya, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
- Optics and Imaging Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki, Japan
| | - Shigeyuki Betsuyaku
- Department of Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
8
|
Developing a Temperature-Inducible Transcriptional Rheostat in Neurospora crassa. mBio 2023; 14:e0329122. [PMID: 36744948 PMCID: PMC9973361 DOI: 10.1128/mbio.03291-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat shock protein (HSP)-encoding genes (hsp), part of the highly conserved heat shock response (HSR), are known to be induced by thermal stress in several organisms. In Neurospora crassa, three hsp genes, hsp30, hsp70, and hsp80, have been characterized; however, the role of defined cis elements in their responses to discrete changes in temperature remains largely unexplored. To fill this gap, while also aiming to obtain a reliable fungal heat shock-inducible system, we analyzed different sections of each hsp promoter by assessing the expression of real-time transcriptional reporters. Whereas all three promoters and their resected versions were acutely induced by high temperatures, only hsp30 displayed a broad range of expression and high tunability, amply exceeding other inducible promoter systems existing in Neurospora, such as quinic acid- or light-inducible ones. As proof of concept, we employed one of these promoters to control the expression of clr-2, which encodes the master regulator of Neurospora cellulolytic capabilities. The resulting strain fails to grow on cellulose at 25°C, whereas it grows robustly if heat shock pulses are delivered daily. Additionally, we designed two hsp30 synthetic promoters and characterized them, as well as the native promoters, using a gradient of high temperatures, yielding a wide range of responses to thermal stimuli. Thus, Neurospora hsp30-based promoters represent a new set of modular elements that can be used as transcriptional rheostats to adjust the expression of a gene of interest or for the implementation of regulated circuitries for synthetic biology and biotechnological strategies. IMPORTANCE A timely and dynamic response to strong temperature fluctuations is paramount for organismal biology. At the same time, inducible promoters are a powerful tool for fungal biotechnological and synthetic biology endeavors. In this work, we analyzed the activity of several N. crassa heat shock protein (hsp) promoters at a wide range of temperatures, observing that hsp30 exhibits remarkable sensitivity and a dynamic range of expression as we charted the response of this promoter to subtle increases in temperature, and also as we built and analyzed synthetic promoters based on hsp30 cis elements. As proof of concept, we tested the ability of hsp30 to provide tight control of a central process, cellulose degradation. While this study provides an unprecedented description of the regulation of the N. crassa hsp genes, it also contributes a noteworthy addition to the molecular toolset of transcriptional controllers in filamentous fungi.
Collapse
|
9
|
Matsuo M, Matsuyama M, Kobayashi T, Kanda S, Ansai S, Kawakami T, Hosokawa E, Daido Y, Kusakabe TG, Naruse K, Fukamachi S. Retinal Cone Mosaic in sws1-Mutant Medaka ( Oryzias latipes), A Teleost. Invest Ophthalmol Vis Sci 2022; 63:21. [DOI: 10.1167/iovs.63.11.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Megumi Matsuo
- Department of Chemical and Biological Sciences, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, Japan
| | - Tomoe Kobayashi
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, Japan
| | - Shinji Kanda
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Satoshi Ansai
- Laboratory of Bioresources/NIBB Center of the Interuniversity Bio-Backup Project, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Taichi Kawakami
- Institute for Integrative Neurobiology and Department of Biology, Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
| | - Erika Hosokawa
- Institute for Integrative Neurobiology and Department of Biology, Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
| | - Yutaka Daido
- Institute for Integrative Neurobiology and Department of Biology, Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
| | - Takehiro G. Kusakabe
- Institute for Integrative Neurobiology and Department of Biology, Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources/NIBB Center of the Interuniversity Bio-Backup Project, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Shoji Fukamachi
- Department of Chemical and Biological Sciences, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Shikata H, Denninger P. Plant optogenetics: Applications and perspectives. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102256. [PMID: 35780691 DOI: 10.1016/j.pbi.2022.102256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
To understand cell biological processes, like signalling pathways, protein movements, or metabolic processes, precise tools for manipulation are desired. Optogenetics allows to control cellular processes by light and can be applied at a high temporal and spatial resolution. In the last three decades, various optogenetic applications have been developed for animal, fungal, and prokaryotic cells. However, using optogenetics in plants has been difficult due to biological and technical issues, like missing cofactors, the presence of endogenous photoreceptors, or the necessity of light for photosynthesis, which potentially activates optogenetic tools constitutively. Recently developed tools overcome these limitations, making the application of optogenetics feasible also in plants. Here, we highlight the most useful recent applications in plants and give a perspective for future optogenetic approaches in plants science.
Collapse
Affiliation(s)
- Hiromasa Shikata
- Division of Plant Environmental Responses, National Institute for Basic Biology, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Japan.
| | - Philipp Denninger
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Emil-Ramann-Strasse 8, 85354 Freising, Germany.
| |
Collapse
|
11
|
Suzuki M, Nukazuka A, Kamei Y, Yuba S, Oda Y, Takagi S. Mosaic gene expression analysis of semaphorin-plexin interactions in Caenorhabditis elegans using the IR-LEGO single-cell gene induction system. Dev Growth Differ 2022; 64:230-242. [PMID: 35596523 DOI: 10.1111/dgd.12793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
Abstract
Genetic mosaic analysis is a powerful means of addressing the sites of gene action in multicellular organisms. In conventional genetic analysis, the generation of desired mosaic patterns is difficult to control due to the randomness of generating the genetic mosaic which often renders the analysis laborious and time consuming. The infrared laser-evoked gene operator (IR-LEGO) microscope system facilitates genetic mosaic analysis by enabling gene induction in targeted single cells in a living organism. However, the level of gene induction is not controllable due to the usage of a heat-shock promoter. Here, we applied IR-LEGO to examine the cell-cell interactions mediated by semaphoring-plexin signaling in Caenorhabditis elegans by inducing wild-type semaphorin/plexin in single cells within the population of mutant cells lacking the relevant proteins. We found that the cell contact-dependent termination of the extension of vulval precursor cells is elicited by the forward signaling mediated by the semaphorin receptor, PLX-1, but not by the reverse signaling via the transmembrane semaphorin, SMP-1. By utilizing Cre/loxP recombination coupled with the IR-LEGO system to induce SMP-1 at a physiological level, we found that SMP-1 interacts with PLX-1 only in trans upon contact between vulval precursor cells. In contrast, when overexpressed, SMP-1 exhibits the ability to cis-interact with PLX-1 on a single cell. These results indicate that mosaic analysis with IR-LEGO, especially when combined with an in vivo recombination system, efficiently complements conventional methods.
Collapse
Affiliation(s)
- Motoshi Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Akira Nukazuka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yasuhiro Kamei
- Laboratory for Biothermology, National Institute of Basic Biology, Okazaki, Aichi, Japan
| | - Shunsuke Yuba
- Research Institute for Cell Engineering, National Institute of Advanced and Industrial Science and Technology, Ikeda, Osaka, Japan
| | - Yoichi Oda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Shin Takagi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
12
|
Kawasaki T, Shimizu Y. Carcinogenesis Models Using Small Fish. Chem Pharm Bull (Tokyo) 2021; 69:962-969. [PMID: 34602577 DOI: 10.1248/cpb.c21-00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental animals are indispensable in life science-related research, including cancer studies. After rats and mice, small fishes, such as zebrafish and medaka, are the second most frequently used model species. Fish models have some advantageous physical characteristics that make them suitable for research, including their small size, some transparency, genetic manipulability, ease of handling, and highly ortholog correspondence with humans. This review introduces technological advances in carcinogenesis model production using small fish. Carcinogenesis model production begins with chemical carcinogenesis, followed by mutagenesis. Gene transfer technology has made it possible to incorporate various mechanisms that act on cancer-related genes in individuals. For example, scientists may now spatiotemporally control gene expression in a single fish through methods including the localization of an expression site via a tissue-specific promoter and expression control using light, heat, or a chemical substance. In addition, genome editing technology is realizing more specific and more efficient gene disruption than conventional mutagenesis, in which the disruption of the gene of interest depends on chance. These technological advances have improved animal models and will soon create carcinogenesis models that better mimic human pathology. We conclude by discussing future expectations for cancer research using small fish.
Collapse
Affiliation(s)
- Takashi Kawasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yuki Shimizu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
13
|
Hosoya O, Chung M, Ansai S, Takeuchi H, Miyaji M. A modified Tet-ON system minimizing leaky expression for cell-type specific gene induction in medaka fish. Dev Growth Differ 2021; 63:397-405. [PMID: 34375435 DOI: 10.1111/dgd.12743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022]
Abstract
The Tet-ON system is an important molecular tool for temporally and spatially-controlled inducible gene expression. Here, we developed a Tet-ON system to induce transgene expression specifically in the rod photoreceptors of medaka fish. Our modified reverse tetracycline-controlled transcriptional transactivator (rtTAm) with 5 amino acid substitutions dramatically improved the leakiness of the transgene in medaka fish. We generated a transgenic line carrying a self-reporting vector with the rtTAm gene driven by the Xenopus rhodopsin promoter and a tetracycline response element (TRE) followed by the green fluorescent protein (GFP) gene. We demonstrated that GFP fluorescence was restricted to the rod photoreceptors in the presence of doxycycline in larval fish (9 days post-fertilization). The GFP fluorescence intensity was enhanced with longer durations of doxycycline treatment up to 72 h and in a dose-dependent manner (5-45 μg/ml). These findings demonstrate that the Tet-ON system using rtTAm allows for spatiotemporal control of transgene expression, at least in the rod photoreceptors, in medaka fish.
Collapse
Affiliation(s)
- Osamu Hosoya
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Myung Chung
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hideaki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mary Miyaji
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
14
|
Ohno M, Nikaido M, Horiuchi N, Kawakami K, Hatta K. The enteric nervous system in zebrafish larvae can regenerate via migration into the ablated area and proliferation of neural crest-derived cells. Development 2021; 148:dev.195339. [PMID: 33376126 DOI: 10.1242/dev.195339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
The enteric nervous system (ENS), which is derived from neural crest, is essential for gut function, and its deficiency causes severe congenital diseases. Since the capacity for ENS regeneration in mammals is limited, additional complementary models would be useful. Here, we show that the ENS in zebrafish larvae at 10-15 days postfertilization is highly regenerative. After laser ablation, the number of enteric neurons recovered to ∼50% of the control by 10 days post-ablation (dpa). Using transgenic lines in which enteric neural crest-derived cells (ENCDCs) and enteric neurons are labeled with fluorescent proteins, we live imaged the regeneration process and found covering by neurites that extended from the unablated area and entry of ENCDCs into the ablated areas by 1-3 dpa. BrdU assays suggested that ∼80% of the enteric neurons and ∼90% of the Sox10-positive ENCDCs therein at 7 dpa were generated through proliferation. Thus, ENS regeneration involves proliferation, entrance and neurogenesis of ENCDCs. This is the first report regarding the regeneration process of the zebrafish ENS. Our findings provide a basis for further in vivo research at single-cell resolution in this vertebrate model.
Collapse
Affiliation(s)
- Maria Ohno
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | - Masataka Nikaido
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | - Natsumi Horiuchi
- School of Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Kohei Hatta
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
15
|
Abe K, Shimada A, Tayama S, Nishikawa H, Kaneko T, Tsuda S, Karaiwa A, Matsui T, Ishitani T, Takeda H. Horizontal Boundary Cells, a Special Group of Somitic Cells, Play Crucial Roles in the Formation of Dorsoventral Compartments in Teleost Somite. Cell Rep 2020; 27:928-939.e4. [PMID: 30995487 DOI: 10.1016/j.celrep.2019.03.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/27/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Establishment of robust gene expression boundary is crucial for creating elaborate morphology during development. However, mechanisms underlying boundary formation have been extensively studied only in a few model systems. We examined the establishment of zic1/zic4-expression boundary demarcating dorsoventral boundary of the entire trunk of medaka fish (Oryzias latipes) and identified a subgroup of dermomyotomal cells called horizontal boundary cells (HBCs) as crucial players for the boundary formation. Embryological and genetic analyses demonstrated that HBCs play crucial roles in the two major events of the process, i.e., refinement and maintenance. In the refinement, HBCs could serve as a chemical barrier against Wnts from the neural tube by expressing Hhip. At later stages, HBCs participate in the maintenance of the boundary by differentiating into the horizontal myoseptum physically inhibiting cell mixing across the boundary. These findings reveal the mechanisms underlying the dorsoventral boundary in the teleost trunk by specialized boundary cells.
Collapse
Affiliation(s)
- Kota Abe
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sayaka Tayama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hotaka Nishikawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuya Kaneko
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sachiko Tsuda
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan; Saitama University Brain Science Institute, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan; Research and Development Bureau, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Akari Karaiwa
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Takaaki Matsui
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Tohru Ishitani
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
16
|
He S, Xu J, Qu JY, Wen Z. Lightening the way of hematopoiesis: Infrared laser-mediated lineage tracing with high spatial-temporal resolution. Exp Hematol 2020; 85:3-7. [PMID: 32437907 DOI: 10.1016/j.exphem.2020.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Hematopoiesis refers to the developmental process generating all blood lineages. In vertebrates, there are multiple waves of hematopoiesis, which emerge in distinct anatomic locations at different times and give rise to different blood lineages. In the last decade, numerous lineage-tracing studies have been conducted to investigate the hierarchical structure of the hematopoietic system. Yet, the majority of these lineage-tracing studies are not able to integrate the spatial-temporal information with the developmental potential of hematopoietic cells. With the newly developed infrared laser-evoked gene operator (IR-LEGO) microscope heating system, it is now possible to improve our understanding of hematopoiesis to spatial-temporal-controlled single-cell resolution. Here, we discuss the recent development of the IR-LEGO system and its applications in hematopoietic lineage tracing in vivo.
Collapse
Affiliation(s)
- Sicong He
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
| |
Collapse
|
17
|
He S, Tian Y, Feng S, Wu Y, Shen X, Chen K, He Y, Sun Q, Li X, Xu J, Wen Z, Qu JY. In vivo single-cell lineage tracing in zebrafish using high-resolution infrared laser-mediated gene induction microscopy. eLife 2020; 9:e52024. [PMID: 31904340 PMCID: PMC7018510 DOI: 10.7554/elife.52024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/04/2020] [Indexed: 12/15/2022] Open
Abstract
Heterogeneity broadly exists in various cell types both during development and at homeostasis. Investigating heterogeneity is crucial for comprehensively understanding the complexity of ontogeny, dynamics, and function of specific cell types. Traditional bulk-labeling techniques are incompetent to dissect heterogeneity within cell population, while the new single-cell lineage tracing methodologies invented in the last decade can hardly achieve high-fidelity single-cell labeling and long-term in-vivo observation simultaneously. In this work, we developed a high-precision infrared laser-evoked gene operator heat-shock system, which uses laser-induced CreERT2 combined with loxP-DsRedx-loxP-GFP reporter to achieve precise single-cell labeling and tracing. In vivo study indicated that this system can precisely label single cell in brain, muscle and hematopoietic system in zebrafish embryo. Using this system, we traced the hematopoietic potential of hemogenic endothelium (HE) in the posterior blood island (PBI) of zebrafish embryo and found that HEs in the PBI are heterogeneous, which contains at least myeloid unipotent and myeloid-lymphoid bipotent subtypes.
Collapse
Affiliation(s)
- Sicong He
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Ye Tian
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Shachuan Feng
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Yi Wu
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Xinwei Shen
- Department of MathematicsThe Hong Kong University of Science and TechnologyKowloonChina
| | - Kani Chen
- Department of MathematicsThe Hong Kong University of Science and TechnologyKowloonChina
| | - Yingzhu He
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Qiqi Sun
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Xuesong Li
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Zilong Wen
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Jianan Y Qu
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| |
Collapse
|
18
|
Insights regarding skin regeneration in non-amniote vertebrates: Skin regeneration without scar formation and potential step-up to a higher level of regeneration. Semin Cell Dev Biol 2019; 100:109-121. [PMID: 31831357 DOI: 10.1016/j.semcdb.2019.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/16/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Skin wounds are among the most common injuries in animals and humans. Vertebrate skin is composed of an epidermis and dermis. After a deep skin injury in mammals, the wound heals, but the dermis cannot regenerate. Instead, collagenous scar tissue forms to fill the gap in the dermis, but the scar does not function like the dermis and often causes disfiguration. In contrast, in non-amniote vertebrates, including fish and amphibians, the dermis and skin derivatives are regenerated after a deep skin injury, without a recognizable scar remaining. Furthermore, skin regeneration can be compared with a higher level of organ regeneration represented by limb regeneration in these non-amniotes, as fish, anuran amphibians (frogs and toads), and urodele amphibians (newts and salamanders) have a high capacity for organ regeneration. Comparative studies of skin regeneration together with limb or other organ regeneration could reveal how skin regeneration is stepped up to a higher level of regeneration. The long history of regenerative biology research has revealed that fish, anurans, and urodeles have their own strengths as models for regeneration studies, and excellent model organisms of these non-amniote vertebrates that are suitable for molecular genetic studies are now available. Here, we summarize the advantages of fish, anurans, and urodeles for skin regeneration studies with special reference to three model organisms: zebrafish (Danio rerio), African clawed frog (Xenopus laevis), and Iberian ribbed newt (Pleurodele waltl). All three of these animals quickly cover skin wounds with the epidermis (wound epidermis formation) and regenerate the dermis and skin derivatives as adults. The availability of whole genome sequences, transgenesis, and genome editing with these models enables cell lineage tracing and the use of human disease models in skin regeneration phenomena, for example. Zebrafish present particular advantages in genetics research (e.g., human disease model and Cre-loxP system). Amphibians (X. laevis and P. waltl) have a skin structure (keratinized epidermis) common with humans, and skin regeneration in these animals can be stepped up to limb regeneration, a higher level of regeneration.
Collapse
|
19
|
Hwang D, Wada S, Takahashi A, Urawa H, Kamei Y, Nishikawa SI. Development of a Heat-Inducible Gene Expression System Using Female Gametophytes of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:2564-2572. [PMID: 31359050 DOI: 10.1093/pcp/pcz148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/22/2019] [Indexed: 05/13/2023]
Abstract
Female gametophyte (FG) is crucial for reproduction in flowering plants. Arabidopsis thaliana produces Polygonum-type FGs, which consist of an egg cell, two synergid cells, three antipodal cells and a central cell. Egg cell and central cell are the two female gametes that give rise to the embryo and surrounding endosperm, respectively, after fertilization. During the development of a FG, a single megaspore produced by meiosis undergoes three rounds of mitosis to produce an eight-nucleate cell. A seven-celled FG is formed after cellularization. The central cell initially contains two polar nuclei that fuse during female gametogenesis to form the secondary nucleus. In this study, we developed a gene induction system for analyzing the functions of various genes in developing Arabidopsis FGs. This system allows transgene expression in developing FGs using the heat-inducible Cre-loxP recombination system and FG-specific embryo sac 2 (ES2) promoter. Efficient gene induction was achieved in FGs by incubating flower buds and isolated pistils at 35�C for short periods of time (1-5 min). Gene induction was also induced in developing FGs by heat treatment of isolated ovules using the infrared laser-evoked gene operator (IR-LEGO) system. Expression of a dominant-negative mutant of Sad1/UNC84 (SUN) proteins in developing FGs using the gene induction system developed in this study caused defects in polar nuclear fusion, indicating the roles of SUN proteins in this process. This strategy represents a new tool for analyzing the functions of genes in FG development and FG functions.
Collapse
Affiliation(s)
- Dukhyun Hwang
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Department of Microbiology, College of Natural Sciences, Pukyoung National University, Busan, South Korea
| | - Satomi Wada
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Azusa Takahashi
- Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, Japan
| | - Hiroko Urawa
- Department of Education, Gifu Shotokugakuen University, Gifu, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Shuh-Ichi Nishikawa
- Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, Japan
| |
Collapse
|
20
|
An Ectoderm-Derived Myeloid-like Cell Population Functions as Antigen Transporters for Langerhans Cells in Zebrafish Epidermis. Dev Cell 2019; 49:605-617.e5. [DOI: 10.1016/j.devcel.2019.03.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/24/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
|
21
|
Hasugata R, Hayashi S, Kawasumi-Kita A, Sakamoto J, Kamei Y, Yokoyama H. Infrared Laser-Mediated Gene Induction at the Single-Cell Level in the Regenerating Tail of Xenopus laevis Tadpoles. Cold Spring Harb Protoc 2018; 2018:pdb.prot101014. [PMID: 29769391 DOI: 10.1101/pdb.prot101014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We describe a precise and reproducible gene-induction method in the amphibian, Xenopus laevis Tetrapod amphibians are excellent models for studying the mechanisms of three-dimensional organ regeneration because they have an exceptionally high regenerative ability. However, spatial and temporal manipulation of gene expression has been difficult in amphibians, hindering studies on the molecular mechanisms of organ regeneration. Recently, however, development of a Xenopus transgenic system with a heat-shock-inducible gene has enabled the manipulation of specific genes. Here, we applied an infrared laser-evoked gene operator (IR-LEGO) system to the regenerating tail of Xenopus tadpoles. In this method, a local heat shock by laser irradiation induces gene expression at the single-cell level. After amputation, Xenopus tadpoles regenerate a functional tail, including spinal cord. The regenerating tail is flat and transparent enabling the targeting of individual cells by laser irradiation. In this protocol, a single neural progenitor cell in the spinal cord of the regenerating tail is labeled with heat-shock-inducible green fluorescent protein (GFP). Gene induction at the single-cell level provides a method for rigorous cell-lineage tracing and for analyzing gene function in both cell-autonomous and noncell-autonomous contexts. The method can be modified to study the regeneration of limbs or organs in other amphibians, including Xenopus tropicalis, newts, and salamanders.
Collapse
Affiliation(s)
- Riho Hasugata
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori 036-8561, Japan
| | - Shinichi Hayashi
- Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Aiko Kawasumi-Kita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Joe Sakamoto
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology in the School of Life Science of the Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| | - Hitoshi Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori 036-8561, Japan;
| |
Collapse
|
22
|
He S, Chen J, Jiang Y, Wu Y, Zhu L, Jin W, Zhao C, Yu T, Wang T, Wu S, Lin X, Qu JY, Wen Z, Zhang W, Xu J. Adult zebrafish Langerhans cells arise from hematopoietic stem/progenitor cells. eLife 2018; 7:36131. [PMID: 29905527 PMCID: PMC6017808 DOI: 10.7554/elife.36131] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
The origin of Langerhans cells (LCs), which are skin epidermis-resident macrophages, remains unclear. Current lineage tracing of LCs largely relies on the promoter-Cre-LoxP system, which often gives rise to contradictory conclusions with different promoters. Thus, reinvestigation with an improved tracing method is necessary. Here, using a laser-mediated temporal-spatial resolved cell labeling method, we demonstrated that most adult LCs originated from the ventral wall of the dorsal aorta (VDA), an equivalent to the mouse aorta, gonads, and mesonephros (AGM), where both hematopoietic stem cells (HSCs) and non-HSC progenitors are generated. Further fine-fate mapping analysis revealed that the appearance of LCs in adult zebrafish was correlated with the development of HSCs, but not T cell progenitors. Finally, we showed that the appearance of tissue-resident macrophages in the brain, liver, heart, and gut of adult zebrafish was also correlated with HSCs. Thus, the results of our study challenged the EMP-origin theory for LCs.
Collapse
Affiliation(s)
- Sicong He
- Department of Electronic and Computer Engineering, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiahao Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunyun Jiang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Lu Zhu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wan Jin
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Changlong Zhao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Tao Yu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Tienan Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Shuting Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xi Lin
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zilong Wen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenqing Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
23
|
Miller IC, Castro MG, Maenza J, Weis JP, Kwong GA. Remote Control of Mammalian Cells with Heat-Triggered Gene Switches and Photothermal Pulse Trains. ACS Synth Biol 2018; 7:1167-1173. [PMID: 29579381 PMCID: PMC5929470 DOI: 10.1021/acssynbio.7b00455] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Engineered T cells are transforming broad fields in biomedicine, yet our ability to control cellular activity at specific anatomical sites remains limited. Here we engineer thermal gene switches to allow spatial and remote control of transcriptional activity using pulses of heat. These gene switches are constructed from the heat shock protein HSP70B' (HSPA6) promoter, show negligible basal transcriptional activity, and activate within an elevated temperature window of 40-45 °C. Using engineered Jurkat T cells implanted in vivo, we use plasmonic photothermal heating to trigger gene expression at specific sites to levels greater than 200-fold. We show that delivery of heat as thermal pulse trains significantly increase cellular thermal tolerance compared to continuous heating curves with identical area-under-the-curve (AUC), enabling long-term control of gene expression in Jurkat T cells. This approach expands the toolkit of remotely controlled genetic devices for basic and translational applications in synthetic immunology.
Collapse
Affiliation(s)
- Ian C. Miller
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Marielena Gamboa Castro
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Joe Maenza
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Jason P. Weis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Gabriel A. Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Georgia Immunoengineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Shimai K, Kusakabe TG. The Use of cis-Regulatory DNAs as Molecular Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [DOI: 10.1007/978-981-10-7545-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Sundaramoorthy S, Badaracco AG, Hirsch SM, Park JH, Davies T, Dumont J, Shirasu-Hiza M, Kummel AC, Canman JC. Low Efficiency Upconversion Nanoparticles for High-Resolution Coalignment of Near-Infrared and Visible Light Paths on a Light Microscope. ACS APPLIED MATERIALS & INTERFACES 2017; 9:7929-7940. [PMID: 28221018 PMCID: PMC5720688 DOI: 10.1021/acsami.6b15322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The combination of near-infrared (NIR) and visible wavelengths in light microscopy for biological studies is increasingly common. For example, many fields of biology are developing the use of NIR for optogenetics, in which an NIR laser induces a change in gene expression and/or protein function. One major technical barrier in working with both NIR and visible light on an optical microscope is obtaining their precise coalignment at the imaging plane position. Photon upconverting particles (UCPs) can bridge this gap as they are excited by NIR light but emit in the visible range via an anti-Stokes luminescence mechanism. Here, two different UCPs have been identified, high-efficiency micro540-UCPs and lower efficiency nano545-UCPs, that respond to NIR light and emit visible light with high photostability even at very high NIR power densities (>25 000 Suns). Both of these UCPs can be rapidly and reversibly excited by visible and NIR light and emit light at visible wavelengths detectable with standard emission settings used for Green Fluorescent Protein (GFP), a commonly used genetically encoded fluorophore. However, the high efficiency micro540-UCPs were suboptimal for NIR and visible light coalignment, due to their larger size and spatial broadening from particle-to-particle energy transfer consistent with a long-lived excited state and saturated power dependence. In contrast, the lower efficiency nano-UCPs were superior for precise coalignment of the NIR beam with the visible light path (∼2 μm versus ∼8 μm beam broadening, respectively) consistent with limited particle-to-particle energy transfer, superlinear power dependence for emission, and much smaller particle size. Furthermore, the nano-UCPs were superior to a traditional two-camera method for NIR and visible light path alignment in an in vivo Infrared-Laser-Evoked Gene Operator (IR-LEGO) optogenetics assay in the budding yeast Saccharomyces cerevisiae. In summary, nano-UCPs are powerful new tools for coaligning NIR and visible light paths on a light microscope.
Collapse
Affiliation(s)
| | - Adrian Garcia Badaracco
- University of California, San Diego, Section of Chemical and Materials Science, La Jolla, CA 92093
| | - Sophia M. Hirsch
- University Medical Center, Dept. of Genetics and Development, New York, NY 10032
| | - Jun Hong Park
- University of California, San Diego, Section of Chemical and Materials Science, La Jolla, CA 92093
| | - Tim Davies
- Columbia University Medical Center, Dept. of Pathology and Cell Biology, New York, NY 10032
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité F-75205 Paris, France
| | - Mimi Shirasu-Hiza
- University Medical Center, Dept. of Genetics and Development, New York, NY 10032
| | - Andrew C. Kummel
- University of California, San Diego, Section of Chemical and Materials Science, La Jolla, CA 92093
| | - Julie C. Canman
- Columbia University Medical Center, Dept. of Pathology and Cell Biology, New York, NY 10032
| |
Collapse
|
26
|
Maruyama K, Ogata T, Kanamori N, Yoshiwara K, Goto S, Yamamoto YY, Tokoro Y, Noda C, Takaki Y, Urawa H, Iuchi S, Urano K, Yoshida T, Sakurai T, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K. Design of an optimal promoter involved in the heat-induced transcriptional pathway in Arabidopsis, soybean, rice and maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:671-680. [PMID: 27862521 DOI: 10.1111/tpj.13420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 05/24/2023]
Abstract
Interactions between heat shock (HS) factors (HSFs) and heat shock response elements (HSEs) are important during the heat shock response (HSR) of flora and fauna. Moreover, plant HSFs that are involved in heat stress are also involved in abiotic stresses such as dehydration and cold as well as development, cell differentiation and proliferation. Because the specific combination of HSFs and HSEs involved in plants under heat stress remains unclear, the mechanism of their interaction has not yet been utilized in molecular breeding of plants for climate change. For the study reported herein, we compared the sequences of HS-inducible genes and their promoters in Arabidopsis, soybean, rice and maize and then designed an optimal HS-inducible promoter. Our analyses suggest that, for the four species, the abscisic acid-independent, HSE/HSF-dependent transcriptional pathway plays a major role in HS-inducible gene expression. We found that an 18-bp sequence that includes the HSE has an important role in the HSR, and that those sequences could be classified as representative of monocotyledons or dicotyledons. With the HS-inducible promoter designed based on our bioinformatic predictions, we were able to develop an optimal HS-specific inducible promoter for seedlings or single cells in roots. These findings demonstrate the utility of our HS-specific inducible promoter, which we expect will contribute to molecular breeding efforts and cell-targeted gene expression in specific plant tissues.
Collapse
Affiliation(s)
- Kyonoshin Maruyama
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-8686, Japan
| | - Takuya Ogata
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-8686, Japan
| | - Norihito Kanamori
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-8686, Japan
| | - Kyouko Yoshiwara
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-8686, Japan
| | - Shingo Goto
- Citrus Research Division, Institute of Fruit Tree and Tea Science, NARO, Shizuoka, Shizuoka Prefecture, 424-0292, Japan
| | - Yoshiharu Y Yamamoto
- Faculty of Applied Biological Sciences and United Graduate School of Agricultural Science, Gifu University, Gifu, Gifu Prefecture, 501-1103, Japan
| | - Yuko Tokoro
- Faculty of Education, Gifu Shotoku Gakuen University, Gifu, Gifu Prefecture, 501-6194, Japan
| | - Chihiro Noda
- Faculty of Education, Gifu Shotoku Gakuen University, Gifu, Gifu Prefecture, 501-6194, Japan
| | - Yuta Takaki
- Faculty of Education, Gifu Shotoku Gakuen University, Gifu, Gifu Prefecture, 501-6194, Japan
| | - Hiroko Urawa
- Faculty of Education, Gifu Shotoku Gakuen University, Gifu, Gifu Prefecture, 501-6194, Japan
| | - Satoshi Iuchi
- RIKEN Bioresource Center, Koyadai 3-1-1, Tsukuba, Ibaraki, 305-0074, Japan
| | - Kaoru Urano
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takuhiro Yoshida
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
27
|
Singhal A, Shaham S. Infrared laser-induced gene expression for tracking development and function of single C. elegans embryonic neurons. Nat Commun 2017; 8:14100. [PMID: 28098184 PMCID: PMC5253673 DOI: 10.1038/ncomms14100] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/28/2016] [Indexed: 11/09/2022] Open
Abstract
Visualizing neural-circuit assembly in vivo requires tracking growth of optically resolvable neurites. The Caenorhabditis elegans embryonic nervous system, comprising 222 neurons and 56 glia, is attractive for comprehensive studies of development; however, embryonic reporters are broadly expressed, making single-neurite tracking/manipulation challenging. We present a method, using an infrared laser, for reproducible heat-dependent gene expression in small sublineages (one to four cells) without radiation damage. We go beyond proof-of-principle, and use our system to label and track single neurons during early nervous-system assembly. We uncover a retrograde extension mechanism for axon growth, and reveal the aetiology of axon-guidance defects in sax-3/Robo and vab-1/EphR mutants. We also perform cell-specific rescues, determining DAF-6/patched-related site of action during sensory-organ development. Simultaneous ablation and labelling of cells using our system reveals roles for glia in dendrite extension. Our method can be applied to other optically/IR-transparent organisms, and opens the door to high-resolution systematic analyses of C. elegans morphogenesis.
Collapse
Affiliation(s)
- Anupriya Singhal
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
28
|
Davidson LM, Barkalina N, Yeste M, Jones C, Coward K. Development of a laser-activated mesoporous silica nanocarrier delivery system for applications in molecular and genetic research. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:115002. [PMID: 27842157 DOI: 10.1117/1.jbo.21.11.115002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Nanoparticles have revolutionized medical research over the last decade. One notable emerging area of nanomedicine is research developments in the reproductive sciences. Since increasing evidence indicates links between abnormal gene expression and previously unexplained states of infertility, there is a strong impetus to develop tools, such as nanoparticle platforms, to elucidate the pathophysiological mechanisms underlying such states. Mesoporous silica nanoparticles (MSNPs) represent a powerful and safe delivery tool for molecular and genetic investigations. Nevertheless, ongoing progress is restricted by low efficiency and unpredictable control of cargo delivery. Here, we describe for the first time, the development of a laser-activated MSNP system with heat-responsive cargo. Data derived from human embryonic kidney cells (HEK293T) indicate that when driven by a heat-shock promoter, MSNP cargo exhibits a significantly increased expression following infrared laser stimulus to stimulate a heat-shock response, without adverse cytotoxic effects. This delivery platform, with increased efficiency and the ability to impart spatial and temporal control, is highly useful for molecular and genetic investigations. We envision that this straightforward stimuli-responsive system could play a significant role in developing efficient nanodevices for research applications, for example in reproductive medicine.
Collapse
Affiliation(s)
- Lien M Davidson
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Natalia Barkalina
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Marc Yeste
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Celine Jones
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Kevin Coward
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
29
|
Venero Galanternik M, Nikaido M, Yu Z, McKinney SA, Piotrowski T. Localized Gene Induction by Infrared-Mediated Heat Shock. Zebrafish 2016; 13:537-540. [PMID: 27057799 DOI: 10.1089/zeb.2015.1161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genetic manipulations are a vital instrument for the study of embryonic development where to understand how genes work, it is necessary to provoke a loss or gain of function of a particular gene in a spatial and temporal manner. In the zebrafish embryo, the Hsp70 promoter is the most commonly used tool to induce a transient global gene expression of a desired gene, in a temporal manner. However, Hsp70-driven global gene induction presents caveats when studying gene function in a tissue of interest as gene induction in the whole embryo can lead to cell-autonomous and non-cell-autonomous phenotypes. In the current article, we describe an innovative and cost effective protocol to activate Hsp70-dependent expression in a small subset of cells in the zebrafish embryo, by utilizing a localized infrared (IR) laser. Our IR laser set up can be incorporated to any microscope platform without the requirement for expensive equipment. Furthermore, our protocol allows for controlled localized induction of specific proteins under the control of the hsp70 promoter in small subsets of cells. We use the migrating zebrafish sensory lateral line primordium as a model, because of its relative simplicity and experimental accessibility; however, this technique can be applied to any tissue in the zebrafish embryo.
Collapse
Affiliation(s)
- Marina Venero Galanternik
- 1 Stowers Institute for Medical Research , Kansas City, Missouri.,2 Department of Neurobiology and Anatomy, University of Utah , Salt Lake City, Utah
| | - Masataka Nikaido
- 1 Stowers Institute for Medical Research , Kansas City, Missouri
| | - Zulin Yu
- 1 Stowers Institute for Medical Research , Kansas City, Missouri
| | - Sean A McKinney
- 1 Stowers Institute for Medical Research , Kansas City, Missouri
| | - Tatjana Piotrowski
- 1 Stowers Institute for Medical Research , Kansas City, Missouri.,2 Department of Neurobiology and Anatomy, University of Utah , Salt Lake City, Utah
| |
Collapse
|
30
|
Nishihama R, Ishida S, Urawa H, Kamei Y, Kohchi T. Conditional Gene Expression/Deletion Systems for Marchantia polymorpha Using its Own Heat-Shock Promoter and Cre/loxP-Mediated Site-Specific Recombination. PLANT & CELL PHYSIOLOGY 2016; 57:271-280. [PMID: 26148498 DOI: 10.1093/pcp/pcv102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
The liverwort Marchantia polymorpha is an emerging model plant suitable for addressing, using genetic approaches, various evolutionary questions in the land plant lineage. Haploid dominancy in its life cycle facilitates genetic analyses, but conversely limits the ability to isolate mutants of essential genes. To overcome this issue and to be employed in cell lineage, mosaic and cell autonomy analyses, we developed a system that allows conditional gene expression and deletion using a promoter of a heat-shock protein (HSP) gene and the Cre/loxP site-specific recombination system. Because the widely used promoter of the Arabidopsis HSP18.2 gene did not operate in M. polymorpha, we identified a promoter of an endogenous HSP gene, MpHSP17.8A1, which exhibited a highly inducible transient expression level upon heat shock with a low basal activity level. Reporter genes fused to this promoter were induced globally in thalli under whole-plant heat treatment and also locally using a laser-assisted targeted heating technique. By expressing Cre fused to the glucocorticoid receptor under the control of the MpHSP17.8A1 promoter, a low background, sufficiently inducible control for loxP-mediated recombination could be achieved in M. polymorpha. Based on these findings, we developed a Gateway technology-based binary vector for the conditional induction of gene deletions.
Collapse
Affiliation(s)
- Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Hiroko Urawa
- Faculty of Education, Gifu Shotoku Gakuen University, Gifu, 501-6194 Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, NIBB Core Facilities, National Institute for Basic Biology, Okazaki, Aichi, 444-8585 Japan Department of Basic Biology in the School of Life Science, SOKENDAI (the Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
31
|
Xu J, Zhu L, He S, Wu Y, Jin W, Yu T, Qu JY, Wen Z. Temporal-Spatial Resolution Fate Mapping Reveals Distinct Origins for Embryonic and Adult Microglia in Zebrafish. Dev Cell 2016; 34:632-41. [PMID: 26418294 DOI: 10.1016/j.devcel.2015.08.018] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/05/2015] [Accepted: 08/26/2015] [Indexed: 12/24/2022]
Abstract
Microglia are CNS resident macrophages, and they play important roles in neural development and function. Recent studies have suggested that murine microglia arise from a single source, the yolk sac (YS), yet these studies lack spatial resolution to define the bona fide source(s) for microglia. Here, using light-induced high temporal-spatial resolution fate mapping, we challenge this single-source view by showing that microglia in zebrafish arise from multiple sources. The embryonic/larval microglia originate from the rostral blood island (RBI) region, the equivalent of mouse YS for myelopoiesis, whereas the adult microglia arise from the ventral wall of dorsal aorta (VDA) region, a tissue also producing definitive hematopoiesis in mouse. We further show that the VDA-region-derived microglia are Runx1 dependent, but cMyb independent, and developmentally regulated differently from the RBI region-derived microglia. Our study establishes a new paradigm for investigating the development and function of distinct microglia populations.
Collapse
Affiliation(s)
- Jin Xu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PRC
| | - Lu Zhu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PRC
| | - Sicong He
- Department of Electronic and Computer Engineering, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PRC
| | - Yi Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PRC
| | - Wan Jin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PRC
| | - Tao Yu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PRC
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PRC.
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PRC.
| |
Collapse
|
32
|
Abstract
The Japanese medaka, Oryzias latipes, is a vertebrate teleost model with a long history of genetic research. A number of unique features and established resources distinguish medaka from other vertebrate model systems. A large number of laboratory strains from different locations are available. Due to a high tolerance to inbreeding, many highly inbred strains have been established, thus providing a rich resource for genetic studies. Furthermore, closely related species native to different habitats in Southeast Asia permit comparative evolutionary studies. The transparency of embryos, larvae, and juveniles allows a detailed in vivo analysis of development. New tools to study diverse aspects of medaka biology are constantly being generated. Thus, medaka has become an important vertebrate model organism to study development, behavior, and physiology. In this review, we provide a comprehensive overview of established genetic and molecular-genetic tools that render medaka fish a full-fledged vertebrate system.
Collapse
|
33
|
Kawasumi-Kita A, Hayashi T, Kobayashi T, Nagayama C, Hayashi S, Kamei Y, Morishita Y, Takeuchi T, Tamura K, Yokoyama H. Application of local gene induction by infrared laser-mediated microscope and temperature stimulator to amphibian regeneration study. Dev Growth Differ 2015; 57:601-13. [DOI: 10.1111/dgd.12241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Aiko Kawasumi-Kita
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
- Laboratory for Developmental Morphogeometry; RIKEN Quantitative Biology Center; Kobe Hyogo 650-0047 Japan
| | - Toshinori Hayashi
- School of Life Science; Faculty of Medicine; Tottori University; Yonago Tottori 683-8503 Japan
| | - Takuya Kobayashi
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Chikashi Nagayama
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Shinichi Hayashi
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility; National Institute for Basic Biology; Myodaiji Okazaki Aichi 445-8585 Japan
- Department of Basic Biology in the School of Life Science of the Graduate University for Advanced Studies (SOKENDAI); Okazaki Aichi 445-8585 Japan
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry; RIKEN Quantitative Biology Center; Kobe Hyogo 650-0047 Japan
| | - Takashi Takeuchi
- School of Life Science; Faculty of Medicine; Tottori University; Yonago Tottori 683-8503 Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Hitoshi Yokoyama
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
- Department of Biochemistry and Molecular Biology; Faculty of Agriculture and Life Science; Hirosaki University; Hirosaki Aomori 036-8561 Japan
| |
Collapse
|
34
|
Itoh M, Yamamoto T, Nakajima Y, Hatta K. Multistepped optogenetics connects neurons and behavior. Curr Biol 2015; 24:R1155-6. [PMID: 25514003 DOI: 10.1016/j.cub.2014.10.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Mariko Itoh
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan.
| | - Tamami Yamamoto
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Yohei Nakajima
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Kohei Hatta
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan.
| |
Collapse
|
35
|
Kimura E, Isogai S, Hitomi J. Integration of vascular systems between the brain and spinal cord in zebrafish. Dev Biol 2015; 406:40-51. [PMID: 26234750 DOI: 10.1016/j.ydbio.2015.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/08/2015] [Accepted: 07/15/2015] [Indexed: 11/28/2022]
Abstract
Cerebral and spinal vascular systems are organized individually, and they then conjugate at their border, through the integration of basilar artery and vertebral arteries. Zebrafish (Danio rerio) is an ideal organism for studying early vascular development, and the precise procedure of cranial and truncal vascular formation has been previously demonstrated using this model. However, the stepwise process of the integration between the brain and spinal cord has not been clearly elucidated. In this study, we describe the integration of the independent vascular systems for the brain and spinal cord, using transgenic zebrafish expressing enhanced green fluorescent protein in endothelial cells. Initially, basilar artery and primordial hindbrain channels, into which internal carotid arteries supplied blood, were connected with dorsal longitudinal anastomose vessels, via the first intersegmental artery. This initial connection was not influenced by flow dynamics, suggesting that vascular integration in this region is controlled by genetic cues. Vertebral arteries were formed individually as longitudinal vessels beneath the spinal cord, and became integrated with the basilar artery during subsequent remodeling. Furthermore, we confirmed the basal vasculature was well conserved in adult zebrafish. Observations of vascular integration presented herein will contribute to an understanding of regulatory mechanisms behind this process.
Collapse
Affiliation(s)
- Eiji Kimura
- Department of Anatomy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Shiwa, Iwate 028-3694, Japan.
| | - Sumio Isogai
- Department of Anatomy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Shiwa, Iwate 028-3694, Japan
| | - Jiro Hitomi
- Department of Anatomy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-cho, Shiwa, Iwate 028-3694, Japan
| |
Collapse
|
36
|
Miao G, Hayashi S. Manipulation of gene expression by infrared laser heat shock and its application to the study of tracheal development inDrosophila. Dev Dyn 2015; 244:479-87. [DOI: 10.1002/dvdy.24192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- Guangxia Miao
- Laboratory for Morphogenetic Signaling; RIKEN Center for Developmental Biology; Chuo-ku Kobe Hyogo Japan
- Department of Biology; Kobe University Graduate School of Science; Nada-ku Kobe Hyogo Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling; RIKEN Center for Developmental Biology; Chuo-ku Kobe Hyogo Japan
- Department of Biology; Kobe University Graduate School of Science; Nada-ku Kobe Hyogo Japan
| |
Collapse
|
37
|
Hayashi S, Ochi H, Ogino H, Kawasumi A, Kamei Y, Tamura K, Yokoyama H. Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration. Dev Biol 2014; 396:31-41. [DOI: 10.1016/j.ydbio.2014.09.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/06/2014] [Accepted: 09/17/2014] [Indexed: 11/28/2022]
|
38
|
Kawaguchi A, Utsumi N, Morita M, Ohya A, Wada S. Application of thecis-regulatory region of a heat-shock protein 70 gene to heat-inducible gene expression in the ascidianCiona intestinalis. Genesis 2014; 53:170-82. [PMID: 25366274 DOI: 10.1002/dvg.22834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Akane Kawaguchi
- Department of Bioscience; Faculty of Bioscience; Nagahama Institute of Bio-Science and Technology; Nagahama Shiga Japan
| | - Nanami Utsumi
- Department of Animal Bioscience; Faculty of Bioscience; Nagahama Institute of Bio-Science and Technology; Nagahama Shiga Japan
| | - Maki Morita
- Guraduate School of Bioscience; Nagahama Institute of Bio-Science and Technology; Nagahama Shiga Japan
| | - Aya Ohya
- Department of Bioscience; Faculty of Bioscience; Nagahama Institute of Bio-Science and Technology; Nagahama Shiga Japan
| | - Shuichi Wada
- Department of Animal Bioscience; Faculty of Bioscience; Nagahama Institute of Bio-Science and Technology; Nagahama Shiga Japan
| |
Collapse
|
39
|
Suzuki M, Toyoda N, Takagi S. Pulsed irradiation improves target selectivity of infrared laser-evoked gene operator for single-cell gene induction in the nematode C. elegans. PLoS One 2014; 9:e85783. [PMID: 24465705 PMCID: PMC3896399 DOI: 10.1371/journal.pone.0085783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022] Open
Abstract
Methods for turning on/off gene expression at the experimenter’s discretion would be useful for various biological studies. Recently, we reported on a novel microscope system utilizing an infrared laser-evoked gene operator (IR-LEGO) designed for inducing heat shock response efficiently in targeted single cells in living organisms without cell damage, thereby driving expression of a transgene under the control of a heat shock promoter. Although the original IR-LEGO can be successfully used for gene induction, several limitations hinder its wider application. Here, using the nematode Caenorhabditis elegans (C. elegans) as a subject, we have made improvements in IR-LEGO. For better spatial control of heating, a pulsed irradiation method using an optical chopper was introduced. As a result, single cells of C. elegans embryos as early as the 2-cell stage and single neurons in ganglia can be induced to express genes selectively. In addition, the introduction of site-specific recombination systems to IR-LEGO enables the induction of gene expression controlled by constitutive and cell type-specific promoters. The strategies adopted here will be useful for future applications of IR-LEGO to other organisms.
Collapse
Affiliation(s)
- Motoshi Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Naoya Toyoda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shin Takagi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
40
|
Sasakura H, Tsukada Y, Takagi S, Mori I. Japanese studies on neural circuits and behavior of Caenorhabditis elegans. Front Neural Circuits 2013; 7:187. [PMID: 24348340 PMCID: PMC3842693 DOI: 10.3389/fncir.2013.00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 11/03/2013] [Indexed: 01/25/2023] Open
Abstract
The nematode Caenorhabditis elegans is an ideal organism for studying neural plasticity and animal behaviors. A total of 302 neurons of a C. elegans hermaphrodite have been classified into 118 neuronal groups. This simple neural circuit provides a solid basis for understanding the mechanisms of the brains of higher animals, including humans. Recent studies that employ modern imaging and manipulation techniques enable researchers to study the dynamic properties of nervous systems with great precision. Behavioral and molecular genetic analyses of this tiny animal have contributed greatly to the advancement of neural circuit research. Here, we will review the recent studies on the neural circuits of C. elegans that have been conducted in Japan. Several laboratories have established unique and clever methods to study the underlying neuronal substrates of behavioral regulation in C. elegans. The technological advances applied to studies of C. elegans have allowed new approaches for the studies of complex neural systems. Through reviewing the studies on the neuronal circuits of C. elegans in Japan, we will analyze and discuss the directions of neural circuit studies.
Collapse
Affiliation(s)
- Hiroyuki Sasakura
- Laboratory of Molecular Neurobiology, Division of Biological Science, Nagoya University Nagoya, Japan
| | - Yuki Tsukada
- Laboratory of Molecular Neurobiology, Division of Biological Science, Nagoya University Nagoya, Japan
| | - Shin Takagi
- Laboratory of Brain Function and Structure, Division of Biological Science, Nagoya University Nagoya, Japan
| | - Ikue Mori
- Laboratory of Molecular Neurobiology, Division of Biological Science, Nagoya University Nagoya, Japan
| |
Collapse
|
41
|
Shimada A, Kawanishi T, Kaneko T, Yoshihara H, Yano T, Inohaya K, Kinoshita M, Kamei Y, Tamura K, Takeda H. Trunk exoskeleton in teleosts is mesodermal in origin. Nat Commun 2013; 4:1639. [PMID: 23535660 PMCID: PMC3615485 DOI: 10.1038/ncomms2643] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/25/2013] [Indexed: 11/24/2022] Open
Abstract
The vertebrate mineralized skeleton is known to have first emerged as an exoskeleton that extensively covered the fossil jawless fish. The evolutionary origin of this exoskeleton has long been attributed to the emergence of the neural crest, but experimental evaluation for this is still poor. Here we determine the embryonic origin of scales and fin rays of medaka (teleost trunk exoskeletons) by applying long-term cell labelling methods, and demonstrate that both tissues are mesodermal in origin. Neural crest cells, however, fail to contribute to these tissues. This result suggests that the trunk neural crest has no skeletogenic capability in fish, instead highlighting the dominant role of the mesoderm in the evolution of the trunk skeleton. This further implies that the role of the neural crest in skeletogenesis has been predominant in the cephalic region from the early stage of vertebrate evolution. Trunk exoskeleton elements of non-tetrapods such as scales and fin rays are believed to derive from the neural crest. Shimada and colleagues use long-term cell labelling methods to show that these elements are actually derived from the mesoderm.
Collapse
Affiliation(s)
- Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Okuyama T, Isoe Y, Hoki M, Suehiro Y, Yamagishi G, Naruse K, Kinoshita M, Kamei Y, Shimizu A, Kubo T, Takeuchi H. Controlled Cre/loxP site-specific recombination in the developing brain in medaka fish, Oryzias latipes. PLoS One 2013; 8:e66597. [PMID: 23825546 PMCID: PMC3692484 DOI: 10.1371/journal.pone.0066597] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/08/2013] [Indexed: 01/12/2023] Open
Abstract
Background Genetic mosaic techniques have been used to visualize and/or genetically modify a neuronal subpopulation within complex neural circuits in various animals. Neural populations available for mosaic analysis, however, are limited in the vertebrate brain. Methodology/Principal Findings To establish methodology to genetically manipulate neural circuits in medaka, we first created two transgenic (Tg) medaka lines, Tg (HSP:Cre) and Tg (HuC:loxP-DsRed-loxP-GFP). We confirmed medaka HuC promoter-derived expression of the reporter gene in juvenile medaka whole brain, and in neuronal precursor cells in the adult brain. We then demonstrated that stochastic recombination can be induced by micro-injection of Cre mRNA into Tg (HuC:loxP-DsRed-loxP-GFP) embryos at the 1-cell stage, which allowed us to visualize some subpopulations of GFP-positive cells in compartmentalized regions of the telencephalon in the adult medaka brain. This finding suggested that the distribution of clonally-related cells derived from single or a few progenitor cells was restricted to a compartmentalized region. Heat treatment of Tg(HSP:Cre x HuC:loxP-DsRed-loxP-GFP) embryos (0–1 day post fertilization [dpf]) in a thermalcycler (39°C) led to Cre/loxP recombination in the whole brain. The recombination efficiency was notably low when using 2–3 dpf embyos compared with 0–1 dpf embryos, indicating the possibility of stage-dependent sensitivity of heat-inducible recombination. Finally, using an infrared laser-evoked gene operator (IR-LEGO) system, heat shock induced in a micro area in the developing brains led to visualization of clonally-related cells in both juvenile and adult medaka fish. Conclusions/Significance We established a noninvasive method to control Cre/loxP site-specific recombination in the developing nervous system in medaka fish. This method will broaden the neural population available for mosaic analyses and allow for lineage tracing of the vertebrate nervous system in both juvenile and adult stages.
Collapse
Affiliation(s)
- Teruhiro Okuyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Yasuko Isoe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masahito Hoki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Suehiro
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Genki Yamagishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Naruse
- National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasuhiro Kamei
- National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Atushi Shimizu
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
43
|
Suzuki M, Toyoda N, Shimojou M, Takagi S. Infrared laser-induced gene expression in targeted single cells of Caenorhabditis elegans. Dev Growth Differ 2013; 55:454-61. [PMID: 23614811 DOI: 10.1111/dgd.12061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 11/27/2022]
Abstract
Since the dawn of transgenic technology some 40 years ago, biologists have sought ways to manipulate, at their discretion, the expression of particular genes of interest in living organisms. The infrared laser-evoked gene operator (IR-LEGO) is a recently developed system for inducing gene expression in living organisms in a targeted fashion. It exploits the highly efficient capacity of an infrared laser for heating cells, to provide a high level of gene expression driven by heat-inducible promoters. By irradiating living specimens with a laser under a microscope, heat shock responses can be induced in individual cells, thereby inducing a particular gene, under the control of a heat shock promoter, in specifically targeted cells. In this review we first summarize previous attempts to drive transgene expression in organisms by using heat shock promoters, and then introduce the basic principle of the IR-LEGO system, and its applications.
Collapse
Affiliation(s)
- Motoshi Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | | | | | | |
Collapse
|
44
|
Kimura E, Deguchi T, Kamei Y, Shoji W, Yuba S, Hitomi J. Application of infrared laser to the zebrafish vascular system: gene induction, tracing, and ablation of single endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33:1264-70. [PMID: 23539214 DOI: 10.1161/atvbaha.112.300602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Infrared laser-evoked gene operator is a new microscopic method optimized to heat cells in living organisms without causing photochemical damage. By combining the promoter system for the heat shock response, infrared laser-evoked gene operator enables laser-mediated gene induction in targeted cells. We applied this method to the vascular system in zebrafish embryos and demonstrated its usability to investigate mechanisms of vascular morphogenesis in vivo. APPROACH AND RESULTS We used double-transgenic zebrafish with fli1:nEGFP to identify the endothelial cells, and with hsp:mCherry to carry out single-cell labeling. Optimizing the irradiation conditions, we finally succeeded in inducing the expression of the mCherry gene in single targeted endothelial cells, at a maximum efficiency rate of 60%. In addition, we indicated that this system could be used for laser ablation under certain conditions. To evaluate infrared laser-evoked gene operator, we applied this system to the endothelial cells of the first intersegmental arteries, and captured images of the connection between the vascular systems of the brain and spinal cord. CONCLUSIONS Our results suggest that the infrared laser-evoked gene operator system will contribute to the elucidation of the mechanisms underlying vascular morphogenesis by controlling spatiotemporal gene activation in single endothelial cells, by labeling or deleting individual vessels in living embryos.
Collapse
Affiliation(s)
- Eiji Kimura
- Department of Anatomy, Iwate Medical University, Iwate, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Cebrián V, Martín-Saavedra F, Gómez L, Arruebo M, Santamaria J, Vilaboa N. Enhancing of plasmonic photothermal therapy through heat-inducible transgene activity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012. [PMID: 23178286 DOI: 10.1016/j.nano.2012.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED We explore the synergistic effect of photothermal therapy and gene therapy, simultaneously triggered by silica-gold nanoshells (NS) or hollow gold nanoparticles (HGNPs) in human HeLa cells following near-infrared (NIR) light irradiation. Thermal transfer from NS was higher than that displayed by HGNPs, owing to a differential interaction of the nanomaterial with the biological environment. Under sublethal photothermal conditions, NS and HGNPs effectively modulated the expression levels of a DsRed-monomer reporter gene controlled by the highly heat-inducible human HSP70B promoter, as a function of nanomaterial concentration and length of laser exposure. Hyperthermia treatments at doses that do not promote cell death generated a lethal outcome in HeLa cells harboring the fusogenic GALV-FMG transgene under the control of the HSP70B promoter. Combination of lethal photothermia with the triggering of the cytotoxic transgene resulted in a dramatic increase of the cell-ablation area as a result of the synergistic activity established. FROM THE CLINICAL EDITOR In this study photothermal therapy and gene therapy, simultaneously triggered by silica-gold nanoshells or hollow gold nanoparticles, was investigated in human HeLa cells following near-infrared (NIR) light irradiation. It is shown that the combination of lethal photothermia with the triggering of the cytotoxic transgene at sublethal levels results in a synergistic cytotoxic effect in vitro.
Collapse
Affiliation(s)
- Virginia Cebrián
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Kobayashi K, Kamei Y, Kinoshita M, Czerny T, Tanaka M. A heat-inducible CRE/LOXP gene induction system in medaka. Genesis 2012; 51:59-67. [PMID: 23019184 DOI: 10.1002/dvg.22348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/05/2012] [Accepted: 09/18/2012] [Indexed: 11/05/2022]
Abstract
We established three lines of transgenic medaka, a heat-shock element (HSE) monitor line (hse-GFP line), heat-inducible driver lines (hse-cre lines), and effector lines (gapdh-loxP[DsRed]-GFP lines). We employed these to comprehensively analyze gene induction at different time points in various tissues. These analyses demonstrate a good response of synthetic HSEs by heat treatment during embryogenesis and the mosaic gene induction by cre/loxP-mediated recombination, thus providing practical information regarding the feasibility of a heat-inducible cre/loxP-mediated system in medaka. We also activated recombination by local heat-treatment using a metal probe and an infrared laser. Our results collectively indicate that these lines allow us to perform lineage tracing and mosaic analysis and provide the platform to investigate gene functions at later developmental stage and adult.
Collapse
Affiliation(s)
- Kayo Kobayashi
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | | | | | | | | |
Collapse
|
47
|
Beretta CA, Dross N, Guiterrez-Triana JA, Ryu S, Carl M. Habenula circuit development: past, present, and future. Front Neurosci 2012; 6:51. [PMID: 22536170 PMCID: PMC3332237 DOI: 10.3389/fnins.2012.00051] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/27/2012] [Indexed: 12/23/2022] Open
Abstract
The habenular neural circuit is attracting increasing attention from researchers in fields as diverse as neuroscience, medicine, behavior, development, and evolution. Recent studies have revealed that this part of the limbic system in the dorsal diencephalon is involved in reward, addiction, and other behaviors and its impairment is associated with various neurological conditions and diseases. Since the initial description of the dorsal diencephalic conduction system (DDC) with the habenulae in its center at the end of the nineteenth century, increasingly sophisticated techniques have resolved much of its anatomy and have shown that these pathways relay information from different parts of the forebrain to the tegmentum, midbrain, and hindbrain. The first part of this review gives a brief historical overview on how the improving experimental approaches have allowed the stepwise uncovering much of the architecture of the habenula circuit as we know it today. Our brain distributes tasks differentially between left and right and it has become a paradigm that this functional lateralization is a universal feature of vertebrates. Moreover, task dependent differential brain activities have been linked to anatomical differences across the left–right axis in humans. A good way to further explore this fundamental issue will be to study the functional consequences of subtle changes in neural network formation, which requires that we fully understand DDC system development. As the habenular circuit is evolutionarily highly conserved, researchers have the option to perform such difficult experiments in more experimentally amenable vertebrate systems. Indeed, research in the last decade has shown that the zebrafish is well suited for the study of DDC system development and the phenomenon of functional lateralization. We will critically discuss the advantages of the zebrafish model, available techniques, and others that are needed to fully understand habenular circuit development.
Collapse
Affiliation(s)
- Carlo A Beretta
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | | | | | | | | |
Collapse
|
48
|
Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns. Proc Natl Acad Sci U S A 2012; 109:7523-8. [PMID: 22529368 DOI: 10.1073/pnas.1204391109] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of optical methods to control cellular functions is important for various biological applications. In particular, heat shock promoter-mediated gene expression systems by laser light are attractive targets for controlling cellular functions. However, previous approaches have considerable technical limitations related to their use of UV, short-wavelength visible (vis), and infrared (IR) laser light, which have poor penetration into biological tissue. Biological tissue is relatively transparent to light inside the diagnostic window at wavelengths of 650-1,100 nm. Here we present a unique optical biotechnological method using carbon nanohorn (CNH) that transforms energy from diagnostic window laser light to heat to control the expression of various genes. We report that with this method, laser irradiation within the diagnostic window resulted in effective heat generation and thus caused heat shock promoter-mediated gene expression. This study provides an important step forward in the development of light-manipulated gene expression technologies.
Collapse
|
49
|
Abstract
'Evo-devo', an interdisciplinary field based on developmental biology, includes studies on the evolutionary processes leading to organ morphologies and functions. One fascinating theme in evo-devo is how fish fins evolved into tetrapod limbs. Studies by many scientists, including geneticists, mathematical biologists, and paleontologists, have led to the idea that fins and limbs are homologous organs; now it is the job of developmental biologists to integrate these data into a reliable scenario for the mechanism of fin-to-limb evolution. Here, we describe the fin-to-limb transition based on key recent developmental studies from various research fields that describe mechanisms that may underlie the development of fins, limb-like fins, and limbs.
Collapse
Affiliation(s)
- Tohru Yano
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, Japan.
| | | |
Collapse
|
50
|
Nakayama S, Ikenaga T, Kawakami K, Ono F, Hatta K. Transgenic line with gal4 insertion useful to study morphogenesis of craniofacial perichondrium, vascular endothelium-associated cells, floor plate, and dorsal midline radial glia during zebrafish development. Dev Growth Differ 2012; 54:202-15. [PMID: 22348745 DOI: 10.1111/j.1440-169x.2011.01322.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zebrafish is a good model for studying vertebrate development because of the availability of powerful genetic tools. We are interested in the study of the craniofacial skeletal structure of the zebrafish. For this purpose, we performed a gene trap screen and identified a Gal4 gene trap line, SAGFF(LF)134A. We then analyzed the expression pattern of SAGFF(LF)134A;Tg(UAS:GFP) and found that green fluorescent protein (GFP) was expressed not only in craniofacial skeletal elements but also in the vascular system, as well as in the nervous system. In craniofacial skeletal elements, strong GFP expression was detected not only in chondrocytes but also in the perichondrium. In the vascular system, GFP was expressed in endothelium-associated cells. In the spinal cord, strong GFP expression was found in the floor plate, and later in the dorsal radial glia located on the midline. Taking advantage of this transgenic line, which drives Gal4 expression in specific tissues, we crossed SAGFF(LF)134A with several UAS reporter lines. In particular, time-lapse imaging of photoconverted floor-plate cells of SAGFF(LF)134A;Tg(UAS:KikGR) revealed that the floor-plate cells changed their shape within 36 h from cuboidal/trapezoidal to wine glass shaped. Moreover, we identified a novel mode of association between axons and glia. The putative paths for the commissural axons, including pax8-positive CoBL interneurons, were identified as small openings in the basal endfoot of each floor plate. Our results indicate that the transgenic line would be useful for studying the morphogenesis of less-well-characterized tissues of interest, including the perichondrium, dorsal midline radial glia, late-stage floor plate, and vascular endothelium-associated cells.
Collapse
Affiliation(s)
- Sohei Nakayama
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou-gun, Hyogo 678-1297, Japan
| | | | | | | | | |
Collapse
|