1
|
Abstract
Interleukin 17A (IL-17A)-producing T helper 17 (Th17) cells were identified as a subset of T helper cells that play a critical role in host defense against bacterial and fungal pathogens. Th17 cells differentiate from Th0 naïve T-cells in response to transforming growth factor β1 (TGF-β1) and IL-6, the cytokines which also drive development of liver fibrosis, require activation of transcription factor retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt). IL-17A signals through the ubiquitously expressed receptor IL-17RA. Expression of IL-17RA is upregulated in patients with hepatitis B virus/hepatitis C virus (HBV/HCV) infections, nonalcoholic steatohepatitis (NASH), alcohol-associated liver disease (AALD), hepatocellular carcinoma (HCC), and experimental models of chronic toxic liver injury. The role of IL-17 signaling in the pathogenesis of NASH- and AALD-induced metabolic liver injury and HCC will be the focus of this review. The role of IL-17A-IL-17RA axis in mediation of the cross-talk between metabolically injured hepatic macrophages, hepatocytes, and fibrogenic myofibroblasts will be discussed.
Collapse
Affiliation(s)
- Na Li
- Shanghai University of Medicine & Health Sciences, Shanghai, P.R. China.,Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Gen Yamamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Hiroaki Fuji
- Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA
| |
Collapse
|
2
|
Baglieri J, Zhang C, Liang S, Liu X, Nishio T, Rosenthal SB, Dhar D, Su H, Cong M, Jia J, Hosseini M, Karin M, Kisseleva T, Brenner DA. Nondegradable Collagen Increases Liver Fibrosis but Not Hepatocellular Carcinoma in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1564-1579. [PMID: 34119473 PMCID: PMC8406794 DOI: 10.1016/j.ajpath.2021.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Although hepatocellular cancer (HCC) usually occurs in the setting of liver fibrosis, the causal relationship between liver fibrosis and HCC is unclear. in vivo and in vitro models of HCC involving Colr/r mice (that produce a collagenase-resistant type I collagen) or wild-type (WT) mice were used to assess the relationship between type I collagen, liver fibrosis, and experimental HCC. HCC was either chemically induced in WT and Colr/r mice or Hepa 1-6 cells were engrafted into WT and Colr/r livers. The effect of hepatic stellate cells (HSCs) from WT and Colr/r mice on the growth of Hepa 1-6 cells was studied by using multicellular tumor spheroids and xenografts. Collagen type I deposition and fibrosis were increased in Colr/r mice, but they developed fewer and smaller tumors. Hepa 1-6 cells had reduced tumor growth in the livers of Colr/r mice. Although Colr/r HSCs exhibited a more activated phenotype, Hepa 1-6 growth and malignancy were suppressed in multicellular tumor spheroids and in xenografts containing Colr/r HSCs. Treatment with vitronectin, which mimics the presence of degraded collagen fragments, converted the Colr/r phenotype into a WT phenotype. Although Colr/r mice have increased liver fibrosis, they exhibited decreased HCC in several models. Thus, increased liver type I collagen does not produce increased experimental HCC.
Collapse
Affiliation(s)
- Jacopo Baglieri
- Department of Medicine, University of California San Diego, San Diego, California; Department of Surgery, University of California San Diego, San Diego, California
| | - Cuili Zhang
- Department of Medicine, University of California San Diego, San Diego, California
| | - Shuang Liang
- Department of Medicine, University of California San Diego, San Diego, California
| | - Xiao Liu
- Department of Medicine, University of California San Diego, San Diego, California
| | - Takahiro Nishio
- Department of Medicine, University of California San Diego, San Diego, California
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, University of California San Diego, San Diego, California
| | - Debanjan Dhar
- Department of Medicine, University of California San Diego, San Diego, California
| | - Hua Su
- Department of Pharmacology, University of California San Diego, San Diego, California
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego, San Diego, California
| | - Michael Karin
- Department of Pharmacology, University of California San Diego, San Diego, California
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, San Diego, California
| | - David A Brenner
- Department of Medicine, University of California San Diego, San Diego, California.
| |
Collapse
|
3
|
Bruno S, Herrera Sanchez MB, Chiabotto G, Fonsato V, Navarro-Tableros V, Pasquino C, Tapparo M, Camussi G. Human Liver Stem Cells: A Liver-Derived Mesenchymal Stromal Cell-Like Population With Pro-regenerative Properties. Front Cell Dev Biol 2021; 9:644088. [PMID: 33981703 PMCID: PMC8107725 DOI: 10.3389/fcell.2021.644088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Human liver stem cells (HLSCs) were described for the first time in 2006 as a new stem cell population derived from healthy human livers. Like mesenchymal stromal cells, HLSCs exhibit multipotent and immunomodulatory properties. HLSCs can differentiate into several lineages under defined in vitro conditions, such as mature hepatocytes, osteocytes, endothelial cells, and islet-like cell organoids. Over the years, HLSCs have been shown to contribute to tissue repair and regeneration in different in vivo models, leading to more than five granted patents and over 15 peer reviewed scientific articles elucidating their potential therapeutic role in various experimental pathologies. In addition, HLSCs have recently completed a Phase 1 study evaluating their safety post intrahepatic injection in infants with inherited neonatal onset hyperammonemia. Even though a lot of progress has been made in understanding HLSCs over the past years, some important questions regarding the mechanisms of action remain to be elucidated. Among the mechanisms of interaction of HLSCs with their environment, a paracrine interface has emerged involving extracellular vesicles (EVs) as vehicles for transferring active biological materials. In our group, the EVs derived from HLSCs have been studied in vitro as well as in vivo. Our attention has mainly been focused on understanding the in vivo ability of HLSC–derived EVs as modulators of tissue regeneration, inflammation, fibrosis, and tumor growth. This review article aims to discuss in detail the role of HLSCs and HLSC-EVs in these processes and their possible future therapeutic applications.
Collapse
Affiliation(s)
- Stefania Bruno
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Center, University of Torino, Turin, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Valentina Fonsato
- Molecular Biotechnology Center, University of Torino, Turin, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| | - Victor Navarro-Tableros
- Molecular Biotechnology Center, University of Torino, Turin, Italy.,2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| | - Chiara Pasquino
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
4
|
Cokan KB, Urlep Ž, Lorbek G, Matz-Soja M, Skubic C, Perše M, Jeruc J, Juvan P, Režen T, Rozman D. Chronic Disruption of the Late Cholesterol Synthesis Leads to Female-Prevalent Liver Cancer. Cancers (Basel) 2020; 12:cancers12113302. [PMID: 33182326 PMCID: PMC7695248 DOI: 10.3390/cancers12113302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma is a disease with a variety of molecular triggers and is usually reported to prevail in males. However, after the menopause, the disease is also increasing in the female population. Herein, we discovered that chronic depletion of cholesterol synthesis due to the knock-out of the gene Cyp51 from this pathway leads to female prevalent hepatocarcinogenesis in aging mice. There is a high similarity between our mouse model and the situation in humans. Multiple deregulated pathways of hepatocarcinogenesis are shared. A female-dependent metabolic reprogramming leading to this type of liver cancer is exposed for the first time and reflects on deregulated cholesterol synthesis as the metabolic trigger. These data are of crucial importance. Despite the higher overall prevalence of hepatocellular carcinoma in males, we need tools and biomarkers to further stratify patients and offer better diagnosis and treatment options to both sexes. Abstract While the role of cholesterol in liver carcinogenesis remains controversial, hepatocellular carcinoma generally prevails in males. Herein, we uncover pathways of female-prevalent progression to hepatocellular carcinoma due to chronic repression of cholesterogenic lanosterol 14α-demethylase (CYP51) in hepatocytes. Tumors develop in knock-out mice after year one, with 2:1 prevalence in females. Metabolic and transcription factor networks were deduced from the liver transcriptome data, combined by sterol metabolite and blood parameter analyses, and interpreted with relevance to humans. Female knock-outs show increased plasma cholesterol and HDL, dampened lipid-related transcription factors FXR, LXRα:RXRα, and importantly, crosstalk between reduced LXRα and activated TGF-β signalling, indicating a higher susceptibility to HCC in aging females. PI3K/Akt signalling and ECM-receptor interaction are common pathways that are disturbed by sex-specific altered genes. Additionally, transcription factors (SOX9)2 and PPARα were recognized as important for female hepatocarcinogenesis, while overexpressed Cd36, a target of nuclear receptor RORC, is a new male-related regulator of ECM-receptor signalling in hepatocarcinogenesis. In conclusion, we uncover the sex-dependent metabolic reprogramming of cholesterol-related pathways that predispose for hepatocarcinogenesis in aging females. This is important in light of increased incidence of liver cancers in post-menopausal women.
Collapse
Affiliation(s)
- Kaja Blagotinšek Cokan
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.B.C.); (Ž.U.); (G.L.); (C.S.); (P.J.); (T.R.)
| | - Žiga Urlep
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.B.C.); (Ž.U.); (G.L.); (C.S.); (P.J.); (T.R.)
| | - Gregor Lorbek
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.B.C.); (Ž.U.); (G.L.); (C.S.); (P.J.); (T.R.)
| | - Madlen Matz-Soja
- Rudol-Schönheimer-Institute of Biochemistry, Divison of General Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Cene Skubic
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.B.C.); (Ž.U.); (G.L.); (C.S.); (P.J.); (T.R.)
| | - Martina Perše
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Peter Juvan
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.B.C.); (Ž.U.); (G.L.); (C.S.); (P.J.); (T.R.)
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.B.C.); (Ž.U.); (G.L.); (C.S.); (P.J.); (T.R.)
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.B.C.); (Ž.U.); (G.L.); (C.S.); (P.J.); (T.R.)
- Correspondence: ; Tel.: +386-1-543-7591
| |
Collapse
|
5
|
Philips CA, Augustine P, Rajesh S, Ahamed R, George T, Padsalgi G, Paramaguru R, Valiathan G, John SK. Granulocyte Colony-Stimulating Factor Use in Decompensated Cirrhosis: Lack of Survival Benefit. J Clin Exp Hepatol 2020; 10:124-134. [PMID: 32189927 PMCID: PMC7067994 DOI: 10.1016/j.jceh.2019.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Granulocyte colony-stimulating factor (GCSF) has been utilized in decompensated cirrhosis (DC) for improving transplant-free survival (TFS). Data from multiple centers are conflicting with regard to patient outcomes. In this retrospective study, we present our 'real-world experience' of GCSF use in a large group of DC. METHODS From September 2016 to September 2018, 1231 patients with cirrhosis were screened, of which 754 were found to have decompensation(s). Seventy-three patients with active ascites, jaundice, or both completed GCSF treatment (10 mcg/kg per day for 5 days, followed by 5 mcg/kg/day once every third day for total 12 doses). Per-protocol analysis (n = 56) was performed to study clinical events, liver disease severity, and outcomes at 3, 6, and 12 months after treatment. Modified intention-to-treat (mITT, n = 100) analysis was performed to study overall survival at 180 days. Outcomes were compared with a matched historical control (HC) group (n = 24). RESULTS Nine (16%, n = 56), 24 (43%, n = 56), and 36 (75%, n = 48) patients died at 3, 6, and 12-month follow-up after GCSF. The commonest cause of death was sepsis (53%) followed by progressive liver failure (33%). Nine percent of patients developed hepatocellular carcinoma on follow-up at the end of 1 year. Acute variceal bleeds, overt hepatic encephalopathy, intensive unit admissions, and liver disease severity scores were higher after treatment at the end of 1 year. The Child-Pugh score >11 and model for end-stage liver disease-sodium score >25 and > 20 predicted worse outcomes at all time points and at 6 and 12 months after GCSF, respectively. Compared to a matched HC group, patients receiving GCSF had higher mortality (75% vs 46%, P = 0.04) at one year. mITT analysis revealed poor overall survival at 6 months compared to HCs (48% vs 75%, P = 0.04). CONCLUSION Survival in DC was shorter than what was expected in the natural history of the disease after GCSF use.
Collapse
Key Words
- AKI, acute kidney injury
- AUC, area under the receiver operating curve
- AVB, acute variceal bleeding
- BMSCs, Bone marrow–derived stem cells
- CTP score, Child–Pugh score
- DC, decompensated cirrhosis
- DP, darbepoetin
- GCSF, granulocyte colony-stimulating factor
- HC, historical control
- HCC
- HCC, hepatocellular carcinoma
- HE, hepatic encephalopathy
- ICU, intensive care unit
- INR, international normalized ratio
- LT, liver transplantation
- MELD-Na, model for end-stage liver disease-sodium
- NASH, nonalcoholic steatohepatitis
- RCT, randomized controlled trial
- SBP, spontaneous bacterial peritonitis
- SMT, standard medical treatment
- TFS, transplant free survival
- encephalopathy
- erythropoietin
- growth factor
- hyponatremia
Collapse
Affiliation(s)
- Cyriac A. Philips
- The Liver Unit, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| | - Philip Augustine
- Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| | - Sasidharan Rajesh
- Interventional Radiology, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| | - Rizwan Ahamed
- Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| | - Tom George
- Interventional Radiology, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| | - Guruprasad Padsalgi
- Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| | | | - Gopakumar Valiathan
- Gastrointestinal and Hepatobiliary Surgery, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| | - Solomon K. John
- Hepatobiliary and Transplant Surgery, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| |
Collapse
|
6
|
Yasen A, Tuxun T, Apaer S, Li W, Maimaitinijiati Y, Wang H, Aisan M, Aji T, Shao Y, Hao W. Fetal liver stem cell transplantation for liver diseases. Regen Med 2019; 14:703-714. [PMID: 31393226 DOI: 10.2217/rme-2018-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stem cell transplantation exhibited a promising lifesaving therapy for various end-stage liver diseases and could serve as a salvaging bridge until curative methods can be performed. In past decades, mature hepatocytes, liver progenitor cells, mesenchymal stem cells and induced pluripotent stem cells have been practiced in above settings. However, long-term survival rates and continuous proliferation ability of these cells in vivo are unsatisfactory, whereas, fetal liver stem cells (FLSCs), given their unique superiority, may be the best candidate for stem cell transplantation technique. Recent studies have revealed that FLSCs could be used as an attractive genetic therapy or regenerative treatments for inherited metabolic or other hepatic disorders. In this study, we reviewed current status and advancements of FLSCs-based treatment.
Collapse
Affiliation(s)
- Aimaiti Yasen
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Tuerhongjiang Tuxun
- Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Shadike Apaer
- State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Wending Li
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Yusufukadier Maimaitinijiati
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Hui Wang
- State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Meiheriayi Aisan
- Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Tuerganaili Aji
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Yingmei Shao
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| | - Wen Hao
- State Key Laboratory on Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, 393 Xin Yi Road, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China.,Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang Uyghur Autonomous Region, PR China
| |
Collapse
|
7
|
Zhou W, Nelson ED, Abu Rmilah AA, Amiot BP, Nyberg SL. Stem Cell-Related Studies and Stem Cell-Based Therapies in Liver Diseases. Cell Transplant 2019; 28:1116-1122. [PMID: 31240944 PMCID: PMC6767888 DOI: 10.1177/0963689719859262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Owing to the increasing worldwide burden of liver diseases, the crucial need for safe and
effective interventions for treating end-stage liver failure has been a very productive
line of inquiry in the discipline of hepatology for many years. Liver transplantation is
recognized as the most effective treatment for end-stage liver disease; however, the
shortage of donor organs, high medical costs, and lifelong use of immunosuppressive agents
represent major drawbacks and demand exploration for alternative treatments. Stem
cell-based therapies have been widely studied in the field of liver diseases and are
considered to be among the most promising therapies. Herein, we review recent advances in
the application of stem cell-related therapies in liver disease with the aim of providing
readers with relevant knowledge in this field and inspiration to spur further inquiry.
Collapse
Affiliation(s)
- Wei Zhou
- Mayo Clinic, William J. von Liebig Center for Transplantation and Clinical Regeneration, Rochester, MN, USA.,The First Affiliated Hospital of China Medical University, Hepatobiliary Surgery, Shenyang, China
| | - Erek D Nelson
- Mayo Clinic, William J. von Liebig Center for Transplantation and Clinical Regeneration, Rochester, MN, USA
| | - Anan A Abu Rmilah
- Mayo Clinic, William J. von Liebig Center for Transplantation and Clinical Regeneration, Rochester, MN, USA
| | - Bruce P Amiot
- Mayo Clinic, William J. von Liebig Center for Transplantation and Clinical Regeneration, Rochester, MN, USA
| | - Scott L Nyberg
- Mayo Clinic, William J. von Liebig Center for Transplantation and Clinical Regeneration, Rochester, MN, USA
| |
Collapse
|
8
|
Wang K, Sun D. Cancer stem cells of hepatocellular carcinoma. Oncotarget 2018; 9:23306-23314. [PMID: 29796190 PMCID: PMC5955417 DOI: 10.18632/oncotarget.24623] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma is a malignant tumor arising from hepatocytes. The hepatocellular carcinoma is dictated by a subset of cells with stem cell-like features. These cells are apoptosis-resistant and have particular biomarkers, which serve as seeds in different stages of tumorigenesis including initiation, progression, metastasis, and relapse of hepatocellular carcinoma. Signaling pathways of cancer stem cells are novel targets for the radical intervention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kewei Wang
- Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, China.,Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin, China.,Key Laboratory of Etiology and Epidemiology (23618504), National Health and Family Planning Commission of the People's Republic of China, Harbin, China.,Harbin Medical University, Harbin, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin, China.,Key Laboratory of Etiology and Epidemiology (23618504), National Health and Family Planning Commission of the People's Republic of China, Harbin, China.,Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Tg737 regulates epithelial-mesenchymal transition and cancer stem cell properties via a negative feedback circuit between Snail and HNF4α during liver stem cell malignant transformation. Cancer Lett 2017; 402:52-60. [PMID: 28536011 DOI: 10.1016/j.canlet.2017.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/04/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022]
Abstract
Determining the origin of liver cancer stem cells is important for treating hepatocellular carcinoma. Tg737 deficiency plays an important role in the malignant transformation of liver stem cells, but the underlying mechanism remains unclear. Here we established a chemical-induced mouse hepatoma model and found that Tg737 and hepatocyte nuclear factor 4-alpha (HNF4α) expression decreased and epithelial-mesenchymal transition (EMT)-related marker expression increased during liver cancer development. To investigate the underlying mechanism, we knocked down Tg737 in WB-F344 (WB) rat hepatic oval cells. Loss of Tg737 resulted in nuclear β-catenin accumulation and activation of the Wnt/β-catenin pathway, which further promoted EMT and the malignant phenotype. XAV939, a β-catenin inhibitor, attenuated WB cell malignant transformation due to Tg737 knockdown. To clarify the relationships of Tg737, the β-catenin pathway, and HNF4α, we inhibited Snail and overexpressed HNF4α after Tg737 knockdown in WB cells and found that Snail and HNF4α comprise a negative feedback circuit. Taken together, the results showed that Tg737 regulates a Wnt/β-catenin/Snail-HNF4α negative feedback circuit, thereby blocking EMT and the malignant transformation of liver stem cells to liver cancer stem cells.
Collapse
|
10
|
Panera N, Crudele A, Romito I, Gnani D, Alisi A. Focal Adhesion Kinase: Insight into Molecular Roles and Functions in Hepatocellular Carcinoma. Int J Mol Sci 2017; 18:ijms18010099. [PMID: 28067792 PMCID: PMC5297733 DOI: 10.3390/ijms18010099] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Due to the high incidence of post-operative recurrence after current treatments, the identification of new and more effective drugs is required. In previous years, new targetable genes/pathways involved in HCC pathogenesis have been discovered through the help of high-throughput sequencing technologies. Mutations in TP53 and β-catenin genes are the most frequent aberrations in HCC. However, approaches able to reverse the effect of these mutations might be unpredictable. In fact, if the reactivation of proteins, such as p53 in tumours, holds great promise as anticancer therapy, there are studies arguing that chronic activation of these types of molecules may be deleterious. Thus, recently the efforts on potential targets have focused on actionable mutations, such as those occurring in the gene encoding for focal adhesion kinase (FAK). This tyrosine kinase, localized to cellular focal contacts, is over-expressed in a variety of human tumours, including HCC. Moreover, several lines of evidence demonstrated that FAK depletion or inhibition impair in vitro and in vivo HCC growth and metastasis. Here, we provide an overview of FAK expression and activity in the context of tumour biology, discussing the current evidence of its connection with HCC development and progression.
Collapse
Affiliation(s)
- Nadia Panera
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Annalisa Crudele
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Ilaria Romito
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Daniela Gnani
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| | - Anna Alisi
- Liver Research Unit, Bambino Gesù Children's Hospital, IRCCS, Via S. Paolo, 15, 00146 Rome, Italy.
| |
Collapse
|
11
|
Yang X, Hao J, Mao Y, Jin ZQ, Cao R, Zhu CH, Liu XH, Liu C, Ding XL, Wang XD, Chen D, Wu XZ. bFGF Promotes Migration and Induces Cancer-Associated Fibroblast Differentiation of Mouse Bone Mesenchymal Stem Cells to Promote Tumor Growth. Stem Cells Dev 2016; 25:1629-1639. [PMID: 27484709 DOI: 10.1089/scd.2016.0217] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumors recruit bone mesenchymal stem cells (BMSCs) to localize to tumor sites, which induces their conversion into cancer-associated fibroblasts (CAFs) that facilitate tumor progression. However, this process is poorly understood on the molecular level. In this study, we found that 4T1 breast cancer cells promoted the migration of BMSCs, and bFGF neutralizing antibody inhibited the migration of BMSCs induced by a tumor-conditioned medium. In addition, exogenous bFGF enhanced the migration of BMSCs in a dose-dependent manner in vitro. Furthermore, BMSCs promoted the proliferation of 4T1 tumor cells under BMSC-conditioned medium and in tumor xenograft model. Dramatically, BMSCs expressed CAF markers and produced collagen in the tumor microenvironment, and this transition was blocked by bFGF antibody. In addition, exogenous bFGF induced CAF differentiation of BMSCs. And bFGF increased phosphorylation of Erk1/2 and Smad3 in BMSCs and Erk inhibitor PD98059 was shown to block bFGF-induced Erk and Smad3 phosphorylation, suggesting that Erk/Smad3 signaling pathway involved in BMSC transdifferentiation induced by bFGF. Collectively, our results indicate that bFGF signaling plays indispensable roles in BMSC recruitment and transdifferentiation into CAFs and the consequent protumor effects, and targeting tumor stroma through bFGF inhibition maybe a promising strategy to suppress tumor progression.
Collapse
Affiliation(s)
- Xue Yang
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Jian Hao
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Yu Mao
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Zi-Qi Jin
- 2 Tianjin Medical University , Tianjin, China
| | - Rui Cao
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Cui-Hong Zhu
- 3 Zhong-Shan-Men In-Patient Department, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Xiao-Hui Liu
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Chang Liu
- 3 Zhong-Shan-Men In-Patient Department, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Xiu-Li Ding
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Xiao-Dong Wang
- 4 Tianjin Medical University General Hospital , Tianjin, China
| | - Dan Chen
- 2 Tianjin Medical University , Tianjin, China
| | - Xiong-Zhi Wu
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| |
Collapse
|
12
|
Fagoonee S, Famulari ES, Silengo L, Camussi G, Altruda F. Prospects for Adult Stem Cells in the Treatment of Liver Diseases. Stem Cells Dev 2016; 25:1471-1482. [PMID: 27503633 DOI: 10.1089/scd.2016.0144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocytes constitute the main bulk of the liver and perform several essential functions. After injury, the hepatocytes have a remarkable capacity to regenerate and restore functionality. However, in some cases, the endogenous hepatocytes cannot replicate or restore the function, and liver transplantation, which is not exempt of complications, is required. Stem cells offer in theory the possibility of generating unlimited supply of hepatocytes in vitro due to their capacity to self-renew and differentiate when given the right cues. Stem cells isolated from an array of tissues have been investigated for their capacity to differentiate into hepatocyte-like cells in vitro and are employed in rescue experiments in vivo. Adult stem cells have gained in attractiveness over embryonic stem cells for liver cell therapy due to their origin, multipotentiality, and the possibility of autologous transplantation. This review deals with the promise and limitations of adult stem cells in clinically restoring liver functionality.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- 1 Institute of Biostructure and Bioimaging , CNR, Turin, Italy .,2 Molecular Biotechnology Center, University of Turin , Turin, Italy .,3 Department of Molecular Biotechnology and Health Sciences, University of Turin , Turin, Italy
| | - Elvira Smeralda Famulari
- 2 Molecular Biotechnology Center, University of Turin , Turin, Italy .,3 Department of Molecular Biotechnology and Health Sciences, University of Turin , Turin, Italy
| | - Lorenzo Silengo
- 2 Molecular Biotechnology Center, University of Turin , Turin, Italy .,3 Department of Molecular Biotechnology and Health Sciences, University of Turin , Turin, Italy
| | - Giovanni Camussi
- 2 Molecular Biotechnology Center, University of Turin , Turin, Italy .,4 Department of Medical Sciences, University of Torino , Torino, Italy
| | - Fiorella Altruda
- 2 Molecular Biotechnology Center, University of Turin , Turin, Italy .,3 Department of Molecular Biotechnology and Health Sciences, University of Turin , Turin, Italy
| |
Collapse
|
13
|
Zhang Q, Jiang K, Li Y, Gao D, Sun L, Zhang S, Liu T, Guo K, Liu Y. Histidine-rich glycoprotein function in hepatocellular carcinoma depends on its N-glycosylation status, and it regulates cell proliferation by inhibiting Erk1/2 phosphorylation. Oncotarget 2016; 6:30222-31. [PMID: 26336134 PMCID: PMC4745792 DOI: 10.18632/oncotarget.4997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/31/2015] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer mortality. Significantly downregulated histidine-rich glycoprotein (HRG) during the dynamic stages (WB, WB7, and WB11) of neoplastic transformation of WB F344 hepatic oval-like cells was screened out by iTRAQ labeling followed by 2DLC-ESI-MS/MS analysis. HRG expression was significantly lower in HCC tissues. HRG overexpression in Huh7 and MHCC-97H hepatoma cell lines led to decreased cell proliferation, colony-forming ability, and tumor growth, and increased cell apoptosis. HRG could inhibit cell proliferation via the FGF-Erk1/2 signaling pathway by reducing Erk1/2 phosphorylation. On the other hand, the functional expression of HRG was also dependent on the glycosylation status at its N-terminal, especially at the glycosylation site Asn 125. The glycosylation of HRG may play a key competitive role in the interaction between HRG and heparin sulfate for binding bFGF and activating the FGF receptor. These findings provide novel insights into the molecular mechanism of HRG in HCC.
Collapse
Affiliation(s)
- Qinle Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Kai Jiang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Yan Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lu Sun
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tianhua Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Ma HY, Xu J, Liu X, Zhu Y, Gao B, Karin M, Tsukamoto H, Jeste DV, Grant I, Roberts AJ, Contet C, Geoffroy C, Zheng B, Brenner D, Kisseleva T. The role of IL-17 signaling in regulation of the liver-brain axis and intestinal permeability in Alcoholic Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2016; 4:27-35. [PMID: 27239399 PMCID: PMC4878828 DOI: 10.1007/s40139-016-0097-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcoholic liver disease (ALD) progresses from a normal liver, to steatosis, steatohepatitis, fibrosis and hepatocellular carcinoma (HCC). Despite intensive studies, the pathogenesis of ALD is poorly understood, in part due to a lack of suitable animal models which mimic the stages of ALD progression. Furthermore, the role of IL-17 in ALD has not been evaluated. We and others have recently demonstrated that IL-17 signaling plays a critical role in development of liver fibrosis and cancer. Here we summarize the most recent evidence supporting the role of IL-17 in ALD. As a result of a collaborative effort of Drs. Karin, Gao, Tsukamoto and Kisseleva, we developed several improved models of ALD in mice: 1) chronic-plus-binge model that mimics early stages of steatohepatitis, 2) intragastric ethanol feeding model that mimics alcoholic steatohepatitis and fibrosis, and 3) diethylnitrosamine (DEN)+alcohol model that mimics alcoholic liver cancer. These models might provide new insights into the mechanism of IL-17 signaling in ALD and help identify novel therapeutic targets.
Collapse
Affiliation(s)
- Hsiao-Yen Ma
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Jun Xu
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Xiao Liu
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Yunheng Zhu
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National, Institutes of Health, Bethesda, Maryland
| | - Michael Karin
- Department of Pharmacology, UC San Diego, La Jolla, CA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD & Cirrhosis Department of Pathology Keck School of Medicine of USC, University of Southern California, and Department of Veterans Affairs Great Los Angeles Healthcare System, Los Angeles, CA
| | - Dilip V Jeste
- Department of Psychiatry, UC San Diego, La Jolla, CA; Stein Institute for Research on Aging, UC San Diego, La Jolla, CA
| | - Igor Grant
- Department of Psychiatry, UC San Diego, La Jolla, CA
| | - Amanda J Roberts
- Department of Molecular & Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA
| | - Candice Contet
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA
| | | | - Binhai Zheng
- Department of Neurosciences, UC San Diego, La Jolla, CA
| | | | | |
Collapse
|
15
|
Wang K, Chen X, Ren J. Autologous bone marrow stem cell transplantation in patients with liver failure: a meta-analytic review. Stem Cells Dev 2015; 24:147-59. [PMID: 25356526 DOI: 10.1089/scd.2014.0337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autologous bone marrow stem cell (ABMSC) transplantation has been utilized in clinical practice to treat patients with liver failure, but the therapeutic effect remains to be defined. A meta-analysis is essential to assess clinical advantages of ABMSC transplantation in patients with liver failure. A systematic search of published works [eg, PubMed, Medline, Embase, Chin J Clinicians (Electronic edition), and Science Citation Index] was conducted to compare clinical outcomes of ABMSC transplantation in patients with liver failure. Meta-analytic results were tested by fixed-effects model or random-effects model, dependent on the characteristics of variables. A total of 534 patients from seven studies were included in final meta-analysis. Subsequent to ABMSC transplantation, there was no significant improvement in general symptom and signs such as loss of appetite, fatigue, and ascites. Activities of serum ALT were not significantly decreased with weighted mean difference (WMD) of -19.36 and 95% confidence interval (CI) -57.53 to 18.80 (P=0.32). Postoperative level of albumin (ALB) was expectedly enhanced by stem cell transplantation (WMD 2.97, 95% CI 0.52 to 5.43, P<0.05, I(2)=84%). Coagulation function was improved as demonstrated by a short prothrombin time (PT) (WMD -1.18, 95% CI -2.32 to -0.03, P<0.05, I(2)=6%), but was not reflected by prothrombin activity (PTA) (P=0.39). Total bilirubin (TBIL) was drastically diminished after ABMSC therapy (WMD -14.85, 95% CI -20.39 to -9.32, P<0.01, I(2)=73%). Model for end-stage liver disease (MELD) scores were dramatically reduced (WMD -2.27, 95% CI -3.53 to -1.02, P<0.01, I(2)=0%). The advantage of ABMSC transplantation could be maintained more than 24 weeks as displayed by time-courses of ALB, TBIL, and MELD score. ABMSC transplantation does provide beneficial effects for patients with liver failure. Therapeutic effects can last for 6 months. However, long-term effects need to be determined.
Collapse
Affiliation(s)
- Kewei Wang
- 1 Department of Surgery, University of Illinois College of Medicine , Peoria, Illinois
| | | | | |
Collapse
|
16
|
Zeng C, Zhang Y, Park SC, Eun JR, Nguyen NT, Tschudy-Seney B, Jung YJ, Theise ND, Zern MA, Duan Y. CD34(+) Liver Cancer Stem Cells Were Formed by Fusion of Hepatobiliary Stem/Progenitor Cells with Hematopoietic Precursor-Derived Myeloid Intermediates. Stem Cells Dev 2015; 24:2467-78. [PMID: 26192559 DOI: 10.1089/scd.2015.0202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A large number of cancer stem cells (CSCs) were identified and characterized; however, the origins and formation of CSCs remain elusive. In this study, we examined the origination of the newly identified CD34(+) liver CSC (LCSC). We found that CD34(+) LCSC coexpressed liver stem cell and myelomonocytic cell markers, showing a mixed phenotype, a combination of hepatobiliary stem/progenitor cells (HSPCs) and myelomonocytic cells. Moreover, human xenografts produced by CD34(+) LCSCs and the parental cells, which CD34(+) LCSC was isolated from, coexpressed liver cancer and myelomonocytic markers, also demonstrating mixed phenotypes. The xenografts and the parental cells secreted albumin demonstrating their hepatocyte origin and also expressed cytokines [interleukin (IL)-1b, IL-6, IL-12A, IL-18, tumor necrosis factor-alpha (TNF-α), and CSF1] and chemokines (IL-8, CCL2, and CCL5). Expression of these cytokines and chemokines responded to the stimuli [interferon-γ (INF-γ), IL-4, and lipopolysaccharide (LPS)]. Furthermore, human xenografts and the parental cells phagocytized Escherichia coli. CD34(+) LCSC coexpressed CD45, demonstrating that its origin appears to be from a hematopoietic precursor. The percentage of cells positive for OV6, CD34, and CD31, presenting the markers of HSPC, hematopoietic, and myelomonocytic cells, increased under treatment of CD34(+) LCSC with a drug. Cytogenetic analysis showed that CD34(+) LCSC contained a greater number of chromosomes. HBV DNA integrations and mutations in CD34(+) LCSC and the parental cells were identical to those in the literature or the database. Thus, these results demonstrated that CD34(+) LCSCs were formed by fusion of HSPC with CD34(+) hematopoietic precursor-derived myeloid intermediates; it appears that this is the first report that human CSCs have been formed by the fusion. Therefore, it represents a significant step toward better understanding of the formation of human CSC and the diverse origins of liver cancers.
Collapse
Affiliation(s)
- Changjun Zeng
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California.,3 College of Animal Science and Technology, Sichuan Agricultural University , Ya'an, China
| | - Yanling Zhang
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California.,4 School of Biotechnology, Southern Medical University , Guangzhou, China
| | - Su Cheol Park
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California.,5 Department of Internal Medicine, Korea Institute of Radiological & Medical Sciences , Seoul, Korea
| | - Jong Ryeol Eun
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California.,6 Department of Internal Medicine, Yeungnam University College of Medicine , Daegu, Korea
| | - Ngoc Tue Nguyen
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California
| | - Benjamin Tschudy-Seney
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California
| | - Yong Jin Jung
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California.,7 Department of Internal Medicine, Seoul National University College of Medicine , Seoul, Korea
| | - Neil D Theise
- 8 Department of Pathology and Medicine, Beth Israel Medical Center , Albert Einstein College of Medicine, New York, New York
| | - Mark A Zern
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California
| | - Yuyou Duan
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California.,2 Institute for Regenerative Cures, University of California Davis Medical Center , Sacramento, California.,9 Department of Dermatology, University of California Davis Medical Center , Sacramento, California
| |
Collapse
|
17
|
Park SC, Nguyen NT, Eun JR, Zhang Y, Jung YJ, Tschudy-Seney B, Trotsyuk A, Lam A, Ramsamooj R, Zhang Y, Theise ND, Zern MA, Duan Y. Identification of cancer stem cell subpopulations of CD34(+) PLC/PRF/5 that result in three types of human liver carcinomas. Stem Cells Dev 2015; 24:1008-21. [PMID: 25519836 DOI: 10.1089/scd.2014.0405] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CD34(+) stem cells play an important role during liver development and regeneration. Thus, we hypothesized that some human liver carcinomas (HLCs) might be derived from transformed CD34(+) stem cells. Here, we determined that a population of CD34(+) cells isolated from PLC/PRF/5 hepatoma cells (PLC) appears to function as liver cancer stem cells (LCSCs) by forming HLCs in immunodeficient mice with as few as 100 cells. Moreover, the CD34(+) PLC subpopulation cells had an advantage over CD34(-) PLCs at initiating tumors. Three types of HLCs were generated from CD34(+) PLC: hepatocellular carcinomas (HCCs); cholangiocarcinomas (CC); and combined hepatocellular cholangiocarcinomas (CHCs). Tumors formed in mice transplanted with 12 subpopulations and 6 progeny subpopulations of CD34(+) PLC cells. Interestingly, progenies with certain surface antigens (CD133, CD44, CD90, or EPCAM) predominantly yielded HCCs. CD34(+) PLCs that also expressed OV6 and their progeny OV6(+) cells primarily produced CHC and CC. This represents the first experiment to demonstrate that the OV6(+) antigen is associated with human CHC and CC. CD34(+) PLCs that also expressed CD31 and their progeny CD31(+) cells formed CHCs. Gene expression patterns and tumor cell populations from all xenografts exhibited diverse patterns, indicating that tumor-initiating cells (TICs) with distinct antigenic profiles contribute to cancer cell heterogeneity. Therefore, we identified CD34(+) PLC cells functioning as LCSCs generating three types of HLCs. Eighteen subpopulations from one origin had the capacity independently to initiate tumors, thus functioning as TICs. This finding has broad implications for better understanding of the multistep model of tumor initiation and progression. Our finding also indicates that CD34(+) PLCs that also express OV6 or CD31 result in types of HLCs. This is the first report that PLC/PRF/5 subpopulations expressing CD34 in combination with particular antigens defines categories of HLCs, implicating a diversity of origins for HLC.
Collapse
Affiliation(s)
- Su Cheol Park
- 1 Department of Internal Medicine, University of California Davis Medical Center , Sacramento, California
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Raggi C, Invernizzi P, Andersen JB. Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: molecular networks and biological concepts. J Hepatol 2015; 62:198-207. [PMID: 25220250 DOI: 10.1016/j.jhep.2014.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/30/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022]
Abstract
Clinical complexity, anatomic diversity and molecular heterogeneity of cholangiocarcinoma (CCA) represent a major challenge in the assessment of effective targeted therapies. Molecular and cellular mechanisms underlying the diversity of CCA growth patterns remain a key issue of clinical concern. Crucial questions comprise the nature of the CCA-origin, the initial target for cellular transformation as well as the relationship with the cancer stem cells (CSC) concept. Additionally, since CCA often develops in the context of an inflammatory milieu (cirrhosis and cholangitis), the stromal compartment or tumour microenvironment (TME) likely promotes initiation and progression of this malignancy, contributing to its heterogeneity. This review will emphasize the dynamic interplay between stem-like intrinsic and TME-extrinsic pathways, which may represent novel options for multi-targeted therapies in CCA.
Collapse
Affiliation(s)
- Chiara Raggi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy.
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Xu J, Liu X, Gao B, Karin M, Tsukamoto H, Brenner D, Kisseleva T. New Approaches for Studying Alcoholic Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2014; 2:171-183. [PMID: 26594598 DOI: 10.1007/s40139-014-0053-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is major cause of chronic liver injury which results in liver fibrosis and cirrhosis. According to the surveillance report published by the National Institute on Alcohol Abuse and Alcoholism, liver cirrhosis is the 12th leading cause of death in the United States with 48 % of these deaths being attributed to excessive alcohol consumption. ALD includes a spectrum of disorders from simple steatosis to steatohepatitis, fibrosis, and hepatocellular carcinoma. Several mechanisms play a critical role in the pathogenesis of ALD. These include ethanol-induced oxidative stress and depletion of glutathione, pathological methionine metabolism, increased gut permeability and release of endotoxins into the portal blood, recruitment and activation of inflammatory cells including bone marrow-derived and liver resident macrophages (Kupffer cells). Chronic alcohol consumption results in liver damage and activation of hepatic stellate cells (HSCs) and myofibroblasts, leading to liver fibrosis. Here we discuss the current view on factors that are specific for different stages of ALD and those that regulate its progression, including cytokines and chemokines, alcohol-responsive intracellular signaling pathways, and transcriptional factors. We also review recent studies demonstrating that alcohol-mediated changes can be regulated on an epigenetic level, including microRNAs. Finally, we discuss the reversibility of liver fibrosis and inactivation of HSCs as a potential strategy for treating alcohol-induced liver damage.
Collapse
Affiliation(s)
- Jun Xu
- Department of Medicine, UC San Diego, San Diego, CA, USA
| | - Xiao Liu
- Department of Medicine, UC San Diego, San Diego, CA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Michael Karin
- Department of Pharmacology, UC San Diego, San Diego, CA, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD & Cirrhosis Department of Pathology Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - David Brenner
- Department of Medicine, UC San Diego, San Diego, CA, USA
| | | |
Collapse
|
20
|
Moore JK, Stutchfield BM, Forbes SJ. Systematic review: the effects of autologous stem cell therapy for patients with liver disease. Aliment Pharmacol Ther 2014; 39:673-85. [PMID: 24528093 DOI: 10.1111/apt.12645] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/24/2013] [Accepted: 01/12/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND As morbidity and mortality from liver disease continues to rise, new strategies are necessary. Liver transplantation is not only an expensive resource committing the patient to lifelong immunosuppression but also suitable donor organs are in short supply. Against this background, autologous stem cell therapy has emerged as a potential treatment option. AIM To evaluate if it is possible to make a judgement on the safety, feasibility and effect of autologous stem cell therapy for patients with liver disease. METHODS MEDLINE and EMBASE were searched up until July 2013 to identify studies where autologous stem cell therapy was administered to patients with liver disease. RESULTS Of 1668 studies identified, 33 were eligible for inclusion evaluating a median sample size of 10 patients for a median follow-up of 6 months. Although there was marked heterogeneity between studies with regards to type, dose and route of delivery of stem cell, the treatment was shown to be safe and feasible largely when a peripheral route of administration was used. Of the studies which also looked at biochemical outcome, statistically significant improvement in liver function tests was seen in 16 studies post-treatment. CONCLUSION Although autologous stem cell therapy is a much needed possibility in the treatment of liver disease, further robust clinical trials and collaborative protocols are required.
Collapse
Affiliation(s)
- J K Moore
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
21
|
Huebert RC, Rakela J. Cellular therapy for liver disease. Mayo Clin Proc 2014; 89:414-24. [PMID: 24582199 PMCID: PMC4212517 DOI: 10.1016/j.mayocp.2013.10.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 12/19/2022]
Abstract
Regenerative medicine is energizing and empowering basic science and has the potential to dramatically transform health care in the future. Given the remarkable intrinsic regenerative properties of the liver, as well as widespread adoption of regenerative strategies for liver disease (eg, liver transplant, partial hepatectomy, living donor transplant), hepatology has always been at the forefront of clinical regenerative medicine. However, an expanding pool of patients awaiting liver transplant, a limited pool of donor organs, and finite applicability of the current surgical approaches have created a need for more refined and widely available regenerative medicine strategies. Although cell-based therapies have been used extensively for hematologic malignant diseases and other conditions, the potential application of cellular therapy for acute and chronic liver diseases has only more recently been explored. New understanding of the mechanisms of liver regeneration and repair, including activation of local stem/progenitor cells and contributions from circulating bone marrow-derived stem cells, provide the theoretical underpinnings for the rational use of cell-based therapies in clinical trials. In this review, we dissect the scientific rationale for various modalities of cell therapy for liver diseases being explored in animal models and review those tested in human clinical trials. We also attempt to clarify some of the important ongoing questions that need to be addressed in order to bring these powerful therapies to clinical translation. Discussions will cover transplant of hepatocytes and liver stem/progenitor cells as well as infusion or stimulation of bone marrow-derived stem cells. We also highlight tremendous scientific advances on the horizon, including the potential use of induced pluripotent stem cells and their derivatives as individualized regenerative therapy for liver disease.
Collapse
Affiliation(s)
| | - Jorge Rakela
- Division of Hepatology, Mayo Clinic, Phoenix, AZ
| |
Collapse
|
22
|
Singh S, Chakraborty S, Bonthu N, Radio S, Hussain SM, Sasson A. Combined hepatocellular cholangiocarcinoma: a case report and review of literature. Dig Dis Sci 2013; 58:2114-23. [PMID: 23397471 DOI: 10.1007/s10620-013-2585-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 01/21/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Shailender Singh
- Department of Gastroenterology and Hepatology, University of Nebraska Medical Center, 982000, Omaha, NE 68198-2000, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Sato M, Matsuda Y, Wakai T, Kubota M, Osawa M, Fujimaki S, Sanpei A, Takamura M, Yamagiwa S, Aoyagi Y. P21-activated kinase-2 is a critical mediator of transforming growth factor-β-induced hepatoma cell migration. J Gastroenterol Hepatol 2013; 28:1047-55. [PMID: 23425030 DOI: 10.1111/jgh.12150] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIM Transforming growth factor-β (TGF-β) has been shown to play a central role in the promotion of cell motility, but its functional mechanism has remained unclear. With the aim of investigating the diagnostic and treatment modalities for patients with hepatocellular carcinoma (HCC), the signaling pathway that may contribute to TGF-β-mediated cell invasion in hepatoma cells was evaluated. METHODS Three hepatoma cell lines, HepG2, PLC/PRF/5, and HLF, were treated with TGF-β, and the involvement of the non-canonical TGF-β pathway was analyzed by cell migration assays. HepG2 cells were treated with a p21-activated kinase-2 (PAK2)-targeting small interfering RNA and analyzed for their cell motility. The relationships between the PAK2 status and the clinicopathological characteristics of 62 HCC patients were also analyzed. RESULTS The cell migration assays showed that Akt is a critical regulator of TGF-β-mediated cell migration. Western blotting analyses showed that TGF-β stimulated Akt and PAK2 in all three hepatoma cell lines, and phosphorylated PAK2 was blocked by Akt inhibitor. Suppression of PAK2 expression by small interfering RNA resulted in increased focal adhesions with significantly repressed cell migration in the presence of TGF-β. Clinicopathological analyses showed that the phosphorylation level of PAK2 was closely associated with tumor progression, metastasis, and early recurrence of HCC. CONCLUSIONS PAK2 may be a critical mediator of TGF-β-mediated hepatoma cell migration, and may represent a potential target for the treatment of HCC.
Collapse
Affiliation(s)
- Munehiro Sato
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cheng BQ, Jiang Y, Li DL, Fan JJ, Ma M. Up-regulation of thy-1 promotes invasion and metastasis of hepatocarcinomas. Asian Pac J Cancer Prev 2013; 13:1349-53. [PMID: 22799330 DOI: 10.7314/apjcp.2012.13.4.1349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Increasing evidence has revealed that thy-1 was a potential stem cell marker of liver cancer, but no data have been shown on how thy-1 regulates the pathophysiology of liver cancer, such as proliferation, apoptosis, invasion and migration. We previously demonstrated that thy-1 was expressed in about 1% of hepg2 cells, thy-1+ hepg2 cells, but not thy-1-, demonstrating high tumorigenesis on inoculation 0.5x10⁵ cells per BACA/LA mouse after 2 months. In the present study, our results showed that higher expression of thy-1 occurs in 72% (36/50 cases) of neoplastic hepatic tissues as compared to 40% (20/50 cases) of control tissues, and the expression of thy-1 is higher in poorly differentiated liver tumors than in the well-differentiated ones. In addition, thy-1 expression was detected in 85% of blood samples from liver cancer patients, but none in normal subjects or patients with cirrhosis or hepatitis. There was a significant negative correlation between thy-1 expression and E-cadherin expression (a marker of invasion and migraton), but not between thy-1 expression and AFP expression in all the liver cancer and blood samples. We further investigated the relationship between thy-1 and E- cadherin in liver cancer hepg2 cell line which was transfected with pReceiver-M29/thy-1 eukaryotic expression vector followed by aspirin treatment. Lower expression of E- cadherin but higher expressions of thy-1 were detected in hepg2 cells transfected with pReceiver-M29/thy-1. Taken together, our study suggested that thy-1 probably regulates liver cancer invasion and migration.
Collapse
Affiliation(s)
- Bian-Qiao Cheng
- Department of Hepatology Center, Fuzhou General Hospital, Nanjing Military Area Command, Fuzhou, China
| | | | | | | | | |
Collapse
|
25
|
Fan L, Xu C, Wang C, Tao J, Ho C, Jiang L, Gui B, Huang S, Evert M, Calvisi DF, Chen X. Bmi1 is required for hepatic progenitor cell expansion and liver tumor development. PLoS One 2012; 7:e46472. [PMID: 23029524 PMCID: PMC3460872 DOI: 10.1371/journal.pone.0046472] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 09/02/2012] [Indexed: 12/13/2022] Open
Abstract
Bmi1 is a polycomb group transcriptional repressor and it has been implicated in regulating self-renewal and proliferation of many types of stem or progenitor cells. In addition, Bmi1 has been shown to function as an oncogene in multiple tumor types. In this study, we investigated the functional significance of Bmi1 in regulating hepatic oval cells, the major type of bipotential progenitor cells in adult liver, as well as the role of Bmi1 during hepatocarcinogenesis using Bmi1 knockout mice. We found that loss of Bmi1 significantly restricted chemically induced oval cell expansion in the mouse liver. Concomitant deletion of Ink4a/Arf in Bmi1 deficient mice completely rescued the oval cell expansion phenotype. Furthermore, ablation of Bmi1 delayed hepatocarcinogenesis induced by AKT and Ras co-expression. This antineoplastic effect was accompanied by the loss of hepatic oval cell marker expression in the liver tumor samples. In summary, our data demonstrated that Bmi1 is required for hepatic oval cell expansion via deregulating the Ink4a/Arf locus in mice. Our study also provides the evidence, for the first time, that Bmi1 expression is required for liver cancer development in vivo, thus representing a promising target for innovative treatments against human liver cancer.
Collapse
Affiliation(s)
- Lingling Fan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunmei Wang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Junyan Tao
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Coral Ho
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Lijie Jiang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Bing Gui
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Shiang Huang
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Matthias Evert
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Diego F. Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Liver Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Autologous bone marrow stem cells in the treatment of chronic liver disease. Int J Hepatol 2012; 2012:307165. [PMID: 22121493 PMCID: PMC3216260 DOI: 10.1155/2012/307165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/16/2011] [Indexed: 12/23/2022] Open
Abstract
Chronic liver disease (CLD) is increasing worldwide yet there has been no major advance in effective therapies for almost five decades. There is mounting evidence that adult haematopoietic stem cells (HSC) are capable of differentiating into many types of tissue, including skeletal and cardiac muscle, neuronal cells, pneumocytes and hepatocytes. These recent advances in regenerative medicine have brought hope for patients with liver cirrhosis awaiting transplantation. New findings in adult stem cell biology are transforming our understanding of tissue repair raising hopes of successful regenerative hepatology. Although all clinical trials to date have shown some improvement in liver function and CD34(+) cells have been used safely for BM transplantation for over 20 years, only randomised controlled clinical trials will be able to fully assess the potential clinical benefit of adult stem cell therapy for patients with CLD. This article focuses on the potential of bone marrow stem cells (BMSCs) in the management of CLD and the unresolved issues regarding their role. We also outline the different mechanisms by which stem cells may impact on liver disease.
Collapse
|
27
|
You N, Liu W, Zhong X, Ji R, Zhang M, You H, Dou K, Tao K. Tg737 inhibition results in malignant transformation in fetal liver stem/progenitor cells by promoting cell-cycle progression and differentiation arrest. Mol Carcinog 2011; 51:659-73. [PMID: 21837759 DOI: 10.1002/mc.20839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 12/14/2022]
Abstract
Cancer stem/progenitor cells (CSPCs) may originate from the malignant transformation of normal stem cells. However, the mechanism by which normal stem cells undergo such transformation is not understood. Our previous studies provided evidence that Tg737 may play an important role in carcinogenesis of liver stem cells. In this study, we investigated the role of Tg737 in the malignant transformation of fetal liver stem/progenitor cells (FLSPCs). We inhibited Tg737 in FLSPCs using short hairpin RNA (shRNA). The microscopic observations of freshly purified Tg737 normal FLSPCs (nFLSPCs) and Tg737-silent FLSPCs (sFLSPCs), which showed high expression levels of stem cell markers, revealed no significant morphological changes in sFLSPCs. Following RNAi of Tg737, the mRNA and protein levels of sFLSPCs decreased by 81.81% and 80.10% as shown by PCR, Western blot and immunocytochemistry analyses. Excluding apoptosis-related effects, we found that silencing of Tg737 resulted in enhanced cell proliferation through promoting cell-cycle progression via upregulation of cyclin D1 and cyclin B expression (P < 0.05). Silencing of Tg737 also resulted in significant arrest of cell differentiation (P < 0.05), stable expression of both albumin (ALB) and alpha fetoprotein (AFP) (P > 0.05) and quiescent ultrastructure. Assessment of cell malignant traits by transwell migration assays and by growth of xenograft tumors in athymic mice showed that reduced expression of Tg737 greatly promoted cell invasion and hepatocarcinogenesis of FLSPCs (P < 0.05). This work shows that inactivation of Tg737 may play an important role in malignant transformation of FLSPCs.
Collapse
Affiliation(s)
- Nan You
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu LL, Fu D, Ma Y, Shen XZ. The power and the promise of liver cancer stem cell markers. Stem Cells Dev 2011; 20:2023-30. [PMID: 21651381 DOI: 10.1089/scd.2011.0012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recently, there has been growing support for the cancer stem cell (CSC) hypothesis, which states that primary tumors are initiated and maintained by a small subpopulation of cancer cells that possess "stem-like" characteristics. CSCs have been identified in many tumor types, including hepatocellular carcinoma (HCC). The dye, Hoechst 33342, has been used to enrich CSCs into a side population. Alternatively, liver CSCs (LCSCs) can be identified by several cell surface antigens, including CD133, CD90, CD44, EpCAM, and CD13. In this review, we summarized the recent evidence regarding LCSC markers and discussed the origin and function of these markers. LCSC markers are essential to identify and isolate these cells, to develop future therapies targeting CSCs, and to predict prognosis and efficacy of these therapies. However, definite LCSC markers are still controversial, because none of these markers is exclusively expressed by LCSCs in HCC. By combining several positive or negative markers, it may be possible to isolate and identify CSC fractions beyond the ability of each individual assay. By grouping LCSC markers according to their cellular origin, the properties of LCSC markers may be better studied and new markers may be found. Lastly, markers could be used to estimate the number of LCSCs and therefore predict outcomes. From our point of view, selecting HCC tissue samples from patients with different prognoses and detecting expression patterns of marker combinations may be a new method to identify new and unique markers.
Collapse
Affiliation(s)
- Li-Li Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Trebol Lopez J, Georgiev Hristov T, García-Arranz M, García-Olmo D. Stem Cell Therapy for Digestive Tract Diseases: Current State and Future Perspectives. Stem Cells Dev 2011; 20:1113-29. [DOI: 10.1089/scd.2010.0277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jacobo Trebol Lopez
- General and Digestive Tract Surgery Department, University Hospital “La Paz”, Madrid, Spain
- Cell Therapy Laboratory, Investigation Institute IdiPAZ, University Hospital “La Paz”, Madrid, Spain
| | - Tihomir Georgiev Hristov
- General and Digestive Tract Surgery Department, University Hospital “La Paz”, Madrid, Spain
- Cell Therapy Laboratory, Investigation Institute IdiPAZ, University Hospital “La Paz”, Madrid, Spain
| | - Mariano García-Arranz
- Cell Therapy Laboratory, Investigation Institute IdiPAZ, University Hospital “La Paz”, Madrid, Spain
| | - Damián García-Olmo
- General and Digestive Tract Surgery Department, University Hospital “La Paz”, Madrid, Spain
- Cell Therapy Laboratory, Investigation Institute IdiPAZ, University Hospital “La Paz”, Madrid, Spain
- Surgery Department, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
30
|
Abstract
Stem cells are a class of special embryonic or adult cells that are able to self-renew and undergo multi-directional differentiation. Studies have shown that stem cells have selective tropism toward tumor tissue. Previous studies have shown that hepatic stem cells play an important role in hepatocarcinogenesis by participating in regulation of cell growth and differentiation. However, some other studies demonstrated that stem cells could inhibit cell growth in hepatocellular carcinoma. Elucidation of relationship between stem cells and hepatocellular carcinoma could provide new clues to the pathogenesis of hepatocellular carcinoma and help develop new therapeutic strategies for the disease.
Collapse
|
31
|
Li L, Hashiyada M, Kume M, Fukumoto M, Yamamoto Y, Funayama M, Yamamoto Y, Fukumoto M. A case of hepatocellular carcinoma developed after allogeneic bone marrow transplantation. Pathol Int 2010; 60:795-7. [PMID: 21091839 DOI: 10.1111/j.1440-1827.2010.02601.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Li X, Li Y, Kang X, Guo K, Li H, Gao D, Sun L, Liu Y. Dynamic alteration of protein expression profiles during neoplastic transformation of rat hepatic oval-like cells. Cancer Sci 2010; 101:1099-107. [PMID: 20331632 PMCID: PMC11159373 DOI: 10.1111/j.1349-7006.2010.01513.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To explore the molecular basis of neoplastic transformation of hepatic oval cells, a proteomic strategy was utilized to examine the global protein expression alterations during neoplastic transformation of rat hepatic oval-like cells. N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-initiated WB-F344 cells were treated with H(2)O(2) for neoplastic transformation. The transformed cells were identified by soft agar assay and MTT assay. The subsequent proteomic separation and identification were performed with 2-DE followed by MALDI-TOF-MS/MS analysis. Of the 148 differentially displayed protein spots analyzed, 121 spots representing 79 distinct proteins were finally identified. The expression levels of interested proteins were validated by western blotting including 40 S ribosomal protein A (RPSA) and cytokeratin 8. Bioinformatics annotations indicated that these identified proteins were enriched with oxidoreduction and stress response; transcription, translation, and protein processing; and energy/metabolism functions. Interestingly, 17 of the identified proteins were also found to be involved in early hepatic differentiation of mouse embryonic stem (ES) cells in our previous study. Twenty-six proteins had been reported as being dysregulated in hepatocellular carcinoma and other cancers. It suggested that these changed proteins may be implicated in neoplastic transformation of WB-F344 cells. The results may provide some clues for understanding the molecular mechanisms of hepatocarcinogenesis as viewed from dysregulation of differentiation.
Collapse
Affiliation(s)
- Xuefei Li
- Liver Cancer Institute, Affiliated Zhongshan Hospital of Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci U S A 2010; 107:8248-53. [PMID: 20404163 DOI: 10.1073/pnas.0912203107] [Citation(s) in RCA: 388] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Loss of Hippo signaling in Drosophila leads to tissue overgrowth as a result of increased cell proliferation and decreased cell death. YAP (a homolog of Drosophila Yorkie and target of the Hippo pathway) was recently implicated in control of organ size, epithelial tissue development, and tumorigenesis in mammals. However, the role of the mammalian Hippo pathway in such regulation has remained unclear. We now show that mice with liver-specific ablation of WW45 (a homolog of Drosophila Salvador and adaptor for the Hippo kinase) manifest increased liver size and expansion of hepatic progenitor cells (oval cells) and eventually develop hepatomas. Moreover, ablation of WW45 increased the abundance of YAP and induced its localization to the nucleus in oval cells, likely accounting for their increased proliferative capacity, but not in hepatocytes. Liver tumors that developed in mice heterozygous for WW45 deletion or with liver-specific WW45 ablation showed a mixed pathology combining characteristics of hepatocellular carcinoma and cholangiocarcinoma and seemed to originate from oval cells. Together, our results suggest that the mammalian Hippo-Salvador pathway restricts the proliferation of hepatic oval cells and thereby controls liver size and prevents the development of oval cell-derived tumors.
Collapse
|
34
|
Abstract
BACKGROUND The liver is the largest gland and chief metabolic organ of the human body possessing a unique ability to regenerate. The general interest of primary liver tumors is noteworthy because of their increasing worldwide incidence and mortality. Recent studies have focused on the ancestors of mature hepatocytes, which are capable of proliferating, differentiating and self-renewing. OBJECTIVE To provide a brief and up-to-date review on the cellular origin of primary liver tumors and to examine the use of stem cells in potential future therapeutic attempts. METHODS A review of relevant literature. RESULTS It is clear that hepatic progenitor cells (HPCs) could be the basis of some hepatocellular carcinomas (HCC), cholangiocarcinomas (CHC), hepatocellular adenomas and hepatoblastomas. Cancer stem cell (CSC) theory emphasizes the role of hepatic stem cells in the development and progression of liver tumors. CONCLUSION The expression of HPCs markers may be used as new independent prognostic factors in HCC. Conventional treatments for HCC do not seem to be beneficial for the majority of patients and new therapeutic approaches such as gene therapy and targeted drug therapy are of great clinical interest.
Collapse
Affiliation(s)
- Michail Papoulas
- University of Athens, Medical School, Department of Forensic Medicine and Toxicology, Goudi, Athens, GR11527, Greece
| | | |
Collapse
|
35
|
Eckersley-Maslin MA, Warner FJ, Grzelak CA, McCaughan GW, Shackel NA. Bone marrow stem cells and the liver: are they relevant? J Gastroenterol Hepatol 2009; 24:1608-16. [PMID: 19788602 DOI: 10.1111/j.1440-1746.2009.06004.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The contribution of bone marrow stem cell responses to liver homeostasis, injury and malignancy is discussed in this review. Pluripotent stem cells or their more committed progenitor progeny are essential to tissue development, regeneration and repair and are widely implicated in the pathogenesis of malignancy. Stem cell responses to injury are the focus of intense research efforts in the hope of future therapeutic manipulation. Stem cells occur within tissues, such as the liver, or arise from extrahepatic sites, in particular, the bone marrow. As the largest reservoir of stem cells in the adult, the bone marrow has been implicated in the stem cell response associated with liver injury. However, in liver injury, the relative contribution of bone marrow stem cells compared to intrahepatic progenitor responses is poorly characterized. Intrahepatic progenitor responses have been recently reviewed elsewhere. In this review, we have summarized liver-specific extrahepatic stem cell responses originating from the bone marrow. The physiological relevance of bone marrow stem cell responses to adult liver homeostasis, injury and malignancy is discussed with emphasis on mechanisms of bone marrow stem cell recruitment to sites of liver injury and its contribution to intrahepatic malignancy.
Collapse
|
36
|
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumour with a poor prognosis. Current therapeutic strategies against this disease target mostly rapidly growing differentiated tumour cells. However, the result is often dismal due to the chemoresistant nature of this tumour type. Recent research efforts on stem cells and cancer biology have shed light on new directions for the eradication of cancer stem cells (CSCs) in HCC. The liver is a distinctive organ with the ability of tissue renewal in response to injury. Based on the hypothesis that cancer development is derived from the hierarchy of the stem cell system, we will briefly discuss the origin of liver stem cells and its relation to HCC development. We will also summarize the current CSC markers in HCC and discuss their relevance to the treatment of this deadly disease.
Collapse
Affiliation(s)
- Terence Kin Wah Lee
- Liver Cancer and Hepatitis Research Laboratory and S. H. Ho Foundation Research Laboratories, Department of Pathology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | |
Collapse
|
37
|
Li Y, Kang X, Guo K, Li X, Gao D, Cui J, Sun L, Yang P, Liu Y. Proteome alteration of early-stage differentiation of mouse embryonic stem cells into hepatocyte-like cells. Electrophoresis 2009; 30:1431-40. [DOI: 10.1002/elps.200800836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Bae SH. [Clinical application of stem cells in liver diseases]. THE KOREAN JOURNAL OF HEPATOLOGY 2008; 14:309-17. [PMID: 18815454 DOI: 10.3350/kjhep.2008.14.3.309] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Most liver diseases lead to hepatic dysfunction with organ failure. Liver transplantation is the best curative therapy, but it has some limitations such as donor shortage, possibility of rejection, and maintenance of immunosuppressant. New therapies have been actively searched for over several decades, primarily in the form of artificial liver support devices and hepatocyte transplantation, but both of these modalities remain experimental. Stem cells have recently shown promise in cell therapy because they have the capacity for self-renewal and multilineage differentiation, and are applicable to human diseases. Very recent reports of unexpected plasticity in adult bone marrow have raised hopes of stem cell therapy offering exciting therapeutic possibilities for patients with chronic liver disease. Both rodent and human embryonic stem cells, bone marrow hematopoietic stem cells, mesenchymal stem cells, umbilical cord blood cells, fetal liver progenitor cells, adult liver progenitor cells, and mature hepatocytes have been reported to be capable of self-renewal, giving rise to daughter hepatocytes both in vivo and in vitro. These cells can repopulate livers in animal models of liver injury and appear to be able to improve liver function. However, significant challenges still exist before these cells can be used in humans, such as the lack of consensus about the immunophenotype of liver progenitor cells, uncertainty of the physiological role of reported candidate stem/progenitor cells, practicality of obtaining sufficient quantity of cells for clinical use, and concerns over ethics, long-term efficacy, and safety. There have been reports of phase 1 trials using stem cell transplantation in humans for liver diseases, but more effective trials are needed. We review the use of stem cells (focusing on adult ones) and the reported human clinical trials, and highlight the challenges facing clinicians in their quest to use liver stem cells to save lives.
Collapse
Affiliation(s)
- Si-Hyun Bae
- Department of Internal Medicine, College of Medicne, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
39
|
Longato L, de la Monte S, Califano S, Wands JR. Synergistic premalignant effects of chronic ethanol exposure and insulin receptor substrate-1 overexpression in liver. Hepatol Res 2008; 38:940-53. [PMID: 18336544 PMCID: PMC9986887 DOI: 10.1111/j.1872-034x.2008.00336.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Insulin receptor substrate, type 1 (IRS-1) transmits growth and survival signals, and is overexpressed in more than 90% of hepatocellular carcinomas (HCCs). However, experimental overexpression of IRS-1 in the liver was found not to be sufficient to cause HCC. Since chronic alcohol abuse is a risk factor for HCC, we evaluated potential interactions between IRS-1 overexpression and chronic ethanol exposure by assessing premalignant alterations in gene expression. METHODS Wild-type (wt) or IRS-1 transgenic (Tg) mice, constitutively overexpressing the human (h) transgene in the liver, were pair-fed isocaloric liquid diets containing 0% or 24% ethanol for 8 weeks. The livers were used for histopathologic study and gene expression analysis, focusing on insulin, insulin-like growth factor (IGF) and wingless (WNT)-Frizzled (FZD) pathways, given their known roles in HCC. RESULTS In wt mice, chronic ethanol exposure caused hepatocellular microsteatosis with focal chronic inflammation, reduced expression of proliferating cell nuclear antigen (PCNA) and increased expression of IGF-I and IGF-I receptor. In hIRS-1 Tg mice, chronic ethanol exposure caused hepatic micro- and macrosteatosis, focal chronic inflammation, apoptosis and disordered lobular architecture. These effects of ethanol in hIRS-1 Tg mice were associated with significantly increased expression of IGF-II, insulin, IRS-4, aspartyl-asparaginyl beta hydroxylase (AAH), WNT-1 and FZD 7, as occurs in HCC. CONCLUSION In otherwise normal liver, chronic ethanol exposure mainly causes liver injury and inflammation with impaired DNA synthesis. In contrast, in the context of hIRS-1 overexpression, chronic ethanol exposure may serve as a cofactor in the pathogenesis of HCC by promoting expression of growth factors, receptors and signaling molecules known to be associated with hepatocellular transformation.
Collapse
Affiliation(s)
- Lisa Longato
- Liver Research Center and Departments of Medicine and Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | | | | |
Collapse
|
40
|
Sun YL, Yin SY, Xie HY, Zhou L, Xue F, Wu LM, Gao F, Zheng SS. Stem-like cells in hepatitis B virus-associated cirrhotic livers and adjacent tissue to hepatocellular carcinomas possess the capacity of tumorigenicity. J Gastroenterol Hepatol 2008; 23:1280-6. [PMID: 18466286 DOI: 10.1111/j.1440-1746.2008.05342.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIM Recent investigations demonstrate that adult stem cells may be targets for malignant transformation and that the stem-like cells in diseased livers possess the capacity of tumorigenicity in animal models. The aim of this study is to examine expression patterns of stem-cell markers in hepatitis B virus-associated cirrhotic livers and hepatocellular carcinomas (HCC), and to investigate the stem-like cell capacity of tumorigenicity in these tissues. METHODS Twenty surgically resected HCCs and corresponding adjacent tissues as well as 10 cirrhotic liver tissues were collected and immunohistochemical staining were performed to detect the expression of CD34, Thy-1, CD133, and c-kit. Then the non-cancerous tissues were transplanted into immunodeficient mice and the characteristics of the cells from primary tissue cultures were explored in vitro. RESULTS Immunohistochemical analysis characterized different expression patterns of stem-cell markers among these tissues. First, CD34 and Thy-1 expression was identified in proliferating bile ductules and it represented hepatic progenitor cells; CD133 and c-kit-positive cells were observed in the parenchyma of these tissues, and some of them were characterized as intermediate hepatocytes morphologically and spatially. Second, in two groups including three mice transplanted with tissues adjacent to HCC-initiated tumors, CD133 and c-kit expression was detected. Finally, our study also indicated that stem-like cells from tissue could express hepatic-lineage markers and possessed great capacities to proliferate, self-renew, and form clones in vitro. CONCLUSION Our results suggest that the stem-like cells in cirrhotic livers possess the capacity of tumorigenicity and may contain candidates for HCC cancer stem cells.
Collapse
Affiliation(s)
- Yu-Ling Sun
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Houlihan DD, Newsome PN. Critical review of clinical trials of bone marrow stem cells in liver disease. Gastroenterology 2008; 135:438-50. [PMID: 18585384 DOI: 10.1053/j.gastro.2008.05.040] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/15/2008] [Accepted: 05/08/2008] [Indexed: 12/23/2022]
Abstract
Morbidity and mortality from cirrhosis is increasing rapidly in the Western world. Currently the only effective treatment is liver transplantation, an increasingly limited and expensive resource. Consequently, there has been great hope that stem cells may offer new therapeutic approaches in the management of liver disease. In this review we critically appraise the 11 published clinical studies of bone marrow stem cells in liver disease, and focus on the unresolved issues regarding their role. We outline the different mechanisms by which stem cells may impact on liver disease, as well as highlight the importance of the type of stem cell chosen. There are multiple different stem cell populations that have, in rodent studies, been shown to have differing effects on liver regeneration and fibrogenesis/degradation. Thus, choice of cell should reflect the desired or expected mechanism of action. The importance, and methods, of studying the fate of stem cells infused in clinical studies is emphasized as we seek to translate observations in rodents into the clinical setting. Finally, we discuss which cohorts of patients with liver disease would benefit from stem cell therapy, as well as establish minimum criteria for future clinical trials of stem cells.
Collapse
Affiliation(s)
- Diarmaid Dominic Houlihan
- Liver Research Group, Institute of Biomedical Research, The Medical School, Edgbaston, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
42
|
Kiyici M, Yilmaz M, Akyildiz M, Arikan C, Aydin U, Sigirli D, Nart D, Yilmaz F, Ozacar T, Karasu Z, Kilic M. Association Between Hepatitis B and Hepatocellular Carcinoma Recurrence in Patients Undergoing Liver Transplantation. Transplant Proc 2008; 40:1511-7. [DOI: 10.1016/j.transproceed.2008.03.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 03/11/2008] [Indexed: 01/07/2023]
|
43
|
Lee NPY, Leung KW, Cheung N, Lam BY, Xu MZ, Sham PC, Lau GK, Poon RTP, Fan ST, Luk JM. Comparative proteomic analysis of mouse livers from embryo to adult reveals an association with progression of hepatocellular carcinoma. Proteomics 2008; 8:2136-49. [DOI: 10.1002/pmic.200700590] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Li W, Zhou HC, Li JC, Duan FL. Expressions of cytokeratin 18 and cytokeratin 19 in hepatocellular carcinoma tissues. Shijie Huaren Xiaohua Zazhi 2008; 16:721-725. [DOI: 10.11569/wcjd.v16.i7.721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the expressions of cytoketatin18 (CK18) and cytoketatin19 (CK19) in tissues of hepatocellular carcinoma, liver cirrhosis, and normal liver.
METHODS: Immunohistochemical streptavidin-peroxidase (SP) method was adopted to examine the expression of CK18 and CK19 in tissue samples of normal liver (n = 8), liver cirrhosis (n = 27), and hepatocellular carcinoma (n = 43).
RESULTS: The positive rates of CK18 expression in hepatic cirrhosis and normal liver tissues had no significant differences. However, CK18 expression was significantly different between hepatocellular carcinoma and liver cirrhosis (65.1% vs 29.6%, P < 0.01). The positive rates of CK19 expression in cirrhosis of liver and normal liver had no significant differences. But the expression of CK19 was markedly higher in hepatocellular carcinoma than that in hepatic cirrhosis (69.8% vs 25.9%, P < 0.01). Oval cells with strongly positive staining could be seen in the portal area of cirrhosis cases (20/27) and in the brink of carcinoma cases (35/43), and there were significant differences (CK18: 6.57 ± 1.69 vs 10.70 ± 2.31; CK19: 5.37 ± 1.17 vs 10.45 ± 2.15, P < 0.01) in the numbers between cirrhosis of liver and hepatocellular carcinoma.
CONCLUSION: CK18 and CK19 are involved in hepatocarcinogenesis. Oval cells are strongly positive for CK18 and CK19 in cirrhosis of liver and hepatocellular carcinoma. Oval cells are associated with regeneration of liver, and are probably original cells of hepatocellular carcinoma.
Collapse
|
45
|
Topinka J, Marvanová S, Vondrácek J, Sevastyanova O, Nováková Z, Krcmár P, Pencíková K, Machala M. DNA adducts formation and induction of apoptosis in rat liver epithelial 'stem-like' cells exposed to carcinogenic polycyclic aromatic hydrocarbons. Mutat Res 2008; 638:122-132. [PMID: 17961608 DOI: 10.1016/j.mrfmmm.2007.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/06/2007] [Accepted: 09/11/2007] [Indexed: 05/25/2023]
Abstract
The bipotent liver progenitor cells, so called oval cells, may participate at the early stages of hepatocarcinogenesis induced by chemical carcinogens. Unlike in mature parenchymal cells, little is known about formation of DNA adducts and other genotoxic events in oval cells. In the present study, we employed spontaneously immortalized rat liver WB-F344 cell line, which is an established in vitro model of oval cells, in order to study genotoxic effects of selected carcinogenic polycyclic aromatic hydrocarbons (PAHs). With exception of dibenzo[a,l]pyrene, and partly also benzo[g]chrysene and benz[a]anthracene, all other PAHs under the study induced high levels of CYP1A1 and CYP1B1 mRNA. In contrast, we observed distinct genotoxic and cytotoxic potencies of PAHs. Dibenzo[a,l]pyrene, and to a lesser extent also benzo[a]pyrene, benzo[g]chrysene and dibenzo[a,e]pyrene, formed high levels of DNA adducts. This was accompanied with accumulation of Ser-15 phosphorylated form of p53 protein and induction of apoptosis. Contrary to that, benz[a]anthracene, chrysene, benzo[b]fluoranthene and dibenzo[a,h]anthracene induced only low amounts of DNA adducts formation and minimal apoptosis, without exerting significant effects on p53 phosphorylation. Finally, we studied effects of 2,4,3',5'-tetramethoxystilbene and fluoranthene, inhibitors of CYP1B1 activity, which plays a central role in metabolic activation of dibenzo[a,l]pyrene. In a dose-dependent manner, both compounds inhibited apoptosis induced by dibenzo[a,l]pyrene, suggesting that it interferes with the metabolic activation of the latter one. The present data show that in model cell line sharing phenotypic properties with oval cells, PAHs can be efficiently metabolized to form ultimate genotoxic metabolites. Liver progenitor cells could be thus susceptible to this type of genotoxic insult, which makes WB-F344 cell line a useful tool for studies of genotoxic effects of organic contaminants in liver cells. Our results also suggest that, unlike in mature hepatocytes, CYP1B1 might be a primary enzyme responsible for formation of DNA adducts in liver progenitor cells.
Collapse
Affiliation(s)
- Jan Topinka
- Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine, AS CR, 142 20 Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Selwyn RG, Avila-Rodriguez MA, Converse AK, Hampel JA, Jaskowiak CJ, McDermott JC, Warner TF, Nickles RJ, Thomadsen BR. 18F-labeled resin microspheres as surrogates for90Y resin microspheres used in the treatment of hepatic tumors: a radiolabeling and PET validation study. Phys Med Biol 2007; 52:7397-408. [DOI: 10.1088/0031-9155/52/24/013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Wu XZ. Origin of cancer stem cells: the role of self-renewal and differentiation. Ann Surg Oncol 2007; 15:407-14. [PMID: 18043974 DOI: 10.1245/s10434-007-9695-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/24/2007] [Accepted: 10/19/2007] [Indexed: 12/12/2022]
Abstract
BACKGROUND Self-renewal and differentiation potential is the feature of stem cells. Differentiation is usually considered to be a one-way process of specialization as cells develop the functions of their ultimate fate and lose their immature characteristics, such as self-renewal. Progenitor cells, the products of stem cells losing the activity of self-renewal, could differentiate to mature cells, which have the feature of differentiation and lose the activity of self-renewal. The roles for cancer stem cells have been demonstrated for some cancers. However, the origin of the cancer stem cells remains elusive. METHODS This review focuses on current scientific controversies related to the establishment of the cancer stem cells--in particular, how self-renewal and differentiation block might contribute to the evolution of cancer. RESULTS Cancer stem cells may be caused by transforming mutations occurring in multi-potential stem cells, tissue-specific stem cells, progenitor cells, mature cells and cancer cells. Progenitor cells obtain the self-renewal activity by activating the self-renewal-associated genes rather than dedifferentiate to tissue special stem cells. The transform multi-potential stem cells gain the differentiation feature of special tissue by differentiating to cancer cells. Mature cells and cancer cells may dedifferentiate or reprogram to cancer stem cells by genetic and / or epigenetic events to gain the self-renewal activity and lose some features of differentiation. The cancer-derived stem cells are not the "cause", but the "consequence" of carcinogenesis. The genetic program controlling self-renewal and differentiation is a key unresolved issue. CONCLUSION Cancer stem cells may be caused by disturbance of self-renewal and differentiation occurring in multi-potential stem cells, tissue-specific stem cells, progenitor cells, mature cells and cancer cells.
Collapse
Affiliation(s)
- Xiong-Zhi Wu
- Tianjin Medical University Cancer Institute and Hospital, Ti-Yuan-Bei, Huan-Hu-Xi Road, He-Xi District, Tianjin 300060, China.
| |
Collapse
|
48
|
Wu XZ, Yu XH. Bone marrow cells: the source of hepatocellular carcinoma? Med Hypotheses 2007; 69:36-42. [PMID: 17300877 DOI: 10.1016/j.mehy.2006.10.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Accepted: 10/03/2006] [Indexed: 12/12/2022]
Abstract
Whether the stem cells or the mature cells are the origination of hepatocellular carcinoma is uncertain. Recently, researches have shown that some cancer stem cells could derive from adult stem cells. Moreover, gastric cancer could originate from bone marrow stem cells. Hematopoiesis and the hepatic environment are known to have a close relationship at the time of hepatic development and systemic diseases. Here we propose a new carcinogenetic model of hepatocellular carcinoma. Chronic liver injury could recruit bone marrow stem cells to the liver. Bone marrow cells take part in liver regeneration by differentiating to oval cells and hepatocytes. Persistent regeneration results in hyperproliferation, an increased rate of transforming mutations. Extracellular matrix remodeling triggers a cascade of events that inhibits the transactivation potential of liver-specific transcription factors, blocks the maturation of stem cells, and then results in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiong-Zhi Wu
- Tianjin Medical University Cancer Institute and Hospital, Ti-Yuan-Bei, Huan-Hu-Xi Road, He-Xi District, Tianjin 300060, China.
| | | |
Collapse
|
49
|
Herr I, Groth A, Schemmer P, Büchler MW. Adult stem cells in progression and therapy of hepatocellular carcinoma. Int J Cancer 2007; 121:1875-1882. [PMID: 17685426 DOI: 10.1002/ijc.23041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma is one of the most aggressive solid tumours associated with poor prognosis. Despite its significance, there is only an elemental understanding of the mechanisms that drive disease pathogenesis, and there are just limited therapy options. The medical community is currently experiencing a wave of enthusiasm for clinical trials, in which adult stem/progenitor cells are used for liver regeneration. This is based on promising results in animal models and encouraging reports from some initial clinical studies. On the other hand, several essential precautions are not being fully addressed. Stem cells may contribute to fibrosis or give rise to hepatic cancer stem cells as a source of hepatocellular carcinoma. This review outlines the current state of knowledge in progression of liver disease and highlights the function of adult stem cells in disease and therapy.
Collapse
Affiliation(s)
- Ingrid Herr
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
- Molecular OncoSurgery, Department of General Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ariane Groth
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
- Molecular OncoSurgery, Department of General Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schemmer
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Markus W Büchler
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|