1
|
Abstract
Antidepressant drugs represent one of the main forms of effective treatment for the amelioration of depressive symptoms. Most available antidepressants increase extracellular levels of monoamines. However, it is now recognized that monoamine levels and availability are only part of the story, and that antidepressants whose mechanism of action is mainly based on the modulation of monoaminergic systems may not be able to satisfy the unmet needs of depression. Therefore, a number of compounds, developed for their potential antidepressant activity, are endowed with putative mechanisms of action not affecting traditional monoamine targets. This article briefly reviews, within a mechanistic perspective, the pharmacological profiles of representative antidepressants from each class, including monoamine oxidase inhibitors, tricyclics, norepinephrine reuptake inhibitors, selective serotonin reuptake inhibitors, norepinephrine and serotonin reuptake inhibitors, antidepressants interacting with dopaminergic, melatonergic, glutamatergic, or neuropeptide systems. The undesirable side effects of currently used antidepressants, which can often be a reason for lack of compliance, are also considered.
Collapse
|
2
|
Lu T, Huang CC, Lu YC, Lin KL, Liu SI, Wang BW, Chang PM, Chen IS, Chen SS, Tsai JY, Chou CT, Jan CR. Desipramine-induced Ca-independent apoptosis in Mg63 human osteosarcoma cells: dependence on P38 mitogen-activated protein kinase-regulated activation of caspase 3. Clin Exp Pharmacol Physiol 2008; 36:297-303. [PMID: 18986328 DOI: 10.1111/j.1440-1681.2008.05065.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. It has been shown that the antidepressant desipramine is able to induce increases in [Ca(2+)](i) and cell death in MG63 human osteosacroma cells, but whether apoptosis is involved is unclear. In the present study, the effect of desipramine on apoptosis and the underlying mechanisms were explored. It was demonstrated that desipramine induced cell death in a concentration- and time-dependent manner. 2. Cells treated with 100-800 mmol/L desipramine showed typical apoptotic features, including an increase in sub-diploid nuclei and activation of caspase 3, indicating that these cells underwent apoptosis. Immunoblotting revealed that 100 mmol/L desipramine activated extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Although pretreatment of cells with 20 mmol/L PD98059 (an ERK inhibitor) or 20 mmol/L SP600125 (an inhibitor of JNK) did not inhibit cell death, the addition of 20 mmol/L SB203580 (a p38 MAPK inhibitor) partially rescued cells from apoptosis. Desipramine-induced caspase 3 activation required p38 MAPK activation. 3. Pretreatment of cells with BAPTA/AM (20 mmol/L) to prevent desipramine-induced increases in [Ca(2+)](i) did not protect cells from death. 4. The results of the present study suggest that, in MG63 human osteosarcoma cells, desipramine causes Ca(2+)-independent apoptosis by inducing p38 MAPK-associated activation of caspase 3.
Collapse
Affiliation(s)
- Ti Lu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Chang HC, Huang CC, Huang CJ, Cheng JS, Liu SI, Tsai JY, Chang HT, Huang JK, Chou CT, Jan CR. Desipramine-induced apoptosis in human PC3 prostate cancer cells: Activation of JNK kinase and caspase-3 pathways and a protective role of [Ca2+]i elevation. Toxicology 2008; 250:9-14. [DOI: 10.1016/j.tox.2008.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
|
4
|
Huang CJ, Cheng HH, Chou CT, Kuo CC, Lu YC, Tseng LL, Chu ST, Hsu SS, Wang JL, Lin KL, Chen IS, Liu SI, Jan CR. Desipramine-induced Ca2+ movement and cytotoxicity in PC3 human prostate cancer cells. Toxicol In Vitro 2007; 21:449-56. [PMID: 17267168 DOI: 10.1016/j.tiv.2006.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 09/26/2006] [Accepted: 10/23/2006] [Indexed: 10/24/2022]
Abstract
The effect of the antidepressant desipramine on intracellular Ca(2+) movement and viability in prostate cancer cells has not been explored previously. The present study examined whether desipramine could alter Ca(2+) handling and viability in human prostate PC3 cancer cells. Cytosolic free Ca(2+) levels ([Ca(2+)](i)) in populations of cells were measured using fura-2 as a probe. Desipramine at concentrations above 10 microM increased [Ca(2+)](i) in a concentration-dependent manner. The responses saturated at 300 microM desipramine. The Ca(2+) signal was reduced by half by removing extracellular Ca(2+), but was unaffected by nifedipine, nicardipine, nimodipine, diltiazem or verapamil. In Ca(2+)-free medium, after treatment with 300 microM desipramine, 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) failed to release Ca(2+) from endoplasmic reticulum. Conversely, desipramine failed to release more Ca(2+) after thapsigargin treatment. Inhibition of phospholipase C with U73122 did not affect desipramine-induced Ca(2+) release. Overnight incubation with 10-800 microM desipramine decreased viability in a concentration-dependent manner. Chelation of cytosolic Ca(2+) with BAPTA did not reverse the decreased cell viability. Collectively, the data suggest that in PC3 cells, desipramine induced a [Ca(2+)](i) increase by causing Ca(2+) release from endoplasmic reticulum in a phospholipase C-independent fashion and by inducing Ca(2+) influx. Desipramine decreased cell viability in a concentration-dependent, Ca(2+)-independent manner.
Collapse
Affiliation(s)
- Chun-Jen Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Huang YY, Peng CH, Yang YP, Wu CC, Hsu WM, Wang HJ, Chan KH, Chou YP, Chen SJ, Chang YL. Desipramine Activated Bcl-2 Expression and Inhibited Lipopolysaccharide-Induced Apoptosis in Hippocampus-Derived Adult Neural Stem Cells. J Pharmacol Sci 2007; 104:61-72. [PMID: 17510525 DOI: 10.1254/jphs.fp0061255] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Desipramine (DP) is a tricyclic antidepressant used for treating depression and numerous other psychiatric disorders. Recent studies have shown that DP can promote neurogenesis and improve the survival rate of hippocampal neurons. However, whether DP induces neuroprotection or promotes the differentiation of neural stem cells (NSCs) needs to be elucidated. In this study, we cultured NSCs derived from the hippocampal tissues of adult rats as an in vitro model to evaluate the modulation effect of DP on NSCs. First, we demonstrated that the expression of Bcl-2 mRNA and nestin in 2 microM DP-treated NSCs were up-regulated and detected by real-time reverse transcriptase polymerase chain reaction (RT-PCR). The results of Western blotting and immunofluorescent study confirmed that Bcl-2 protein expression was significantly increased in Day 3 DP-treated NSCs. Using the Bcl-2 small interfering RNA (siRNA) method, our results further showed that DP protects the lipopolysaccharide (LPS)-induced apoptosis in NSCs, in part by activating the expression of Bcl-2. Furthermore, DP treatment significantly inhibited the induction of proinflammatory factor interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha in the culture medium of LPS-treated NSCs mediated by Bcl-2 modulation. The results of high performance liquid chromatography coupled to electrochemical detection further confirmed that DP significantly increased the functional production of serotonin (26+/-3.5 microM, DP-treated 96 h) and noradrenaline (50+/-8.9 microM, DP-treated 96 h) in NSCs through activation of the MAPK/ERK pathway and partially mediated by Bcl-2. In conclusion, the present results indicate that DP can increase neuroprotection ability by inhibiting the LPS-induced inflammatory process in NSCs via the modulation of Bcl-2 expression, as confirmed by the siRNA method.
Collapse
Affiliation(s)
- Yu-Yin Huang
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
McNamara RK, Ostrander M, Abplanalp W, Richtand NM, Benoit SC, Clegg DJ. Modulation of phosphoinositide-protein kinase C signal transduction by omega-3 fatty acids: implications for the pathophysiology and treatment of recurrent neuropsychiatric illness. Prostaglandins Leukot Essent Fatty Acids 2006; 75:237-57. [PMID: 16935483 DOI: 10.1016/j.plefa.2006.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The phosphoinositide (PI)-protein kinase C (PKC) signal transduction pathway is initiated by pre- and postsynaptic Galphaq-coupled receptors, and regulates several clinically relevant neurochemical events, including neurotransmitter release efficacy, monoamine receptor function and trafficking, monoamine transporter function and trafficking, axonal myelination, and gene expression. Mounting evidence for PI-PKC signaling hyperactivity in the peripheral (platelets) and central (premortem and postmortem brain) tissues of patients with schizophrenia, bipolar disorder, and major depressive disorder, coupled with evidence that PI-PKC signal transduction is down-regulated in rat brain following chronic, but not acute, treatment with antipsychotic, mood-stabilizer, and antidepressant medications, suggest that PI-PKC hyperactivity is central to an underlying pathophysiology. Evidence that membrane omega-3 fatty acids act as endogenous antagonists of the PI-PKC signal transduction pathway, coupled with evidence that omega-3 fatty acid deficiency is observed in peripheral and central tissues of patients with schizophrenia, bipolar disorder, and major depressive disorder, support the hypothesis that omega-3 fatty acid deficiency may contribute to elevated PI-PKC activity in these illnesses. The data reviewed in this paper outline a potential molecular mechanism by which omega-3 fatty acids could contribute to the pathophysiology and treatment of recurrent neuropsychiatric illness.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0559, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Choi S, Park CG, Kim MY, Lim GH, Kim JH, Yeum CH, Yoon PJ, So I, Kim KW, Jun JY. Action of imipramine on activated ATP-sensitive K(+) channels in interstitial cells of Cajal from murine small intestine. Life Sci 2005; 78:2322-8. [PMID: 16266721 DOI: 10.1016/j.lfs.2005.09.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 09/20/2005] [Indexed: 11/26/2022]
Abstract
Tricyclic antidepressants have been widely used for the treatment of depression and as a therapeutic agent for the altered gastrointestinal (GI) motility of irritable bowel syndrome (IBS). The aim of this study was to clarify whether antidepressants directly modulate pacemaker currents in cultured interstitial cells of Cajal (ICC). We used the whole-cell patch-clamp techniques at 30 degrees C in cultured ICC from the mouse small intestine. Treatment of pinacidil, an ATP-sensitive K(+) channel opener, in the ICC using the current clamping mode, produced hyperpolarization of the membrane potential and decreased the amplitude of the pacemaker potentials. With the voltage clamp mode, we observed a decrease in the frequency and amplitude of pacemaker currents and increases in the resting outward currents. These effects of pinacidil on pacemaker potentials and currents were completely suppressed by glibenclamide, an ATP-sensitive K(+) channel blocker. Also, with the current clamp mode, imipramine blocked the affect of pinacidil on the pacemaker potentials. Observations of the voltage clamp mode with imipramine, desipramine and amitryptyline suppressed the action of pinacidil in the ICC. Next, we examined whether protein kinase C (PKC) and the G protein are involved in the action of imipramine on pinacidil induced pacemaker current inhibition. We used chelerythrine, a potent PKC inhibitor and GDPbetaS, a nonhydrolyzable guanosine 5-diphosphate (GDP) analogue that permanently inactivates GTP-binding proteins. We found that pretreatment with chelerythrine and intracellular application of GDPbetaS had no influence on the blocking action of imipramine on inhibited pacemaker currents by pinacidil. We conclude that imipramine inhibited the activated ATP-sensitive K(+) channels in ICC. This action does not appear to be mediated through the G protein and protein kinase C. Furthermore, this study may suggest another possible mechanism for tricyclic antidepressants related modulation of GI motility.
Collapse
Affiliation(s)
- Seok Choi
- Department of Physiology, College of Medicine, Chosun University, 375 Seosuk-dong, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rausch JL. Initial conditions of psychotropic drug response: studies of serotonin transporter long promoter region (5-HTTLPR), serotonin transporter efficiency, cytokine and kinase gene expression relevant to depression and antidepressant outcome. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1046-61. [PMID: 16005136 DOI: 10.1016/j.pnpbp.2005.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2005] [Indexed: 12/29/2022]
Abstract
The Hypothesis of Initial Conditions posits that differences in psychotropic drug response result from individual differences in receptor site kinetics, and differences in the sensitivity of downstream receptor-linked responses. This work examines data consistent with the hypothesis, specific to genetic and kinetic differences of the serotonin (5-HT) transporter (SERT), as they may be linked to divergent antidepressant response (ADR). The mechanisms for divergent ADR in association with different initial SERT function are considered within the context of SERT trafficking as sensitive to various different kinase and cytokine signals, some of which are dependent on the 5-HTTLPR polymorphism of the SERT gene. Pilot data suggest that human lymphocytes show kinase changes similar to those found in rat brain with ADT. These studies additionally suggest that ADT prompts a shift in cytokine gene expression toward a greater anti-inflammatory/inflammatory ratio. These latter findings are discussed within the context of a literature suggesting increased inflammatory cytokine levels in depression, and recent observations of increased temperature associated with depression. In sum, the data suggest the opportunity to identify response dependent protein (RDP) expression patterns that may differ with dichotomous ADR, and suggest new insights into understanding the mechanisms of psychotropic drug response through an understanding of initial differences in potential for psychotropic drug target regulation during therapy.
Collapse
Affiliation(s)
- Jeffrey L Rausch
- Veterans Administration, Department of Psychiatry and Health Behavior, The Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
9
|
Ho CM, Kuo SY, Chen CH, Huang JK, Jan CR. Effect of desipramine on Ca2+ levels and growth in renal tubular cells. Cell Signal 2005; 17:837-45. [PMID: 15763426 DOI: 10.1016/j.cellsig.2004.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 11/03/2004] [Accepted: 11/03/2004] [Indexed: 11/28/2022]
Abstract
The in vitro effect of desipramine on renal tubular cell is unknown. In Madin-Darby canine kidney (MDCK) cells, the effect of desipramine on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Desipramine (>25 microM) caused a rapid and sustained rise of [Ca2+]i in a concentration-dependent manner (EC50=50 microM). Desipramine-induced [Ca2+]i rise was prevented by 40% by removal of extracellular Ca2+ but was not altered by L-type Ca2+ channel blockers. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which desipramine failed to release more Ca2+; in addition, pretreatment with desipramine partly decreased thapsigargin-induced [Ca2+]i increase. U73122, an inhibitor of phospholipase C, did not change desipramine-induced [Ca2+]i rise. Incubation with 10-100 microM desipramine enhances or inhibits cell proliferation in a concentration- and time-dependent manner. The inhibitory effect of desipramine on proliferation was not extracellular Ca2+-dependent. Apoptosis appears to contribute to desipramine-induced cell death. Together, these findings suggest that desipramine increases baseline [Ca2+]i in renal tubular cells by evoking both extracellular Ca2+ influx and intracellular Ca2+ release, and can cause apoptosis.
Collapse
Affiliation(s)
- Chin-Man Ho
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Alpini G, Baiocchi L, Glaser S, Ueno Y, Marzioni M, Francis H, Phinizy JL, Angelico M, Lesage G. Ursodeoxycholate and tauroursodeoxycholate inhibit cholangiocyte growth and secretion of BDL rats through activation of PKC alpha. Hepatology 2002; 35:1041-52. [PMID: 11981754 DOI: 10.1053/jhep.2002.32712] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulating bile acids (BA) trigger cholangiocyte proliferation in chronic cholestasis. The aim of this study was to determine if ursodeoxycholate (UDCA) or tauroursodeoxycholate (TUDCA) chronic feeding prevents the increased cholangiocyte growth and secretion in bile duct-ligated (BDL) rats, if UDCA and TUDCA effects are associated with increased cholangiocyte apoptosis, and to determine if this inhibition is dependent on increased intracellular Ca(2+) ([Ca(2+)](i)) and activation of protein kinase C (PKC) alpha. Immediately after BDL, rats were fed UDCA or TUDCA (both 275 micromol/d) for 1 week. We determined the number of bile ducts in liver sections, cholangiocyte proliferation (by measurement of H(3) histone and proliferating cellular nuclear antigen in isolated cholangiocytes), and ductal secretion. In purified cholangiocytes from 1-week BDL rats, we evaluated if UDCA and TUDCA directly inhibit cholangiocyte proliferation and secretin-stimulated adenosine 3', 5'-monophosphate levels. We determined if UDCA and TUDCA activate PKC, increase [Ca(2+)](i), and alter the apical BA transporter (ABAT) expression in cholangiocytes. UDCA and TUDCA inhibited in vivo the cholangiocyte proliferation, secretion, and ABAT expression. In vitro UDCA and TUDCA inhibition of cholangiocyte growth and secretion required increased [Ca(2+)](i) and PKC alpha. In conclusion, activation of Ca(2+)-dependent PKC alpha is required for UDCA and TUDCA inhibition of cholangiocyte growth and secretion. Reduced cholangiocyte ABAT may decrease endogenous BA stimulation of cholangiocyte growth and secretion.
Collapse
Affiliation(s)
- Gianfranco Alpini
- Department of Internal Medicine, Scott & White Hospital and The Texas A&M University System Health Science Center, College of Medicine and Central Texas Veterans Health Care System, Temple, TX 76504, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gurguis GN, Vo SP, Griffith JM, Rush AJ. Platelet alpha2A-adrenoceptor function in major depression: Gi coupling, effects of imipramine and relationship to treatment outcome. Psychiatry Res 1999; 89:73-95. [PMID: 10646827 DOI: 10.1016/s0165-1781(99)00103-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies suggest alpha2A-adrenoceptors (alpha(2A)AR) dysregulation in major depressive disorder (MDD). Platelet alpha(2A)ARs exist in high- and low-conformational states that are regulated by Gi protein. Although alpha(2A)AR coupling to Gi protein plays an important role in signal transduction and is modulated by antidepressants, it has not been previously investigated. Alpha2AR density in the high- and low-conformational states, agonist affinity and coupling efficiency were investigated in 27 healthy control subjects, 23 drug-free MDD patients and 16 patients after imipramine treatment using [3H]yohimbine saturation and norepinephrine displacement of [3H]yohimbine binding experiments. Coupling measures were derived from NE-displacement experiments. Patients had significantly higher alpha(2A)AR density, particularly in the high-conformational state, than control subjects. Coupling indices were normal in patients. High pre-treatment agonist affinity to the receptor in the high-conformational state and normal coupling predicted positive treatment outcome. Decreased coupling to Gi predicted a negative treatment outcome. Imipramine induced uncoupling (-11%) and redistribution of receptor density in treatment responders only, but had no effect on alpha(2A)AR coupling or density in treatment non-responders. Increased alpha(2A)AR density may represent a trait marker in MDD. The results provide indirect evidence for abnormal protein kinase A (PKA) and protein kinase C (PKC) in MDD which may be pursued in future investigations.
Collapse
MESH Headings
- Adrenergic Uptake Inhibitors/pharmacology
- Adrenergic Uptake Inhibitors/therapeutic use
- Adult
- Antidepressive Agents, Tricyclic/pharmacology
- Antidepressive Agents, Tricyclic/therapeutic use
- Biomarkers/blood
- Blood Platelets/drug effects
- Blood Platelets/metabolism
- Case-Control Studies
- Depressive Disorder, Major/blood
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/psychology
- GTP-Binding Protein alpha Subunits, Gi-Go/blood
- Humans
- Imipramine/pharmacology
- Imipramine/therapeutic use
- Male
- Middle Aged
- Norepinephrine/metabolism
- Protein Binding
- Protein Kinases/metabolism
- Psychiatric Status Rating Scales
- Receptors, Adrenergic, alpha-2/blood
- Receptors, Adrenergic, alpha-2/drug effects
- Treatment Outcome
- Yohimbine/metabolism
Collapse
Affiliation(s)
- G N Gurguis
- Mental Health Services, Department of Veterans Affairs Medical Center, Dallas, TX, USA.
| | | | | | | |
Collapse
|
12
|
Morishita S, Aoki S, Watanabe S. Different effect of desipramine on protein kinase C in platelets between bipolar and major depressive disorders. Psychiatry Clin Neurosci 1999; 53:11-5. [PMID: 10201278 DOI: 10.1046/j.1440-1819.1999.00479.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein kinase C (PKC) activity was investigated in platelets from affective disorder subjects and healthy volunteers. The PKC activity of platelets incubated with desipramine was determined in vitro. The PKC activity of the major depressive disorder subjects and healthy volunteers was inhibited by desipramine, whereas that of the bipolar disorder subjects showed both inhibition and activation. In addition, the base PKC activity incubation with antidepressants of the major depressive disorder patients was significantly higher than of the bipolar disorder patients. These preliminary results suggest that the function of PKC may, at least in part, be associated with the mechanism of affective disorder.
Collapse
Affiliation(s)
- S Morishita
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | | | | |
Collapse
|