1
|
Ayyubova G, Gychka SG, Nikolaienko SI, Alghenaim FA, Teramoto T, Shults NV, Suzuki YJ. The Role of Furin in the Pathogenesis of COVID-19-Associated Neurological Disorders. Life (Basel) 2024; 14:279. [PMID: 38398788 PMCID: PMC10890058 DOI: 10.3390/life14020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Neurological disorders have been reported in a large number of coronavirus disease 2019 (COVID-19) patients, suggesting that this disease may have long-term adverse neurological consequences. COVID-19 occurs from infection by a positive-sense single-stranded RNA virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The membrane fusion protein of SARS-CoV-2, the spike protein, binds to its human host receptor, angiotensin-converting enzyme 2 (ACE2), to initiate membrane fusion between the virus and host cell. The spike protein of SARS-CoV-2 contains the furin protease recognition site and its cleavage enhances the infectivity of this virus. The binding of SARS-CoV-2 to the ACE2 receptor has been shown to downregulate ACE2, thereby increasing the levels of pathogenic angiotensin II (Ang II). The furin protease cleaves between the S1 subunit of the spike protein with the binding domain toward ACE2 and the S2 subunit with the transmembrane domain that anchors to the viral membrane, and this activity releases the S1 subunit into the blood circulation. The released S1 subunit of the spike protein also binds to and downregulates ACE2, in turn increasing the level of Ang II. Considering that a viral particle contains many spike protein molecules, furin-dependent cleavage would release many free S1 protein molecules, each of which can downregulate ACE2, while infection with a viral particle only affects one ACE2 molecule. Therefore, the furin-dependent release of S1 protein would dramatically amplify the ability to downregulate ACE2 and produce Ang II. We hypothesize that this amplification mechanism that the virus possesses, but not the infection per se, is the major driving force behind COVID-19-associated neurological disorders.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku AZ1022, Azerbaijan
| | - Sergiy G Gychka
- Department of Pathological Anatomy, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Sofia I Nikolaienko
- Department of Pathological Anatomy, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Fada A Alghenaim
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Nataliia V Shults
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Yuichiro J Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
2
|
de Miranda AS, Macedo DS, Rocha NP, Teixeira AL. Targeting the Renin-Angiotensin System (RAS) for Neuropsychiatric Disorders. Curr Neuropharmacol 2024; 22:107-122. [PMID: 36173067 PMCID: PMC10716884 DOI: 10.2174/1570159x20666220927093815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/03/2022] [Accepted: 08/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders, such as mood disorders, schizophrenia, and Alzheimer's disease (AD) and related dementias, are associated to significant morbidity and mortality worldwide. The pathophysiological mechanisms of neuropsychiatric disorders remain to be fully elucidated, which has hampered the development of effective therapies. The Renin Angiotensin System (RAS) is classically viewed as a key regulator of cardiovascular and renal homeostasis. The discovery that RAS components are expressed in the brain pointed out a potential role for this system in central nervous system (CNS) pathologies. The understanding of RAS involvement in the pathogenesis of neuropsychiatric disorders may contribute to identifying novel therapeutic targets. AIMS We aim to report current experimental and clinical evidence on the role of RAS in physiology and pathophysiology of mood disorders, schizophrenia, AD and related dementias. We also aim to discuss bottlenecks and future perspectives that can foster the development of new related therapeutic strategies. CONCLUSION The available evidence supports positive therapeutic effects for neuropsychiatric disorders with the inhibition/antagonism of the ACE/Ang II/AT1 receptor axis or the activation of the ACE2/Ang-(1-7)/Mas receptor axis. Most of this evidence comes from pre-clinical studies and clinical studies lag much behind, hampering a potential translation into clinical practice.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Interdisciplinary Laboratory of Medical Investigation (LIIM), Faculty of Medicine, UFMG, Belo Horizonte, MG, Brazil
- Department of Morphology, Laboratory of Neurobiology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle S Macedo
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Natalia P Rocha
- Department of Neurology, The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, McGovern Medical School, University of Texas Health Science Center at Houston, TX, USA
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, University of Texas Health Science Center at Houston, TX, USA
- Faculdade Santa Casa BH, Belo Horizonte, Brasil
| |
Collapse
|
3
|
Ahmadi S, Khaledi S. Brain Renin-Angiotensin System: From Physiology to Pathology in Neuronal Complications Induced by SARS-CoV-2. Anal Cell Pathol (Amst) 2023; 2023:8883492. [PMID: 37575318 PMCID: PMC10421715 DOI: 10.1155/2023/8883492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/26/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), a key enzyme in the renin-angiotensin system (RAS), is expressed in various tissues and organs, including the central nervous system (CNS). The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease-2019 (COVID-19), binds to ACE2, which raises concerns about the potential for viral infection in the CNS. There are numerous reports suggesting a link between SARS-CoV-2 infection and neurological manifestations. This study aimed to present an updated review of the role of brain RAS components, especially ACE2, in neurological complications induced by SARS-CoV-2 infection. Several routes of SARS-CoV-2 entry into the brain have been proposed. Because an anosmia condition appeared broadly in COVID-19 patients, the olfactory nerve route was suggested as an early pathway for SARS-CoV-2 entry into the brain. In addition, a hematogenous route via disintegrations in the blood-brain barrier following an increase in systemic cytokine and chemokine levels and retrograde axonal transport, especially via the vagus nerve innervating lungs, have been described. Common nonspecific neurological symptoms in COVID-19 patients are myalgia, headache, anosmia, and dysgeusia. However, more severe outcomes include cerebrovascular diseases, cognitive impairment, anxiety, encephalopathy, and stroke. Alterations in brain RAS components such as angiotensin II (Ang II) and ACE2 mediate neurological manifestations of SARS-CoV-2 infection, at least in part. Downregulation of ACE2 due to SARS-CoV-2 infection, followed by an increase in Ang II levels, leads to hyperinflammation and oxidative stress, which in turn accelerates neurodegeneration in the brain. Furthermore, ACE2 downregulation in the hypothalamus induces stress and anxiety responses by increasing corticotropin-releasing hormone. SARS-CoV-2 infection may also dysregulate the CNS neurotransmission, leading to neurological complications observed in severe cases of COVID-19. It can be concluded that the neurological manifestations of COVID-19 may be partially associated with changes in brain RAS components.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Shiler Khaledi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
4
|
Razi O, Teixeira AM, Tartibian B, Zamani N, Knechtle B. Respiratory issues in patients with multiple sclerosis as a risk factor during SARS-CoV-2 infection: a potential role for exercise. Mol Cell Biochem 2023; 478:1533-1559. [PMID: 36411399 PMCID: PMC9684932 DOI: 10.1007/s11010-022-04610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus disease-2019 (COVID-19) is associated with cytokine storm and is characterized by acute respiratory distress syndrome (ARDS) and pneumonia problems. The respiratory system is a place of inappropriate activation of the immune system in people with multiple sclerosis (MS), and this may cause damage to the lung and worsen both MS and infections.The concerns for patients with multiple sclerosis are because of an enhance risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The MS patients pose challenges in this pandemic situation, because of the regulatory defect of autoreactivity of the immune system and neurological and respiratory tract symptoms. In this review, we first indicate respiratory issues associated with both diseases. Then, the main mechanisms inducing lung damages and also impairing the respiratory muscles in individuals with both diseases is discussed. At the end, the leading role of physical exercise on mitigating respiratory issues inducing mechanisms is meticulously evaluated.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Ana Maria Teixeira
- Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| |
Collapse
|
5
|
de Liyis BG, Sutedja JC, Kesuma PMI, Liyis S, Widyadharma IPE. A review of literature on Compound 21-loaded gelatin nanoparticle: a promising nose-to-brain therapy for multi-infarct dementia. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-023-00621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AbstractMulti-infarct dementia (MID) is described as a chronic progressive decline in cortical cognitive function due to the occurrence of multiple infarcts in the cerebral vascularization throughout the gray and white matter. Current therapies of MID mostly focus only on slowing down MID progression and symptomatic medications. A novel therapy which is able to provide both preventive and curative properties for MID is of high interest. The purpose of this review is to identify the potential of Compound 21 (C21) gelatin nanoparticle through the nose-to-brain route as therapy for MID. C21, an angiotensin II type 2 receptor (AT2R) agonist, has shown to reduce the size of cerebral infarct in rodent models, resulting in the preservation and improvement of overall cognitive function and prevention of secondary neurodegenerative effects. It is also shown that C21 decreases neuronal apoptosis, improves damaged axons, and encourage synapse development. The challenge remains in preventing systemic AT2R activation and increasing its low oral bioavailability which can be overcome through nose-to-brain administration of C21. Nose-to-brain drug delivery of C21 significantly increases drug efficiency and limits C21 exposure in order to specifically target the multiple infarcts located in the cerebral cortex. Adhering C21 onto gelatin nanoparticles may enable longer contact time with the olfactory and the trigeminal nerve endings, increasing the potency of C21. In summary, treatment of C21 gelatin nanoparticle through nose-to-brain delivery shows high potential as therapy for vascular dementia. However, clinical trials must be further studied in order to test the safety and efficacy of C21.
Collapse
|
6
|
Lim JY, Kim W, Ha AW. The effect of curcumin on blood pressure and cognitive impairment in spontaneously hypertensive rats. Nutr Res Pract 2023; 17:192-205. [PMID: 37009141 PMCID: PMC10042717 DOI: 10.4162/nrp.2023.17.2.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 03/22/2023] Open
Abstract
BACKGROUND/OBJECTIVES It is known that the renin-angiotensin system (RAS) in the brain could regulate cognitive functions as well as blood pressure. Inhibition of RAS for the improvement of cognitive function may be a new strategy, but studies so far have mostly reported on the effects of RAS inhibition by drugs, and there is no research on cognitive improvement through RAS inhibition of food ingredients. Therefore, this study investigated the effect of curcumin on blood pressure and cognitive function and its related mechanism in spontaneously hypertensive rat/Izm (SHR/Izm). MATERIALS/METHODS Six-week-old SHR/Izm rats were divided into 5 groups: control group (CON), scopolamine group (SCO, drug for inducing cognitive deficits), positive control (SCO and tacrine [TAC]), curcumin 100 group (CUR100, SCO + Cur 100 mg/kg), and curcumin 200 group (CUR200, SCO + Cur 200 mg/kg). Changes in blood pressure, RAS, cholinergic system, and cognitive function were compared before and after cognitive impairment. RESULTS The SCO group showed increased blood pressure and significantly reduced cognitive function based on the y-maze and passive avoidance test. Curcumin treatments significantly improved blood pressure and cognitive function compared with the SCO group. In both the CUR100 and CUR200 groups, the mRNA expressions of angiotensin-converting enzyme (ACE) and angiotensin II receptor type1 (AT1), as well as the concentrations of angiotensin II (Ang II) in brain tissue were significantly decreased. The mRNA expression of the muscarinic acetylcholine receptors (mAChRs) and acetylcholine (ACh) content was significantly increased, compared with the SCO group. CONCLUSIONS The administration of curcumin improved blood pressure and cognitive function in SCO-induced hypertensive mice, indicating that the cholinergic system was improved by suppressing RAS and AT1 receptor expression and increasing the mAChR expression.
Collapse
Affiliation(s)
- Ji Young Lim
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Wookyoung Kim
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Ae Wha Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
- Department of Food Science and Nutrition, Natural Nutraceuticals Industrialization Research Center, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
7
|
Lee HW, Kim S, Jo Y, Kim Y, Ye BS, Yu YM. Neuroprotective effect of angiotensin II receptor blockers on the risk of incident Alzheimer's disease: A nationwide population-based cohort study. Front Aging Neurosci 2023; 15:1137197. [PMID: 36949774 PMCID: PMC10025478 DOI: 10.3389/fnagi.2023.1137197] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Background Recent studies on renin-angiotensin system (RAS) inhibitors have reported a reduced risk of Alzheimer's disease (AD). Nevertheless, the effect of RAS inhibitor type and blood-brain barrier (BBB) permeability on the risk of AD is still unknown. Objectives To assess the effects of RAS inhibitors on the risk of AD based on the type and BBB permeability and investigate the cumulative duration-response relationship. Methods This was a population-based retrospective cohort study using the Korean Health Insurance Review and Assessment database records from 2008 to 2019. The data of patients diagnosed with ischemic heart disease between January 2009 and June 2009 were identified for inclusion in the analyses. Propensity score matching was used to balance RAS inhibitor users with non-users. The association between the use of RAS inhibitors and incident AD was evaluated using a multivariate Cox proportional hazard regression model. The results are presented in adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs). Results Among the 57,420 matched individuals, 7,303 developed AD within the follow-up period. While the use of angiotensin-converting enzyme inhibitors (ACEIs) was not significantly associated with AD risk, the use of angiotensin II receptor blockers (ARBs) showed a significant association with reduced risk of incident AD (aHR = 0.94; 95% CI = 0.90-0.99). Furthermore, the use of BBB-crossing ARBs was associated with a lower risk of AD (aHR = 0.83; 95% CI = 0.78-0.88) with a cumulative duration-response relationship. A higher cumulative dose or duration of BBB-crossing ARBs was associated with a gradual decrease in AD risk (P for trend < 0.001). No significant association between the use of ACEIs and the risk of AD was observed regardless of BBB permeability. Conclusion Long-term use of BBB-crossing ARBs significantly reduced the risk of AD development. The finding may provide valuable insight into disease-modifying drug options for preventing AD in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Hyun Woo Lee
- Department of Pharmaceutical Medicine and Regulatory Sciences, Colleges of Medicine and Pharmacy, Yonsei University, Incheon, Republic of Korea
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Seungyeon Kim
- College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Youngkwon Jo
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Youjin Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Byoung Seok Ye
- Department of Neurology, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Yun Mi Yu
- Department of Pharmaceutical Medicine and Regulatory Sciences, Colleges of Medicine and Pharmacy, Yonsei University, Incheon, Republic of Korea
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
- *Correspondence: Yun Mi Yu,
| |
Collapse
|
8
|
Mirzahosseini G, Ismael S, Ahmed HA, Ishrat T. Manifestation of renin angiotensin system modulation in traumatic brain injury. Metab Brain Dis 2021; 36:1079-1086. [PMID: 33835385 PMCID: PMC8273091 DOI: 10.1007/s11011-021-00728-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/31/2021] [Indexed: 01/20/2023]
Abstract
Traumatic brain injury (TBI) alters brain function and is a crucial public health concern worldwide. TBI triggers the release of inflammatory mediators (cytokines) that aggravate cerebral damage, thereby affecting clinical prognosis. The renin angiotensin system (RAS) plays a critical role in TBI pathophysiology. RAS is widely expressed in many organs including the brain. Modulation of the RAS in the brain via angiotensin type 1 (AT1) and type 2 (AT2) receptor signaling affects many pathophysiological processes, including TBI. AT1R is highly expressed in neurons and astrocytes. The upregulation of AT1R mediates the effects of angiotensin II (ANG II) including release of proinflammatory cytokines, cell death, oxidative stress, and vasoconstriction. The AT2R, mainly expressed in the fetal brain during development, is also related to cognitive function. Activation of this receptor pathway decreases neuroinflammation and oxidative stress and improves overall cell survival. Numerous studies have illustrated the therapeutic potential of inhibiting AT1R and activating AT2R for treatment of TBI with variable outcomes. In this review, we summarize studies that describe the role of brain RAS signaling, through AT1R and AT2R in TBI, and its modulation with pharmacological approaches.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA
| | - Heba A Ahmed
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA.
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
9
|
Ribeiro VT, de Souza LC, Simões E Silva AC. Renin-Angiotensin System and Alzheimer's Disease Pathophysiology: From the Potential Interactions to Therapeutic Perspectives. Protein Pept Lett 2020; 27:484-511. [PMID: 31886744 DOI: 10.2174/0929866527666191230103739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/27/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022]
Abstract
New roles of the Renin-Angiotensin System (RAS), apart from fluid homeostasis and Blood Pressure (BP) regulation, are being progressively unveiled, since the discoveries of RAS alternative axes and local RAS in different tissues, including the brain. Brain RAS is reported to interact with pathophysiological mechanisms of many neurological and psychiatric diseases, including Alzheimer's Disease (AD). Even though AD is the most common cause of dementia worldwide, its pathophysiology is far from elucidated. Currently, no treatment can halt the disease course. Successive failures of amyloid-targeting drugs have challenged the amyloid hypothesis and increased the interest in the inflammatory and vascular aspects of AD. RAS compounds, both centrally and peripherally, potentially interact with neuroinflammation and cerebrovascular regulation. This narrative review discusses the AD pathophysiology and its possible interaction with RAS, looking forward to potential therapeutic approaches. RAS molecules affect BP, cerebral blood flow, neuroinflammation, and oxidative stress. Angiotensin (Ang) II, via angiotensin type 1 receptors may promote brain tissue damage, while Ang-(1-7) seems to elicit neuroprotection. Several studies dosed RAS molecules in AD patients' biological material, with heterogeneous results. The link between AD and clinical conditions related to classical RAS axis overactivation (hypertension, heart failure, and chronic kidney disease) supports the hypothesized role of this system in AD. Additionally, RAStargeting drugs as Angiotensin Converting Enzyme inhibitors (ACEis) and Angiotensin Receptor Blockers (ARBs) seem to exert beneficial effects on AD. Results of randomized controlled trials testing ACEi or ARBs in AD are awaited to elucidate whether AD-RAS interaction has implications on AD therapeutics.
Collapse
Affiliation(s)
- Victor Teatini Ribeiro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Leonardo Cruz de Souza
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Internal Medicine, Service of Neurology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
10
|
Chehaitly A, Vessieres E, Guihot AL, Henrion D. Flow-mediated outward arterial remodeling in aging. Mech Ageing Dev 2020; 194:111416. [PMID: 33333130 DOI: 10.1016/j.mad.2020.111416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
The present review focuses on the effect of aging on flow-mediated outward remodeling (FMR) via alterations in estrogen metabolism, oxidative stress and inflammation. In ischemic disorders, the ability of the vasculature to adapt or remodel determines the quality of the recovery. FMR, which has a key role in revascularization, is a complex phenomenon that recruits endothelial and smooth muscle cells as well as the immune system. FMR becomes progressively less with age as a result of an increase in inflammation and oxidative stress, in part of mitochondrial origin. The alteration in FMR is greater in older individuals with risk factors and thus the therapy cannot merely amount to exercise with or without a mild vasodilating drug. Interestingly, the reduction in FMR occurs later in females. Estrogen and its alpha receptor (ERα) play a key role in FMR through the control of dilatory pathways including the angiotensin II type 2 receptor, thus providing possible tools to activate FMR in older subjects although only experimental data is available. Indeed, the main issue is the reversibility of the vascular damage induced over time, and to date promoting prevention and limiting exposure to the risk factors remain the best options in this regard.
Collapse
Affiliation(s)
- Ahmad Chehaitly
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France
| | - Emilie Vessieres
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France
| | - Anne-Laure Guihot
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France
| | - Daniel Henrion
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France.
| |
Collapse
|
11
|
Kaushik P, Kaushik M, Parveen S, Tabassum H, Parvez S. Cross-Talk Between Key Players in Patients with COVID-19 and Ischemic Stroke: A Review on Neurobiological Insight of the Pandemic. Mol Neurobiol 2020; 57:4921-4928. [PMID: 32813238 PMCID: PMC7434850 DOI: 10.1007/s12035-020-02072-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
The global pandemic of novel coronavirus disease 2019 (COVID-19) has taken the entire human race by surprise and led to an unprecedented number of mortalities worldwide so far. Current clinical studies have interpreted that angiotensin-converting enzyme 2 (ACE2) is the host receptor for severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). In addition, ACE2 is the major component of the renin-angiotensin system. ACE2 deteriorates angiotensin II, a peptide that is responsible for the promotion of stroke. The downregulation of ACE2 further activates an immunological cascade. Thus, researchers need to explore and examine the possible links between COVID-19 and ischemic stroke (IS). Human ACE2 expression level and pattern in various tissues might be decisive for the vulnerability, symptoms, and treatment outcomes of the SARS-CoV-2 infection. The swift increase in the knowledge of SARS-CoV-2 has given creditable evidence that SARS-CoV-2 infected patients also encounter neurological deficits. As the SARS-CoV-2 binds to ACE2, it will hamper the activity of ACE2 in providing neuroprotection, especially in the case of stroke patients. Due to the downregulation of ACE2, the inflammatory response is activated in the ischemic penumbra. The COVID-19 pandemic has affected people with various pre-existing diseases, including IS, in such a way that these patients need special care and attention for their survival. Several clinical trials are currently ongoing worldwide as well as many other projects are in different stages of conceptualization and planning to facilitate the effective management of stroke patients with COVID-19 infection.
Collapse
Affiliation(s)
- Pooja Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Medha Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sabiha Parveen
- Department of Communication Sciences and Disorders, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India, V. Ramalingaswami Bhawan, P.O. Box No. 4911, New Delhi, 110029, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
12
|
Porta-Etessam J, Yus M, González García N, Valcarcel A, Barrado-Cuchillo J, Pérez-Somarriba J. Brain inflammatory thrombogenic vasculopathy related with SARS-CoV-2 infection. NEUROLOGÍA (ENGLISH EDITION) 2020. [PMID: 32917434 PMCID: PMC7832718 DOI: 10.1016/j.nrleng.2020.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- J Porta-Etessam
- Neurology Department, Hospital Clínico San Carlos, Madrid, Spain.
| | - M Yus
- Radiology Department, Hospital Clínico San Carlos, Madrid, Spain
| | | | - A Valcarcel
- Internal Medicine Department, Hospital Clínico San Carlos, Madrid, Spain
| | - J Barrado-Cuchillo
- Internal Medicine Department, Hospital Clínico San Carlos, Madrid, Spain
| | - J Pérez-Somarriba
- Internal Medicine Department, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
13
|
Cosarderelioglu C, Nidadavolu LS, George CJ, Oh ES, Bennett DA, Walston JD, Abadir PM. Brain Renin-Angiotensin System at the Intersect of Physical and Cognitive Frailty. Front Neurosci 2020; 14:586314. [PMID: 33117127 PMCID: PMC7561440 DOI: 10.3389/fnins.2020.586314] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
The renin–angiotensin system (RAS) was initially considered to be part of the endocrine system regulating water and electrolyte balance, systemic vascular resistance, blood pressure, and cardiovascular homeostasis. It was later discovered that intracrine and local forms of RAS exist in the brain apart from the endocrine RAS. This brain-specific RAS plays essential roles in brain homeostasis by acting mainly through four angiotensin receptor subtypes; AT1R, AT2R, MasR, and AT4R. These receptors have opposing effects; AT1R promotes vasoconstriction, proliferation, inflammation, and oxidative stress while AT2R and MasR counteract the effects of AT1R. AT4R is critical for dopamine and acetylcholine release and mediates learning and memory consolidation. Consequently, aging-associated dysregulation of the angiotensin receptor subtypes may lead to adverse clinical outcomes such as Alzheimer’s disease and frailty via excessive oxidative stress, neuroinflammation, endothelial dysfunction, microglial polarization, and alterations in neurotransmitter secretion. In this article, we review the brain RAS from this standpoint. After discussing the functions of individual brain RAS components and their intracellular and intracranial locations, we focus on the relationships among brain RAS, aging, frailty, and specific neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and vascular cognitive impairment, through oxidative stress, neuroinflammation, and vascular dysfunction. Finally, we discuss the effects of RAS-modulating drugs on the brain RAS and their use in novel treatment approaches.
Collapse
Affiliation(s)
- Caglar Cosarderelioglu
- Division of Geriatrics, Department of Internal Medicine, Ankara University School of Medicine, Ankara, Turkey.,Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lolita S Nidadavolu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Claudene J George
- Division of Geriatrics, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Esther S Oh
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter M Abadir
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
de Miranda AS, Teixeira AL. Coronavirus Disease-2019 Conundrum: RAS Blockade and Geriatric-Associated Neuropsychiatric Disorders. Front Med (Lausanne) 2020; 7:515. [PMID: 32850927 PMCID: PMC7431869 DOI: 10.3389/fmed.2020.00515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which primarily targets the human respiratory system and may lead to severe pneumonia and ultimately death. Mortality rate is particurlarly high among people beyond the sixth decade of life with cardiovascular and metabolic diseases. The discovery that the SARS-CoV-2 uses the renin-angiotensin system (RAS) component ACE2 as a receptor to invade host epithelial cells and cause organs damage resulted in a debate regarding the role of ACE inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) therapies during COVID-19 pandemic. Some authors proposed the discontinuation of ACEIs and ARBs for cardiovascular, kidney, and metabolic diseases, while expert opinions have discouraged that due to limited empirical evidence of their negative effect on COVID-19 outcomes, and that withdrawing treatment may contribute to clinical decompensation in high-risk patients. Moreover, as cardiovascular and metabolic diseases are associated with neurodegenerative and psychiatric disorders, especially among older adults, a critical appraisal of the potential positive effects of ACEIs and ARBs is highly needed. Herein, we aim to discuss the conundrum of ACEIs and ARBs use in high-risk patients for COVID-19, and their potential protective role on the development and/or progression of geriatric neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antonio Lucio Teixeira
- Instituto de Ensino e Pesquisa Santa Casa BH, Belo Horizonte, Brazil.,Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
15
|
Suwannasual U, Lucero J, Davis G, McDonald JD, Lund AK. Mixed Vehicle Emissions Induces Angiotensin II and Cerebral Microvascular Angiotensin Receptor Expression in C57Bl/6 Mice and Promotes Alterations in Integrity in a Blood-Brain Barrier Coculture Model. Toxicol Sci 2020; 170:525-535. [PMID: 31132127 DOI: 10.1093/toxsci/kfz121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Exposure to traffic-generated pollution is associated with alterations in blood-brain barrier (BBB) integrity and exacerbation of cerebrovascular disorders. Angiotensin (Ang) II signaling through the Ang II type 1 (AT1) receptor is known to promote BBB disruption. We have previously reported that exposure to a mixture of gasoline and diesel vehicle engine emissions (MVE) mediates alterations in cerebral microvasculature of C57Bl/6 mice, which is exacerbated through consumption of a high-fat (HF) diet. Thus, we investigated the hypothesis that inhalation exposure to MVE results in altered central nervous system microvascular integrity mediated by Ang II-AT1 signaling. Three-month-old male C57Bl/6 mice were placed on an HF or low-fat diet and exposed via inhalation to either filtered air (FA) or MVE (100 μg/m3 PM) 6 h/d for 30 days. Exposure to HF+MVE resulted in a significant increase in plasma Ang II and expression of AT1 in the cerebral microvasculature. Results from a BBB coculture study showed that transendothelial electrical resistance was decreased, associated with reduced expression of claudin-5 and occludin when treated with plasma from MVE+HF animals. These effects were attenuated through pretreatment with the AT1 antagonist, Losartan. Our BBB coculture showed increased levels of astrocyte AT1 and decreased expression of aryl hydrocarbon receptor and glutathione peroxidase-1, associated with increased interleukin-6 and transforming growth factor-β in the astrocyte media, when treated with plasma from MVE-exposed groups. Our results indicate that inhalation exposure to traffic-generated pollutants results in altered BBB integrity, mediated through Ang II-AT1 signaling and inflammation, which is exacerbated by an HF diet.
Collapse
Affiliation(s)
- Usa Suwannasual
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| | - JoAnn Lucero
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| | - Griffith Davis
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico 87108
| | - Amie K Lund
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas 76201
| |
Collapse
|
16
|
Kangussu LM, Marzano LAS, Souza CF, Dantas CC, Miranda AS, Simões e Silva AC. The Renin-Angiotensin System and the Cerebrovascular Diseases: Experimental and Clinical Evidence. Protein Pept Lett 2020; 27:463-475. [DOI: 10.2174/0929866527666191218091823] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/07/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022]
Abstract
Cerebrovascular Diseases (CVD) comprise a wide spectrum of disorders, all sharing an
acquired or inherited alteration of the cerebral vasculature. CVD have been associated with
important changes in systemic and tissue Renin-Angiotensin System (RAS). The aim of this review
was to summarize and to discuss recent findings related to the modulation of RAS components in
CVD. The role of RAS axes is more extensively studied in experimentally induced stroke. By
means of AT1 receptors in the brain, Ang II hampers cerebral blood flow and causes tissue
ischemia, inflammation, oxidative stress, cell damage and apoptosis. On the other hand, Ang-(1-7)
by stimulating Mas receptor promotes angiogenesis in brain tissue, decreases oxidative stress,
neuroinflammation, and improves cognition, cerebral blood flow, neuronal survival, learning and
memory. In regard to clinical studies, treatment with Angiotensin Converting Enzyme (ACE)
inhibitors and AT1 receptor antagonists exerts preventive and therapeutic effects on stroke. Besides
stroke, studies support a similar role of RAS molecules also in traumatic brain injury and cerebral
aneurysm. The literature supports a beneficial role for the alternative RAS axis in CVD. Further
studies are necessary to investigate the therapeutic potential of ACE2 activators and/or Mas
receptor agonists in patients with CVD.
Collapse
Affiliation(s)
- Lucas M. Kangussu
- Department of Morphology – Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Alexandre Santos Marzano
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cássio Ferraz Souza
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina Couy Dantas
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline Silva Miranda
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões e Silva
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
Rusek M, Czuczwar SJ. A review of clinically significant drug-drug interactions involving angiotensin II receptor antagonists and antiepileptic drugs. Expert Opin Drug Metab Toxicol 2020; 16:507-515. [PMID: 32397766 DOI: 10.1080/17425255.2020.1763955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Angiotensin II receptor blockers are widely used for the treatment of arterial hypertension and heart failure. However, recent studies on animal models of seizures showed that in the brain, the renin-angiotensin-aldosterone system might be involved in neuroinflammation; therefore, the administration of angiotensin II receptor blockers that cross the blood/brain barrier, reduces not only blood pressure but reduces neuroinflammation-induced neuronal injury. Apart from this neuroprotective effect, these drugs exhibit anticonvulsant activity in animal models of seizures, and losartan is associated with a probable anti-epileptogenic activity. AREAS COVERED In this review, we intended to highlight the role of drug-drug interactions involving angiotensin II receptor antagonists with antiepileptic drugs accompanied by a brief characteristic of the role of RAS in neuroinflammation. EXPERT OPINION Some combinations of antiepileptic drugs (lamotrigine or valproate) with sartans are particularly effective in terms of enhanced seizure control. Considering a possible anti-epileptogenic activity of losartan, its combinations with antiepileptic drugs may prove especially beneficial in epileptogenesis inhibition.
Collapse
Affiliation(s)
- Marta Rusek
- Department of Pathophysiology, Medical University of Lublin , Lublin, Poland.,Department of Dermatology, Venereology and Pediatric Dermatology, Laboratory for Immunology of Skin Diseases, Medical University of Lublin , Lublin, Poland
| | | |
Collapse
|
18
|
Min LJ, Iwanami J, Shudou M, Bai HY, Shan BS, Higaki A, Mogi M, Horiuchi M. Deterioration of cognitive function after transient cerebral ischemia with amyloid-β infusion-possible amelioration of cognitive function by AT 2 receptor activation. J Neuroinflammation 2020; 17:106. [PMID: 32264971 PMCID: PMC7140348 DOI: 10.1186/s12974-020-01775-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background To promote understanding of the pathogenesis of cognitive impairment or dementia, we explored the potential interaction between transient cerebral ischemia and amyloid-β (Aβ) infusion in mediating cognitive decline and examined the possible ameliorative effect of angiotensin II type 2 (AT2) receptor activation in vascular smooth muscle cells (VSMC) on this cognitive deficit. Methods Adult male wild-type mice (WT) and mice with VSMC-specific AT2 receptor overexpression (smAT2) were subjected to intracerebroventricular (ICV) injection of Aβ1-40. Transient cerebral ischemia was induced by 15 min of bilateral common carotid artery occlusion (BCCAO) 24 h after Aβ injection. Results Aβ injection in WT induced a cognitive decline, whereas BCCAO did not cause a significant cognitive deficit. In contrast, WT with BCCAO following Aβ injection exhibited more marked cognitive decline compared to Aβ injection alone, in concert with increases in superoxide anion production, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and expression of p22phox, p40phox, monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-1β in the hippocampus, and upregulation of RAGE (receptor for advanced glycation end product), an Aβ transporter. BCCAO following Aβ injection further enhanced neuronal pyknosis in the hippocampus, compared with BCCAO or Aβ injection alone. In contrast, smAT2 did not show a cognitive decline, increase in oxidative stress, inflammation, and RAGE level or neuronal pyknosis, which were induced by BCCAO with/without Aβ injection in WT. Conclusions Transient cerebral ischemia might worsen Aβ infusion-mediated cognitive decline and vice versa, with possible involvement of amplified oxidative stress and inflammation and impairment of the RAGE-mediated Aβ clearance system, contributing to exaggerated neuronal degeneration. AT2 receptor activation in VSMC could play an inhibitory role in this cognitive deficit.
Collapse
Affiliation(s)
- Li-Juan Min
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, 791-0295, Japan.
| | - Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, 791-0295, Japan
| | - Masachika Shudou
- Division of Analytical Bio-Medicine, Advanced Research Support Center (ADRES), Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Hui-Yu Bai
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, 791-0295, Japan
| | - Bao-Shuai Shan
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, 791-0295, Japan
| | - Akinori Higaki
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, 791-0295, Japan
| | - Masaki Mogi
- Department of Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, 791-0295, Japan
| |
Collapse
|
19
|
Borkowska A, Popowska U, Spodnik J, Herman-Antosiewicz A, Woźniak M, Antosiewicz J. JNK/p66Shc/ITCH Signaling Pathway Mediates Angiotensin II-induced Ferritin Degradation and Labile Iron Pool Increase. Nutrients 2020; 12:nu12030668. [PMID: 32121405 PMCID: PMC7146217 DOI: 10.3390/nu12030668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Angiotensin II (Ang II) induces deleterious changes in cellular iron metabolism and increases the generation of reactive oxygen species. This leads to an impairment of neuronal and vascular function. However, the mechanism underpinning Ang II-induced changes in iron metabolism is not known. We hypothesized that Ang II-induced ferritin degradation and an increase in the labile iron pool are mediated by the c-Jun N-terminal kinase (JNK)/p66Shc/ITCH signaling pathway. We show that Ang II treatment induced ferritin degradation in an endothelial cell lines derived from the bovine stem pulmonary artery (CPAE), human umbilical vein endothelial cells (HUVEC), and HT22 neuronal cells. Ferritin degradation was accompanied by an increase in the labile iron pool, as determined by changes in calcein fluorescence. The JNK inhibitor SP600125 abolished Ang II-induced ferritin degradation. Furthermore, the effect of Ang II on ferritin levels was completely abolished in cells transfected with vectors encoding catalytically inactive variants of JNK1 or JNK2. CPAE cells expressing inactive ITCHor p66Shc (substrates of JNK kinases) were completely resistant to Ang II-induced ferritin degradation. These observations suggest that Ang II-induced ferritin degradation and, hence, elevation of the levels of highly reactive iron, are mediated by the JNK/p66Shc/ITCH signaling pathway.
Collapse
Affiliation(s)
- Andżelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: ; (A.B.); (J.A.); Tel.: +48-58-349-14-50 (A.B.)
| | - Urszula Popowska
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (U.P.); (M.W.)
| | - Jan Spodnik
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | | | - Michał Woźniak
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (U.P.); (M.W.)
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: ; (A.B.); (J.A.); Tel.: +48-58-349-14-50 (A.B.)
| |
Collapse
|
20
|
Role of brain renin angiotensin system in neurodegeneration: An update. Saudi J Biol Sci 2020; 27:905-912. [PMID: 32127770 PMCID: PMC7042626 DOI: 10.1016/j.sjbs.2020.01.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/12/2023] Open
Abstract
Renin angiotensin system (RAS) is an endocrine system widely known for its physiological roles in electrolyte homeostasis, body fluid volume regulation and cardiovascular control in peripheral circulation. However, brain RAS is an independent form of RAS expressed locally in the brain, which is known to be involved in brain functions and disorders. There is strong evidence for a major involvement of excessive brain angiotensin converting enzyme (ACE)/Angiotensin II (Ang II)/Angiotensin type-1 receptor (AT-1R) axis in increased activation of oxidative stress, apoptosis and neuroinflammation causing neurodegeneration in several brain disorders. Numerous studies have demonstrated strong neuroprotective effects by blocking AT1R in these brain disorders. Additionally, the angiotensin converting enzyme 2 (ACE2)/Angiotensin (1–7)/Mas receptor (MASR), is another axis of brain RAS which counteracts the damaging effects of ACE/Ang II/AT1R axis on neurons in the brain. Thus, angiotensin II receptor blockers (ARBs) and activation of ACE2/Angiotensin (1–7)/MASR axis may serve as an exciting and novel method for neuroprotection in several neurodegenerative diseases. Here in this review article, we discuss the expression of RAS in the brain and highlight how altered RAS level may cause neurodegeneration. Understanding the pathophysiology of RAS and their links to neurodegeneration has enormous potential to identify potentially effective pharmacological tools to treat neurodegenerative diseases in the brain.
Collapse
|
21
|
Porta-Etessam J, Yus M, González García N, Valcarcel A, Barrado-Cuchillo J, Pérez-Somarriba J. [Brain inflammatory thrombogenic vasculopathy related with SARS-CoV-2 infection]. Neurologia 2020; 35:701-703. [PMID: 32917434 PMCID: PMC7396959 DOI: 10.1016/j.nrl.2020.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 01/07/2023] Open
Affiliation(s)
- J. Porta-Etessam
- Neurology Department, Hospital Clínico San Carlos, Madrid, Spain,Corresponding author
| | - M. Yus
- Radiology Department, Hospital Clínico San Carlos, Madrid, Spain
| | | | - A. Valcarcel
- Internal Medicine Department, Hospital Clínico San Carlos, Madrid, Spain
| | | | - J. Pérez-Somarriba
- Internal Medicine Department, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
22
|
Activation of the Protective Arm of the Renin Angiotensin System in Demyelinating Disease. J Neuroimmune Pharmacol 2019; 15:249-263. [PMID: 31828731 DOI: 10.1007/s11481-019-09894-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/12/2019] [Indexed: 01/26/2023]
Abstract
The renin angiotensin system (RAS), which is classically known for blood pressure regulation, has functions beyond this. There are two axes of RAS that work to counterbalance each other and are active throughout the body, including the CNS. The pathological axis, consisting of angiotensin II (A1-8), angiotensin converting enzyme (ACE) and the angiotensin II type 1 receptor (AT1R), is upregulated in many CNS diseases, including multiple sclerosis (MS). MS is an autoimmune and neurodegenerative disease of the CNS characterized by inflammation, demyelination and axonal degeneration. Published research has described increased expression of AT1R and ACE in tissues from MS patients and in animal models of MS such as experimental autoimmune encephalomyelitis (EAE). In contrast to the pathological axis, little is known about the protective axes of RAS in MS and EAE. In other neurological conditions the protective axis, which includes A1-7, ACE2, angiotensin II type 2 receptor and Mas receptor, has been shown to have anti-inflammatory, regenerative and neuroprotective effects. Here we show, for the first time, changes in the protective arm of RAS in both EAE and MS CNS tissue. We observed a significant increase in expression of the protective arm during stages of disease stabilization in EAE, and in MS tissue showing evidence of remyelination. These data provide evidence that the protective arm of RAS, through both ligand and receptor expression, is associated with reductions in the pathological processes that occur in the earlier stages of MS and EAE, possibly slowing the neurodegenerative process and enhancing neural repair. Graphical Abstract.
Collapse
|
23
|
Verma A, Zhu P, de Kloet A, Krause E, Sumners C, Li Q. Angiotensin receptor expression revealed by reporter mice and beneficial effects of AT2R agonist in retinal cells. Exp Eye Res 2019; 187:107770. [PMID: 31449794 DOI: 10.1016/j.exer.2019.107770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023]
Abstract
The renin-angiotensin system (RAS) plays a vital role in cardiovascular physiology and body homeostasis. In addition to circulating RAS, a local RAS exists in the retina. Dysfunction of local RAS, resulting in increased levels of Angiotensin II (Ang II) and activation of AT1R-mediated signaling pathways, contributes to tissue pathophysiology and end-organ damage. Activation of AT2R on other hand is known to counteract the effects of AT1R activation and produce anti-inflammatory and anti-oxidative effects. We examined the expression of angiotensin receptors in the retina by using transgenic dual reporter mice and by real-time RT-PCR. We further evaluated the effects of C21, a selective agonist of AT2R, in reducing Ang II, lipopolysaccharide (LPS) and hydrogen peroxide induced oxidative stress and inflammatory responses in cultured human ARPE-19 cells. We showed that both AT1Ra and AT2R positive cells are detected in different cell types of the eye, including the RPE/choroid complex, ciliary body/iris, and neural retina. AT1Ra is more abundantly expressed than AT2R in mouse retina, consistent with previous reports. In the neural retina, AT1Ra are also detected in photoreceptors whereas AT2R are mostly expressed in the inner retinal neurons and RGCs. In cultured human RPE cells, activation of AT2R with C21 significantly blocked Ang II, LPS and hydrogen peroxide -induced NF-κB activation and inflammatory cytokine expression; Ang II and hydrogen peroxide-induced reactive oxygen species (ROS) production and MG132-induced apoptosis, comparable to the effects of Angiotensin-(1-7) (Ang-(1-7)), another protective component of the RAS, although C21 is more potent in reducing some of the effects induced by Ang II, whereas Ang-(1-7) is more effective in reducing some of the LPS and hydrogen peroxide-induced effects. These results suggest that activation of AT2R may represent a new therapeutic approach for retinal diseases.
Collapse
Affiliation(s)
- Amrisha Verma
- Departments of Ophthalmology, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Ping Zhu
- Departments of Ophthalmology, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Annette de Kloet
- Physiology & Functional Genomics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Eric Krause
- College of Medicine, Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Colin Sumners
- Physiology & Functional Genomics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Qiuhong Li
- Departments of Ophthalmology, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
24
|
Quitterer U, AbdAlla S. Improvements of symptoms of Alzheimer`s disease by inhibition of the angiotensin system. Pharmacol Res 2019; 154:104230. [PMID: 30991105 DOI: 10.1016/j.phrs.2019.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 01/30/2023]
Abstract
With ageing of the global society, the frequency of ageing-related neurodegenerative diseases such as Alzheimer`s disease (AD) is on the rise worldwide. Currently, there is no cure for AD, and the four drugs approved for AD only have very small effects on AD symptoms. Consequently, there are enormous efforts worldwide to identify new targets for treatment of AD. Approaches that interfere with classical neuropathologic features of AD, such as extracellular senile plaques formed of aggregated amyloid-beta (Abeta), and intracellular neurofibrillary tangles of hyperphosphorylated tau have not been successful so far. In search for a treatment approach of AD, we found that inhibition of the angiotensin-converting enzyme (ACE) by a centrally acting ACE inhibitor retards symptoms of neurodegeneration, Abeta plaque formation and tau hyperphosphorylation in experimental models of AD. Our approach is currently being investigated in a clinical setting. Initial evidence with AD patients shows that a brain-penetrating ACE inhibitor counteracts the process of neurodegeneration and dementia. Moreover, centrally acting ACE inhibitors given in addition to the standard therapy, cholinesterase inhibition, can improve cognitive function of AD patients for several months. This is one of the most promising results for AD treatment since more than a decade.
Collapse
Affiliation(s)
- Ursula Quitterer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Institute of Pharmacology and Toxicology, Department of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| | - Said AbdAlla
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
25
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 663] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
26
|
Diniz CR, Casarotto PC, Fred SM, Biojone C, Castrén E, Joca SR. Antidepressant-like effect of losartan involves TRKB transactivation from angiotensin receptor type 2 (AGTR2) and recruitment of FYN. Neuropharmacology 2018; 135:163-171. [DOI: 10.1016/j.neuropharm.2018.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/06/2018] [Accepted: 03/12/2018] [Indexed: 12/24/2022]
|
27
|
Angiotensin II facilitates GABAergic neurotransmission at postsynaptic sites in rat amygdala neurons. Neuropharmacology 2018; 133:334-344. [PMID: 29447844 DOI: 10.1016/j.neuropharm.2018.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 12/27/2022]
Abstract
The central nucleus of the amygdala (CeA) is critical in the regulation of sodium appetite. Angiotensin II (Ang II) is important in the generation of sodium appetite and may function as a neurotransmitter or modulator to affect the synaptic transmission and the excitability of neurons. However, the role of Ang II in the CeA remains unclear. In this study, we determined the effects of Ang II on the excitatory and inhibitory synaptic inputs to the CeA neurons in brain slices with whole-cell patch-clamp recordings. Ang II (0.5-5 μM) significantly potentiated the amplitude of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) in a concentration-dependent manner. Ang II (2 μM) significantly increased the amplitude of miniature GABAergic inhibitory postsynaptic currents (mIPSCs) without affecting the frequency. This effect was blocked by Ang II type 1 (AT1) receptor antagonist, losartan. One mM guanosine 5'-O-(-2-thiodiphosphate) (GDP-β-s) in the pipette internal solution eliminated the facilitatory effect of Ang II on GABAergic synaptic transmission. In contrast, Ang II had no effect on the spontaneous glutamatergic excitatory postsynaptic currents (EPSCs) and did not alter the frequency and amplitude of miniature EPSCs at concentrations that facilitated IPSCs. Furthermore, Ang II decreased the firing activity of CeA neurons, and this effect was abolished by losartan and GDP-β-s. In addition, Ang II failed to inhibit CeA neurons in the presence of bicuculline. These data provide substantial new evidence that Ang II inhibits the CeA neurons by facilitation of GABAergic synaptic input efficacy through activation of postsynaptic AT1 receptors.
Collapse
|
28
|
Farag E, Sessler DI, Ebrahim Z, Kurz A, Morgan J, Ahuja S, Maheshwari K, John Doyle D. The renin angiotensin system and the brain: New developments. J Clin Neurosci 2017; 46:1-8. [PMID: 28890045 DOI: 10.1016/j.jocn.2017.08.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/14/2017] [Indexed: 11/19/2022]
Abstract
The traditional renin-angiotensin system (RAS) is indispensable system in adjusting sodium homeostasis, body fluid volume, and controlling arterial blood pressure. The key elements are renin splitting inactive angiotensinogen to yield angiotensin (Ang-I). Ang-1 is then changed by angiotensin-1 converting enzyme (ACE) into angiotensin II (Ang-II). Using PubMed, Google Scholar, and other means, we searched the peer-reviewed literature from 1990 to 2013 for articles on newly discovered findings related to the RAS, especially focusing on how the system influences the central nervous system (CNS). The classical RAS is now considered to be only part of the picture; the discovery of additional RAS pathways in the brain and elsewhere has yielded a vastly improved understanding of how the RAS influences the CNS. Newly discovered effects of the RAS on brain tissue include neuroprotection, cognition, and cerebral vasodilation. A number of brain biochemical pathways are influenced by the brain RAS. Within various pathways, there are potential opportunities for classical pharmacologic interventions as well as the possibility of controlling gene expression.
Collapse
Affiliation(s)
- Ehab Farag
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA. http://www.OR.org/
| | - Daniel I Sessler
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zeyd Ebrahim
- Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrea Kurz
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph Morgan
- Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sanchit Ahuja
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kamal Maheshwari
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - D John Doyle
- Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
29
|
Relationship Between Antihypertensive Medications and Cognitive Impairment: Part II. Review of Physiology and Animal Studies. Curr Hypertens Rep 2017; 18:66. [PMID: 27492369 PMCID: PMC4988998 DOI: 10.1007/s11906-016-0673-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE OF REVIEW There is an established association between hypertension and increased risk of poor cognitive performance and dementia including Alzheimer's disease; however, associations between antihypertensive medications (AHM) and dementia risk are less clear. An increased interest in AHM has resulted in expanding publications; however, none of the recent reviews provide comprehensive review. Our extensive review includes 24 mechanistic animal and human studies published over the last 5 years assessing relationship between AHM and cognitive function. RECENT FINDINGS All classes of AHM showed similar result patterns in animal studies. The mechanism by which AHM exert their effect was extensively studied by evaluating well-established pathways of AD disease process, including amyloid beta (Aβ), vascular, oxidative stress and inflammation pathways, but only few studies evaluated the blood pressure lowering effect on the AD disease process. Methodological limitations of the studies prevent comprehensive conclusions prior to further work evaluating AHM in animals and larger human observational studies, and selecting those with promising results for future RCTs.
Collapse
|
30
|
Hallberg M, Sumners C, Steckelings UM, Hallberg A. Small-molecule AT2 receptor agonists. Med Res Rev 2017; 38:602-624. [DOI: 10.1002/med.21449] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, BMC; Uppsala University; P.O. Box 591 SE751 24 Uppsala Sweden
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida; College of Medicine and McKnight Brain Institute; Gainesville FL 32611
| | - U. Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research; University of Southern Denmark; P.O. Box 5230 Odense Denmark
| | - Anders Hallberg
- Department of Medicinal Chemistry, BMC; Uppsala University; P.O. Box 574 SE-751 23 Uppsala Sweden
| |
Collapse
|
31
|
Fujiwara N, Tanaka A, Kawaguchi A, Tago M, Oyama JI, Uchida Y, Matsunaga K, Moroe K, Toyoda S, Inoue T, Ikeda H, Node K. Association Between Blood Pressure Lowering and Quality of Life by Treatment of Azilsartan. Int Heart J 2017; 58:752-761. [DOI: 10.1536/ihj.16-511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | | | | | - Motoko Tago
- Department of Cardiovascular Medicine, Saga University
| | | | | | | | - Kazuo Moroe
- Department of Cardiovascular Medicine, Moroe Cardiovascular Clinic
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University
| | - Teruo Inoue
- Department of Cardiovascular Medicine, Dokkyo Medical University
| | - Hideo Ikeda
- Department of Internal Medicine, Ikeda Naika Hifuka Clinic
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | | |
Collapse
|
32
|
Selvaraj UM, Poinsatte K, Torres V, Ortega SB, Stowe AM. Heterogeneity of B Cell Functions in Stroke-Related Risk, Prevention, Injury, and Repair. Neurotherapeutics 2016; 13:729-747. [PMID: 27492770 PMCID: PMC5081124 DOI: 10.1007/s13311-016-0460-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is well established that post-stroke inflammation contributes to neurovascular injury, blood-brain barrier disruption, and poor functional recovery in both animal and clinical studies. However, recent studies also suggest that several leukocyte subsets, activated during the post-stroke immune response, can exhibit both pro-injury and pro-recovery phenotypes. In accordance with these findings, B lymphocytes, or B cells, play a heterogeneous role in the adaptive immune response to stroke. This review highlights what is currently understood about the various roles of B cells, with an emphasis on stroke risk factors, as well as post-stroke injury and repair. This includes an overview of B cell functions, such as antibody production, cytokine secretion, and contribution to the immune response as antigen presenting cells. Next, evidence for B cell-mediated mechanisms in stroke-related risk factors, including hypertension, diabetes, and atherosclerosis, is outlined, followed by studies that focus on B cells during endogenous protection from stroke. Subsequently, animal studies that investigate the role of B cells in post-stroke injury and repair are summarized, and the final section describes current B cell-related clinical trials for stroke, as well as other central nervous system diseases. This review reveals the complex role of B cells in stroke, with a focus on areas for potential clinical intervention for a disease that affects millions of people globally each year.
Collapse
Affiliation(s)
- Uma Maheswari Selvaraj
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Katherine Poinsatte
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Vanessa Torres
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Sterling B Ortega
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA.
| |
Collapse
|
33
|
Goldstein B, Speth RC, Trivedi M. Renin-angiotensin system gene expression and neurodegenerative diseases. J Renin Angiotensin Aldosterone Syst 2016; 17:17/3/1470320316666750. [PMID: 27613758 PMCID: PMC5843881 DOI: 10.1177/1470320316666750] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 07/13/2016] [Indexed: 01/05/2023] Open
Abstract
Hypothesis: Single nucleotide polymorphisms and altered gene expression of components of the renin–angiotensin system (RAS) are associated with neurodegenerative diseases. Introduction: Drugs that interact with the RAS have been shown to affect the course of neurodegenerative disease, suggesting that abnormalities in the RAS may contribute to neurodegenerative disease. Materials and methods: A meta-analysis of genome-wide association studies and gene expression data for 14 RAS-related proteins was carried out for five neurodegenerative diseases: Alzheimer’s disease, Parkinson’s disease, narcolepsy, amyotrophic lateral sclerosis and multiple sclerosis. Results: No single nucleotide polymorphisms in any of the 14 RAS-related protein genes were significantly associated with the five neurodegenerative diseases investigated. There was an inverse association between expression of ATP6AP2, which encodes the (pro)renin receptor, and multiple sclerosis, Alzheimer’s disease and Parkinson’s disease. An association of AGTR, which encodes the AT1 angiotensin II receptor, and Parkinson’s disease and Alzheimer’s disease was also observed. Conclusions: To date, no single nucleotide polymorphisms in components of the RAS can be definitively linked to the neurodegenerative diseases evaluated in this study. However, altered gene expression of several components of the RAS is associated with several neurodegenerative diseases, which may indicate that the RAS contributes to the pathology of these diseases.
Collapse
Affiliation(s)
| | - Robert C Speth
- Department of Pharmaceutical Sciences, Nova Southeastern University, USA
| | - Malav Trivedi
- Department of Pharmaceutical Sciences, Nova Southeastern University, USA
| |
Collapse
|
34
|
Caillon A, Grenier C, Grimaud L, Vessieres E, Guihot AL, Blanchard S, Lelievre E, Chabbert M, Foucher ED, Jeannin P, Beauvillain C, Abraham P, Loufrani L, Delneste Y, Henrion D. The angiotensin II type 2 receptor activates flow-mediated outward remodelling through T cells-dependent interleukin-17 production. Cardiovasc Res 2016; 112:515-25. [PMID: 27328880 DOI: 10.1093/cvr/cvw172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
AIMS The angiotensin II type 1 receptor (AT1R) through the activation of immune cells plays a key role in arterial inward remodelling and reduced blood flow in cardiovascular disorders. On the other side, flow (shear stress)-mediated outward remodelling (FMR), involved in collateral arteries growth in ischaemic diseases, allows revascularization. We hypothesized that the type 2 receptor (AT2R), described as opposing the effects of AT1R, could be involved in FMR. METHODS AND RESULTS We studied FMR using a model of ligation of feed arteries supplying collateral pathways in the mouse mesenteric arterial bed in vivo. Seven days after ligation, diameter increased by 30% in high flow (HF) arteries compared with normal flow vessels. FMR was absent in mice lacking AT2R. At Day 2, T lymphocytes expressing AT2R were present preferentially around HF arteries. FMR did not occur in athymic (nude) mice lacking T cells and in mice treated with anti-CD3ε antibodies. AT2R activation induced interleukin-17 production by memory T cells. Treatment of nude mice or AT2R-deficient mice with interleukin-17 restored diameter enlargement in HF arteries. Interleukin-17 increased NO-dependent relaxation and matrix metalloproteinases activity, both important in FMR. Remodelling of feeding arteries in the skin flap model of ischaemia was also absent in AT2R-deficient mice and in anti-interleukin-17-treated mice. Finally, remodelling, absent in 12-month-old mice, was restored by a treatment with the AT2R non-peptidic agonist C21. CONCLUSION AT2R-dependent interleukin-17 production by T lymphocyte is necessary for collateral artery growth and could represent a new therapeutic target in ischaemic disorders.
Collapse
Affiliation(s)
- Antoine Caillon
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France
| | - Céline Grenier
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Linda Grimaud
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Emilie Vessieres
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France Cardiovascular Functions In Vitro (CARFI) Facility, Angers University, F-49045 Angers, France
| | - Anne-Laure Guihot
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Simon Blanchard
- UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France Department of Immunology and Allergology, University Hospital, F-49045 Angers, France
| | - Eric Lelievre
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Marie Chabbert
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Etienne D Foucher
- UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France
| | - Pascale Jeannin
- UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France Department of Immunology and Allergology, University Hospital, F-49045 Angers, France
| | - Céline Beauvillain
- UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France Department of Immunology and Allergology, University Hospital, F-49045 Angers, France
| | - Pierre Abraham
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France Department of Vascular Medicine, University Hospital, F-49045 Angers, France
| | - Laurent Loufrani
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Yves Delneste
- UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France Department of Immunology and Allergology, University Hospital, F-49045 Angers, France
| | - Daniel Henrion
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France Cardiovascular Functions In Vitro (CARFI) Facility, Angers University, F-49045 Angers, France Department of Vascular Medicine, University Hospital, F-49045 Angers, France
| |
Collapse
|
35
|
Bai HY, Mogi M, Nakaoka H, Kan-No H, Tsukuda K, Wang XL, Shan BS, Kukida M, Yamauchi T, Higaki A, Min LJ, Iwanami J, Horiuchi M. Synergistic Inhibitory Effect of Rosuvastatin and Angiotensin II Type 2 Receptor Agonist on Vascular Remodeling. J Pharmacol Exp Ther 2016; 358:352-8. [PMID: 27225894 DOI: 10.1124/jpet.116.233148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
We investigated the possibility that coadministration of rosuvastatin and compound 21 (C21), a selective angiotensin II type 2 (AT2) receptor agonist, could exert synergistic preventive effects on vascular injury. Vascular injury was induced by polyethylene cuff placement on the femoral artery in 9-week-old male C57BL/6J mice. Mice were treated with rosuvastatin and/or with C21 after cuff placement. Neointima formation was determined 14 days after the operation and cell proliferation, and superoxide anion production and expression of inflammatory cytokines were examined 7 days after cuff placement. Neointima formation was significantly attenuated by the treatment of rosuvastatin (5 mg kg(-1) day(-1)) or C21 (10 μg kg(-1) day(-1)), associated with the decreases in proliferating cell nuclear antigen (PCNA) labeling index, oxidative stress, and the expression of inflammatory markers. Treatment with a noneffective dose of rosuvastatin (0.5 mg kg(-1) day(-1)) plus a low dose of C21 (1 μg kg(-1) day(-1)) inhibited the PCNA labeling index, superoxide anion production, mRNA expressions of NAD(P)H subunits, and mRNA and protein expressions of inflammatory markers associated with marked inhibition of neointima formation. Angiotensin II type 1 (AT1) receptor mRNA expression did not differ the groups. By contrast, AT2 receptor mRNA expression was increased by administration of C21 at the dose of 10 μg kg(-1) day(-1) but not by C21 at the dose of 1 μg kg(-1) day(-1) or rosuvastatin. The combination of rosuvastatin and AT2 receptor agonist exerted synergistic preventive effects on vascular remodeling associated with the decreases in cell proliferation, oxidative stress, and inflammatory reaction. That could be a powerful approach to vascular disease prevention.
Collapse
Affiliation(s)
- Hui-Yu Bai
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Hirotomo Nakaoka
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Harumi Kan-No
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Kana Tsukuda
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Xiao-Li Wang
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Bao-Shuai Shan
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Masayoshi Kukida
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Toshifumi Yamauchi
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Akinori Higaki
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Li-Juan Min
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| |
Collapse
|
36
|
Abstract
Angiotensin (Ang) (1-7) is the main component of the depressor and protective arm of the renin-angiotensin system. Ang-(1-7) induces vasodilation, natriuresis and diuresis, cardioprotection, inhibits angiogenesis and cell growth and opposes the pressor, proliferative, profibrotic, and prothrombotic actions mediated by Ang II. Centrally, Ang-(1-7) induces changes in mean arterial pressure and this effect may be linked with its inhibitory neuromodulatory action on norepinephrine neurotransmission. The present review is focused on the role of Ang-(1-7) as a protective agent in the brain.
Collapse
Affiliation(s)
- Mariela M Gironacci
- Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
37
|
Sun H, Wu H, Yu X, Zhang G, Zhang R, Zhan S, Wang H, Bu N, Ma X, Li Y. Angiotensin II and its receptor in activated microglia enhanced neuronal loss and cognitive impairment following pilocarpine-induced status epilepticus. Mol Cell Neurosci 2015; 65:58-67. [PMID: 25724109 DOI: 10.1016/j.mcn.2015.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/19/2015] [Accepted: 02/23/2015] [Indexed: 11/27/2022] Open
Abstract
Neuroinflammation plays a role in the pathology of epilepsy and in cognitive impairment. Angiotensin II (AII) and the angiotensin receptor type 1 (AT1) have been shown to regulate seizure susceptibility in different models of epilepsy. Inhibition of AT1 attenuates neuroinflammatory responses in different neurological diseases. In the present study, we showed that the protein expression of AII and AT1 was increased in activated microglia following lithium pilocarpine-induced status epilepticus (SE) in rats. Furthermore, the AT1 receptor antagonist, losartan, significantly inhibited SE-induced cognitive impairment and microglia-mediated inflammation. Losartan also prevented SE induced neuronal loss in the hippocampus and exerted neuroprotection. These data suggest that losartan improves SE-induced cognitive impairment by suppressing microglia mediated inflammatory responses and attenuating hippocampal neuronal loss. Overall, our findings provide a possible therapeutic strategy for the treatment of cognitive impairment in epilepsy.
Collapse
Affiliation(s)
- Hong Sun
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| | - HaiQin Wu
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| | - Xin Yu
- Department of Neurology, People's Liberation Army 401 Hospital, Qingdao, Shandong 266071, China
| | - GuiLian Zhang
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ru Zhang
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - ShuQin Zhan
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - HuQing Wang
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ning Bu
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - XiaoLing Ma
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - YongNan Li
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
38
|
Umschweif G, Shabashov D, Alexandrovich AG, Trembovler V, Horowitz M, Shohami E. Neuroprotection after traumatic brain injury in heat-acclimated mice involves induced neurogenesis and activation of angiotensin receptor type 2 signaling. J Cereb Blood Flow Metab 2014; 34:1381-90. [PMID: 24849663 PMCID: PMC4126099 DOI: 10.1038/jcbfm.2014.93] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/23/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022]
Abstract
Long-term exposure of mice to mild heat (34°C±1°C) confers neuroprotection against traumatic brain injury (TBI); however, the underling mechanisms are not fully understood. Heat acclimation (HA) increases hypothalamic angiotensin II receptor type 2 (AT2) expression and hypothalamic neurogenesis. Accumulating data suggest that activation of the brain AT2 receptor confers protection against several types of brain pathologies, including ischemia, a hallmark of the secondary injury occurring following TBI. As AT2 activates the same pro-survival pathways involved in HA-mediated neuroprotection (e.g., Akt phosphorylation, hypoxia-inducible factor 1α (HIF-1α), and brain-derived neurotrophic factor (BDNF)), we examined the role of AT2 in HA-mediated neuroprotection after TBI. Using an AT2-specific antagonist PD123319, we found that the improvements in motor and cognitive recovery as well as reduced lesion volume and neurogenesis seen in HA mice were all diminished by AT2 inhibition, whereas no significant alternations were observed in control mice. We also found that nerve growth factor/tropomyosin-related kinase receptor A (TrkA), BDNF/TrkB, and HIF-1α pathways are upregulated by HA and inhibited on PD123319 administration, suggesting that these pathways play a role in AT2 signaling in HA mice. In conclusion, AT2 is involved in HA-mediated neuroprotection, and AT2 activation may be protective and should be considered a novel drug target in the treatment of TBI patients.
Collapse
Affiliation(s)
- Gali Umschweif
- 1] Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel [2] Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dalia Shabashov
- Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel
| | | | - Victoria Trembovler
- Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Shohami
- Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel
| |
Collapse
|
39
|
Umschweif G, Liraz-Zaltsman S, Shabashov D, Alexandrovich A, Trembovler V, Horowitz M, Shohami E. Angiotensin receptor type 2 activation induces neuroprotection and neurogenesis after traumatic brain injury. Neurotherapeutics 2014; 11:665-78. [PMID: 24957202 PMCID: PMC4121449 DOI: 10.1007/s13311-014-0286-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Angiotensin II receptor type 2 (AT(2)) agonists have been shown to limit brain ischemic insult and to improve its outcome. The activation of AT(2) was also linked to induced neuronal proliferation and differentiation in vitro. In this study, we examined the therapeutic potential of AT(2) activation following traumatic brain injury (TBI) in mice, a brain pathology that displays ischemia-like secondary damages. The AT(2) agonist CGP42112A was continuously infused immediately after closed head injury (CHI) for 3 days. We have followed the functional recovery of the injured mice for 35 days post-CHI, and evaluated cognitive function, lesion volume, molecular signaling, and neurogenesis at different time points after the impact. We found dose-dependent improvement in functional recovery and cognitive performance after CGP42112A treatment that was accompanied by reduced lesion volume and induced neurogenesis in the neurogenic niches of the brain and also in the injury region. At the cellular/molecular level, CGP42112A induced early activation of neuroprotective kinases protein kinase B (Akt) and extracellular-regulated kinases ½ (ERK½), and the neurotrophins nerve growth factor and brain-derived neurotrophic factor; all were blocked by treatment with the AT(2) antagonist PD123319. Our results suggest that AT(2) activation after TBI promotes neuroprotection and neurogenesis, and may be a novel approach for the development of new drugs to treat victims of TBI.
Collapse
Affiliation(s)
- Gali Umschweif
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
- />Laboratory of Environmental Physiology, The Hebrew University, Jerusalem, Israel
| | | | - Dalia Shabashov
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
| | | | | | - Michal Horowitz
- />Laboratory of Environmental Physiology, The Hebrew University, Jerusalem, Israel
| | - Esther Shohami
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
40
|
Angiotensin II plasma levels are linked to disease severity and predict fatal outcomes in H7N9-infected patients. Nat Commun 2014; 5:3595. [PMID: 24800963 PMCID: PMC7091598 DOI: 10.1038/ncomms4595] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/07/2014] [Indexed: 02/07/2023] Open
Abstract
A novel influenza A (H7N9) virus of avian origin emerged in eastern China in the spring of 2013. This virus causes severe disease in humans, including acute and often lethal respiratory failure. As of January 2014, 275 cases of H7N9-infected patients had been reported, highlighting the urgency of identifying biomarkers for predicting disease severity and fatal outcomes. Here, we show that plasma levels of angiotensin II, a major regulatory peptide of the renin–angiotensin system, are markedly elevated in H7N9 patients and are associated with disease progression. Moreover, the sustained high levels of angiotensin II in these patients are strongly correlated with mortality. The predictive value of angiotensin II is higher than that of C-reactive protein and some clinical parameters such as the PaO2/FiO2 ratio (partial pressure of arterial oxygen to the fraction of inspired oxygen). Our findings indicate that angiotensin II is a biomarker for lethality in flu infections. An avian influenza H7N9 virus causes severe human disease, including acute and often lethal respiratory failure. Here, the authors report that plasma levels of angiotensin II, a regulatory peptide of the renin–angiotensin system, are associated with disease severity and fatal outcome in infected patients.![]()
Collapse
|
41
|
Iwanami J, Mogi M, Tsukuda K, Jing F, Ohshima K, Wang XL, Nakaoka H, Kan-no H, Chisaka T, Bai HY, Min LJ, Horiuchi M. Possible synergistic effect of direct angiotensin II type 2 receptor stimulation by compound 21 with memantine on prevention of cognitive decline in type 2 diabetic mice. Eur J Pharmacol 2013; 724:9-15. [PMID: 24361310 DOI: 10.1016/j.ejphar.2013.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 12/04/2013] [Accepted: 12/11/2013] [Indexed: 01/01/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is known to be associated with increased risk of cognitive impairment including Alzheimer disease. Recent studies have suggested an interaction between angiotensin II and N-methyl-d-aspartic acid (NMDA) glutamate receptors. We previously reported that stimulation of the angiotensin II type 2 (AT2) receptor exerts brain protective effects. A newly developed AT2 receptor agonist, compound 21 (C21), has enabled examination of the direct effect of AT2 receptor stimulation in vivo. Accordingly, we examined the possible synergistic effect of C21 and memantine on cognitive impairment in T2DM mice, KKAy. KKAy were divided into four groups; (1) control, (2) treatment with C21 (10 μg/kg/day), (3) treatment with memantine (20mg/kg/day), and (4) treatment with both for 4 weeks, and subjected to Morris water maze tasks. Treatment with C21 or memantine alone at these doses tended to shorten escape latency compared to that in the control group. C21 treatment increased cerebral blood flow (CBF), but memantine did not influence CBF. Treatment with C21 or C21 plus memantine increased hippocampal field-excitatory postsynaptic potential (f-EPSP). Moreover, treatment with memantine or C21 increased acetylcholine level, which was lower in KKAy than in wild-type mice, and C21 plus memantine treatment enhanced memantine or C21-induced acetylcholine secretion. This study provides an insight into new approaches to understand the interaction of angiotensin II and neurotransmitters. We can anticipate a new therapeutic approach against cognitive decline using C21 and memantine.
Collapse
Affiliation(s)
- Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Kana Tsukuda
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Fei Jing
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Kousei Ohshima
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Xiao-Li Wang
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Hirotomo Nakaoka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Harumi Kan-no
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Toshiyuki Chisaka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Hui-Yu Bai
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Li-Juan Min
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Tohon, Ehime 791-0295, Japan.
| |
Collapse
|
42
|
He DH, Zhang LM, Lin LM, Ning RB, Wang HJ, Xu CS, Lin JX. Long-term prehypertension treatment with losartan effectively prevents brain damage and stroke in stroke-prone spontaneously hypertensive rats. Int J Mol Med 2013; 33:301-9. [PMID: 24337406 PMCID: PMC3896471 DOI: 10.3892/ijmm.2013.1583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/28/2013] [Indexed: 02/07/2023] Open
Abstract
Prehypertension has been associated with adverse cerebrovascular events and brain damage. The aims of this study were to investigate i) whether short- and long-term treatments with losartan or amlodipine for prehypertension were able to prevent blood pressure (BP)-linked brain damage, and ii) whether there is a difference in the effectiveness of treatment with losartan and amlodipine in protecting BP-linked brain damage. In the present study, prehypertensive treatment with losartan and amlodipine (6 and 16 weeks treatment with each drug) was performed on 4-week-old stroke-prone spontaneously hypertensive rats (SHRSP). The results showed that long-term (16 weeks) treatment with losartan is the most effective in lowering systolic blood pressure in the long term (up to 40 weeks follow-up). Additionally, compared with the amlodipine treatment groups, the short- and long-term losartan treatments protected SHRSP from stroke and improved their brains structurally and functionally more effectively, with the long-term treatment having more benefits. Mechanistically, the short- and long-term treatments with losartan reduced the activity of the local renin-angiotensin-aldosterone system (RAAS) in a time-dependent manner and more effectively than their respective counterpart amlodipine treatment group mainly by decreasing AT1R levels and increasing AT2R levels in the cerebral cortex. By contrast, the amlodipine treatment groups inhibited brain cell apoptosis more effectively as compared with the losartan treatment groups mainly through the suppression of local oxidative stress. Taken together, the results suggest that long-term losartan treatment for prehypertension effectively protects SHRSP from stroke-induced brain damage, and this protection is associated with reduced local RAAS activity than with brain cell apoptosis. Thus, the AT1R receptor blocker losartan is a good candidate drug that may be used in the clinic for long-term treatment on prehypertensive populations in order to prevent BP-linked brain damage.
Collapse
Affiliation(s)
- De-Hua He
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Fuzhou, Fujian, P.R. China
| | - Liang-Min Zhang
- Department of Cardiology, The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Li-Ming Lin
- Department of Cardiology, Affiliated Hospital of Putian College, Fuzhou, Fujian, P.R. China
| | - Ruo-Bing Ning
- Department of Cardiology, The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Hua-Jun Wang
- Fujian Institute of Hypertension, Fuzhou, Fujian, P.R. China
| | - Chang-Sheng Xu
- Fujian Institute of Hypertension, Fuzhou, Fujian, P.R. China
| | - Jin-Xiu Lin
- Department of Cardiology, The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P.R. China
| |
Collapse
|
43
|
Abstract
Angiotensin II represents a key molecule in hypertension and cerebrovascular pathology. By promoting inflammation and oxidative stress, enhanced Ang II levels accelerate the onset and progression of cell senescence. Sustained activation of RAS promotes end-stage organ injury associated with aging and results in cognitive impairment and dementia. The discovery of the angiotensin-converting enzyme ACE2-angiotensin (1–7)-Mas receptor axis that exerts vasodilator, antiproliferative, and antifibrotic actions opposed to those of the ACE-Ang II-AT1 receptor axis has led to the hypothesis that a decrease in the expression or activity of angiotensin (1–7) renders the systems more susceptible to the pathological actions of Ang II. Given the successful demonstration of beneficial effects of increased expression of ACE2/formation of Ang1–7/Mas receptor binding and modulation of Mas expression in animal models in containing cerebrovascular pathology in hypertensive conditions and aging, one could reasonably hope for analogous effects regarding the prevention of cognitive decline by protecting against hypertension and cerebral microvascular damage. Upregulation of ACE2 and increased balance of Ang 1–7/Ang II, along with positive modulation of Ang II signaling through AT2 receptors and Ang 1–7 signaling through Mas receptors, may be an appropriate strategy for improving cognitive function and treating dementia.
Collapse
|
44
|
Chao J, Yang L, Buch S, Gao L. Angiotensin II increased neuronal stem cell proliferation: role of AT2R. PLoS One 2013; 8:e63488. [PMID: 23691054 PMCID: PMC3655161 DOI: 10.1371/journal.pone.0063488] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/03/2013] [Indexed: 01/09/2023] Open
Abstract
Angiotensin II (Ang II), known a potent vasoactive substance in the renin-angiotensin system in the brain, plays a critical role in systemic blood pressure control. However, increasing evidence indicated that the physiological role of Ang II go beyond its vasoactive effect. In the present study, we demonstrated that Ang II type-1 receptor (AT1R) and type-2 receptor (AT2R) were expressed in primary rat hippocampal neuronal stem cells (NSCs). Treatment of rat hippocampal NSCs with Ang II increased cell proliferation. Pretreatment of NSCs with specific AT2R, but not AT1R, antagonist significantly suppressed Ang II-induced cell proliferation. Furthermore, Ang II stimulated ERK and Akt phosphorylation in NSCs. Pretreatment of MEK inhibitor, but not PI3K inhibitor, inhibited Ang II-induced ERK phosphorylation as well as cell proliferation. In addition, stimulation of NSCs with Ang II decreased expression of KV 1.2/KV 3.1 channels and blocked K+ currents which lie downstream of ERK activation. Taken together, these findings underpin the role of AT2R as a novel target that regulates cell proliferation mediated by Ang II with implications for therapeutic intervention for regulation of neurogenesis.
Collapse
Affiliation(s)
- Jie Chao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lu Yang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
45
|
Phattanarudee S, Towiwat P, Maher TJ, Ally A. Effects of medullary administration of a nitric oxide precursor on cardiovascular responses and neurotransmission during static exercise following ischemic stroke. Can J Physiol Pharmacol 2013; 91:510-20. [PMID: 23826997 DOI: 10.1139/cjpp-2013-0066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have reported that in rats with a 90 min left middle cerebral artery occlusion (MCAO) and 24 h reperfusion, pressor responses during muscle contractions were attenuated, as were glutamate concentrations in the left rostral ventrolateral medulla (RVLM) and left caudal VLM (CVLM), but gamma-aminobutyric acid (GABA) levels increased in left RVLM and CVLM. This study determined the effects of L-arginine, a nitric oxide (NO) precursor, within the RVLM and (or) CVLM on cardiovascular activity and glutamate/GABA levels during static exercise in left-sided MCAO rats. Microdialysis of L-arginine into left RVLM had a greater attenuation of cardiovascular responses, a larger decrease in glutamate, and a significant increase in GABA levels during muscle contractions in stroke rats. Administration of N(G)-monomethyl-L-arginine, an NO-synthase inhibitor, reversed the effects. In contrast, L-arginine administration into left CVLM evoked a greater potentiation of cardiovascular responses, increased glutamate, and decreased GABA levels during contractions in stroked rats. However, L-arginine administration into both left RVLM and left CVLM elicited responses similar to its infusion into the left RVLM. These results suggest that NO within the RVLM and CVLM modulates cardiovascular responses and glutamate/GABA neurotransmission during static exercise following stroke, and that a RVLM-NO mechanism has a dominant effect in the medullary regulation of cardiovascular function.
Collapse
|
46
|
Plasma renin-angiotensin system-regulating aminopeptidase activities are modified in early stage Alzheimer's disease and show gender differences but are not related to apolipoprotein E genotype. Exp Gerontol 2013; 48:557-64. [PMID: 23500679 DOI: 10.1016/j.exger.2013.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 12/25/2022]
Abstract
Alterations in blood pressure and components of the renin-angiotensin system (RAS) contribute to the development and progression of Alzheimer's disease (AD), resulting in changes that can lead or contribute to cognitive decline. Aspartyl aminopeptidase (ASAP), aminopeptidase A (APA), aminopeptidase N (APN) and aminopeptidase B (APB) catabolise circulating angiotensins, whereas insulin-regulated aminopeptidase (IRAP) has been described as the AT4 receptor. We have found in AD patients a significant decrease of APA activity in men but not in women, and of APN, APB and IRAP in both genders, when compared with control subjects. No changes were found in ASAP activity. Also, APN, APB and IRAP but not APA correlated with the Mini-Mental test, but no relationship with APOE genotype was found. We conclude that several components of the RAS are modified in AD patients, with gender differences. Furthermore, ROC analysis indicates that APN, APB and IRAP activities could be useful non-invasive biomarkers of AD from the earliest stages.
Collapse
|
47
|
The Angiotensin II Type 2 Receptor in Brain Functions: An Update. Int J Hypertens 2012; 2012:351758. [PMID: 23320146 PMCID: PMC3540774 DOI: 10.1155/2012/351758] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/29/2012] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (Ang II) is the main active product of the renin-angiotensin system (RAS), mediating its action via two major receptors, namely, the Ang II type 1 (AT1) receptor and the type 2 (AT2) receptor. Recent results also implicate several other members of the renin-angiotensin system in various aspects of brain functions. The first aim of this paper is to summarize the current state of knowledge regarding the properties and signaling of the AT2 receptor, its expression in the brain, and its well-established effects. Secondly, we will highlight the potential role of the AT2 receptor in cognitive function, neurological disorders and in the regulation of appetite and the possible link with development of metabolic disorders. The potential utility of novel nonpeptide selective AT2 receptor ligands in clarifying potential roles of this receptor in physiology will also be discussed. If confirmed, these new pharmacological tools should help to improve impaired cognitive performance, not only through its action on brain microcirculation and inflammation, but also through more specific effects on neurons. However, the overall physiological relevance of the AT2 receptor in the brain must also consider the Ang IV/AT4 receptor.
Collapse
|
48
|
Discovery of inhibitors of insulin-regulated aminopeptidase as cognitive enhancers. Int J Hypertens 2012; 2012:789671. [PMID: 23304452 PMCID: PMC3529497 DOI: 10.1155/2012/789671] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 10/19/2012] [Indexed: 12/20/2022] Open
Abstract
The hexapeptide angiotensin IV (Ang IV) is a metabolite of angiotensin II (Ang II) and plays a central role in the brain. It was reported more than two decades ago that intracerebroventricular injection of Ang IV improved memory and learning in the rat. Several hypotheses have been put forward to explain the positive effects of Ang IV and related analogues on cognition. It has been proposed that the insulin-regulated aminopeptidase (IRAP) is the main target of Ang IV. This paper discusses progress in the discovery of inhibitors of IRAP as potential enhancers of cognitive functions. Very potent inhibitors of the protease have been synthesised, but pharmacokinetic issues (including problems associated with crossing the blood-brain barrier) remain to be solved. The paper also briefly presents an overview of the status in the discovery of inhibitors of ACE and renin, and of AT1R antagonists and AT2R agonists, in order to enable other discovery processes within the RAS system to be compared. The paper focuses on the relationship between binding affinities/inhibition capacity and the structures of the ligands that interact with the target proteins.
Collapse
|
49
|
Guimond MO, Gallo-Payet N. How does angiotensin AT(2) receptor activation help neuronal differentiation and improve neuronal pathological situations? Front Endocrinol (Lausanne) 2012; 3:164. [PMID: 23267346 PMCID: PMC3525946 DOI: 10.3389/fendo.2012.00164] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/29/2012] [Indexed: 01/08/2023] Open
Abstract
The angiotensin type 2 (AT(2)) receptor of angiotensin II has long been thought to be limited to few tissues, with the primary effect of counteracting the angiotensin type 1 (AT(1)) receptor. Functional studies in neuronal cells have demonstrated AT(2) receptor capability to modulate neuronal excitability, neurite elongation, and neuronal migration, suggesting that it may be an important regulator of brain functions. The observation that the AT(2) receptor was expressed in brain areas implicated in learning and memory led to the hypothesis that it may also be implicated in cognitive functions. However, linking signaling pathways to physiological effects has always proven challenging since information relative to its physiological functions has mainly emerged from indirect observations, either from the blockade of the AT(1) receptor or through the use of transgenic animals. From a mechanistic standpoint, the main intracellular pathways linked to AT(2) receptor stimulation include modulation of phosphorylation by activation of kinases and phosphatases or the production of nitric oxide and cGMP, some of which are associated with the Gi-coupling protein. The receptor can also interact with other receptors, either G protein-coupled such as bradykinin, or growth factor receptors such as nerve growth factor or platelet-derived growth factor receptors. More recently, new advances have also led to identification of various partner proteins, thus providing new insights into this receptor's mechanism of action. This review summarizes the recent advances regarding the signaling pathways induced by the AT(2) receptor in neuronal cells, and discussed the potential therapeutic relevance of central actions of this enigmatic receptor. In particular, we highlight the possibility that selective AT(2) receptor activation by non-peptide and selective agonists could represent new pharmacological tools that may help to improve impaired cognitive performance in Alzheimer's disease and other neurological cognitive disorders.
Collapse
Affiliation(s)
| | - Nicole Gallo-Payet
- *Correspondence: Nicole Gallo-Payet, Service d’Endocrinologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada J1H 5N4. e-mail:
| |
Collapse
|