1
|
Ipata AE, Fascianelli V, De Zeeuw CI, Sendhilnathan N, Fusi S, Goldberg ME. Purkinje cells in Crus I and II encode the visual stimulus and the impending choice as monkeys learn a reinforcement based visuomotor association task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612926. [PMID: 39314292 PMCID: PMC11419136 DOI: 10.1101/2024.09.13.612926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Visuomotor association involves linking an arbitrary visual cue to a well-learned movement. Transient inactivation of Crus I/II impairs primates' ability to learn new associations and delays motor responses without affecting the kinematics of the movement. The simple spikes of Purkinje cells in the Crus regions signal cognitive errors as monkeys learn to associate specific fractal stimuli with movements of the left or right hand. Here we show that as learning progresses, the simple spike activity of individual neurons becomes more selective for stimulus-response associations, with selectivity developing closer to the appearance of visual stimuli. Initially, most neurons respond to both associations, irrespective of the identity of the stimulus and the associated movement, but as learning advances, more neurons distinguish between specific stimulus-hand associations. Using a linear decoder, it was found that in early learning stages, the visual stimulus can be decoded only when the choice can also be decoded. As learning improves, the visual stimulus is decoded earlier than the choice. A simple model can replicate the observed simple spike signals and the monkeys' behavior in both the early and late learning stages.
Collapse
|
2
|
Furukawa K, Inoshita T, Kawaguchi SY. Graded control of Purkinje cell outputs by cAMP through opposing actions on axonal action potential and transmitter release. J Physiol 2024. [PMID: 39052311 DOI: 10.1113/jp286668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
All-or-none signalling by action potentials (APs) in neuronal axons is pivotal for the precisely timed and identical size of outputs to multiple distant targets. However, technical limitations with respect to measuring the signalling in small intact axons have hindered the evaluation of high-fidelity signal propagation. Here, using direct recordings from axonal trunks and/or terminals of cerebellar Purkinje cells in slice and culture, we demonstrate that the timing and amplitude of axonal outputs are gradually modulated by cAMP depending on the length of axon. During the propagation in long axon, APs were attenuated and slowed in conduction by cAMP via specifically decreasing axonal Na+ currents. Consequently, the Ca2+ influx and transmitter release at distal boutons are reduced by cAMP, counteracting its direct facilitating effect on release machinery as observed at various CNS synapses. Together, our tour de force functional dissection has unveiled the axonal distance-dependent graded control of output timing and strength by intracellular signalling. KEY POINTS: The information processing in the nervous system has been classically thought to rely on the axonal faithful and high-speed conduction of action potentials (APs). We demonstrate that the strength and timing of axonal outputs are weakened and delayed, respectively, by cytoplasmic cAMP depending on the axonal length in cerebellar Purkinje cells (PCs). Direct axonal patch clamp recordings uncovered axon-specific attenuation of APs by cAMP through reduction of axonal Na+ currents. cAMP directly augments transmitter release at PC terminals without changing presynaptic Ca2+ influx or readily releasable pool of vesicles, although the extent is weaker compared to other CNS synapses. Two opposite actions of cAMP on PC axons, AP attenuation and release augmentation, together give rise to graded control of synaptic outputs in a manner dependent on the axonal length.
Collapse
Affiliation(s)
- Kei Furukawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takuma Inoshita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shin-Ya Kawaguchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
4
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Zhai P, Romano V, Soggia G, Bauer S, van Wingerden N, Jacobs T, van der Horst A, White JJ, Mazza R, De Zeeuw CI. Whisker kinematics in the cerebellum. J Physiol 2024; 602:153-181. [PMID: 37987552 DOI: 10.1113/jp284064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
The whisker system is widely used as a model system for understanding sensorimotor integration. Purkinje cells in the crus regions of the cerebellum have been reported to linearly encode whisker midpoint, but it is unknown whether the paramedian and simplex lobules as well as their target neurons in the cerebellar nuclei also encode whisker kinematics and if so which ones. Elucidating how these kinematics are represented throughout the cerebellar hemisphere is essential for understanding how the cerebellum coordinates multiple sensorimotor modalities. Exploring the cerebellar hemisphere of mice using optogenetic stimulation, we found that whisker movements can be elicited by stimulation of Purkinje cells in not only crus1 and crus2, but also in the paramedian lobule and lobule simplex; activation of cells in the medial paramedian lobule had on average the shortest latency, whereas that of cells in lobule simplex elicited similar kinematics as those in crus1 and crus2. During spontaneous whisking behaviour, simple spike activity correlated in general better with velocity than position of the whiskers, but it varied between protraction and retraction as well as per lobule. The cerebellar nuclei neurons targeted by the Purkinje cells showed similar activity patterns characterized by a wide variety of kinematic signals, yet with a dominance for velocity. Taken together, our data indicate that whisker movements are much more prominently and diversely represented in the cerebellar cortex and nuclei than assumed, highlighting the rich repertoire of cerebellar control in the kinematics of movements that can be engaged during coordination. KEY POINTS: Excitation of Purkinje cells throughout the cerebellar hemispheres induces whisker movement, with the shortest latency and longest duration within the paramedian lobe. Purkinje cells have differential encoding for the fast and slow components of whisking. Purkinje cells encode not only the position but also the velocity of whiskers. Purkinje cells with high sensitivity for whisker velocity are preferentially located in the medial part of lobule simplex, crus1 and lateral paramedian. In the downstream cerebellar nuclei, neurons with high sensitivity for whisker velocity are located at the intersection between the medial and interposed nucleus.
Collapse
Affiliation(s)
- Peipei Zhai
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Giulia Soggia
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Staf Bauer
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Thomas Jacobs
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Roberta Mazza
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Sciences, Amsterdam, Netherlands
| |
Collapse
|
6
|
Chao OY, Pathak SS, Zhang H, Augustine GJ, Christie JM, Kikuchi C, Taniguchi H, Yang YM. Social memory deficit caused by dysregulation of the cerebellar vermis. Nat Commun 2023; 14:6007. [PMID: 37752149 PMCID: PMC10522595 DOI: 10.1038/s41467-023-41744-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Social recognition memory (SRM) is a key determinant of social interactions. While the cerebellum emerges as an important region for social behavior, how cerebellar activity affects social functions remains unclear. We selectively increased the excitability of molecular layer interneurons (MLIs) to suppress Purkinje cell firing in the mouse cerebellar vermis. Chemogenetic perturbation of MLIs impaired SRM without affecting sociability, anxiety levels, motor coordination or object recognition. Optogenetic interference of MLIs during distinct phases of a social recognition test revealed the cerebellar engagement in the retrieval, but not encoding, of social information. c-Fos mapping after the social recognition test showed that cerebellar manipulation decreased brain-wide interregional correlations and altered network structure from medial prefrontal cortex and hippocampus-centered to amygdala-centered modules. Anatomical tracing demonstrated hierarchical projections from the central cerebellum to the social brain network integrating amygdalar connections. Our findings suggest that the cerebellum organizes the neural matrix necessary for SRM.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Hao Zhang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| | - Jason M Christie
- University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Chikako Kikuchi
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Hiroki Taniguchi
- Department of Pathology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Chronic Brain Injury, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
7
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
8
|
Wang W, Zhang X, Bai X, Zhang Y, Yuan Z, Tang H, Li Z, Hu Z, Zhang Y, Yu X, Sui B, Wang Y. Gamma-aminobutyric acid and glutamate/glutamine levels in the dentate nucleus and periaqueductal gray with episodic and chronic migraine: a proton magnetic resonance spectroscopy study. J Headache Pain 2022; 23:83. [PMID: 35840907 PMCID: PMC9287958 DOI: 10.1186/s10194-022-01452-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
Background The pathogenesis of migraine chronification remains unclear. Functional and structural magnetic resonance imaging studies have shown impaired functional and structural alterations in the brains of patients with chronic migraine. The cerebellum and periaqueductal gray (PAG) play pivotal roles in the neural circuits of pain conduction and analgesia in migraine. However, few neurotransmitter metabolism studies of these migraine-associated regions have been performed. To explore the pathogenesis of migraine chronification, we measured gamma-aminobutyric acid (GABA) and glutamate/glutamine (Glx) levels in the dentate nucleus (DN) and PAG of patients with episodic and chronic migraine and healthy subjects. Methods Using the MEGA-PRESS sequence and a 3-Tesla magnetic resonance scanner (Signa Premier; GE Healthcare, Chicago, IL, USA), we obtained DN and PAG metabolite concentrations from patients with episodic migraine (n = 25), those with chronic migraine (n = 24), and age-matched and sex-matched healthy subjects (n = 16). Patients with chronic migraine were further divided into those with (n = 12) and without (n = 12) medication overuse headache. All scans were performed at the Beijing Tiantan Hospital, Capital Medical University. Results We found that patients with chronic migraine had significantly lower levels of GABA/water (p = 0.011) and GABA/creatine (Cr) (p = 0.026) in the DN and higher levels of Glx/water (p = 0.049) in the PAG than healthy controls. In all patients with migraine, higher GABA levels in the PAG were significantly associated with poorer sleep quality (GABA/water: r = 0.515, p = 0.017, n = 21; GABA/Cr: r = 0.522, p = 0.015, n = 21). Additionally, a lower Glx/Cr ratio in the DN may be associated with more severe migraine disability (r = -0.425, p = 0.055, n = 20), and lower GABA/water (r = -0.424, p = 0.062, n = 20) and Glx/Water (r = -0.452, p = 0.045, n = 20) may be associated with poorer sleep quality. Conclusions Neurochemical levels in the DN and PAG may provide evidence of the pathological mechanisms of migraine chronification. Correlations between migraine characteristics and neurochemical levels revealed the pathological mechanisms of the relevant characteristics. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01452-6.
Collapse
Affiliation(s)
- Wei Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueyan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan Province, 450000, China
| | - Xiaoyan Bai
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.,Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yingkui Zhang
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ziyu Yuan
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hefei Tang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhiye Li
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.,Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhangxuan Hu
- GE Healthcare, No.1 Tongji Nan Road, Beijing Economic Technological Development Area, Beijing, 100070, China
| | - Yaqing Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueying Yu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Binbin Sui
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
9
|
Noseda R. Cerebro-Cerebellar Networks in Migraine Symptoms and Headache. FRONTIERS IN PAIN RESEARCH 2022; 3:940923. [PMID: 35910262 PMCID: PMC9326053 DOI: 10.3389/fpain.2022.940923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellum is associated with the biology of migraine in a variety of ways. Clinically, symptoms such as fatigue, motor weakness, vertigo, dizziness, difficulty concentrating and finding words, nausea, and visual disturbances are common in different types of migraine. The neural basis of these symptoms is complex, not completely known, and likely involve activation of both specific and shared circuits throughout the brain. Posterior circulation stroke, or neurosurgical removal of posterior fossa tumors, as well as anatomical tract tracing in animals, provided the first insights to theorize about cerebellar functions. Nowadays, with the addition of functional imaging, much progress has been done on cerebellar structure and function in health and disease, and, as a consequence, the theories refined. Accordingly, the cerebellum may be useful but not necessary for the execution of motor, sensory or cognitive tasks, but, rather, would participate as an efficiency facilitator of neurologic functions by improving speed and skill in performance of tasks produced by the cerebral area to which it is reciprocally connected. At the subcortical level, critical regions in these processes are the basal ganglia and thalamic nuclei. Altogether, a modulatory role of the cerebellum over multiple brain regions appears compelling, mainly by considering the complexity of its reciprocal connections to common neural networks involved in motor, vestibular, cognitive, affective, sensory, and autonomic processing—all functions affected at different phases and degrees across the migraine spectrum. Despite the many associations between cerebellum and migraine, it is not known whether this structure contributes to migraine initiation, symptoms generation or headache. Specific cerebellar dysfunction via genetically driven excitatory/inhibitory imbalances, oligemia and/or increased risk to white matter lesions has been proposed as a critical contributor to migraine pathogenesis. Therefore, given that neural projections and functions of many brainstem, midbrain and forebrain areas are shared between the cerebellum and migraine trigeminovascular pathways, this review will provide a synopsis on cerebellar structure and function, its role in trigeminal pain, and an updated overview of relevant clinical and preclinical literature on the potential role of cerebellar networks in migraine pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Rodrigo Noseda
| |
Collapse
|
10
|
Lang EJ, Handforth A. Is the inferior olive central to essential tremor? Yes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:133-165. [PMID: 35750361 DOI: 10.1016/bs.irn.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We consider the question whether the inferior olive (IO) is required for essential tremor (ET). Much evidence shows that the olivocerebellar system is the main system capable of generating the widespread synchronous oscillatory Purkinje cell (PC) complex spike (CS) activity across the cerebellar cortex that would be capable of generating the type of bursting cerebellar output from the deep cerebellar nuclei (DCN) that could underlie tremor. Normally, synchronous CS activity primarily reflects the effective electrical coupling of IO neurons by gap junctions, and traditionally, ET research has focused on the hypothesis of increased coupling of IO neurons as the cause of hypersynchronous CS activity underlying tremor. However, recent pathology studies of brains from humans with ET and evidence from mutant mice, particularly the hotfoot17 mouse, that largely replicate the pathology of ET, suggest that the abnormal innervation of multiple Purkinje cells (PCs) by climbing fibers (Cfs) is related to tremor. In addition, ET brains show partial PC loss and axon terminal sprouting by surviving PCs. This may provide another mechanism for tremor. It is proposed that in ET, these three mechanisms may promote tremor. They all involve hypersynchronous DCN activity and an intact IO, but the level at which excessive synchronization occurs may be at the IO level (from abnormal afferent activity to this nucleus), the PC level (via aberrant Cfs), or the DCN level (via terminal PC collateral innervation).
Collapse
|
11
|
Judd EN, Lewis SM, Person AL. Diverse inhibitory projections from the cerebellar interposed nucleus. eLife 2021; 10:e66231. [PMID: 34542410 PMCID: PMC8483738 DOI: 10.7554/elife.66231] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/19/2021] [Indexed: 11/17/2022] Open
Abstract
The cerebellum consists of parallel circuit modules that contribute to diverse behaviors, spanning motor to cognitive. Recent work employing cell-type-specific tracing has identified circumscribed output channels of the cerebellar nuclei (CbN) that could confer tight functional specificity. These studies have largely focused on excitatory projections of the CbN, however, leaving open the question of whether inhibitory neurons also constitute multiple output modules. We mapped output and input patterns to intersectionally restricted cell types of the interposed and adjacent interstitial nuclei in mice. In contrast to the widespread assumption of primarily excitatory outputs and restricted inferior olive-targeting inhibitory output, we found that inhibitory neurons from this region ramified widely within the brainstem, targeting both motor- and sensory-related nuclei, distinct from excitatory output targets. Despite differences in output targeting, monosynaptic rabies tracing revealed largely shared afferents to both cell classes. We discuss the potential novel functional roles for inhibitory outputs in the context of cerebellar theory.
Collapse
Affiliation(s)
- Elena N Judd
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Samantha M Lewis
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Abigail L Person
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
12
|
ATR regulates neuronal activity by modulating presynaptic firing. Nat Commun 2021; 12:4067. [PMID: 34210973 PMCID: PMC8249387 DOI: 10.1038/s41467-021-24217-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Ataxia Telangiectasia and Rad3-related (ATR) protein, as a key DNA damage response (DDR) regulator, plays an essential function in response to replication stress and controls cell viability. Hypomorphic mutations of ATR cause the human ATR-Seckel syndrome, characterized by microcephaly and intellectual disability, which however suggests a yet unknown role for ATR in non-dividing cells. Here we show that ATR deletion in postmitotic neurons does not compromise brain development and formation; rather it enhances intrinsic neuronal activity resulting in aberrant firing and an increased epileptiform activity, which increases the susceptibility of ataxia and epilepsy in mice. ATR deleted neurons exhibit hyper-excitability, associated with changes in action potential conformation and presynaptic vesicle accumulation, independent of DDR signaling. Mechanistically, ATR interacts with synaptotagmin 2 (SYT2) and, without ATR, SYT2 is highly upregulated and aberrantly translocated to excitatory neurons in the hippocampus, thereby conferring a hyper-excitability. This study identifies a physiological function of ATR, beyond its DDR role, in regulating neuronal activity.
Collapse
|
13
|
Carlson ES, Hunker AC, Sandberg SG, Locke TM, Geller JM, Schindler AG, Thomas SA, Darvas M, Phillips PEM, Zweifel LS. Catecholaminergic Innervation of the Lateral Nucleus of the Cerebellum Modulates Cognitive Behaviors. J Neurosci 2021; 41:3512-3530. [PMID: 33536201 PMCID: PMC8051686 DOI: 10.1523/jneurosci.2406-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 11/21/2022] Open
Abstract
The cerebellum processes neural signals related to rewarding and aversive stimuli, suggesting that the cerebellum supports nonmotor functions in cognitive and emotional domains. Catecholamines are a class of neuromodulatory neurotransmitters well known for encoding such salient stimuli. Catecholaminergic modulation of classical cerebellar functions have been demonstrated. However, a role for cerebellar catecholamines in modulating cerebellar nonmotor functions is unknown. Using biochemical methods in male mice, we comprehensively mapped TH+ fibers throughout the entire cerebellum and known precerebellar nuclei. Using electrochemical (fast scan cyclic voltammetry), and viral/genetic methods to selectively delete Th in fibers innervating the lateral cerebellar nucleus (LCN), we interrogated sources and functional roles of catecholamines innervating the LCN, which is known for its role in supporting cognition. The LCN has the most TH+ fibers in cerebellum, as well as the most change in rostrocaudal expression among the cerebellar nuclei. Norepinephrine is the major catecholamine measured in LCN. Distinct catecholaminergic projections to LCN arise only from locus coeruleus, and a subset of Purkinje cells that are positive for staining of TH. LC stimulation was sufficient to produce catecholamine release in LCN. Deletion of Th in fibers innervating LCN (LCN-Th-cKO) resulted in impaired sensorimotor integration, associative fear learning, response inhibition, and working memory in LCN-Th-cKO mice. Strikingly, selective inhibition of excitatory LCN output neurons with inhibitory designer receptor exclusively activated by designer drugs led to facilitation of learning on the same working memory task impaired in LCN-Th-cKO mice. Collectively, these data demonstrate a role for LCN catecholamines in cognitive behaviors.SIGNIFICANCE STATEMENT Here, we report on interrogating sources and functional roles of catecholamines innervating the lateral nucleus of the cerebellum (LCN). We map and quantify expression of TH, the rate-limiting enzyme in catecholamine synthesis, in the entire cerebellar system, including several precerebellar nuclei. We used cyclic voltammetry and pharmacology to demonstrate sufficiency of LC stimulation to produce catecholamine release in LCN. We used advanced viral techniques to map and selectively KO catecholaminergic neurotransmission to the LCN, and characterized significant cognitive deficits related to this manipulation. Finally, we show that inhibition of excitatory LCN neurons with designer receptor exclusively activated by designer drugs, designed to mimic Gi-coupled catecholamine GPCR signaling, results in facilitation of a working memory task impaired in LCN-specific TH KO mice.
Collapse
Affiliation(s)
- Erik S Carlson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, Washington 98108
| | - Avery C Hunker
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Stefan G Sandberg
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195
| | - Timothy M Locke
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Julianne M Geller
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, Washington 98108
| | - Abigail G Schindler
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, Washington 98108
| | - Steven A Thomas
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Martin Darvas
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Paul E M Phillips
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
14
|
Hoeve J. Clinical Evidence of Vestibular Dysregulation in Colicky Babies Before and After Chiropractic Treatment vs. Non-colicky Babies. Front Pediatr 2021; 9:668457. [PMID: 34123971 PMCID: PMC8193522 DOI: 10.3389/fped.2021.668457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/28/2021] [Indexed: 12/05/2022] Open
Abstract
Background: To date, after 65 years of research that was primarily directed at differentiating between normal and colicky crying, the cause of infantile colic remains elusive and no definitive cure has been found. Given the general absence of pathology, colicky crying is widely considered the extreme end of a spectrum of normal crying behavior. However, evidence gleaned from scattered sources throughout the literature suggests that infantile colic may be the behavioral expression of physiological brainstem dysregulation, particularly of the vestibular and autonomic systems. The purpose of this study is to present a five-point clinical index of vestibular (hyper) activity and its application to investigate vestibular dysregulation in colicky and non-colicky babies. Methods: One hundred and twenty consecutive colicky babies were evaluated using this index, before and after a very gentle vibratory treatment, and compared to 117 non-colicky babies. Results: Before treatment, of 120 colicky babies only 2 (1.7%) scored 0, whereas 118 (98.3%) scored 1-5. Of 117 non-colicky babies 89 (76.1%) scored 0 and 28 (23.9%) scored 1-3, none scored 4-5. The odds ratio is OR (CI 95%) 187.54 (43.52-808.09). After treatment 111 (92.5%) scored 0 and 9 (7.5%) scored 1-3, none scored 4-5. A McNemar test showed the difference before and after to be significant (χ2 = 109.00, p < 0.001). For colicky babies the mean vestibular score is 2.88 (SD 1.22), compared to 0.37 (SD 0.73) for non-colicky babies, a difference of 87.2%. After treatment the score decreased from 2.88 (SD 1.12) to 0.10 (SD 0.40), or 96.5%. Conclusion: Colicky babies are not just infants who cry a lot. They also show clinical evidence of vestibular dysregulation. Treatment aimed at relaxing tight sub-occipital musculature by means of gentle vibrational stimulation may be effective in decreasing vestibular hyperactivity, signifying an improvement in brainstem regulation. The vestibular index opens the prospect for development into a tool toward an objective and practical clinical diagnosis of infantile colic.
Collapse
Affiliation(s)
- Jan Hoeve
- Chiropractie Staphorst, Staphorst, Netherlands
| |
Collapse
|
15
|
Shadmehr R. Population coding in the cerebellum: a machine learning perspective. J Neurophysiol 2020; 124:2022-2051. [PMID: 33112717 DOI: 10.1152/jn.00449.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The cere resembles a feedforward, three-layer network of neurons in which the "hidden layer" consists of Purkinje cells (P-cells) and the output layer consists of deep cerebellar nucleus (DCN) neurons. In this analogy, the output of each DCN neuron is a prediction that is compared with the actual observation, resulting in an error signal that originates in the inferior olive. Efficient learning requires that the error signal reach the DCN neurons, as well as the P-cells that project onto them. However, this basic rule of learning is violated in the cerebellum: the olivary projections to the DCN are weak, particularly in adulthood. Instead, an extraordinarily strong signal is sent from the olive to the P-cells, producing complex spikes. Curiously, P-cells are grouped into small populations that converge onto single DCN neurons. Why are the P-cells organized in this way, and what is the membership criterion of each population? Here, I apply elementary mathematics from machine learning and consider the fact that P-cells that form a population exhibit a special property: they can synchronize their complex spikes, which in turn suppress activity of DCN neuron they project to. Thus complex spikes cannot only act as a teaching signal for a P-cell, but through complex spike synchrony, a P-cell population may act as a surrogate teacher for the DCN neuron that produced the erroneous output. It appears that grouping of P-cells into small populations that share a preference for error satisfies a critical requirement of efficient learning: providing error information to the output layer neuron (DCN) that was responsible for the error, as well as the hidden layer neurons (P-cells) that contributed to it. This population coding may account for several remarkable features of behavior during learning, including multiple timescales, protection from erasure, and spontaneous recovery of memory.
Collapse
Affiliation(s)
- Reza Shadmehr
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
Abstract
Understanding mechanisms underlying learning and memory is crucial in view of tackling cognitive decline occurring during aging or following neurological disorders. The cerebellum offers an ideal system to achieve this goal because of the well-characterized forms of motor learning that it controls. It is so far unclear whether cerebellar memory processes depend on changes in perineuronal nets (PNNs). PNNs are assemblies of extracellular matrix molecules around neurons, which regulate neural plasticity. Here we demonstrate that during eyeblink conditioning (EBC), which is a form of cerebellar motor learning, PNNs in the mouse deep cerebellar nuclei are dynamically modulated, and PNN changes are essential for the formation and storage of EBC memories. Together, these results unveil an important mechanism controlling motor associative memories. Perineuronal nets (PNNs) are assemblies of extracellular matrix molecules, which surround the cell body and dendrites of many types of neuron and regulate neural plasticity. PNNs are prominently expressed around neurons of the deep cerebellar nuclei (DCN), but their role in adult cerebellar plasticity and behavior is far from clear. Here we show that PNNs in the mouse DCN are diminished during eyeblink conditioning (EBC), a form of associative motor learning that depends on DCN plasticity. When memories are fully acquired, PNNs are restored. Enzymatic digestion of PNNs in the DCN improves EBC learning, but intact PNNs are necessary for memory retention. At the structural level, PNN removal induces significant synaptic rearrangements in vivo, resulting in increased inhibition of DCN baseline activity in awake behaving mice. Together, these results demonstrate that PNNs are critical players in the regulation of cerebellar circuitry and function.
Collapse
|
17
|
Kobayashi S, Kim J, Yanagawa Y, Suzuki N, Saito H, Takayama C. Hyper-Formation of GABA and Glycine Co-Releasing Terminals in the Mouse Cerebellar Nuclei after Deprivation of GABAergic Inputs from Purkinje Cells. Neuroscience 2019; 426:88-100. [PMID: 31846755 DOI: 10.1016/j.neuroscience.2019.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 11/27/2022]
Abstract
GABA and glycine are inhibitory neurotransmitters. However, the mechanisms underlying the formation of GABAergic and glycinergic synapses remain unclear. The influence of GABAergic input deprivation on inhibitory terminal formation was investigated using Purkinje cell (PC)-specific vesicular GABA transporter (VGAT) knockout (L7-VGAT) mice, in which GABA release from PCs diminishes in an age-dependent manner. We compared the late development of GABAergic and glycinergic terminals in the cerebellar nucleus (CN) between control and L7-VGAT mice. In the control CN, the density of glutamate decarboxylase (GAD)-positive dots remained unchanged between postnatal 2 months (P2M) and 13 months (P13M), whereas glycine transporter 2 (GlyT2)-positive dots increased in density during this time frame. No difference in the density of GlyT2-positive dots was observed between control and L7-VGAT mice at P2M, but the density was significantly higher in the L7-VGAT fastigial nuclei (FN) than the control FN at P13M. When VGAT was absent from PC terminals, GlyT2-positive dots included GAD and VGAT and formed synapses. These results indicated that GABAergic terminals were formed by P2M, glycinergic terminals were actively formed after P2M, and more glycinergic terminals were formed in the L7-VGAT FN than in the control FN, suggesting that the increased glycinergic terminals may derive from interneurons within the FN and may also release GABA. These results suggest that the deprivation of GABAergic inputs from PCs may accelerate the formation of co-releasing terminals derived from interneurons and that the inhibitory terminal numbers and types may be regulated by the quantity of functional GABAergic inputs.
Collapse
Affiliation(s)
- Shiori Kobayashi
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Jeongtae Kim
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8511, Japan
| | - Noboru Suzuki
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Mie University Organization for the Promotion of Regional Innovation, 2-174 Edobashi, Tsu, Mie 5148507, Japan
| | - Hiromitsu Saito
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Mie University Organization for the Promotion of Regional Innovation, 2-174 Edobashi, Tsu, Mie 5148507, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan.
| |
Collapse
|
18
|
Hasan W, Kori RK, Jain J, Yadav RS, Jat D. Neuroprotective effects of mitochondria‐targeted curcumin against rotenone‐induced oxidative damage in cerebellum of mice. J Biochem Mol Toxicol 2019; 34:e22416. [DOI: 10.1002/jbt.22416] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/10/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Whidul Hasan
- Neuroscience Research Lab, School of Biological SciencesDr. Harisingh Gour Vishwavidyalaya (A Central University)Sagar MP India
| | - Rajesh Kumar Kori
- Department of Criminology and Forensic ScienceDr. Harisingh Gour Vishwavidyalaya (A Central University)Sagar MP India
| | - Juli Jain
- Neuroscience Research Lab, School of Biological SciencesDr. Harisingh Gour Vishwavidyalaya (A Central University)Sagar MP India
| | - Rajesh Singh Yadav
- Department of Criminology and Forensic ScienceDr. Harisingh Gour Vishwavidyalaya (A Central University)Sagar MP India
| | - Deepali Jat
- Neuroscience Research Lab, School of Biological SciencesDr. Harisingh Gour Vishwavidyalaya (A Central University)Sagar MP India
| |
Collapse
|
19
|
Wang Y, Chen ZP, Yang ZQ, Zhang XY, Li JM, Wang JJ, Zhu JN. Corticotropin-releasing factor depolarizes rat lateral vestibular nuclear neurons through activation of CRF receptors 1 and 2. Neuropeptides 2019; 76:101934. [PMID: 31130301 DOI: 10.1016/j.npep.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Corticotropin-releasing factor (CRF) is a neuropeptide mainly synthesized in the hypothalamic paraventricular nucleus and has been traditionally implicated in stress and anxiety. Intriguingly, genetic or pharmacological manipulation of CRF receptors affects locomotor activity as well as motor coordination and balance in rodents, suggesting an active involvement of the central CRFergic system in motor control. Yet little is known about the exact role of CRF in central motor structures and the underlying mechanisms. Therefore, in the present study, we focused on the effect of CRF on the lateral vestibular nucleus (LVN) in the brainstem vestibular nuclear complex, an important center directly contributing to adjustment of muscle tone for both postural maintenance and the alternative change from the extensor to the flexor phase during locomotion. The results show that CRF depolarizes and increases the firing rate of neurons in the LVN. Tetrodotoxin does not block the CRF-induced depolarization and inward current on LVN neurons, suggesting a direct postsynaptic action of the neuropeptide. The CRF-induced depolarization on LVN neurons was partly blocked by antalarmin or antisauvagine-30, selective antagonists for CRF receptors 1 (CRFR1) and 2 (CRFR2), respectively. Furthermore, combined application of antalarmin and antisauvagine-30 totally abolished the CRF-induced depolarization. Immunofluorescence results show that CRFR1 and CRFR2 are co-localized in the rat LVN. These results demonstrate that CRF excites the LVN neurons by co-activation of both CRFR1 and CRFR2, suggesting that via the direct modulation on the LVN, the central CRFergic system may actively participate in the central vestibular-mediated postural and motor control.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhang-Peng Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhong-Qin Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
20
|
Gagliuso AH, Chapman EK, Martinelli GP, Holstein GR. Vestibular neurons with direct projections to the solitary nucleus in the rat. J Neurophysiol 2019; 122:512-524. [PMID: 31166818 PMCID: PMC6734410 DOI: 10.1152/jn.00082.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Anterograde and retrograde tract tracing were combined with neurotransmitter and modulator immunolabeling to identify the chemical anatomy of vestibular nuclear neurons with direct projections to the solitary nucleus in rats. Direct, sparsely branched but highly varicose axonal projections from neurons in the caudal vestibular nuclei to the solitary nucleus were observed. The vestibular neurons giving rise to these projections were predominantly located in ipsilateral medial vestibular nucleus. The cell bodies were intensely glutamate immunofluorescent, and their axonal processes contained vesicular glutamate transporter 2, supporting the interpretation that the cells utilize glutamate for neurotransmission. The glutamate-immunofluorescent, retrogradely filled vestibular cells also contained the neuromodulator imidazoleacetic acid ribotide, which is an endogenous CNS ligand that participates in blood pressure regulation. The vestibulo-solitary neurons were encapsulated by axo-somatic GABAergic terminals, suggesting that they are under tight inhibitory control. The results establish a chemoanatomical basis for transient vestibular activation of the output pathways from the caudal and intermediate regions of the solitary nucleus. In this way, changes in static head position and movement of the head in space may directly influence heart rate, blood pressure, respiration, as well as gastrointestinal motility. This would provide one anatomical explanation for the synchronous heart rate and blood pressure responses observed after peripheral vestibular activation, as well as disorders ranging from neurogenic orthostatic hypotension, postural orthostatic tachycardia syndrome, and vasovagal syncope to the nausea and vomiting associated with motion sickness.NEW & NOTEWORTHY Vestibular neurons with direct projections to the solitary nucleus utilize glutamate for neurotransmission, modulated by imidazoleacetic acid ribotide. This is the first direct demonstration of the chemical neuroanatomy of the vestibulo-solitary pathway.
Collapse
Affiliation(s)
- Amelia H Gagliuso
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily K Chapman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
21
|
Burhans LB, Schreurs BG. Inactivation of the interpositus nucleus during unpaired extinction does not prevent extinction of conditioned eyeblink responses or conditioning-specific reflex modification. Behav Neurosci 2019; 133:398-413. [PMID: 30869952 PMCID: PMC6625864 DOI: 10.1037/bne0000309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For almost 75 years, classical eyeblink conditioning has been an invaluable tool for assessing associative learning processes across many species, thanks to its high translatability and well-defined neural circuitry. Our laboratory has adapted the paradigm to extensively detail associative changes in the rabbit reflexive eyeblink response (unconditioned response, UR), characterized by postconditioning increases in the frequency, size, and latency of the UR when the periorbital shock unconditioned stimulus (US) is presented alone, termed conditioning-specific reflex modification (CRM). Because the shape and timing of CRM closely resembles the conditioned eyeblink response (CR) to the tone conditioned stimulus (CS), we previously tested whether CRs and CRM share a common neural substrate, the interpositus nucleus of the cerebellum (IP), and found that IP inactivation during conditioning blocked the development of both CRs and the timing aspect of CRM. The goal of the current study was to examine whether extinction of CRs and CRM timing, accomplished simultaneously with unpaired CS/US extinction, also involves the IP. Results showed that muscimol inactivation of the IP during extinction blocked CR expression but not extinction of CRs or CRM timing, contrasting with the literature showing IP inactivation prevents CR extinction during CS-alone presentations. The continued presence of the US throughout the unpaired extinction procedure may have been sufficient to overcome IP blockade, promoting plasticity in the cerebellar cortex and/or extracerebellar components of the eyeblink conditioning pathway that can modulate extinction of CRs and CRM timing. Results therefore add support to the distributed plasticity view of cerebellar learning. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Lauren B. Burhans
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Bernard G. Schreurs
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
22
|
Developmental Changes in Serotonergic Modulation of GABAergic Synaptic Transmission and Postsynaptic GABA A Receptor Composition in the Cerebellar Nuclei. THE CEREBELLUM 2019; 17:346-358. [PMID: 29349630 DOI: 10.1007/s12311-018-0922-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Outputs from the cerebellar nuclei (CN) are important for generating and controlling movement. The activity of CN neurons is controlled not only by excitatory inputs from mossy and climbing fibers and by γ-aminobutyric acid (GABA)-based inhibitory transmission from Purkinje cells in the cerebellar cortex but is also modulated by inputs from other brain regions, including serotonergic fibers that originate in the dorsal raphe nuclei. We examined the modulatory effects of serotonin (5-HT) on GABAergic synapses during development, using rat cerebellar slices. As previously reported, 5-HT presynaptically decreased the amplitudes of stimulation-evoked inhibitory postsynaptic currents (IPSCs) in CN neurons, with this effect being stronger in slices from younger animals (postnatal days [P] 11-13) than in slices from older animals (P19-21). GABA release probabilities accordingly exhibited significant decreases from P11-13 to P19-21. Although there was a strong correlation between the GABA release probability and the magnitude of 5-HT-induced inhibition, manipulating the release probability by changing extracellular Ca2+ concentrations failed to control the extent of 5-HT-induced inhibition. We also found that the IPSCs exhibited slower kinetics at P11-13 than at P19-21. Pharmacological and molecular biological tests revealed that IPSC kinetics were largely determined by the prevalence of α1 subunits within GABAA receptors. In summary, pre- and postsynaptic developmental changes in serotonergic modulation and GABAergic synaptic transmission occur during the second to third postnatal weeks and may significantly contribute to the formation of normal adult cerebellar function.
Collapse
|
23
|
Pickford J, Apps R, Bashir ZI. Muscarinic Receptor Modulation of the Cerebellar Interpositus Nucleus In Vitro. Neurochem Res 2019; 44:627-635. [PMID: 30117095 PMCID: PMC6420442 DOI: 10.1007/s11064-018-2613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 11/25/2022]
Abstract
How the cerebellum carries out its functions is not clear, even for its established roles in motor control. In particular, little is known about how the cerebellar nuclei (CN) integrate their synaptic and neuromodulatory inputs to generate cerebellar output. CN neurons receive inhibitory inputs from Purkinje cells, excitatory inputs from mossy fibre and climbing fibre collaterals, as well as a variety of neuromodulatory inputs, including cholinergic inputs. In this study we tested how activation of acetylcholine receptors modulated firing rate, intrinsic properties and synaptic transmission in the CN. Using in vitro whole-cell patch clamp recordings from neurons in the interpositus nucleus, the acetylcholine receptor agonist carbachol was shown to induce a short-term increase in firing rate, increase holding current and decrease input resistance of interpositus CN neurons. Carbachol also induced long-term depression of evoked inhibitory postsynaptic currents and a short-term depression of evoked excitatory postsynaptic currents. All effects were shown to be dependent upon muscarinic acetylcholine receptor activation. Overall, the present study has identified muscarinic receptor activation as a modulator of CN activity.
Collapse
Affiliation(s)
- J Pickford
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - R Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Z I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
24
|
Tang T, Blenkinsop TA, Lang EJ. Complex spike synchrony dependent modulation of rat deep cerebellar nuclear activity. eLife 2019; 8:e40101. [PMID: 30624204 PMCID: PMC6326725 DOI: 10.7554/elife.40101] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/20/2018] [Indexed: 12/03/2022] Open
Abstract
The rules governing cerebellar output are not fully understood, but must involve Purkinje cell (PC) activity, as PCs are the major input to deep cerebellar nuclear (DCN) cells (which form the majority of cerebellar output). Here, the influence of PC complex spikes (CSs) was investigated by simultaneously recording DCN activity with CSs from PC arrays in anesthetized rats. Crosscorrelograms were used to identify PCs that were presynaptic to recorded DCN cells (presynaptic PCs). Such PCs were located within rostrocaudal cortical strips and displayed synchronous CS activity. CS-associated modulation of DCN activity included a short-latency post-CS inhibition and long-latency excitations before and after the CS. The amplitudes of the post-CS responses correlated with the level of synchronization among presynaptic PCs. A temporal precision of ≤10 ms was generally required for CSs to be maximally effective. The results suggest that CS synchrony is a key control parameter of cerebellar output. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Tianyu Tang
- Department of Neuroscience and PhysiologyNew York University School of MedicineNew YorkUnited States
| | - Timothy A Blenkinsop
- Department of Developmental and Regenerative BiologyMount Sinai School of MedicineNew YorkUnited States
| | - Eric J Lang
- Department of Neuroscience and PhysiologyNew York University School of MedicineNew YorkUnited States
| |
Collapse
|
25
|
Edamatsu M, Miyano R, Fujikawa A, Fujii F, Hori T, Sakaba T, Oohashi T. Hapln4/Bral2 is a selective regulator for formation and transmission of GABAergic synapses between Purkinje and deep cerebellar nuclei neurons. J Neurochem 2018; 147:748-763. [PMID: 30125937 DOI: 10.1111/jnc.14571] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022]
Abstract
Purkinje cells (PCs) convey the sole output of the cerebellar cortex to the deep cerebellar nuclei (DCN). DCN neurons are enwrapped in densely organized extracellular matrix structures, known as perineuronal nets (PNNs). PNNs are typically found around fast-spiking GABAergic interneurons expressing parvalbumin but interestingly also exist surrounding other neurons, such as the neurons in the DCN and medial nucleus of the trapezoid body, which are the post-synaptic neurons of large axo-somatic synapses adapted for fast signaling. This characteristic localization prompted the hypothesis that PNNs might play a role in the maintenance and formation of large fast-signaling synapses. To elucidate the role of the PNN at these synapses, we investigated the electrophysiological and morphological properties of DCN synapses in hyaluronan and proteoglycan binding link protein 4 (Hapln4/Bral2) knockout (KO) mice around postnatal day (P)14. Hapln4/Bral2 is important for PNN structure, as it stabilizes the interaction between hyaluronan and proteoglycan. Here, using immunohistochemistry we show that Hapln4/Bral2 localized closely with GABAergic terminals. In DCN neurons of Hapln4/Bral2 KO mice, inhibitory synaptic strengths were reduced as compared to those in wild-type mice, whereas the properties of excitatory synapses were unaffected. The reduced IPSC amplitudes were mainly because of reduced numbers of releasable vesicles. Moreover, Hapln4/Bral2 deficiency reduced the number of PC GABAergic terminals in the DCN. These results demonstrate that Hapln4/Bral2 is a PNN component that selectively contributes to formation and transmission of PC-DCN synapses in the cerebellum. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Midori Edamatsu
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Rinako Miyano
- Graduate School of Brain Science, Doshisha University, Kyo-Tanabe, Kyoto, Japan
| | - Atsushi Fujikawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Fuminari Fujii
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Tetsuya Hori
- Faculty of Life and Medical Sciences, Department of Neurophysiology, Doshisha University, Kyo-Tanabe, Kyoto, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyo-Tanabe, Kyoto, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| |
Collapse
|
26
|
Bernetti L, Pellegrino C, Corbelli I, Caproni S, Eusebi P, Faralli M, Ricci G, Calabresi P, Sarchielli P. Subclinical vestibular dysfunction in migraineurs without vertigo: A Clinical study. Acta Neurol Scand 2018; 138:270-277. [PMID: 29658983 DOI: 10.1111/ane.12941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVES This observational study aimed to investigate the presence of potential vestibular system subclinical dysfunction among migraineurs without a history of vertigo and dizziness compared with healthy controls. METHODS Patients diagnosed with episodic migraine with and without aura were enrolled. All patients and healthy controls underwent vestibular examination using the following conventional tests: sitting position, Pagnini-McClure's, Dix-Hallpike's, head hanging, video head impulse, subjective visual vertical, Romberg, Fukuda, and caloric vestibular stimulation by Fitzgerald-Hallpike's tests. Nystagmus and angular velocity of the slow phase during culmination phase was analyzed by video-nystagmography. RESULTS Overall, 33 patients (76% female, 7 with aura and 26 without aura; mean age (mean ± SD): 29.1 ± 4.3 years) and 22 controls (33% female, mean age: 30.8 ± 9.4 years) were enrolled. There were no statistically significant differences in demographic features between patients and controls. Caloric vestibular stimulation test results were found to differ among patients and controls. In particular, right and left angular velocity (AV) were highly correlated one another (r = 0.88, P < .001). Right AV (53.0 ± 6.7 vs 44.0 ± 9.6) and left AV (54.3 ± 5.3 vs 43.3 ± 9.0) were statistically higher in migraineurs as compared to controls (P < .001). Also right V-HIT (1.1 ± 0.1 vs 0.8 ± 0.4) and left V-HIT (1.1 ± 0.1 vs 0.7 ± 0.2) were statistically higher in migraineurs compared to controls (P < .001). CONCLUSION Our findings suggest a subclinical alteration of vestibular pathway in migraineurs who have never complained vertigo or postural imbalance. This finding supports the hypothesis of a vestibular-cerebellar dysfunction in migraineurs, particularly among those with aura.
Collapse
Affiliation(s)
- L. Bernetti
- Department of Medicine; Neurologic Clinic, Headache Centre; University of Perugia; Perugia Italy
| | - C. Pellegrino
- Department of Medicine; Otolaryngology and Head-Neck Surgery Clinic; University of Perugia; Perugia Italy
| | - I. Corbelli
- Department of Medicine; Neurologic Clinic, Headache Centre; University of Perugia; Perugia Italy
| | - S. Caproni
- Neuroscience Department; Neurologic Clinic; S. Maria Hospital of Terni; Terni Italy
| | - P. Eusebi
- Department of Medicine; Neurologic Clinic, Headache Centre; University of Perugia; Perugia Italy
| | - M. Faralli
- Department of Medicine; Otolaryngology and Head-Neck Surgery Clinic; University of Perugia; Perugia Italy
| | - G. Ricci
- Department of Medicine; Otolaryngology and Head-Neck Surgery Clinic; University of Perugia; Perugia Italy
| | - P. Calabresi
- Department of Medicine; Neurologic Clinic, Headache Centre; University of Perugia; Perugia Italy
- IRCCS, Santa Lucia Foundation; European Brain Research Institute; Rome Italy
| | - P. Sarchielli
- Department of Medicine; Neurologic Clinic, Headache Centre; University of Perugia; Perugia Italy
| |
Collapse
|
27
|
Ady V, Toscano-Márquez B, Nath M, Chang PK, Hui J, Cook A, Charron F, Larivière R, Brais B, McKinney RA, Watt AJ. Altered synaptic and firing properties of cerebellar Purkinje cells in a mouse model of ARSACS. J Physiol 2018; 596:4253-4267. [PMID: 29928778 DOI: 10.1113/jp275902] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative human disease characterized in part by ataxia and Purkinje cell loss in anterior cerebellar lobules. A knock-out mouse model has been developed that recapitulates several features of ARSACS. Using this ARSACS mouse model, we report changes in synaptic input and intrinsic firing in cerebellar Purkinje cells, as well as in their synaptic output in the deep cerebellar nuclei. Changes in firing are observed in anterior lobules that later exhibit Purkinje cell death, but not in posterior lobules that do not. Our results show that both synaptic and intrinsic alterations in Purkinje cell properties likely contribute to disease manifestation in ARSACS; these findings resemble pathophysiological changes reported in several other ataxias. ABSTRACT Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease that includes a pronounced and progressive cerebellar dysfunction. ARSACS is caused by an autosomal recessive loss-of-function mutation in the Sacs gene that encodes the protein sacsin. To better understand the cerebellar pathophysiology in ARSACS, we studied synaptic and firing properties of Purkinje cells from a mouse model of ARSACS, Sacs-/- mice. We found that excitatory synaptic drive was reduced onto Sacs-/- Purkinje cells, and that Purkinje cell firing rate, but not regularity, was reduced at postnatal day (P)40, an age when ataxia symptoms were first reported. Firing rate deficits were limited to anterior lobules that later display Purkinje cell death, and were not observed in posterior lobules where Purkinje cells are not lost. Mild firing deficits were observed as early as P20, prior to the manifestation of motor deficits, suggesting that a critical level of cerebellar dysfunction is required for motor coordination to emerge. Finally, we observed a reduction in Purkinje cell innervation onto target neurons in the deep cerebellar nuclei (DCN) in Sacs-/- mice. Together, these findings suggest that multiple alterations in the cerebellar circuit including Purkinje cell input and output contribute to cerebellar-related disease onset in ARSACS.
Collapse
Affiliation(s)
- Visou Ady
- Department of Biology, McGill University, Montréal, Canada
| | | | - Moushumi Nath
- Department of Biology, McGill University, Montréal, Canada
| | - Philip K Chang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Jeanette Hui
- Department of Biology, McGill University, Montréal, Canada
| | - Anna Cook
- Department of Biology, McGill University, Montréal, Canada
| | - François Charron
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Roxanne Larivière
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montréal, Canada
| |
Collapse
|
28
|
Rahmati N, Hoebeek FE, Peter S, De Zeeuw CI. Chloride Homeostasis in Neurons With Special Emphasis on the Olivocerebellar System: Differential Roles for Transporters and Channels. Front Cell Neurosci 2018; 12:101. [PMID: 29765304 PMCID: PMC5938380 DOI: 10.3389/fncel.2018.00101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
The intraneuronal ionic composition is an important determinant of brain functioning. There is growing evidence that aberrant homeostasis of the intracellular concentration of Cl- ([Cl-]i) evokes, in addition to that of Na+ and Ca2+, robust impairments of neuronal excitability and neurotransmission and thereby neurological conditions. More specifically, understanding the mechanisms underlying regulation of [Cl-]i is crucial for deciphering the variability in GABAergic and glycinergic signaling of neurons, in both health and disease. The homeostatic level of [Cl-]i is determined by various regulatory mechanisms, including those mediated by plasma membrane Cl- channels and transporters. This review focuses on the latest advances in identification, regulation and characterization of Cl- channels and transporters that modulate neuronal excitability and cell volume. By putting special emphasis on neurons of the olivocerebellar system, we establish that Cl- channels and transporters play an indispensable role in determining their [Cl-]i and thereby their function in sensorimotor coordination.
Collapse
Affiliation(s)
- Negah Rahmati
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- NIDOD Institute, Wilhelmina Children's Hospital, University Medical Center Utrecht and Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - Saša Peter
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
29
|
Cheron J, Cheron G. Beta-gamma burst stimulations of the inferior olive induce high-frequency oscillations in the deep cerebellar nuclei. Eur J Neurosci 2018; 48:2879-2889. [PMID: 29460990 DOI: 10.1111/ejn.13873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 11/30/2022]
Abstract
The cerebellum displays various sorts of rhythmic activities covering both low- and high-frequency oscillations. These cerebellar high-frequency oscillations were observed in the cerebellar cortex. Here, we hypothesised that not only is the cerebellar cortex a generator of high-frequency oscillations but also that the deep cerebellar nuclei may also play a similar role. Thus, we analysed local field potentials and single-unit activities in the deep cerebellar nuclei before, during and after electric stimulation in the inferior olive of awake mice. A high-frequency oscillation of 350 Hz triggered by the stimulation of the inferior olive, within the beta-gamma range, was observed in the deep cerebellar nuclei. The amplitude and frequency of the oscillation were independent of the frequency of stimulation. This oscillation emerged during the period of stimulation and persisted after the end of the stimulation. The oscillation coincided with the inhibition of deep cerebellar neurons. As the inhibition of the deep cerebellar nuclei is related to inhibitory inputs from Purkinje cells, we speculate that the oscillation represents the unmasking of the synchronous activation of another subtype of deep cerebellar neuronal subtype, devoid of GABA receptors and under the direct control of the climbing fibres from the inferior olive. Still, the mechanism sustaining this oscillation remains to be deciphered. Our study sheds new light on the role of the olivo-cerebellar loop as the final output control of the intercerebellar circuitry.
Collapse
Affiliation(s)
- Julian Cheron
- Laboratory of Electrophysiology, Université de Mons, Mons, Belgium.,Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Guy Cheron
- Laboratory of Electrophysiology, Université de Mons, Mons, Belgium.,Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| |
Collapse
|
30
|
Mao H, Hamodeh S, Sultan F. Quantitative Comparison Of Vesicular Glutamate Transporters in rat Deep Cerebellar Nuclei. Neuroscience 2018; 376:152-161. [PMID: 29462701 DOI: 10.1016/j.neuroscience.2018.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 12/23/2022]
Abstract
The excitatory synapses of the rat deep cerebellar nuclei (DCN) were quantitatively analyzed by vesicular glutamate transporter 1 and 2 (vGluT1 and vGluT2) immunolabeling. We calculated the number and sizes of the labeled boutons and compared them between lateral/dentate nucleus (LN/DN), posterior interposed nucleus (PIN), anterior interposed nucleus (AIN), and medial nucleus (MN). The density of vGluT1+ boutons differs significantly within these nuclei. In contrast, the vGluT2+ bouton density is more similar between different nuclei. The phylogenetically newer DCN (LN/DN and PIN) have a 39% higher density of vGluT1+ boutons than the phylogenetically older DCN (AIN and MN). The volume of vGluT1+ boutons does not differ between the DCN, however the average volume of vGluT2+ boutons is larger in MN. In summary, our current results confirm and extend our previous findings showing that the increase in dendritic and axonal wiring in phylogenetically newer DCN is associated with an increase in vGluT1+ bouton density.
Collapse
Affiliation(s)
- Haian Mao
- Department of Cognitive Neurology, HIH for Clinical Brain Research, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Salah Hamodeh
- Department of Cognitive Neurology, HIH for Clinical Brain Research, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Fahad Sultan
- Department of Cognitive Neurology, HIH for Clinical Brain Research, Otfried-Müller-Str. 27, 72076 Tübingen, Germany; Department of Integrative Medical Biology, Umeå University, Linnéus väg 9, 901 87 Umeå, Sweden.
| |
Collapse
|
31
|
Abstract
Background Although there is a great wealth of knowledge about the neurobiological processes underlying migraine and its accompanying symptoms, the mechanisms by which an attack starts remain elusive, and the disease remains undertreated. Although the vast majority of literature focuses on the involvement of the trigeminovascular systems and higher systems it innervates, such as thalamic and hypothalamic nuclei, several lines of evidence implicate the cerebellum in the pathophysiology of migraine. Aim In this review, we aim to summarize potential cerebellar involvement seen from different perspectives including the results from imaging studies, cerebellar connectivity to migraine-related brain structures, comorbidity with disorders implying cerebellar dysfunction, similarities in triggers precipitating both such disorders, and migraine and cerebellar expression of migraine-related genes and neuropeptides. We aim to inspire an increase in interest for future research on the subject. Conclusion It is hoped that future studies can provide an answer as to how the cerebellum may be involved and whether treatment options specifically targeting the cerebellum could provide alleviation of this disorder.
Collapse
Affiliation(s)
- Lieke Kros
- 1 Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA.,2 Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Kamran Khodakhah
- 1 Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
32
|
The Cerebellar GABA AR System as a Potential Target for Treating Alcohol Use Disorder. Handb Exp Pharmacol 2018; 248:113-156. [PMID: 29736774 DOI: 10.1007/164_2018_109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the brain, fast inhibitory neurotransmission is mediated primarily by the ionotropic subtype of the gamma-aminobutyric acid (GABA) receptor subtype A (GABAAR). It is well established that the brain's GABAAR system mediates many aspects of neurobehavioral responses to alcohol (ethanol; EtOH). Accordingly, in both preclinical studies and some clinical scenarios, pharmacologically targeting the GABAAR system can alter neurobehavioral responses to acute and chronic EtOH consumption. However, many of the well-established interactions of EtOH and the GABAAR system have been identified at concentrations of EtOH ([EtOH]) that would only occur during abusive consumption of EtOH (≥40 mM), and there are still inadequate treatment options for prevention of or recovery from alcohol use disorder (AUD, including abuse and dependence). Accordingly, there is a general acknowledgement that more research is needed to identify and characterize: (1) neurobehavioral targets of lower [EtOH] and (2) associated brain structures that would involve such targets in a manner that may influence the development and maintenance of AUDs.Nearly 15 years ago it was discovered that the GABAAR system of the cerebellum is highly sensitive to EtOH, responding to concentrations as low as 10 mM (as would occur in the blood of a typical adult human after consuming 1-2 standard units of EtOH). This high sensitivity to EtOH, which likely mediates the well-known motor impairing effects of EtOH, combined with recent advances in our understanding of the role of the cerebellum in non-motor, cognitive/emotive/reward processes has renewed interest in this system in the specific context of AUD. In this chapter we will describe recent advances in our understanding of cerebellar processing, actions of EtOH on the cerebellar GABAAR system, and the potential relationship of such actions to the development of AUD. We will finish with speculation about how cerebellar specific GABAAR ligands might be effective pharmacological agents for treating aspects of AUD.
Collapse
|
33
|
Najac M, Raman IM. Synaptic excitation by climbing fibre collaterals in the cerebellar nuclei of juvenile and adult mice. J Physiol 2017; 595:6703-6718. [PMID: 28795396 PMCID: PMC5663862 DOI: 10.1113/jp274598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/08/2017] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS The inferior olive sends instructive motor signals to the cerebellum via the climbing fibre projection, which sends collaterals directly to large premotor neurons of the mouse cerebellar nuclei (CbN cells). Optogenetic activation of inferior olivary axons in vitro evokes EPSCs in CbN cells of several hundred pA to more than 1 nA. The inputs are three-fold larger at younger ages, 12 to 14 days old, than at 2 months old, suggesting a strong functional role for this pathway earlier in development. The EPSCs are multipeaked, owing to burst firing in several olivary afferents that fire asynchronously. The convergence of climbing fibre collaterals onto CbN cells decreases from ∼40 to ∼8, which is consistent with the formation of closed-loop circuits in which each CbN neuron receives input from 4-7 collaterals from inferior olivary neurons as well as from all 30-50 Purkinje cells that are innervated by those olivary neurons. ABSTRACT The inferior olive conveys instructive signals to the cerebellum that drive sensorimotor learning. Inferior olivary neurons transmit their signals via climbing fibres, which powerfully excite Purkinje cells, evoking complex spikes and depressing parallel fibre synapses. Additionally, however, these climbing fibres send collaterals to the cerebellar nuclei (CbN). In vivo and in vitro data suggest that climbing fibre collateral excitation is weak in adult mice, raising the question of whether the primary role of this pathway may be developmental. We therefore examined climbing fibre collateral input to large premotor CbN cells over development by virally expressing channelrhodopsin in the inferior olive. In acute cerebellar slices from postnatal day (P)12-14 mice, light-evoked EPSCs were large (> 1 nA at -70 mV). The amplitude of these EPSCs decreased over development, reaching a plateau of ∼350 pA at P20-60. Trains of EPSCs (5 Hz) depressed strongly throughout development, whereas convergence estimates indicated that the total number of functional afferents decreased with age. EPSC waveforms consisted of multiple peaks, probably resulting from action potential bursts in single collaterals and variable times to spike threshold in converging afferents. Activating climbing fibre collaterals evoked well-timed increases in firing probability in CbN neurons, especially in younger mice. The initially strong input, followed by the decrement in synaptic strength coinciding with the pruning of climbing fibres in the cerebellar cortex, implicates the climbing fibre collateral pathway in early postnatal development. Additionally, the persistence of substantial synaptic input at least to P60 suggests that this pathway may function in cerebellar processing into adulthood.
Collapse
Affiliation(s)
- Marion Najac
- Department of NeurobiologyNorthwestern UniversityEvanstonILUSA
| | - Indira M. Raman
- Department of NeurobiologyNorthwestern UniversityEvanstonILUSA
| |
Collapse
|
34
|
Kros L, Lindeman S, Eelkman Rooda OHJ, Murugesan P, Bina L, Bosman LWJ, De Zeeuw CI, Hoebeek FE. Synchronicity and Rhythmicity of Purkinje Cell Firing during Generalized Spike-and-Wave Discharges in a Natural Mouse Model of Absence Epilepsy. Front Cell Neurosci 2017; 11:346. [PMID: 29163057 PMCID: PMC5671558 DOI: 10.3389/fncel.2017.00346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/17/2017] [Indexed: 11/13/2022] Open
Abstract
Absence epilepsy is characterized by the occurrence of generalized spike and wave discharges (GSWDs) in electrocorticographical (ECoG) recordings representing oscillatory activity in thalamocortical networks. The oscillatory nature of GSWDs has been shown to be reflected in the simple spike activity of cerebellar Purkinje cells and in the activity of their target neurons in the cerebellar nuclei, but it is unclear to what extent complex spike activity is implicated in generalized epilepsy. Purkinje cell complex spike firing is elicited by climbing fiber activation and reflects action potential firing in the inferior olive. Here, we investigated to what extent modulation of complex spike firing is reflected in the temporal patterns of seizures. Extracellular single-unit recordings in awake, head-restrained homozygous tottering mice, which suffer from a mutation in the voltage-gated CaV2.1 calcium channel, revealed that a substantial proportion of Purkinje cells (26%) showed increased complex spike activity and rhythmicity during GSWDs. Moreover, Purkinje cells, recorded either electrophysiologically or by using Ca2+-imaging, showed a significant increase in complex spike synchronicity for both adjacent and remote Purkinje cells during ictal events. These seizure-related changes in firing frequency, rhythmicity and synchronicity were most prominent in the lateral cerebellum, a region known to receive cerebral input via the inferior olive. These data indicate profound and widespread changes in olivary firing that are most likely induced by seizure-related activity changes in the thalamocortical network, thereby highlighting the possibility that olivary neurons can compensate for pathological brain-state changes by dampening oscillations.
Collapse
Affiliation(s)
- Lieke Kros
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Sander Lindeman
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Oscar H J Eelkman Rooda
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Department of Neurosurgery, Erasmus MC, Rotterdam, Netherlands
| | | | - Lorenzo Bina
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
35
|
Yang Z, Chen N, Ge R, Qian H, Wang JH. Functional compatibility between Purkinje cell axon branches and their target neurons in the cerebellum. Oncotarget 2017; 8:72424-72437. [PMID: 29069799 PMCID: PMC5641142 DOI: 10.18632/oncotarget.19770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/28/2017] [Indexed: 01/10/2023] Open
Abstract
A neuron sprouts an axon, and its branches to innervate many target neurons that are divergent in their functions. In order to efficiently regulate the diversified cells, the axon branches should differentiate functionally to be compatible with their target neurons, i.e., a function compatibility between presynaptic and postsynaptic partners. We have examined this hypothesis by using electrophysiological method in the cerebellum, in which the main axon of Purkinje cell projected to deep nucleus cells and the recurrent axons innervated the adjacent Purkinje cells. The fidelity of spike propagation is superior in the recurrent branches than the main axon. The capabilities of encoding spikes and processing GABAergic inputs are advanced in Purkinje cells versus deep nucleus cells. The functional differences among Purkinje's axonal branches and their postsynaptic neurons are preset by the variable dynamics of their voltage-gated sodium channels. In addition, activity strengths between presynaptic and postsynaptic partners are proportionally correlated, i.e., active axonal branches innervate active target neurons, or vice versa. The physiological impact of the functional compatibility is to make the neurons in their circuits to be activated appropriately. In conclusion, each cerebellar Purkinje cell sprouts the differentiated axon branches to be compatible with the diversified target cells in their functions, in order to construct the homeostatic and efficient units for their coordinated activity in neural circuits.
Collapse
Affiliation(s)
- Zhilai Yang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Na Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongjing Ge
- Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| | - Hao Qian
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.,Qingdao University, School of Pharmacy, Shandong 266021, China.,Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
36
|
Yarden-Rabinowitz Y, Yarom Y. In vivo analysis of synaptic activity in cerebellar nuclei neurons unravels the efficacy of excitatory inputs. J Physiol 2017; 595:5945-5963. [PMID: 28618000 DOI: 10.1113/jp274115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/07/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cerebellar nuclei (CN) neurons can be classified into four groups according to their action potential (AP) waveform, corresponding to four types of neurons previously characterized. Half of the APs are generated by excitatory events, suggesting that excitatory inputs play a key role in generating CN outputs. Analysis of post-synaptic potentials reveals that the probability of excitatory inputs generating an AP is 0.1. The input from climbing fibre collaterals is characterized by a pair of synaptic potentials with a distinct interpair interval of 4.5 ms. The probability of climbing fibre collaterals initiating an AP in CN neurons is 0.15. ABSTRACT It is commonly agreed that the main function of the cerebellar system is to provide well-timed signals used for the execution of motor commands or prediction of sensory inputs. This function is manifested as a temporal sequence of spiking that should be expressed in the cerebellar nuclei (CN) projection neurons. Whether spiking activity is generated by excitation or release from inhibition is still a hotly debated issue. In an attempt to resolve this debate, we recorded intracellularly from CN neurons in anaesthetized mice and performed an analysis of synaptic activity that yielded a number of important observations. First, we demonstrate that CN neurons can be classified into four groups. Second, shape-index plots of the excitatory events suggest that they are distributed over the entire dendritic tree. Third, the rise time of excitatory events is linearly related to amplitude, suggesting that all excitatory events contribute equally to the generation of action potentials (APs). Fourth, we identified a temporal pattern of spontaneous excitatory events that represent climbing fibre inputs and confirm the results by direct stimulation and analysis on harmaline-evoked activity. Finally, we demonstrate that the probability of excitatory inputs generating an AP is 0.1 yet half of the APs are generated by excitatory events. Moreover, the probability of a presumably spontaneous climbing fibre input generating an AP is higher, reaching a mean population value of 0.15. In view of these results, the mode of synaptic integration at the level of the CN should be re-considered.
Collapse
Affiliation(s)
- Yasmin Yarden-Rabinowitz
- Department of Neurobiology, Silberman Institute of Life Sciences and Edmond & Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, 91904, Jerusalem, Israel
| | - Yosef Yarom
- Department of Neurobiology, Silberman Institute of Life Sciences and Edmond & Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, 91904, Jerusalem, Israel
| |
Collapse
|
37
|
Canto CB, Witter L, De Zeeuw CI. Whole-Cell Properties of Cerebellar Nuclei Neurons In Vivo. PLoS One 2016; 11:e0165887. [PMID: 27851801 PMCID: PMC5112928 DOI: 10.1371/journal.pone.0165887] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 10/19/2016] [Indexed: 11/22/2022] Open
Abstract
Cerebellar nuclei neurons integrate sensorimotor information and form the final output of the cerebellum, projecting to premotor brainstem targets. This implies that, in contrast to specialized neurons and interneurons in cortical regions, neurons within the nuclei encode and integrate complex information that is most likely reflected in a large variation of intrinsic membrane properties and integrative capacities of individual neurons. Yet, whether this large variation in properties is reflected in a heterogeneous physiological cell population of cerebellar nuclei neurons with well or poorly defined cell types remains to be determined. Indeed, the cell electrophysiological properties of cerebellar nuclei neurons have been identified in vitro in young rodents, but whether these properties are similar to the in vivo adult situation has not been shown. In this comprehensive study we present and compare the in vivo properties of 144 cerebellar nuclei neurons in adult ketamine-xylazine anesthetized mice. We found regularly firing (N = 88) and spontaneously bursting (N = 56) neurons. Membrane-resistance, capacitance, spike half-width and firing frequency all widely varied as a continuum, ranging from 9.63 to 3352.1 MΩ, from 6.7 to 772.57 pF, from 0.178 to 1.98 ms, and from 0 to 176.6 Hz, respectively. At the same time, several of these parameters were correlated with each other. Capacitance decreased with membrane resistance (R2 = 0.12, P<0.001), intensity of rebound spiking increased with membrane resistance (for 100 ms duration R2 = 0.1503, P = 0.0011), membrane resistance decreased with membrane time constant (R2 = 0.045, P = 0.031) and increased with spike half-width (R2 = 0.023, P<0.001), while capacitance increased with firing frequency (R2 = 0.29, P<0.001). However, classes of neuron subtypes could not be identified using merely k-clustering of their intrinsic firing properties and/or integrative properties following activation of their Purkinje cell input. Instead, using whole-cell parameters in combination with morphological criteria revealed by intracellular labelling with Neurobiotin (N = 18) allowed for electrophysiological identification of larger (29.3-50 μm soma diameter) and smaller (< 21.2 μm) cerebellar nuclei neurons with significant differences in membrane properties. Larger cells had a lower membrane resistance and a shorter spike, with a tendency for higher capacitance. Thus, in general cerebellar nuclei neurons appear to offer a rich and wide continuum of physiological properties that stand in contrast to neurons in most cortical regions such as those of the cerebral and cerebellar cortex, in which different classes of neurons operate in a narrower territory of electrophysiological parameter space. The current dataset will help computational modelers of the cerebellar nuclei to update and improve their cerebellar motor learning and performance models by incorporating the large variation of the in vivo properties of cerebellar nuclei neurons. The cellular complexity of cerebellar nuclei neurons may endow the nuclei to perform the intricate computations required for sensorimotor coordination.
Collapse
Affiliation(s)
- Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Sciences, Amsterdam, The Netherlands
| | - Laurens Witter
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Sciences, Amsterdam, The Netherlands
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Sciences, Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
38
|
Abstract
The control of deep cerebellar nuclear (DCN) neuronal firing is central to cerebellar function but is not well understood. The large majority of synapses onto DCN neurons derive from Purkinje cells (PCs), suggesting that PC activity is an important determinant of DCN firing; however, PCs fire both simple and complex spikes (CSs), and little is known about how the latter's action affects DCN activity. Thus, here, we explored the effects of CSs on DCN activity. CSs were recorded from PC arrays along with individual DCN neurons. Presumed synaptically connected PC-DCN cell pairs were identified using CS-triggered correlograms of DCN activity, which also showed that CS activity was associated with a predominantly inhibitory effect on DCN activity. The strength of the CS effect varied as a function of synchrony, such that isolated CSs produced only weak inhibition of DCN activity, whereas highly synchronous CSs caused a larger drop in firing levels. Although the present findings were obtained in anesthetized animals, similar CS synchrony levels exist in awake animals, and changes in synchrony level have been observed in association with movements in awake animals. Thus, the present data suggest that synchronous CS activity may be a mechanism for shaping DCN output related to motor commands.
Collapse
|
39
|
Matsuno H, Kudoh M, Watakabe A, Yamamori T, Shigemoto R, Nagao S. Distribution and Structure of Synapses on Medial Vestibular Nuclear Neurons Targeted by Cerebellar Flocculus Purkinje Cells and Vestibular Nerve in Mice: Light and Electron Microscopy Studies. PLoS One 2016; 11:e0164037. [PMID: 27711146 PMCID: PMC5053601 DOI: 10.1371/journal.pone.0164037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/19/2016] [Indexed: 01/28/2023] Open
Abstract
Adaptations of vestibulo-ocular and optokinetic response eye movements have been studied as an experimental model of cerebellum-dependent motor learning. Several previous physiological and pharmacological studies have consistently suggested that the cerebellar flocculus (FL) Purkinje cells (P-cells) and the medial vestibular nucleus (MVN) neurons targeted by FL (FL-targeted MVN neurons) may respectively maintain the memory traces of short- and long-term adaptation. To study the basic structures of the FL-MVN synapses by light microscopy (LM) and electron microscopy (EM), we injected green florescence protein (GFP)-expressing lentivirus into FL to anterogradely label the FL P-cell axons in C57BL/6J mice. The FL P-cell axonal boutons were distributed in the magnocellular MVN and in the border region of parvocellular MVN and prepositus hypoglossi (PrH). In the magnocellular MVN, the FL-P cell axons mainly terminated on somata and proximal dendrites. On the other hand, in the parvocellular MVN/PrH, the FL P-cell axonal synaptic boutons mainly terminated on the relatively small-diameter (< 1 μm) distal dendrites of MVN neurons, forming symmetrical synapses. The majority of such parvocellular MVN/PrH neurons were determined to be glutamatergic by immunocytochemistry and in-situ hybridization of GFP expressing transgenic mice. To further examine the spatial relationship between the synapses of FL P-cells and those of vestibular nerve on the neurons of the parvocellular MVN/PrH, we added injections of biotinylated dextran amine into the semicircular canal and anterogradely labeled vestibular nerve axons in some mice. The MVN dendrites receiving the FL P-cell axonal synaptic boutons often closely apposed vestibular nerve synaptic boutons in both LM and EM studies. Such a partial overlap of synaptic boutons of FL P-cell axons with those of vestibular nerve axons in the distal dendrites of MVN neurons suggests that inhibitory synapses of FL P-cells may influence the function of neighboring excitatory synapses of vestibular nerve in the parvocellular MVN/PrH neurons.
Collapse
Affiliation(s)
- Hitomi Matsuno
- Laboratory for Motor Learning Control, Riken Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
- * E-mail: (HM); (SN)
| | - Moeko Kudoh
- Laboratory for Motor Learning Control, Riken Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | - Ryuichi Shigemoto
- Division of Cerebral Structure, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Soichi Nagao
- Laboratory for Motor Learning Control, Riken Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
- * E-mail: (HM); (SN)
| |
Collapse
|
40
|
Blot A, de Solages C, Ostojic S, Szapiro G, Hakim V, Léna C. Time-invariant feed-forward inhibition of Purkinje cells in the cerebellar cortex in vivo. J Physiol 2016; 594:2729-49. [PMID: 26918702 DOI: 10.1113/jp271518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/15/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We performed extracellular recording of pairs of interneuron-Purkinje cells in vivo. A single interneuron produces a substantial, short-lasting, inhibition of Purkinje cells. Feed-forward inhibition is associated with characteristic asymmetric cross-correlograms. In vivo, Purkinje cell spikes only depend on the most recent synaptic activity. ABSTRACT Cerebellar molecular layer interneurons are considered to control the firing rate and spike timing of Purkinje cells. However, interactions between these cell types are largely unexplored in vivo. Using tetrodes, we performed simultaneous extracellular recordings of neighbouring Purkinje cells and molecular layer interneurons, presumably basket cells, in adult rats in vivo. The high levels of afferent synaptic activity encountered in vivo yield irregular spiking and reveal discharge patterns characteristic of feed-forward inhibition, thus suggesting an overlap of the afferent excitatory inputs between Purkinje cells and basket cells. Under conditions of intense background synaptic inputs, interneuron spikes exert a short-lasting inhibitory effect, delaying the following Purkinje cell spike by an amount remarkably independent of the Purkinje cell firing cycle. This effect can be explained by the short memory time of the Purkinje cell potential as a result of the intense incoming synaptic activity. Finally, we found little evidence for any involvement of the interneurons that we recorded with the cerebellar high-frequency oscillations promoting Purkinje cell synchrony. The rapid interactions between interneurons and Purkinje cells might be of particular importance in fine motor control because the inhibitory action of interneurons on Purkinje cells leads to deep cerebellar nuclear disinhibition and hence increased cerebellar output.
Collapse
Affiliation(s)
- Antonin Blot
- IBENS, École Normale Supérieure, PSL Research University, CNRS, INSERM, Paris, France
| | - Camille de Solages
- IBENS, École Normale Supérieure, PSL Research University, CNRS, INSERM, Paris, France
| | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives, École Normale Supérieure, PSL Research University, CNRS, INSERM, Paris, France
| | - German Szapiro
- IBENS, École Normale Supérieure, PSL Research University, CNRS, INSERM, Paris, France
| | - Vincent Hakim
- Laboratoire de Physique Statistique, École Normale Supérieure, PSL Research University, CNRS, Paris, France.,Sorbonne Universités, UPMC Université, Paris, France.,Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Clément Léna
- IBENS, École Normale Supérieure, PSL Research University, CNRS, INSERM, Paris, France
| |
Collapse
|
41
|
Climbing Fiber Regulation of Spontaneous Purkinje Cell Activity and Cerebellum-Dependent Blink Responses(1,2,3). eNeuro 2016; 3:eN-TNWR-0067-15. [PMID: 26839917 PMCID: PMC4729836 DOI: 10.1523/eneuro.0067-15.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 11/21/2022] Open
Abstract
It has been known for a long time that GABAergic Purkinje cells in the cerebellar cortex, as well as their target neurons in the cerebellar nuclei, are spontaneously active. The cerebellar output will, therefore, depend on how input is integrated into this spontaneous activity. It has been shown that input from climbing fibers originating in the inferior olive controls the spontaneous activity in Purkinje cells. While blocking climbing fiber input to the Purkinje cells causes a dramatic increase in the firing rate, increased climbing fiber activity results in reduced Purkinje cell activity. However, the exact calibration of this regulation has not been examined systematically. Here we examine the relation between climbing fiber stimulation frequency and Purkinje cell activity in unanesthetized decerebrated ferrets. The results revealed a gradual suppression of Purkinje cell activity, starting at climbing fiber stimulation frequencies as low as 0.5 Hz. At 4 Hz, Purkinje cells were completely silenced. This effect lasted an average of 2 min after the stimulation rate was reduced to a lower level. We also examined the effect of sustained climbing fiber stimulation on overt behavior. Specifically, we analyzed conditioned blink responses, which are known to be dependent on the cerebellum, while stimulating the climbing fibers at different frequencies. In accordance with the neurophysiological data, the conditioned blink responses were suppressed at stimulation frequencies of ≥4 Hz.
Collapse
|
42
|
Ding N, Jin H, Zhang BB, Guo A, Shi JD, Feng JY, Li J, Shen XX, Shi Y, Qiu DL, Chu CP. Anatomical and functional relationships between deep cerebellar nuclei and cerebellar cortical Crus II in vivo in mice. Neurosci Lett 2016; 610:73-8. [PMID: 26547033 DOI: 10.1016/j.neulet.2015.10.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/22/2015] [Accepted: 10/25/2015] [Indexed: 11/17/2022]
Abstract
We previously reported that an air-puff stimulation on the ipsilateral whisker pad evoked responses in molecular layer (ML) and Purkinje cell (PC) layer in cerebellar cortex folium Crus II. We used anterograde tracing and electrophysiological methods to investigate the anatomical and functional relationships between the trigeminal tactile response area in the cerebellar cortex Crus II and deep cerebellar nuclei (DCN) in living mice. We found that the axons of tactile activated PCs projected in anterior part (IntA) and posterior part (IntP), and dorsolateral hump (IntDL) of ipsilateral interposed cerebellar nucleus (ICN). In ICN, the tactile stimulus evoked-field potential expressed a sequence of two negative components N1 and N2, while extracellular recordings from ICN neurons revealed that an increase in spike frequency in response to tactile stimulus. When the duration of facial air-puff stimulus were ≥ 30 ms, stimulation off response (Roff) were observed in the ICN, but an increase in the duration of facial air-puff stimulation did not significantly affect the amplitude of Ron (N1 and N2) and Roff. The latency and time to peak of N1 in ICN were significantly shorter than that of N1 in the ML, but the latency and time to peak of N2 in ICN were significantly later than that of P1 in the ML. The present results suggest that the facial sensory information, at least in part, is transferred to ICN by PC axons from Crus II, which evokes excitation in ICN neurons.
Collapse
Affiliation(s)
- Nan Ding
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Jilin, China
| | - Hua Jin
- Department of Psychology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Bin-Bin Zhang
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Jilin, China
| | - Ao Guo
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China
| | - Jin-Di Shi
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China
| | - Jun-Yang Feng
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China
| | - Jia Li
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China
| | - Xuan-Xi Shen
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China
| | - Yu Shi
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China
| | - De-Lai Qiu
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Jilin, China.
| | - Chun-Ping Chu
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China.
| |
Collapse
|
43
|
Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice. Neural Plast 2015; 2016:2828536. [PMID: 26819763 PMCID: PMC4706924 DOI: 10.1155/2016/2828536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 12/22/2022] Open
Abstract
The perineuronal net (PN) is a subtype of extracellular matrix appearing as a net-like structure around distinct neurons throughout the whole CNS. PNs surround the soma, proximal dendrites, and the axonal initial segment embedding synaptic terminals on the neuronal surface. Different functions of the PNs are suggested which include support of synaptic stabilization, inhibition of axonal sprouting, and control of neuronal plasticity. A number of studies provide evidence that removing PNs or PN-components results in renewed neurite growth and synaptogenesis. In a mouse model for Purkinje cell degeneration, we examined the effect of deafferentation on synaptic remodeling and modulation of PNs in the deep cerebellar nuclei. We found reduced GABAergic, enhanced glutamatergic innervations at PN-associated neurons, and altered expression of the PN-components brevican and hapln4. These data refer to a direct interaction between ECM and synapses. The altered brevican expression induced by activated astrocytes could be required for an adequate regeneration by promoting neurite growth and synaptogenesis.
Collapse
|
44
|
Seto Y, Nakatani T, Masuyama N, Taya S, Kumai M, Minaki Y, Hamaguchi A, Inoue YU, Inoue T, Miyashita S, Fujiyama T, Yamada M, Chapman H, Campbell K, Magnuson MA, Wright CV, Kawaguchi Y, Ikenaka K, Takebayashi H, Ishiwata S, Ono Y, Hoshino M. Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nat Commun 2015; 5:3337. [PMID: 24535035 DOI: 10.1038/ncomms4337] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/29/2014] [Indexed: 11/09/2022] Open
Abstract
In the cerebellum, all GABAergic neurons are generated from the Ptf1a-expressing ventricular zone (Ptf1a domain). However, the machinery to produce different types of GABAergic neurons remains elusive. Here we show temporal regulation of distinct GABAergic neuron progenitors in the cerebellum. Within the Ptf1a domain at early stages, we find two subpopulations; dorsally and ventrally located progenitors that express Olig2 and Gsx1, respectively. Lineage tracing reveals the former are exclusively Purkinje cell progenitors (PCPs) and the latter Pax2-positive interneuron progenitors (PIPs). As development proceeds, PCPs gradually become PIPs starting from ventral to dorsal. In gain- and loss-of-function mutants for Gsx1 and Olig1/2, we observe abnormal transitioning from PCPs to PIPs at inappropriate developmental stages. Our findings suggest that the temporal identity transition of cerebellar GABAergic neuron progenitors from PCPs to PIPs is negatively regulated by Olig2 and positively by Gsx1, and contributes to understanding temporal control of neuronal progenitor identities.
Collapse
Affiliation(s)
- Yusuke Seto
- 1] Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan [2] Department of Physics, Major in Integrative Bioscience and Biomedical Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tomoya Nakatani
- KAN Research Institute Inc., 3F, Kobe MI R&D Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Norihisa Masuyama
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Minoru Kumai
- KAN Research Institute Inc., 3F, Kobe MI R&D Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yasuko Minaki
- 1] KAN Research Institute Inc., 3F, Kobe MI R&D Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan [2]
| | - Akiko Hamaguchi
- KAN Research Institute Inc., 3F, Kobe MI R&D Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Satoshi Miyashita
- 1] Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan [2] Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tomoyuki Fujiyama
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Mayumi Yamada
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Heather Chapman
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3026, USA
| | - Kenneth Campbell
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3026, USA
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics and Center for Stem Cell Biology, Vanderbilt University School of Medicine, 2213 Garland Avenue, 9465 MRB IV, Nashville, Tennessee 37232-0494, USA
| | - Christopher V Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 2213 Garland Avenue, 9465 MRB IV, Nashville, Tennessee 37232-0494, USA
| | - Yoshiya Kawaguchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuhiro Ikenaka
- 1] Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan [2] Department of Physiological Sciences, School of Life Sciences, Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Hirohide Takebayashi
- 1] Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan [2] Department of Physiological Sciences, School of Life Sciences, Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193, Japan [3] Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata 951-8510, Japan
| | - Shin'ichi Ishiwata
- 1] Department of Physics, Major in Integrative Bioscience and Biomedical Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan [2] Waseda Bioscience Research Institute in Singapore, Waseda University, 11 Biopolis Way, #05-01/02, Helios, Singapore 138667, Republic of Singapore
| | - Yuichi Ono
- KAN Research Institute Inc., 3F, Kobe MI R&D Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
45
|
Wiethoff S, Arber C, Li A, Wray S, Houlden H, Patani R. Using human induced pluripotent stem cells to model cerebellar disease: hope and hype. J Neurogenet 2015; 29:95-102. [PMID: 25985846 PMCID: PMC4673530 DOI: 10.3109/01677063.2015.1053478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/18/2015] [Indexed: 12/19/2022]
Abstract
The cerebellum forms a highly ordered and indispensible component of motor function within the adult neuraxis, consisting of several distinct cellular subtypes. Cerebellar disease, through a variety of genetic and acquired causes, results in the loss of function of defined subclasses of neurons, and remains a significant and untreatable health care burden. The scarcity of therapies in this arena can partially be explained by unresolved disease mechanisms due to inaccessibility of human cerebellar neurons in a relevant experimental context where initiating disease mechanisms could be functionally elucidated, or drug screens conducted. In this review we discuss the potential promise of human induced pluripotent stem cells (hiPSCs) for regenerative neurology, with a particular emphasis on in vitro modelling of cerebellar degeneration. We discuss progress made thus far using hiPSC-based models of neurodegeneration, noting the relatively slower pace of discovery made in modelling cerebellar dysfunction. We conclude by speculating how strategies attempting cerebellar differentiation from hiPSCs can be refined to allow the generation of accurate disease models. This in turn will permit a greater understanding of cerebellar pathophysiology to inform mechanistically rationalised therapies, which are desperately needed in this field.
Collapse
Affiliation(s)
- Sarah Wiethoff
- National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK
- Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany
| | - Charles Arber
- Department of Molecular Neuroscience and Queen Square Brain Bank, UCL Institute of Neurology, London, UK
| | - Abi Li
- Department of Molecular Neuroscience and Queen Square Brain Bank, UCL Institute of Neurology, London, UK
| | - Selina Wray
- Department of Molecular Neuroscience and Queen Square Brain Bank, UCL Institute of Neurology, London, UK
| | - Henry Houlden
- National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK
| | - Rickie Patani
- National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience and Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Euan MacDonald Centre for MND, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
46
|
Ankri L, Husson Z, Pietrajtis K, Proville R, Léna C, Yarom Y, Dieudonné S, Uusisaari MY. A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity. eLife 2015; 4:e06262. [PMID: 25965178 PMCID: PMC4461794 DOI: 10.7554/elife.06262] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 05/11/2015] [Indexed: 11/13/2022] Open
Abstract
The cerebellum, a crucial center for motor coordination, is composed of a cortex and several nuclei. The main mode of interaction between these two parts is considered to be formed by the inhibitory control of the nuclei by cortical Purkinje neurons. We now amend this view by showing that inhibitory GABA-glycinergic neurons of the cerebellar nuclei (CN) project profusely into the cerebellar cortex, where they make synaptic contacts on a GABAergic subpopulation of cerebellar Golgi cells. These spontaneously firing Golgi cells are inhibited by optogenetic activation of the inhibitory nucleo-cortical fibers both in vitro and in vivo. Our data suggest that the CN may contribute to the functional recruitment of the cerebellar cortex by decreasing Golgi cell inhibition onto granule cells.
Collapse
Affiliation(s)
- Lea Ankri
- Department of Neurobiology, Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zoé Husson
- Inhibitory Transmission Team, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
- Centre national de la recherche scientifique, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
- Institut national de la santé et de la recherche médicale, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
| | - Katarzyna Pietrajtis
- Inhibitory Transmission Team, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
- Centre national de la recherche scientifique, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
- Institut national de la santé et de la recherche médicale, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
| | - Rémi Proville
- Centre national de la recherche scientifique, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
- Institut national de la santé et de la recherche médicale, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
- Cerebellum Team, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
| | - Clément Léna
- Centre national de la recherche scientifique, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
- Institut national de la santé et de la recherche médicale, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
- Cerebellum Team, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
| | - Yosef Yarom
- Department of Neurobiology, Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stéphane Dieudonné
- Inhibitory Transmission Team, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
- Centre national de la recherche scientifique, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
- Institut national de la santé et de la recherche médicale, Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, Paris, France
| | - Marylka Yoe Uusisaari
- Department of Neurobiology, Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
47
|
Hamodeh S, Baizer J, Sugihara I, Sultan F. Systematic analysis of neuronal wiring of the rodent deep cerebellar nuclei reveals differences reflecting adaptations at the neuronal circuit and internuclear levels. J Comp Neurol 2015; 522:2481-97. [PMID: 24477707 DOI: 10.1002/cne.23545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 11/11/2022]
Abstract
A common view of the architecture of different brain regions is that, despite their heterogeneity, they have optimized their wiring schemes to make maximal use of space. Based on experimental findings, computational models have delineated how about two-thirds of the neuropil is filled out with dendrites and axons optimizing cable costs and conduction time while keeping the connectivity at the highest level. However, whether this assumption can be generalized to all brain regions has not yet been tested. Here we quantified and charted the components of the neuropil in the four deep cerebellar nuclei (DCN) of the rat's brain. We segmented and traced the neuropil stained with one of two antibodies, one antibody against dendritic microtubule-associated proteins (MAP2a,b) and the second against the Purkinje cell axons (PCP2). We compared fiber length density, average fiber diameter, and volume fraction within different components of the DCN in a random, systematic fashion. We observed differences in dendritic and axonal fiber length density, average fiber diameters, and volume fraction within the four different nuclei that make up the DCN. We observe a relative increase in the length density of dendrites and Purkinje cell axons in two of the DCN, namely, the posterior interposed nucleus and the lateral nucleus. Furthermore, the DCN have a surprisingly low volume fraction of their dendritic length density, which we propose is related to their special circuitry. In summary, our results show previously unappreciated functional adaptations among these nuclei.
Collapse
Affiliation(s)
- Salah Hamodeh
- Department of Cognitive Neurology, HIH for Clinical Brain Research, 72076, Tübingen, Germany
| | | | | | | |
Collapse
|
48
|
Marzban H, Del Bigio MR, Alizadeh J, Ghavami S, Zachariah RM, Rastegar M. Cellular commitment in the developing cerebellum. Front Cell Neurosci 2015; 8:450. [PMID: 25628535 PMCID: PMC4290586 DOI: 10.3389/fncel.2014.00450] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Marc R Del Bigio
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada ; Department of Pathology, University of Manitoba Winnipeg, MB, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Robby M Zachariah
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, MB, Canada ; Regenerative Medicine Program, University of Manitoba Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, MB, Canada ; Regenerative Medicine Program, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
49
|
Differential GABAergic and glycinergic inputs of inhibitory interneurons and Purkinje cells to principal cells of the cerebellar nuclei. J Neurosci 2014; 34:9418-31. [PMID: 25009273 DOI: 10.1523/jneurosci.0401-14.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The principal neurons of the cerebellar nuclei (CN), the sole output of the olivo-cerebellar system, receive a massive inhibitory input from Purkinje cells (PCs) of the cerebellar cortex. Morphological evidence suggests that CN principal cells are also contacted by inhibitory interneurons, but the properties of this connection are unknown. Using transgenic, tracing, and immunohistochemical approaches in mice, we show that CN interneurons form a large heterogeneous population with GABA/glycinergic phenotypes, distinct from GABAergic olive-projecting neurons. CN interneurons are found to contact principal output neurons, via glycine receptor (GlyR)-enriched synapses, virtually devoid of the main GABA receptor (GABAR) subunits α1 and γ2. Those clusters account for 5% of the total number of inhibitory receptor clusters on principal neurons. Brief optogenetic stimulations of CN interneurons, through selective expression of channelrhodopsin 2 after viral-mediated transfection of the flexed gene in GlyT2-Cre transgenic mice, evoked fast IPSCs in principal cells. GlyR activation accounted for 15% of interneuron IPSC amplitude, while the remaining current was mediated by activation of GABAR. Surprisingly, small GlyR clusters were also found at PC synapses onto principal CN neurons in addition to α1 and γ2 GABAR subunits. However, GlyR activation was found to account for <3% of the PC inhibitory synaptic currents evoked by electrical stimulation. This work establishes CN glycinergic neurons as a significant source of inhibition to CN principal cells, forming contacts molecularly distinct from, but functionally similar to, Purkinje cell synapses. Their impact on CN output, motor learning, and motor execution deserves further investigation.
Collapse
|
50
|
Rasmussen A, Jirenhed DA, Wetmore DZ, Hesslow G. Changes in complex spike activity during classical conditioning. Front Neural Circuits 2014; 8:90. [PMID: 25140129 PMCID: PMC4122208 DOI: 10.3389/fncir.2014.00090] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/09/2014] [Indexed: 11/13/2022] Open
Abstract
The cerebellar cortex is necessary for adaptively timed conditioned responses (CRs) in eyeblink conditioning. During conditioning, Purkinje cells acquire pause responses or "Purkinje cell CRs" to the conditioned stimuli (CS), resulting in disinhibition of the cerebellar nuclei (CN), allowing them to activate motor nuclei that control eyeblinks. This disinhibition also causes inhibition of the inferior olive (IO), via the nucleo-olivary pathway (N-O). Activation of the IO, which relays the unconditional stimulus (US) to the cortex, elicits characteristic complex spikes in Purkinje cells. Although Purkinje cell activity, as well as stimulation of the CN, is known to influence IO activity, much remains to be learned about the way that learned changes in simple spike firing affects the IO. In the present study, we analyzed changes in simple and complex spike firing, in extracellular Purkinje cell records, from the C3 zone, in decerebrate ferrets undergoing training in a conditioning paradigm. In agreement with the N-O feedback hypothesis, acquisition resulted in a gradual decrease in complex spike activity during the conditioned stimulus, with a delay that is consistent with the long N-O latency. Also supporting the feedback hypothesis, training with a short interstimulus interval (ISI), which does not lead to acquisition of a Purkinje cell CR, did not cause a suppression of complex spike activity. In contrast, observations that extinction did not lead to a recovery in complex spike activity and the irregular patterns of simple and complex spike activity after the conditioned stimulus are less conclusive.
Collapse
Affiliation(s)
- Anders Rasmussen
- Department of Experimental Medical Science, Associative Learning Group, Lund University Lund, Sweden ; Linneaus Center CCL, Lund University Lund, Sweden
| | - Dan-Anders Jirenhed
- Department of Experimental Medical Science, Associative Learning Group, Lund University Lund, Sweden ; Linneaus Center CCL, Lund University Lund, Sweden
| | - Daniel Z Wetmore
- Department of Physics, James H. Clark Center for Biomedical Engineering and Sciences, Stanford University Stanford, CA, USA
| | - Germund Hesslow
- Department of Experimental Medical Science, Associative Learning Group, Lund University Lund, Sweden ; Linneaus Center CCL, Lund University Lund, Sweden
| |
Collapse
|