1
|
Nishioka M, Kamada T, Nakata A, Shiokawa N, Kinoshita A, Hata T. Intra-dorsal striatal acetylcholine M1 but not dopaminergic D1 or glutamatergic NMDA receptor antagonists inhibit consolidation of duration memory in interval timing. Behav Brain Res 2022; 419:113669. [PMID: 34800548 DOI: 10.1016/j.bbr.2021.113669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/02/2022]
Abstract
The striatal beat frequency model assumes that striatal medium spiny neurons encode duration via synaptic plasticity. Muscarinic 1 (M1) cholinergic receptors as well as dopamine and glutamate receptors are important for neural plasticity in the dorsal striatum. Therefore, we investigated the effect of inhibiting these receptors on the formation of duration memory. After sufficient training in a peak interval (PI)-20-s procedure, rats were administered a single or mixed infusion of a selective antagonist for the dopamine D1 receptor (SCH23390, 0.5 µg per side), N-methyl-D-aspartic acid (NMDA)-type glutamate receptor (D-AP5, 3 µg), or M1 receptor (pirenzepine, 10 µg) bilaterally in the dorsal striatum, immediately before initiating a PI-40 s session (shift session). The next day, the rats were tested for new duration memory (40 s) in a session in which no lever presses were reinforced (test session). In the shift session, the performance was comparable irrespective of the drug injected. However, in the test session, the mean peak time (an index of duration memory) of the M1 + NMDA co-blockade group, but not of the D1 + NMDA co-blockade group, was lower than that of the control group (Experiments 1 and 2). In Experiment 3, the effect of the co-blockade of M1 and NMDA receptors was replicated. Moreover, sole blockade of M1 receptors induced the same effect as M1 and NMDA blockade. These results suggest that in the dorsal striatum, the M1 receptor, but not the D1 or NMDA receptors, is involved in the consolidation of duration memory.
Collapse
Affiliation(s)
- Masahiko Nishioka
- Graduate School of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.
| | - Taisuke Kamada
- Graduate School of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Atsushi Nakata
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Naoko Shiokawa
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Aoi Kinoshita
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Toshimichi Hata
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
2
|
Mercuri NB, Federici M, Rizzo FR, Maugeri L, D'Addario SL, Ventura R, Berretta N. Long-Term Depression of Striatal DA Release Induced by mGluRs via Sustained Hyperactivity of Local Cholinergic Interneurons. Front Cell Neurosci 2021; 15:798464. [PMID: 34924961 PMCID: PMC8674918 DOI: 10.3389/fncel.2021.798464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The cellular mechanisms regulating dopamine (DA) release in the striatum have attracted much interest in recent years. By in vitro amperometric recordings in mouse striatal slices, we show that a brief (5 min) exposure to the metabotropic glutamate receptor agonist DHPG (50 μM) induces a profound depression of synaptic DA release, lasting over 1 h from DHPG washout. This long-term depression is sensitive to glycine, which preferentially inhibits local cholinergic interneurons, as well as to drugs acting on nicotinic acetylcholine receptors and to the pharmacological depletion of released acetylcholine. The same DHPG treatment induces a parallel long-lasting enhancement in the tonic firing of presumed striatal cholinergic interneurons, measured with multi-electrode array recordings. When DHPG is bilaterally infused in vivo in the mouse striatum, treated mice display an anxiety-like behavior. Our results demonstrate that metabotropic glutamate receptors stimulation gives rise to a prolonged depression of the striatal dopaminergic transmission, through a sustained enhancement of released acetylcholine, due to the parallel long-lasting potentiation of striatal cholinergic interneurons firing. This plastic interplay between dopamine, acetylcholine, and glutamate in the dorsal striatum may be involved in anxiety-like behavior typical of several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nicola B Mercuri
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy.,Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Mauro Federici
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy
| | | | - Lorenzo Maugeri
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy
| | - Sebastian L D'Addario
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy.,Department of Psychology and Center Daniel Bovet, Sapienza University, Rome, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Rome, Italy
| | - Rossella Ventura
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy.,Department of Psychology and Center Daniel Bovet, Sapienza University, Rome, Italy
| | - Nicola Berretta
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy
| |
Collapse
|
3
|
Scopolamine prevents aberrant mossy fiber sprouting and facilitates remission of epilepsy after brain injury. Neurobiol Dis 2021; 158:105446. [PMID: 34280524 DOI: 10.1016/j.nbd.2021.105446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
Prevention or modification of acquired epilepsy in patients at risk is an urgent, yet unmet, clinical need. Following acute brain insults, there is an increased risk of mesial temporal lobe epilepsy (mTLE), which is often associated with debilitating comorbidities and reduced life expectancy. The latent period between brain injury and the onset of epilepsy may offer a therapeutic window for interfering with epileptogenesis. The pilocarpine model of mTLE is widely used in the search for novel antiepileptogenic treatments. Recent biochemical studies indicated that cholinergic mechanisms play a role in the epileptogenic alterations induced by status epilepticus (SE) in this and other models of mTLE, which prompted us to evaluate whether treatment with the muscarinic antagonist scopolamine during the latent period after SE is capable of preventing or modifying epilepsy and associated behavioral and cognitive alterations in female Sprague-Dawley rats. First, in silico pharmacokinetic modeling was used to select a dosing protocol by which M-receptor inhibitory brain levels of scopolamine are maintained during prolonged treatment. This protocol was verified by drug analysis in vivo. Rats were then treated twice daily with scopolamine over 17 days after SE, followed by drug wash-out and behavioral and video/EEG monitoring up to ~6 months after SE. Compared to vehicle controls, rats that were treated with scopolamine during the latent period exhibited a significantly lower incidence of spontaneous recurrent seizures during periods of intermittent recording in the chronic phase of epilepsy, less behavioral excitability, less cognitive impairment, and significantly reduced aberrant mossy fiber sprouting in the hippocampus. The present data may indicate that scopolamine exerts antiepileptogenic/disease-modifying activity in the lithium-pilocarpine rat model, possibly involving increased remission of epilepsy as a new mechanism of disease-modification. For evaluating the rigor of the present data, we envision a study that more thoroughly addresses the gender bias and video-EEG recording limitations of the present study.
Collapse
|
4
|
Effects of muscarinic M 1 receptor stimulation on reinforcing and neurochemical effects of cocaine in rats. Neuropsychopharmacology 2020; 45:1994-2002. [PMID: 32344426 PMCID: PMC7547714 DOI: 10.1038/s41386-020-0684-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
Cocaine addiction is a chronic illness characterized by maladaptive drug-induced neuroplastic changes that confer lasting vulnerability to relapse. Over several weeks we observed the effects of the M1 receptor-selective agonist VU0364572 in adult male rats that self-administer cocaine in a cocaine vs. food choice procedure. The drug showed unusual long-lasting effects, as rats gradually stopped self-administering cocaine, reallocating behavior towards the food reinforcer. The effect lasted as long as tested and at least 4 weeks. To begin to elucidate how VU0364572 modulates cocaine self-administration, we then examined its long-term effects using dual-probe in vivo dopamine and glutamate microdialysis in nucleus accumbens and medial prefrontal cortex, and ex vivo striatal dopamine reuptake. Microdialysis revealed marked decreases in cocaine-induced dopamine and glutamate outflow 4 weeks after VU0364572 treatment, without significant changes in dopamine uptake function. These lasting and marked effects of M1 receptor stimulation reinforce our interest in this target as potential treatment of cocaine addiction. M1 receptors are known to modulate medium spiny neuron responses to corticostriatal glutamatergic signaling acutely, and we hypothesize that VU0364572 may oppose the addiction-related effects of cocaine by causing lasting changes in this system.
Collapse
|
5
|
Brugnoli A, Pisanò CA, Morari M. Striatal and nigral muscarinic type 1 and type 4 receptors modulate levodopa-induced dyskinesia and striato-nigral pathway activation in 6-hydroxydopamine hemilesioned rats. Neurobiol Dis 2020; 144:105044. [PMID: 32798726 DOI: 10.1016/j.nbd.2020.105044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 08/08/2020] [Indexed: 01/11/2023] Open
Abstract
Acetylcholine muscarinic receptors (mAChRs) contribute to both the facilitation and inhibition of levodopa-induced dyskinesia operated by striatal cholinergic interneurons, although the receptor subtypes involved remain elusive. Cholinergic afferents from the midbrain also innervate the substantia nigra reticulata, although the role of nigral mAChRs in levodopa-induced dyskinesia is unknown. Here, we investigate whether striatal and nigral M1 and/or M4 mAChRs modulate dyskinesia and the underlying striato-nigral GABAergic pathway activation in 6-hydroxydopamine hemilesioned rats. Reverse microdialysis allowed to deliver the mAChR antagonists telenzepine (M1 subtype preferring), PD-102807 and tropicamide (M4 subtype preferring), as well as the selective M4 mAChR positive allosteric modulator VU0152100 in striatum or substantia nigra, while levodopa was administered systemically. Dyskinetic movements were monitored along with nigral GABA (and glutamate) and striatal glutamate dialysate levels, taken as neurochemical correlates of striato-nigral pathway and cortico-basal ganglia-thalamo-cortical loop activation. We observed that intrastriatal telenzepine, PD-102807 and tropicamide alleviated dyskinesia and inhibited nigral GABA and striatal glutamate release. This was partially replicated by intrastriatal VU0152100. The M2 subtype preferring antagonist AFDX-116, used to elevate striatal acetylcholine levels, blocked the behavioral and neurochemical effects of PD-102807. Intranigral VU0152100 prevented levodopa-induced dyskinesia and its neurochemical correlates whereas PD-102807 was ineffective. These results suggest that striatal, likely postsynaptic, M1 mAChRs facilitate dyskinesia and striato-nigral pathway activation in vivo. Conversely, striatal M4 mAChRs can both facilitate and inhibit dyskinesia, possibly depending on their localization. Potentiation of striatal and nigral M4 mAChR transmission leads to powerful multilevel inhibition of striato-nigral pathway and attenuation of dyskinesia.
Collapse
Affiliation(s)
- Alberto Brugnoli
- Department of Biomedical and Specialty Surgical Sciences, Section of Pharmacology, University of Ferrara, 44122 Ferrara, Italy
| | - Clarissa Anna Pisanò
- Department of Biomedical and Specialty Surgical Sciences, Section of Pharmacology, University of Ferrara, 44122 Ferrara, Italy
| | - Michele Morari
- Department of Biomedical and Specialty Surgical Sciences, Section of Pharmacology, University of Ferrara, 44122 Ferrara, Italy.
| |
Collapse
|
6
|
Lindroos R, Hellgren Kotaleski J. Predicting complex spikes in striatal projection neurons of the direct pathway following neuromodulation by acetylcholine and dopamine. Eur J Neurosci 2020; 53:2117-2134. [DOI: 10.1111/ejn.14891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Robert Lindroos
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
| | - Jeanette Hellgren Kotaleski
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
- Science for Life Laboratory Department of Computational Science and Technology The Royal Institute of Technology Stockholm Sweden
| |
Collapse
|
7
|
Frost Nylén J, Carannante I, Grillner S, Hellgren Kotaleski J. Reciprocal interaction between striatal cholinergic and low‐threshold spiking interneurons — A computational study. Eur J Neurosci 2020; 53:2135-2148. [DOI: 10.1111/ejn.14854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/04/2023]
Affiliation(s)
| | - Ilaria Carannante
- Department of Computational Science and Technology Science for Life Laboratory The Royal Institute of Technology Stockholm Sweden
| | - Sten Grillner
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
| | - Jeanette Hellgren Kotaleski
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
- Department of Computational Science and Technology Science for Life Laboratory The Royal Institute of Technology Stockholm Sweden
| |
Collapse
|
8
|
Lutzu S, Castillo PE. Modulation of NMDA Receptors by G-protein-coupled receptors: Role in Synaptic Transmission, Plasticity and Beyond. Neuroscience 2020; 456:27-42. [PMID: 32105741 DOI: 10.1016/j.neuroscience.2020.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 01/11/2023]
Abstract
NMDA receptors (NMDARs) play a critical role in excitatory synaptic transmission, plasticity and in several forms of learning and memory. In addition, NMDAR dysfunction is believed to underlie a number of neuropsychiatric conditions. Growing evidence has demonstrated that NMDARs are tightly regulated by several G-protein-coupled receptors (GPCRs). Ligands that bind to GPCRs, such as neurotransmitters and neuromodulators, activate intracellular pathways that modulate NMDAR expression, subcellular localization and/or functional properties in a short- or a long-term manner across many synapses throughout the central nervous system. In this review article we summarize current knowledge on the molecular and cellular mechanisms underlying NMDAR modulation by GPCRs, and we discuss the implications of this modulation spanning from synaptic transmission and plasticity to circuit function and brain disease.
Collapse
Affiliation(s)
- Stefano Lutzu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
9
|
Bacosides Encapsulated in Lactoferrin Conjugated PEG-PLA-PCL-OH Based Polymersomes Act as Epigenetic Modulator in Chemically Induced Amnesia. Neurochem Res 2020; 45:796-808. [DOI: 10.1007/s11064-020-02953-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/04/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
|
10
|
Walker LC, Lawrence AJ. Allosteric modulation of muscarinic receptors in alcohol and substance use disorders. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:233-275. [DOI: 10.1016/bs.apha.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J Neurosci Res 2019; 98:2130-2147. [PMID: 31758607 DOI: 10.1002/jnr.24560] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The corticostriatal pathway that carries sensory, motor, and limbic information to the striatum plays a critical role in motor control, action selection, and reward. Dysfunction of this pathway is associated with many neurological and psychiatric disorders. Corticostriatal synapses have unique features in their cortical origins and striatal targets. In this review, we first describe axonal growth and synaptogenesis in the corticostriatal pathway during development, and then summarize the current understanding of the molecular bases of synaptic transmission and plasticity at mature corticostriatal synapses. Genes associated with autism spectrum disorder (ASD) have been implicated in axonal growth abnormalities, imbalance of the synaptic excitation/inhibition ratio, and altered long-term synaptic plasticity in the corticostriatal pathway. Here, we review a number of ASD-associated high-confidence genes, including FMR1, KMT2A, GRIN2B, SCN2A, NLGN1, NLGN3, MET, CNTNAP2, FOXP2, TSHZ3, SHANK3, PTEN, CHD8, MECP2, DYRK1A, RELN, FOXP1, SYNGAP1, and NRXN, and discuss their relevance to proper corticostriatal function.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
Ozawa T, Yamada K, Ichitani Y. d-Cycloserine reverses scopolamine-induced object and place memory deficits in a spontaneous recognition paradigm in rats. Pharmacol Biochem Behav 2019; 187:172798. [PMID: 31678790 DOI: 10.1016/j.pbb.2019.172798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/02/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022]
Abstract
d-Cycloserine (DCS) is a partial agonist of the glutamatergic N-methyl-d-aspartate (NMDA) receptor-associated glycine site, and it prevents the amnesic effects of the muscarinic receptor antagonist scopolamine in various memory tests in rodents. In the present study, we tested the hypothesis that DCS has anti-amnesic effects in scopolamine-induced deficits using spontaneous object recognition and place recognition tests. In both tests, scopolamine (0.5 mg/kg, i.p.) was systemically administered 60 min prior to testing, while DCS (7.5, 15, 30 mg/kg, i.p.) was administered 30 min before testing, which consisted of a sample phase (5 min), a delay interval (15 min) and a test phase (2 min). DCS treatment reversed scopolamine-induced deficits in discriminatory behavior during the test phase. However, DCS did not affect decreased object exploration itself or increased thigmotaxis in the open-field arena induced by scopolamine. These results support our hypothesis and suggest differential contributions of glutamatergic-cholinergic system interactions to recognition memory and non-mnemonic exploratory behaviors.
Collapse
Affiliation(s)
- Takaaki Ozawa
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuo Yamada
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Yukio Ichitani
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
13
|
Hopper S, Pavey GM, Gogos A, Dean B. Widespread Changes in Positive Allosteric Modulation of the Muscarinic M1 Receptor in Some Participants With Schizophrenia. Int J Neuropsychopharmacol 2019; 22:640-650. [PMID: 31428788 PMCID: PMC6822142 DOI: 10.1093/ijnp/pyz045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/22/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Preclinical and some human data suggest allosteric modulation of the muscarinic M1 receptor (CHRM1) is a promising approach for the treatment of schizophrenia. However, it is suggested there is a subgroup of participants with schizophrenia who have profound loss of cortical CHRM1 (MRDS). This raises the possibility that some participants with schizophrenia may not respond optimally to CHRM1 allosteric modulation. Here we describe a novel methodology to measure positive allosteric modulation of CHRM1 in human CNS and the measurement of that response in the cortex, hippocampus, and striatum from participants with MRDS, non-MRDS and controls. METHODS The cortex (Brodmann's area 6), hippocampus, and striatum from 40 participants with schizophrenia (20 MRDS and 20 non-MRDS) and 20 controls were used to measure benzyl quinolone carboxylic acid-mediated shift in acetylcholine displacement of [3H]N-methylscopolamine using a novel in situ radioligand binding with autoradiography methodology. RESULTS Compared with controls, participants with schizophrenia had lower levels of specific [3H]N-methylscopolamine binding in all CNS regions, whilst benzyl quinolone carboxylic acid-modulated binding was less in the striatum, Brodmann's area 6, dentate gyrus, and subiculum. When divided by subgroup, only in MRDS was there lower specific [3H]N-methylscopolamine binding and less benzyl quinolone carboxylic acid-modulated binding in all cortical and subcortical regions studied. CONCLUSIONS In a subgroup of participants with schizophrenia, there is a widespread decreased responsiveness to a positive allosteric modulator at the CHRM1. This finding may have ramifications it positive allosteric modulators of the CHRM1 are used in clinical trials to treat schizophrenia as some participants may not have an optimal response.
Collapse
Affiliation(s)
- Shaun Hopper
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia,Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia
| | - Geoffrey Mark Pavey
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Andrea Gogos
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Brian Dean
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia,Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia,The Centre for Mental Health, Swinburne University, Hawthorn, Victoria, Australia,Correspondence: Professor Brian Dean, Head, The Molecular Psychiatry Laboratories, The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3010, Australia ()
| |
Collapse
|
14
|
Teal LB, Gould RW, Felts AS, Jones CK. Selective allosteric modulation of muscarinic acetylcholine receptors for the treatment of schizophrenia and substance use disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 86:153-196. [PMID: 31378251 DOI: 10.1016/bs.apha.2019.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Muscarinic acetylcholine receptor (mAChRs) subtypes represent exciting new targets for the treatment of schizophrenia and substance use disorder (SUD). Recent advances in the development of subtype-selective allosteric modulators have revealed promising effects in preclinical models targeting the different symptoms observed in schizophrenia and SUD. M1 PAMs display potential for addressing the negative and cognitive symptoms of schizophrenia, while M4 PAMs exhibit promise in treating preclinical models predictive of antipsychotic-like activity. In SUD, there is increasing support for modulation of mesocorticolimbic dopaminergic circuitry involved in SUD with selective M4 mAChR PAMs or M5 mAChR NAMs. Allosteric modulators of these mAChR subtypes have demonstrated efficacy in rodent models of cocaine and ethanol seeking, with indications that these ligand may also be useful for other substances of abuse, as well as in various stages in the cycle of addiction. Importantly, allosteric modulators of the different mAChR subtypes may provide viable treatment options, while conferring greater subtype specificity and corresponding enhanced therapeutic index than orthosteric muscarinic ligands and maintaining endogenous temporo-spatial ACh signaling. Overall, subtype specific mAChR allosteric modulators represent important novel therapeutic mechanisms for schizophrenia and SUD.
Collapse
Affiliation(s)
- Laura B Teal
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Robert W Gould
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Andrew S Felts
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
15
|
Ztaou S, Amalric M. Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson's disease. Neurochem Int 2019; 126:1-10. [PMID: 30825602 DOI: 10.1016/j.neuint.2019.02.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 02/24/2019] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of nigral dopaminergic neurons innervating the striatum, the main input structure of the basal ganglia. This creates an imbalance between dopaminergic inputs and cholinergic interneurons (ChIs) within the striatum. The efficacy of anticholinergic drugs, one of the earliest therapy for PD before the discovery of L-3,4-dihydroxyphenylalanine (L-DOPA) suggests an increased cholinergic tone in this disease. The dopamine (DA)-acetylcholine (ACh) balance hypothesis is now revisited with the use of novel cutting-edge techniques (optogenetics, pharmacogenetics, new electrophysiological recordings). This review will provide the background of the specific contribution of ChIs to striatal microcircuit organization in physiological and pathological conditions. The second goal of this review is to delve into the respective contributions of nicotinic and muscarinic receptor cholinergic subunits to the control of striatal afferent and efferent neuronal systems. Special attention will be given to the role played by muscarinic acetylcholine receptors (mAChRs) in the regulation of striatal network which may have important implications in the development of novel therapeutic strategies for motor and cognitive impairment in PD.
Collapse
Affiliation(s)
- Samira Ztaou
- Aix Marseille Univ, CNRS, LNC, FR3C, Marseille, France; Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY, 10032, USA
| | | |
Collapse
|
16
|
Broad LM, Sanger HE, Mogg AJ, Colvin EM, Zwart R, Evans DA, Pasqui F, Sher E, Wishart GN, Barth VN, Felder CC, Goldsmith PJ. Identification and pharmacological profile of SPP1, a potent, functionally selective and brain penetrant agonist at muscarinic M 1 receptors. Br J Pharmacol 2019; 176:110-126. [PMID: 30276808 PMCID: PMC6284335 DOI: 10.1111/bph.14510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE We aimed to identify and develop novel, selective muscarinic M1 receptor agonists as potential therapeutic agents for the symptomatic treatment of Alzheimer's disease. EXPERIMENTAL APPROACH We developed and utilized a novel M1 receptor occupancy assay to drive a structure activity relationship in a relevant brain region while simultaneously tracking drug levels in plasma and brain to optimize for central penetration. Functional activity was tracked in relevant native in vitro assays allowing translational (rat-human) benchmarking of structure-activity relationship molecules to clinical comparators. KEY RESULTS Using this paradigm, we identified a series of M1 receptor selective molecules displaying desirable in vitro and in vivo properties and optimized key features, such as central penetration while maintaining selectivity and a partial agonist profile. From these compounds, we selected spiropiperidine 1 (SPP1). In vitro, SPP1 is a potent, partial agonist of cortical and hippocampal M1 receptors with activity conserved across species. SPP1 displays high functional selectivity for M1 receptors over native M2 and M3 receptor anti-targets and over a panel of other targets. Assessment of central target engagement by receptor occupancy reveals SPP1 significantly and dose-dependently occupies rodent cortical M1 receptors. CONCLUSIONS AND IMPLICATIONS We report the discovery of SPP1, a novel, functionally selective, brain penetrant partial orthosteric agonist at M1 receptors, identified by a novel receptor occupancy assay. SPP1 is amenable to in vitro and in vivo study and provides a valuable research tool to further probe the role of M1 receptors in physiology and disease.
Collapse
Affiliation(s)
- Lisa M Broad
- Eli Lilly and Company, Lilly Research CentreWindleshamSurreyUK
| | - Helen E Sanger
- Eli Lilly and Company, Lilly Research CentreWindleshamSurreyUK
| | - Adrian J Mogg
- Eli Lilly and Company, Lilly Research CentreWindleshamSurreyUK
| | - Ellen M Colvin
- Eli Lilly and Company, Lilly Research CentreWindleshamSurreyUK
| | - Ruud Zwart
- Eli Lilly and Company, Lilly Research CentreWindleshamSurreyUK
| | - David A Evans
- Eli Lilly and Company, Lilly Research CentreWindleshamSurreyUK
| | | | - Emanuele Sher
- Eli Lilly and Company, Lilly Research CentreWindleshamSurreyUK
| | | | - Vanessa N Barth
- Eli Lilly and Company, Lilly Corporate CenterIndianapolisINUSA
| | | | | |
Collapse
|
17
|
Abudukeyoumu N, Hernandez-Flores T, Garcia-Munoz M, Arbuthnott GW. Cholinergic modulation of striatal microcircuits. Eur J Neurosci 2018; 49:604-622. [PMID: 29797362 PMCID: PMC6587740 DOI: 10.1111/ejn.13949] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.
Collapse
Affiliation(s)
| | | | | | - Gordon W Arbuthnott
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
18
|
Tambasco N, Romoli M, Calabresi P. Selective basal ganglia vulnerability to energy deprivation: Experimental and clinical evidences. Prog Neurobiol 2018; 169:55-75. [DOI: 10.1016/j.pneurobio.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
19
|
Zucca S, Zucca A, Nakano T, Aoki S, Wickens J. Pauses in cholinergic interneuron firing exert an inhibitory control on striatal output in vivo. eLife 2018; 7:32510. [PMID: 29578407 PMCID: PMC5869016 DOI: 10.7554/elife.32510] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/26/2018] [Indexed: 02/05/2023] Open
Abstract
The cholinergic interneurons (CINs) of the striatum are crucial for normal motor and behavioral functions of the basal ganglia. Striatal CINs exhibit tonic firing punctuated by distinct pauses. Pauses occur in response to motivationally significant events, but their function is unknown. Here we investigated the effects of pauses in CIN firing on spiny projection neurons (SPNs) – the output neurons of the striatum – using in vivo whole cell and juxtacellular recordings in mice. We found that optogenetically-induced pauses in CIN firing inhibited subthreshold membrane potential activity and decreased firing of SPNs. During pauses, SPN membrane potential fluctuations became more hyperpolarized and UP state durations became shorter. In addition, short-term plasticity of corticostriatal inputs was decreased during pauses. Our results indicate that, in vivo, the net effect of the pause in CIN firing on SPNs activity is inhibition and provide a novel mechanism for cholinergic control of striatal output. Nerve cells or neurons communicate with one another using electrical impulses and chemical messengers called neurotransmitters. Additional molecules known as neuromodulators regulate the communication process. In contrast to neurotransmitters, neuromodulators do not send messages directly from one neuron to the next. Instead they change the way that neurons respond to neurotransmitters. For example, the neuromodulator acetylcholine is most abundant in a region called the striatum. Located deep within the brain, the striatum contributes to learning and memory, motivation, and movement. Studies in rodents show that neurons within the striatum called cholinergic interneurons are almost continuously active. Each time these cells fire, they release acetylcholine. But whenever an animal experiences something unusual or important, the interneurons temporarily stop firing. Zucca et al. wanted to know whether these pauses in firing also act as a signal within the striatum. To find out, Zucca et al. inserted a light-sensitive ion channel into cholinergic interneurons in the mouse striatum. Activating the ion channels with a laser beam stopped the interneurons from firing. Zucca et al. showed that these pauses in firing reduced the activity of another group of neurons, the spiny projection neurons. These are the major output neurons of the striatum. They send messages from the striatum to other parts of the brain. The results thus suggest that cholinergic interneurons signal notable events by temporarily blocking output from the striatum. Understanding how cholinergic interneurons work will help reveal how the striatum drives behavior. It may also lead to treatments for diseases caused by cholinergic system dysfunction. Many patients with Parkinson’s disease or schizophrenia take medicines to block the effects of acetylcholine. Understanding how acetylcholine affects the striatum may help clarify how these treatments work.
Collapse
Affiliation(s)
- Stefano Zucca
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Aya Zucca
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Takashi Nakano
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sho Aoki
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jeffery Wickens
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
20
|
Zhao L, Ge Y, Xiong C, Tang L, Yan Y, Law P, Qiu Y, Chen H. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluAl subunit. FASEB J 2018; 32:4247-4257. [DOI: 10.1096/fj.201800029r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lan‐Xue Zhao
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yan‐Hui Ge
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Cai‐Hong Xiong
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ling Tang
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ying‐Hui Yan
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ping‐Yee Law
- Department of PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Yu Qiu
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hong‐Zhuan Chen
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
21
|
Melzer S, Gil M, Koser DE, Michael M, Huang KW, Monyer H. Distinct Corticostriatal GABAergic Neurons Modulate Striatal Output Neurons and Motor Activity. Cell Rep 2018; 19:1045-1055. [PMID: 28467898 PMCID: PMC5437725 DOI: 10.1016/j.celrep.2017.04.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 03/21/2017] [Accepted: 04/09/2017] [Indexed: 01/04/2023] Open
Abstract
The motor cortico-basal ganglion loop is critical for motor planning, execution, and learning. Balanced excitation and inhibition in this loop is crucial for proper motor output. Excitatory neurons have been thought to be the only source of motor cortical input to the striatum. Here, we identify long-range projecting GABAergic neurons in the primary (M1) and secondary (M2) motor cortex that target the dorsal striatum. This population of projecting GABAergic neurons comprises both somatostatin-positive (SOM+) and parvalbumin-positive (PV+) neurons that target direct and indirect pathway striatal output neurons as well as cholinergic interneurons differentially. Notably, optogenetic stimulation of M1 PV+ and M2 SOM+ projecting neurons reduced locomotion, whereas stimulation of M1 SOM+ projecting neurons enhanced locomotion. Thus, corticostriatal GABAergic projections modulate striatal output and motor activity. Long-range GABAergic projections from the motor cortex directly innervate the striatum M1 and M2 long-range SOM+ and PV+ neurons differentially innervate striatal neurons Striatal cholinergic neurons are innervated mainly by M1 SOM+ projecting neurons Motor cortex PV+ and SOM+ projecting neurons differentially modulate locomotion
Collapse
Affiliation(s)
- Sarah Melzer
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Mariana Gil
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - David E Koser
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Magdalena Michael
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Kee Wui Huang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Hannah Monyer
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
22
|
Bittencourt S, Ferrazoli E, Valente MF, Romariz S, Janisset NR, Macedo CE, Antonio BDB, Barros V, Mundim M, Porcionatto M, Aarão MC, Miranda MF, Rodrigues AM, de Almeida ACG, Longo BM, Mello LE. Modification of the natural progression of epileptogenesis by means of biperiden in the pilocarpine model of epilepsy. Epilepsy Res 2017; 138:88-97. [DOI: 10.1016/j.eplepsyres.2017.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/11/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
23
|
Oxotremorine-M potentiates NMDA receptors by muscarinic receptor dependent and independent mechanisms. Biochem Biophys Res Commun 2017; 495:481-486. [PMID: 29127015 DOI: 10.1016/j.bbrc.2017.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/06/2017] [Indexed: 11/20/2022]
Abstract
Muscarinic acetylcholine M1 receptors play an important role in synaptic plasticity in the hippocampus and cortex. Potentiation of NMDA receptors as a consequence of muscarinic acetylcholine M1 receptor activation is a crucial event mediating the cholinergic modulation of synaptic plasticity, which is a cellular mechanism for learning and memory. In Alzheimer's disease, the cholinergic input to the hippocampus and cortex is severely degenerated, and agonists or positive allosteric modulators of M1 receptors are therefore thought to be of potential use to treat the deficits in cognitive functions in Alzheimer's disease. In this study we developed a simple system in which muscarinic modulation of NMDA receptors can be studied in vitro. Human M1 receptors and NR1/2B NMDA receptors were co-expressed in Xenopus oocytes and various muscarinic agonists were assessed for their modulatory effects on NMDA receptor-mediated responses. As expected, NMDA receptor-mediated responses were potentiated by oxotremorine-M, oxotremorine or xanomeline when the drugs were applied between subsequent NMDA responses, an effect which was fully blocked by the muscarinic receptor antagonist atropine. However, in oocytes expressing NR1/2B NMDA receptors but not muscarinic M1 receptors, oxotremorine-M co-applied with NMDA also resulted in a potentiation of NMDA currents and this effect was not blocked by atropine, demonstrating that oxotremorine-M is able to directly potentiate NMDA receptors. Oxotremorine, which is a close analogue of oxotremorine-M, and xanomeline, a chemically distinct muscarinic agonist, did not potentiate NMDA receptors by this direct mechanism. Comparing the chemical structures of the three different muscarinic agonists used in this study suggests that the tri-methyl ammonium moiety present in oxotremorine-M is important for the compound's interaction with NMDA receptors.
Collapse
|
24
|
Tomàs JM, Garcia N, Lanuza MA, Nadal L, Tomàs M, Hurtado E, Simó A, Cilleros V. Membrane Receptor-Induced Changes of the Protein Kinases A and C Activity May Play a Leading Role in Promoting Developmental Synapse Elimination at the Neuromuscular Junction. Front Mol Neurosci 2017; 10:255. [PMID: 28848391 PMCID: PMC5552667 DOI: 10.3389/fnmol.2017.00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023] Open
Abstract
Synapses that are overproduced during histogenesis in the nervous system are eventually lost and connectivity is refined. Membrane receptor signaling leads to activity-dependent mutual influence and competition between axons directly or with the involvement of the postsynaptic cell and the associated glial cell/s. Presynaptic muscarinic acetylcholine (ACh) receptors (subtypes mAChR; M1, M2 and M4), adenosine receptors (AR; A1 and A2A) and the tropomyosin-related kinase B receptor (TrkB), among others, all cooperate in synapse elimination. Between these receptors there are several synergistic, antagonic and modulatory relations that clearly affect synapse elimination. Metabotropic receptors converge in a limited repertoire of intracellular effector kinases, particularly serine protein kinases A and C (PKA and PKC), to phosphorylate protein targets and bring about structural and functional changes leading to axon loss. In most cells A1, M1 and TrkB operate mainly by stimulating PKC whereas A2A, M2 and M4 inhibit PKA. We hypothesize that a membrane receptor-induced shifting in the protein kinases A and C activity (inhibition of PKA and/or stimulation of PKC) in some nerve endings may play an important role in promoting developmental synapse elimination at the neuromuscular junction (NMJ). This hypothesis is supported by: (i) the tonic effect (shown by using selective inhibitors) of several membrane receptors that accelerates axon loss between postnatal days P5-P9; (ii) the synergistic, antagonic and modulatory effects (shown by paired inhibition) of the receptors on axonal loss; (iii) the fact that the coupling of these receptors activates/inhibits the intracellular serine kinases; and (iv) the increase of the PKA activity, the reduction of the PKC activity or, in most cases, both situations simultaneously that presumably occurs in all the situations of singly and paired inhibition of the mAChR, AR and TrkB receptors. The use of transgenic animals and various combinations of selective and specific PKA and PKC inhibitors could help to elucidate the role of these kinases in synapse maturation.
Collapse
Affiliation(s)
- Josep M Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Anna Simó
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Víctor Cilleros
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| |
Collapse
|
25
|
Iwakura Y, Wang R, Inamura N, Araki K, Higashiyama S, Takei N, Nawa H. Glutamate-dependent ectodomain shedding of neuregulin-1 type II precursors in rat forebrain neurons. PLoS One 2017; 12:e0174780. [PMID: 28350885 PMCID: PMC5370147 DOI: 10.1371/journal.pone.0174780] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/15/2017] [Indexed: 01/30/2023] Open
Abstract
The neurotrophic factor neuregulin 1 (NRG1) regulates neuronal development, glial differentiation, and excitatory synapse maturation. NRG1 is synthesized as a membrane-anchored precursor and is then liberated by proteolytic processing or exocytosis. Mature NRG1 then binds to its receptors expressed by neighboring neurons or glial cells. However, the molecular mechanisms that govern this process in the nervous system are not defined in detail. Here we prepared neuron-enriched and glia-enriched cultures from embryonic rat neocortex to investigate the role of neurotransmitters that regulate the liberation/release of NRG1 from the membrane of neurons or glial cells. Using a two-site enzyme immunoassay to detect soluble NRG1, we show that, of various neurotransmitters, glutamate was the most potent inducer of NRG1 release in neuron-enriched cultures. NRG1 release in glia-enriched cultures was relatively limited. Furthermore, among glutamate receptor agonists, N-Methyl-D-Aspartate (NMDA) and kainate (KA), but not AMPA or tACPD, mimicked the effects of glutamate. Similar findings were acquired from analysis of the hippocampus of rats with KA-induced seizures. To evaluate the contribution of members of a disintegrin and metalloproteinase (ADAM) families to NRG1 release, we transfected primary cultures of neurons with cDNA vectors encoding NRG1 types I, II, or III precursors, each tagged with the alkaline phosphatase reporter. Analysis of alkaline phosphatase activity revealed that the NRG1 type II precursor was subjected to tumor necrosis factor-α-converting enzyme (TACE) / a Disintegrin And Metalloproteinase 17 (ADAM17) -dependent ectodomain shedding in a protein kinase C-dependent manner. These results suggest that glutamatergic neurotransmission positively regulates the ectodomain shedding of NRG1 type II precursors and liberates the active NRG1 domain in an activity-dependent manner.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- * E-mail:
| | - Ran Wang
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Naoko Inamura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazuaki Araki
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
26
|
Nazarinia E, Rezayof A, Sardari M, Yazdanbakhsh N. Contribution of the basolateral amygdala NMDA and muscarinic receptors in rat's memory retrieval. Neurobiol Learn Mem 2017; 139:28-36. [DOI: 10.1016/j.nlm.2016.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 11/29/2022]
|
27
|
Palmer D, Creighton S, Prado VF, Prado MA, Choleris E, Winters BD. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory. Behav Brain Res 2016; 311:267-278. [DOI: 10.1016/j.bbr.2016.05.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
|
28
|
Dautan D, Hacioğlu Bay H, Bolam JP, Gerdjikov TV, Mena-Segovia J. Extrinsic Sources of Cholinergic Innervation of the Striatal Complex: A Whole-Brain Mapping Analysis. Front Neuroanat 2016; 10:1. [PMID: 26834571 PMCID: PMC4722731 DOI: 10.3389/fnana.2016.00001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/02/2016] [Indexed: 11/19/2022] Open
Abstract
Acetylcholine in the striatal complex plays an important role in normal behavior and is affected in a number of neurological disorders. Although early studies suggested that acetylcholine in the striatum (STR) is derived almost exclusively from cholinergic interneurons (CIN), recent axonal mapping studies using conditional anterograde tracing have revealed the existence of a prominent direct cholinergic pathway from the pedunculopontine and laterodorsal tegmental nuclei to the dorsal striatum and nucleus accumbens. The identification of the importance of this pathway is essential for creating a complete model of cholinergic modulation in the striatum, and it opens the question as to whether other populations of cholinergic neurons may also contribute to such modulation. Here, using novel viral tracing technologies based on phenotype-specific fluorescent reporter expression in combination with retrograde tracing, we aimed to define other sources of cholinergic innervation of the striatum. Systematic mapping of the projections of all cholinergic structures in the brain (Ch1 to Ch8) by means of conditional tracing of cholinergic axons, revealed that the only extrinsic source of cholinergic innervation arises in the brainstem pedunculopontine and laterodorsal tegmental nuclei. Our results thus place the pedunculopontine and laterodorsal nuclei in a key and exclusive position to provide extrinsic cholinergic modulation of the activity of the striatal systems.
Collapse
Affiliation(s)
- Daniel Dautan
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of OxfordOxford, UK; Department of Neuroscience, Psychology and Behaviour, University of LeicesterLeicester, UK
| | - Husniye Hacioğlu Bay
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of OxfordOxford, UK; Department of Anatomy, School of Medicine, Marmara UniversityIstanbul, Turkey
| | - J Paul Bolam
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford Oxford, UK
| | - Todor V Gerdjikov
- Department of Neuroscience, Psychology and Behaviour, University of Leicester Leicester, UK
| | - Juan Mena-Segovia
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of OxfordOxford, UK; Center for Molecular and Behavioral Neuroscience, Rutgers UniversityNewark, NJ, USA
| |
Collapse
|
29
|
Cognition Enhancing and Neuromodulatory Propensity of Bacopa monniera Extract Against Scopolamine Induced Cognitive Impairments in Rat Hippocampus. Neurochem Res 2015; 41:985-99. [DOI: 10.1007/s11064-015-1780-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/30/2015] [Accepted: 11/17/2015] [Indexed: 12/31/2022]
|
30
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
31
|
Fassini A, Antero LS, Corrêa FMA, Joca SR, Resstel LBM. The prelimbic cortex muscarinic M₃ receptor-nitric oxide-guanylyl cyclase pathway modulates cardiovascular responses in rats. J Neurosci Res 2015; 93:830-8. [PMID: 25594849 DOI: 10.1002/jnr.23537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/01/2014] [Accepted: 11/10/2014] [Indexed: 11/06/2022]
Abstract
The prelimbic cortex (PL), a limbic structure, sends projections to areas involved in the control of cardiovascular responses. Stimulation of the PL with acetylcholine (ACh) evokes depressor and tachycardiac responses mediated by local PL muscarinic receptors. Early studies demonstrated that stimulation of muscarinic receptors induced nitric oxide (NO) synthesis and cyclic guanosine cyclic monophosphate (cGMP) formation. Hence, this study investigates which PL muscarinic receptor subtype is involved in the cardiovascular response induced by ACh and tests the hypothesis that cardiovascular responses caused by muscarinic receptor stimulation in the PL are mediated by local NO and cGMP formation. PL pretreatment with J104129 (an M3 receptor antagonist) blocked the depressor and tachycardiac response evoked by injection of ACh into the PL. Pretreatment with either pirenzepine (an M1 receptor antagonist) or AF-DX 116 (an M2 and M4 receptor antagonist) did not affect cardiovascular responses evoked by ACh. Moreover, similarly to the antagonism of PL M3 receptors, pretreatment with N(ω)-propyl-L-arginine (an inhibitor of neuronal NO synthase), carboxy-PTIO(S)-3-carboxy-4-hydroxyphenylglicine (an NO scavenger), or 1H-[1,2,4]oxadiazolol-[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) blocked both the depressor and the tachycardiac response evoked by ACh. The current results demonstrate that cardiovascular responses evoked by microinjection of ACh into the PL are mediated by local activation of the M3 receptor-NO-guanylate cyclase pathway.
Collapse
Affiliation(s)
- Aline Fassini
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
32
|
Vakalopoulos C. The effect of deficient muscarinic signaling on commonly reported biochemical effects in schizophrenia and convergence with genetic susceptibility loci in explaining symptom dimensions of psychosis. Front Pharmacol 2014; 5:277. [PMID: 25566074 PMCID: PMC4266038 DOI: 10.3389/fphar.2014.00277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/27/2014] [Indexed: 11/13/2022] Open
Abstract
With the advent of DSM 5 criticism has generally centered on a lack of biological validity of the diagnostic criteria. Part of the problem in describing a nosology of psychosis is the tacit assumption of multiple genetic causes each with an incremental loading on the clinical picture that fails to differentiate a clear underlying pathophysiology of high impact. The aim of this paper is to consolidate a primary theory of deficient muscarinic signaling underlying key clinical features of schizophrenia and its regulation by several important genetic associations including neuregulin, DISC and dysbindin. Secondary reductions in markers for GABAergic function and changes in the levels of interneuron calcium binding proteins parvalbumin and calbindin can be attributed to dysfunctional muscarinic transduction. A parallel association exists for cytokine production. The convergent pathway hypothesis is likewise used to model dopaminergic and glutamatergic theories of schizophrenia. The negative symptom dimension is correlated with dysfunction of Akt and ERK transduction, a major point of convergence. The present paradigm predicts the importance of a recent finding of a deletion in a copy number variant of PLCB1 and its potential use if replicated, as one of the first testable biological markers differentiating schizophrenia from bipolar disorder and further subtyping of schizophrenia into deficit and non-deficit. Potential limitations of PLCB1 as a prospective marker are also discussed.
Collapse
|
33
|
Glazova MV, Nikitina LS, Hudik KA, Kirillova OD, Dorofeeva NA, Korotkov AA, Chernigovskaya EV. Inhibition of ERK1/2 signaling prevents epileptiform behavior in rats prone to audiogenic seizures. J Neurochem 2014; 132:218-29. [PMID: 25351927 DOI: 10.1111/jnc.12982] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/14/2014] [Accepted: 10/22/2014] [Indexed: 01/24/2023]
Abstract
It has recently been proposed that extracellular signal-regulated kinases 1 and 2 (ERK1/2) are one of the factors mediating seizure development. We hypothesized that inhibition of ERK1/2 activity could prevent audiogenic seizures by altering GABA and glutamate release mechanisms. Krushinsky-Molodkina rats, genetically prone to audiogenic seizure, were recruited in the experiments. Animals were i.p. injected with an inhibitor of ERK1/2 SL 327 at different doses 60 min before audio stimulation. We demonstrated for the first time that inhibition of ERK1/2 activity by SL 327 injections prevented seizure behavior and this effect was dose-dependent and correlated with ERK1/2 activity. The obtained data also demonstrated unchanged levels of GABA production, and an increase in the level of vesicular glutamate transporter 2. The study of exocytosis protein expression showed that SL 327 treatment leads to downregulation of vesicle-associated membrane protein 2 and synapsin I, and accumulation of synaptosomal-associated protein 25 (SNAP-25). The obtained data indicate that the inhibition of ERK1/2 blocks seizure behavior presumably by altering the exocytosis machinery, and identifies ERK1/2 as a potential target for the development of new strategies for seizure treatment. Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are one of the factors mediating seizure development. Here we report that inhibition of ERK1/2 by SL 327 prevented seizure behavior and this effect was dose-dependent and correlated with ERK1/2 activity. Accumulation of VGLUT2 was associated with differential changing of synaptic proteins VAMP2, SNAP-25 and synapsin I. The obtained data indicate that the inhibition of ERK1/2 alters neurotransmitter release by changing the exocytosis machinery, thus preventing seizures.
Collapse
Affiliation(s)
- Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint-Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
34
|
Maltese M, Martella G, Madeo G, Fagiolo I, Tassone A, Ponterio G, Sciamanna G, Burbaud P, Conn PJ, Bonsi P, Pisani A. Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: role of M1 muscarinic receptors. Mov Disord 2014; 29:1655-65. [PMID: 25195914 PMCID: PMC4216601 DOI: 10.1002/mds.26009] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/10/2022] Open
Abstract
Broad-spectrum muscarinic receptor antagonists have represented the first available treatment for different movement disorders such as dystonia. However, the specificity of these drugs and their mechanism of action is not entirely clear. We performed a systematic analysis of the effects of anticholinergic drugs on short- and long-term plasticity recorded from striatal medium spiny neurons from DYT1 dystonia knock-in (Tor1a(+/Δgag) ) mice heterozygous for ΔE-torsinA and their controls (Tor1a(+/+) mice). Antagonists were chosen that had previously been proposed to be selective for muscarinic receptor subtypes and included pirenzepine, trihexyphenydil, biperiden, orphenadrine, and a novel selective M1 antagonist, VU0255035. Tor1a(+/Δgag) mice exhibited a significant impairment of corticostriatal synaptic plasticity. Anticholinergics had no significant effects on intrinsic membrane properties and on short-term plasticity of striatal neurons. However, they exhibited a differential ability to restore the corticostriatal plasticity deficits. A complete rescue of both long-term depression (LTD) and synaptic depotentiation (SD) was obtained by applying the M1 -preferring antagonists pirenzepine and trihexyphenidyl as well as VU0255035. Conversely, the nonselective antagonist orphenadrine produced only a partial rescue of synaptic plasticity, whereas biperiden and ethopropazine failed to restore plasticity. The selectivity for M1 receptors was further demonstrated by their ability to counteract the M1 -dependent potentiation of N-methyl-d-aspartate (NMDA) current recorded from striatal neurons. Our study demonstrates that selective M1 muscarinic receptor antagonism offsets synaptic plasticity deficits in the striatum of mice with the DYT1 dystonia mutation, providing a potential mechanistic rationale for the development of improved antimuscarinic therapies for this movement disorder.
Collapse
Affiliation(s)
- Marta Maltese
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kouis P, Mikroulis A, Psarropoulou C. A single episode of juvenile status epilepticus reduces the threshold to adult seizures in a stimulus-specific way. Epilepsy Res 2014; 108:1564-71. [DOI: 10.1016/j.eplepsyres.2014.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 11/29/2022]
|
36
|
Spiros A, Roberts P, Geerts H. A computer-based quantitative systems pharmacology model of negative symptoms in schizophrenia: exploring glycine modulation of excitation-inhibition balance. Front Pharmacol 2014; 5:229. [PMID: 25374541 PMCID: PMC4204440 DOI: 10.3389/fphar.2014.00229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023] Open
Abstract
Although many antipsychotics can reasonably control positive symptoms in schizophrenia, patients' return to society is often hindered by negative symptoms and cognitive deficits. As an alternative to animal rodent models that are often not very predictive for the clinical situation, we developed a new computer-based mechanistic modeling approach. This Quantitative Systems Pharmacology approach combines preclinical basic neurophysiology of a biophysically realistic neuronal ventromedial cortical-ventral striatal network identified from human imaging studies that are associated with negative symptoms. Calibration of a few biological coupling parameters using a retrospective clinical database of 34 drug-dose combinations resulted in correlation coefficients greater than 0.60, while a robust quantitative prediction of a number of independent trials was observed. We then simulated the effect of glycine modulation on the anticipated clinical outcomes. The quantitative biochemistry of glycine interaction with the different NMDA-NR2 subunits, neurodevelopmental trajectory of the NMDA-NR2B in the human schizophrenia pathology, their specific localization on excitatory vs. inhibitory interneurons and the electrogenic nature of the glycine transporter resulted in an inverse U-shape dose-response with an optimum in the low micromolar glycine concentration. Quantitative systems pharmacology based computer modeling of complex humanized brain circuits is a powerful alternative approach to explain the non-monotonic dose-response observed in past clinical trial outcomes with sarcosine, D-cycloserine, glycine, or D-serine or with glycine transporter inhibitors. In general it can be helpful to better understand the human neurophysiology of negative symptoms, especially with targets that show non-monotonic dose-responses.
Collapse
Affiliation(s)
- Athan Spiros
- Computational Neuropharmacology, In Silico Biosciences, Inc. Berwyn, PA, USA
| | - Patrick Roberts
- Computational Neuropharmacology, In Silico Biosciences, Inc. Berwyn, PA, USA ; Department of Biomedical Engineering, Oregon Health and Science University Portland, OR, USA
| | - Hugo Geerts
- Computational Neuropharmacology, In Silico Biosciences, Inc. Berwyn, PA, USA ; Department of Laboratory Pathology, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
37
|
Rasekhi K, Oryan S, Nasehi M, Zarrindast MR. Involvement of the nucleus accumbens shell glutamatergic system in ACPA-induced impairment of inhibitory avoidance memory consolidation. Behav Brain Res 2014; 269:28-36. [DOI: 10.1016/j.bbr.2014.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/30/2022]
|
38
|
Surmeier DJ, Graves SM, Shen W. Dopaminergic modulation of striatal networks in health and Parkinson's disease. Curr Opin Neurobiol 2014; 29:109-17. [PMID: 25058111 DOI: 10.1016/j.conb.2014.07.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/23/2014] [Accepted: 07/02/2014] [Indexed: 01/11/2023]
Abstract
In the last couple of years, there have been significant advances in our understanding of how dopamine modulates striatal circuits underlying goal-directed behaviors and how therapeutic interventions intended to normalize disordered dopaminergic signaling can go awry. This review summarizes some of the advances in this field with a translational focus on Parkinson's disease.
Collapse
Affiliation(s)
- D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Steven M Graves
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weixing Shen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
39
|
Mizuki D, Qi Z, Tanaka K, Fujiwara H, Ishikawa T, Higuchi Y, Matsumoto K. Butea superba-induced amelioration of cognitive and emotional deficits in olfactory bulbectomized mice and putative mechanisms underlying its actions. J Pharmacol Sci 2014; 124:457-67. [PMID: 24646653 DOI: 10.1254/jphs.13252fp] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
This study investigated the effects of alcoholic extract of Butea superba (BS) on cognitive deficits and depression-related behavior using olfactory bulbectomized (OBX) mice and the underlying molecular mechanisms of its actions. OBX mice were treated daily with BS (100 and 300 mg/kg, p.o.) or reference drugs, tacrine (2.5 mg/kg, i.p.) and imipramine (10 mg/kg, i.p.) from day 3 after OBX. OBX impaired non-spatial and spatial cognitive performances, which were elucidated by the novel object recognition test and modified Y maze test, respectively. These deficits were attenuated by tacrine and BS but not imipramine. OBX animals exhibited depression-like behavior in the tail suspension test in a manner reversible by imipramine and BS but not tacrine. OBX down-regulated phosphorylation of synaptic plasticity-related signaling proteins: NMDA receptor, AMPA receptor, calmodulin-dependent kinase II, and cyclic AMP-responsive element-binding protein. OBX also reduced choline acetyltransferase in the hippocampus. BS and tacrine reversed these neurochemical alterations. Moreover, BS inhibited ex vivo activity of acetylcholinesterase in the brain. These results indicate that BS ameliorates not only cognition dysfunction via normalizing synaptic plasticity-related signaling and facilitating central cholinergic systems but also depression-like behavior via a mechanism differing from that implicated in BS amelioration of cognitive function in OBX animals.
Collapse
Affiliation(s)
- Daishu Mizuki
- Institute of Natural Medicine, University of Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Plotkin JL, Shen W, Rafalovich I, Sebel LE, Day M, Chan CS, Surmeier DJ. Regulation of dendritic calcium release in striatal spiny projection neurons. J Neurophysiol 2013; 110:2325-36. [PMID: 23966676 DOI: 10.1152/jn.00422.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The induction of corticostriatal long-term depression (LTD) in striatal spiny projection neurons (SPNs) requires coactivation of group I metabotropic glutamate receptors (mGluRs) and L-type Ca(2+) channels. This combination leads to the postsynaptic production of endocannabinoids that act presynaptically to reduce glutamate release. Although the necessity of coactivation is agreed upon, why it is necessary in physiologically meaningful settings is not. The studies described here attempt to answer this question by using two-photon laser scanning microscopy and patch-clamp electrophysiology to interrogate the dendritic synapses of SPNs in ex vivo brain slices from transgenic mice. These experiments revealed that postsynaptic action potentials induce robust ryanodine receptor (RYR)-dependent Ca(2+)-induced-Ca(2+) release (CICR) in SPN dendritic spines. Depolarization-induced opening of voltage-gated Ca(2+) channels was necessary for CICR. CICR was more robust in indirect pathway SPNs than in direct pathway SPNs, particularly in distal dendrites. Although it did not increase intracellular Ca(2+) concentration alone, group I mGluR activation enhanced CICR and slowed Ca(2+) clearance, extending the activity-evoked intraspine transient. The mGluR modulation of CICR was sensitive to antagonism of inositol trisphosphate receptors, RYRs, src kinase, and Cav1.3 L-type Ca(2+) channels. Uncaging glutamate at individual spines effectively activated mGluRs and facilitated CICR induced by back-propagating action potentials. Disrupting CICR by antagonizing RYRs prevented the induction of corticostriatal LTD with spike-timing protocols. In contrast, mGluRs had no effect on the induction of long-term potentiation. Taken together, these results make clearer how coactivation of mGluRs and L-type Ca(2+) channels promotes the induction of activity-dependent LTD in SPNs.
Collapse
Affiliation(s)
- Joshua L Plotkin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
41
|
Hawes SL, Gillani F, Evans RC, Benkert EA, Blackwell KT. Sensitivity to theta-burst timing permits LTP in dorsal striatal adult brain slice. J Neurophysiol 2013; 110:2027-36. [PMID: 23926032 DOI: 10.1152/jn.00115.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long-term potentiation (LTP) of excitatory afferents to the dorsal striatum likely occurs with learning to encode new skills and habits, yet corticostriatal LTP is challenging to evoke reliably in brain slice under physiological conditions. Here we test the hypothesis that stimulating striatal afferents with theta-burst timing, similar to recently reported in vivo temporal patterns corresponding to learning, evokes LTP. Recording from adult mouse brain slice extracellularly in 1 mM Mg(2+), we find LTP in dorsomedial and dorsolateral striatum is preferentially evoked by certain theta-burst patterns. In particular, we demonstrate that greater LTP is produced using moderate intraburst and high theta-range frequencies, and that pauses separating bursts of stimuli are critical for LTP induction. By altering temporal pattern alone, we illustrate the importance of burst-patterning for LTP induction and demonstrate that corticostriatal long-term depression is evoked in the same preparation. In accord with prior studies, LTP is greatest in dorsomedial striatum and relies on N-methyl-d-aspartate receptors. We also demonstrate a requirement for both Gq- and Gs/olf-coupled pathways, as well as several kinases associated with memory storage: PKC, PKA, and ERK. Our data build on previous reports of activity-directed plasticity by identifying effective values for distinct temporal parameters in variants of theta-burst LTP induction paradigms. We conclude that those variants which best match reports of striatal activity during learning behavior are most successful in evoking dorsal striatal LTP in adult brain slice without altering artificial cerebrospinal fluid. Future application of this approach will enable diverse investigations of plasticity serving striatal-based learning.
Collapse
Affiliation(s)
- Sarah L Hawes
- Molecular Neuroscience Department, The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia
| | | | | | | | | |
Collapse
|
42
|
Park SJ, Shin EJ, Min SS, An J, Li Z, Hee Chung Y, Hoon Jeong J, Bach JH, Nah SY, Kim WK, Jang CG, Kim YS, Nabeshima YI, Nabeshima T, Kim HC. Inactivation of JAK2/STAT3 signaling axis and downregulation of M1 mAChR cause cognitive impairment in klotho mutant mice, a genetic model of aging. Neuropsychopharmacology 2013; 38:1426-37. [PMID: 23389690 PMCID: PMC3682136 DOI: 10.1038/npp.2013.39] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously reported cognitive dysfunction in klotho mutant mice. In the present study, we further examined novel mechanisms involved in cognitive impairment in these mice. Significantly decreased janus kinase 2 (JAK2) and signal transducer and activator of transcription3 (STAT3) phosphorylation were observed in the hippocampus of klotho mutant mice. A selective decrease in protein expression and binding density of the M1 muscarinic cholinergic receptor (M1 mAChR) was observed in these mice. Cholinergic parameters (ie, acetylcholine (ACh), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE)) and NMDAR-dependent long-term potentiation (LTP) were significantly impaired in klotho mutant mice. McN-A-343 (McN), an M1 mAChR agonist, significantly attenuated these impairments. AG490 (AG), a JAK2 inhibitor, counteracted the attenuating effects of McN, although AG did not significantly alter the McN-induced effect on AChE. Furthermore, AG significantly inhibited the attenuating effects of McN on decreased NMDAR-dependent LTP, protein kinase C βII, p-ERK, p-CREB, BDNF, and p-JAK2/p-STAT3-expression in klotho mutant mice. In addition, k252a, a BDNF receptor tyrosine kinase B (TrkB) inhibitor, significantly counteracted McN effects on decreased ChAT, ACh, and M1 mAChR and p-JAK2/p-STAT3 expression. McN-induced effects on cognitive impairment in klotho mutant mice were consistently counteracted by either AG or k252a. Our results suggest that inactivation of the JAK2/STAT3 signaling axis and M1 mAChR downregulation play a critical role in cognitive impairment observed in klotho mutant mice.
Collapse
Affiliation(s)
- Seok-Joo Park
- Neuropsychopharmacology and Toxicology Program, Department of Pharmacy, College of Pharmacy, Kangwon National University, Chunchon, South Korea,Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, Department of Pharmacy, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Sun Seek Min
- Department of Physiology and Biophysics, College of Medicine, Eulji University, Daejeon, South Korea,Department of Physiology and Biophysics, College of Medicine, Eulji University, Daejeon 301-746, South Korea, Tel: +82 42 259 1633, Fax: +82 42 259 1639, E-mail:
| | - Jihua An
- Department of Physiology and Biophysics, College of Medicine, Eulji University, Daejeon, South Korea
| | - Zhengyi Li
- Neuropsychopharmacology and Toxicology Program, Department of Pharmacy, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Jae-Hyung Bach
- Neuropsychopharmacology and Toxicology Program, Department of Pharmacy, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Won-Ki Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, South Korea
| | - Yo-ichi Nabeshima
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Toshitaka Nabeshima
- Department of Regional Pharmaceutical Care and Science, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, Department of Pharmacy, College of Pharmacy, Kangwon National University, Chunchon, South Korea,Neuropsychopharmacology and Toxicology Program, Department of Pharmacy, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea, Tel: +82 33 250 6917, Fax: +82 33 255 7865, E-mail:
| |
Collapse
|
43
|
Kang JI, Groleau M, Dotigny F, Giguère H, Vaucher E. Visual training paired with electrical stimulation of the basal forebrain improves orientation-selective visual acuity in the rat. Brain Struct Funct 2013; 219:1493-507. [DOI: 10.1007/s00429-013-0582-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/10/2013] [Indexed: 12/25/2022]
|
44
|
Arcangeli S, Tozzi A, Tantucci M, Spaccatini C, de Iure A, Costa C, Di Filippo M, Picconi B, Giampà C, Fusco FR, Amoroso S, Calabresi P. Ischemic-LTP in striatal spiny neurons of both direct and indirect pathway requires the activation of D1-like receptors and NO/soluble guanylate cyclase/cGMP transmission. J Cereb Blood Flow Metab 2013; 33:278-86. [PMID: 23149555 PMCID: PMC3564198 DOI: 10.1038/jcbfm.2012.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Striatal medium-sized spiny neurons (MSNs) are highly vulnerable to ischemia. A brief ischemic insult, produced by oxygen and glucose deprivation (OGD), can induce ischemic long-term potentiation (i-LTP) of corticostriatal excitatory postsynaptic response. Since nitric oxide (NO) is involved in the pathophysiology of brain ischemia and the dopamine D1/D5-receptors (D1-like-R) are expressed in striatal NOS-positive interneurons, we hypothesized a relation between NOS-positive interneurons and striatal i-LTP, involving D1R activation and NO production. We investigated the mechanisms involved in i-LTP induced by OGD in corticostriatal slices and found that the D1-like-R antagonist SCH-23390 prevented i-LTP in all recorded MSNs. Immunofluorescence analysis confirmed the induction of i-LTP in both substance P-positive, (putative D1R-expressing) and adenosine A2A-receptor-positive (putative D2R-expressing) MSNs. Furthermore, i-LTP was dependent on a NOS/cGMP pathway since pharmacological blockade of NOS, guanylate-cyclase, or PKG prevented i-LTP. However, these compounds failed to prevent i-LTP in the presence of a NO donor or cGMP analog, respectively. Interestingly, the D1-like-R antagonism failed to prevent i-LTP when intracellular cGMP was pharmacologically increased. We propose that NO, produced by striatal NOS-positive interneurons via the stimulation of D1-like-R located on these cells, is critical for i-LTP induction in the entire population of MSNs involving a cGMP-dependent pathway.
Collapse
Affiliation(s)
- Sara Arcangeli
- Clinica Neurologica, Università di Perugia, Ospedale S. Maria della Misericordia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cholinergic dysfunction alters synaptic integration between thalamostriatal and corticostriatal inputs in DYT1 dystonia. J Neurosci 2012; 32:11991-2004. [PMID: 22933784 DOI: 10.1523/jneurosci.0041-12.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Projections from thalamic intralaminar nuclei convey sensory signals to striatal cholinergic interneurons. These neurons respond with a pause in their pacemaking activity, enabling synaptic integration with cortical inputs to medium spiny neurons (MSNs), thus playing a crucial role in motor function. In mice with the DYT1 dystonia mutation, stimulation of thalamostriatal axons, mimicking a response to salient events, evoked a shortened pause and triggered an abnormal spiking activity in interneurons. This altered pattern caused a significant rearrangement of the temporal sequence of synaptic activity mediated by M(1) and M(2) muscarinic receptors in MSNs, consisting of an increase in postsynaptic currents and a decrease of presynaptic inhibition, respectively. Consistent with a major role of acetylcholine, either lowering cholinergic tone or antagonizing postsynaptic M(1) muscarinic receptors normalized synaptic activity. Our data demonstrate an abnormal time window for synaptic integration between thalamostriatal and corticostriatal inputs, which might alter the action selection process, thereby predisposing DYT1 gene mutation carriers to develop dystonic movements.
Collapse
|
46
|
Lopes-Aguiar C, Bueno-Junior LS, Ruggiero RN, Romcy-Pereira RN, Leite JP. NMDA receptor blockade impairs the muscarinic conversion of sub-threshold transient depression into long-lasting LTD in the hippocampus-prefrontal cortex pathway in vivo: correlation with γ oscillations. Neuropharmacology 2012; 65:143-55. [PMID: 23022398 DOI: 10.1016/j.neuropharm.2012.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 07/19/2012] [Accepted: 09/16/2012] [Indexed: 01/22/2023]
Abstract
Cholinergic fibers from the brainstem and basal forebrain innervate the medial prefrontal cortex (mPFC) modulating neuronal activity and synaptic plasticity responses to hippocampal inputs. Here, we investigated the muscarinic and glutamatergic modulation of long-term depression (LTD) in the intact projections from CA1 to mPFC in vivo. Cortical-evoked responses were recorded in urethane-anesthetized rats for 30 min during baseline and 4 h following LTD. In order to test the potentiating effects of pilocarpine (PILO), independent groups of rats received either a microinjection of PILO (40 nmol; i.c.v.) or vehicle, immediately before or 20 min after a sub-threshold LTD protocol (600 pulses, 1 Hz; LFS600). Other groups received either an infusion of the selective NMDA receptor antagonist (AP7; 10 nmol; intra-mPFC) or vehicle, 10 min prior to PILO preceding LFS600, or prior to a supra-threshold LTD protocol (900 pulses, 1 Hz; LFS900). Our results show that PILO converts a transient cortical depression induced by LFS600 into a robust LTD, stable for at least 4 h. When applied after LFS600, PILO does not change either mPFC basal neurotransmission or late LTD. Our data also indicate that NMDA receptor pre-activation is essential to the muscarinic enhancement of mPFC synaptic depression, since AP7 microinjection into the mPFC blocked the conversion of transient depression into long-lasting LTD produced by PILO. In addition, AP7 effectively blocked the long-lasting LTD induced by LFS900. Therefore, our findings suggest that the glutamatergic co-activation of prefrontal neurons is important for the effects of PILO on mPFC synaptic depression, which could play an important role in the control of executive and emotional functions.
Collapse
Affiliation(s)
- Cleiton Lopes-Aguiar
- Department of Neuroscience and Behavioral Science, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
47
|
Mitchelson FJ. The pharmacology of McN-A-343. Pharmacol Ther 2012; 135:216-45. [DOI: 10.1016/j.pharmthera.2012.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 01/01/2023]
|
48
|
Beatty JA, Sullivan MA, Morikawa H, Wilson CJ. Complex autonomous firing patterns of striatal low-threshold spike interneurons. J Neurophysiol 2012; 108:771-81. [PMID: 22572945 PMCID: PMC3424086 DOI: 10.1152/jn.00283.2012] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/03/2012] [Indexed: 12/23/2022] Open
Abstract
During sensorimotor learning, tonically active neurons (TANs) in the striatum acquire bursts and pauses in their firing based on the salience of the stimulus. Striatal cholinergic interneurons display tonic intrinsic firing, even in the absence of synaptic input, that resembles TAN activity seen in vivo. However, whether there are other striatal neurons among the group identified as TANs is unknown. We used transgenic mice expressing green fluorescent protein under control of neuronal nitric oxide synthase or neuropeptide-Y promoters to aid in identifying low-threshold spike (LTS) interneurons in brain slices. We found that these neurons exhibit autonomous firing consisting of spontaneous transitions between regular, irregular, and burst firing, similar to cholinergic interneurons. As in cholinergic interneurons, these firing patterns arise from interactions between multiple intrinsic oscillatory mechanisms, but the mechanisms responsible differ. Both neurons maintain tonic firing because of persistent sodium currents, but the mechanisms of the subthreshold oscillations responsible for irregular firing are different. In LTS interneurons they rely on depolarization-activated noninactivating calcium currents, whereas those in cholinergic interneurons arise from a hyperpolarization-activated potassium conductance. Sustained membrane hyperpolarizations induce a bursting pattern in LTS interneurons, probably by recruiting a low-threshold, inactivating calcium conductance and by moving the membrane potential out of the activation range of the oscillatory mechanisms responsible for single spiking, in contrast to the bursting driven by noninactivating currents in cholinergic interneurons. The complex intrinsic firing patterns of LTS interneurons may subserve differential release of classic and peptide neurotransmitters as well as nitric oxide.
Collapse
Affiliation(s)
- Joseph A. Beatty
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas; and
| | - Matthew A. Sullivan
- Waggoner Center for Alcohol and Addiction Research and Section of Neurobiology, University of Texas at Austin, Austin, Texas
| | - Hitoshi Morikawa
- Waggoner Center for Alcohol and Addiction Research and Section of Neurobiology, University of Texas at Austin, Austin, Texas
| | - Charles J. Wilson
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas; and
| |
Collapse
|
49
|
Wu W, Saunders RC, Mishkin M, Turchi J. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys. Neurobiol Learn Mem 2012; 98:41-6. [PMID: 22561485 DOI: 10.1016/j.nlm.2012.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/11/2012] [Accepted: 04/16/2012] [Indexed: 01/18/2023]
Abstract
Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells.
Collapse
Affiliation(s)
- Wei Wu
- Laboratory of Neuropsychology, NIMH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
50
|
Spiros A, Roberts P, Geerts H. A Quantitative Systems Pharmacology Computer Model for Schizophrenia Efficacy and Extrapyramidal Side Effects. Drug Dev Res 2012. [DOI: 10.1002/ddr.21008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|