1
|
Shirokova O, Zaborskaya O, Pchelin P, Kozliaeva E, Pershin V, Mukhina I. Genetic and Epigenetic Sexual Dimorphism of Brain Cells during Aging. Brain Sci 2023; 13:brainsci13020195. [PMID: 36831738 PMCID: PMC9954625 DOI: 10.3390/brainsci13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
In recent years, much of the attention paid to theoretical and applied biomedicine, as well as neurobiology, has been drawn to various aspects of sexual dimorphism due to the differences that male and female brain cells demonstrate during aging: (a) a dimorphic pattern of response to therapy for neurodegenerative disorders, (b) different age of onset and different degrees of the prevalence of such disorders, and (c) differences in their symptomatic manifestations in men and women. The purpose of this review is to outline the genetic and epigenetic differences in brain cells during aging in males and females. As a result, we hereby show that the presence of brain aging patterns in males and females is due to a complex of factors associated with the effects of sex chromosomes, which subsequently entails a change in signal cascades in somatic cells.
Collapse
Affiliation(s)
- Olesya Shirokova
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Correspondence:
| | - Olga Zaborskaya
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
| | - Pavel Pchelin
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| | - Elizaveta Kozliaeva
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
| | - Vladimir Pershin
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| | - Irina Mukhina
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| |
Collapse
|
2
|
The role of maternal immune activation in the immunological and neurological pathogenesis of autism. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
3
|
Pallier PN, Ferrara M, Romagnolo F, Ferretti MT, Soreq H, Cerase A. Chromosomal and environmental contributions to sex differences in the vulnerability to neurological and neuropsychiatric disorders: Implications for therapeutic interventions. Prog Neurobiol 2022; 219:102353. [PMID: 36100191 DOI: 10.1016/j.pneurobio.2022.102353] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.
Collapse
Affiliation(s)
- Patrick N Pallier
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Maria Ferrara
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Women's Brain Project (WBP), Switzerland
| | - Francesca Romagnolo
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 9190401, Israel
| | - Andrea Cerase
- EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, RM, Italy; Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
4
|
Arnold AP. Four Core Genotypes and XY* mouse models: Update on impact on SABV research. Neurosci Biobehav Rev 2020; 119:1-8. [PMID: 32980399 PMCID: PMC7736196 DOI: 10.1016/j.neubiorev.2020.09.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
The impact of two mouse models is reviewed, the Four Core Genotypes and XY* models. The models are useful for determining if the causes of sex differences in phenotypes are either hormonal or sex chromosomal, or both. Used together, the models also can distinguish between the effects of X or Y chromosome genes that contribute to sex differences in phenotypes. To date, the models have been used to uncover sex chromosome contributions to sex differences in a wide variety of phenotypes, including brain and behavior, autoimmunity and immunity, cardiovascular disease, metabolism, and Alzheimer's Disease. In some cases, use of the models has been a strategy leading to discovery of specific X or Y genes that protect from or exacerbate disease. Sex chromosome and hormonal factors interact, in some cases to reduce the effects of each other. Future progress will come from more extensive application of these models, and development of similar models in other species.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology & Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, UCLA, 610 Charles Young Drive South, Los Angeles, CA, 90095-7239, United States.
| |
Collapse
|
5
|
Intergenerational effect of parental spatial training on offspring learning: Evidence for sex differences in memory function. Brain Res Bull 2019; 153:314-323. [DOI: 10.1016/j.brainresbull.2019.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022]
|
6
|
Itoh Y, Golden LC, Itoh N, Matsukawa MA, Ren E, Tse V, Arnold AP, Voskuhl RR. The X-linked histone demethylase Kdm6a in CD4+ T lymphocytes modulates autoimmunity. J Clin Invest 2019; 129:3852-3863. [PMID: 31403472 DOI: 10.1172/jci126250] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/11/2019] [Indexed: 01/05/2023] Open
Abstract
Multiple sclerosis (MS) is a putative T cell-mediated autoimmune disease. As with many autoimmune diseases, females are more susceptible than males. Sexual dimorphisms may be due to differences in sex hormones, sex chromosomes, or both. Regarding sex chromosome genes, a small percentage of X chromosome genes escape X inactivation and have higher expression in females (XX) compared with males (XY). Here, high-throughput gene expression analysis in CD4+ T cells showed that the top sexually dimorphic gene was Kdm6a, a histone demethylase on the X chromosome. There was higher expression of Kdm6a in females compared with males in humans and mice, and the four core genotypes (FCG) mouse model showed higher expression in XX compared with XY. Deletion of Kdm6a in CD4+ T cells ameliorated clinical disease and reduced neuropathology in the classic CD4+ T cell-mediated autoimmune disease experimental autoimmune encephalomyelitis (EAE). Global transcriptome analysis in CD4+ T cells from EAE mice with a specific deletion of Kdm6a showed upregulation of Th2 and Th1 activation pathways and downregulation of neuroinflammation signaling pathways. Together, these data demonstrate that the X escapee Kdm6a regulates multiple immune response genes, providing a mechanism for sex differences in autoimmune disease susceptibility.
Collapse
Affiliation(s)
- Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Lisa C Golden
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Noriko Itoh
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Macy Akiyo Matsukawa
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Emily Ren
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Vincent Tse
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
| | - Rhonda R Voskuhl
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
7
|
Shang Z, Zhao J, Zhang Q, Cao C, Tian S, Zhang K, Liu L, Shi L, Yu N, Yang S. USP9X-mediated deubiquitination of B-cell CLL/lymphoma 9 potentiates Wnt signaling and promotes breast carcinogenesis. J Biol Chem 2019; 294:9844-9857. [PMID: 31073027 DOI: 10.1074/jbc.ra119.007655] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Hyperactivation of the canonical Wnt-signaling pathway is a prominent feature of a number of human malignancies. Transcriptional activation of this signaling cascade depends on the formation of the β-catenin-B-cell CLL/lymphoma 9 (BCL9)-pygopus (PYGO) family plant homeodomain finger 1 complex, yet how the assembly of this complex is regulated remains to be investigated. Here, using MCF-7, HeLa, HEK293T, MDA-MB-231, and Sf9 cells, along with immunoblotting and immunofluorescence, nano-HPLC-MS/MS, deubiquitination, immunoprecipitation, and chromatin immunoprecipitation (ChIP) assays, we report that BCL9 physically associates with a protein deubiquitinase, ubiquitin-specific peptidase 9, X-linked (USP9X), and that USP9X removes Lys-63-linked polyubiquitin on Lys-212 of BCL9. Importantly, the USP9X-mediated BCL9 deubiquitination facilitated the formation of the β-catenin-BCL9-PYGO complex, thereby potentiating the transcriptional activation of Wnt/β-catenin target genes. We also show that USP9X-mediated BCL9 deubiquitination promotes the proliferation and invasion of breast cancer cells. Together, these results uncover USP9X as a deubiquitinase of BCL9, implicating USP9X in Wnt/β-catenin signaling and breast carcinogenesis.
Collapse
Affiliation(s)
- Zesen Shang
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Jiao Zhao
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Qi Zhang
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Cheng Cao
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Shanshan Tian
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Kai Zhang
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Ling Liu
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Lei Shi
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Na Yu
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and
| | - Shangda Yang
- From the 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China and .,the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 300020 Tianjin, China
| |
Collapse
|
8
|
Pinares-Garcia P, Stratikopoulos M, Zagato A, Loke H, Lee J. Sex: A Significant Risk Factor for Neurodevelopmental and Neurodegenerative Disorders. Brain Sci 2018; 8:E154. [PMID: 30104506 PMCID: PMC6120011 DOI: 10.3390/brainsci8080154] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Males and females sometimes significantly differ in their propensity to develop neurological disorders. Females suffer more from mood disorders such as depression and anxiety, whereas males are more susceptible to deficits in the dopamine system including Parkinson's disease (PD), attention-deficit hyperactivity disorder (ADHD) and autism. Despite this, biological sex is rarely considered when making treatment decisions in neurological disorders. A better understanding of the molecular mechanism(s) underlying sex differences in the healthy and diseased brain will help to devise diagnostic and therapeutic strategies optimal for each sex. Thus, the aim of this review is to discuss the available evidence on sex differences in neuropsychiatric and neurodegenerative disorders regarding prevalence, progression, symptoms and response to therapy. We also discuss the sex-related factors such as gonadal sex hormones and sex chromosome genes and how these might help to explain some of the clinically observed sex differences in these disorders. In particular, we highlight the emerging role of the Y-chromosome gene, SRY, in the male brain and its potential role as a male-specific risk factor for disorders such as PD, autism, and ADHD in many individuals.
Collapse
Affiliation(s)
- Paulo Pinares-Garcia
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| | - Marielle Stratikopoulos
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| | - Alice Zagato
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| | - Hannah Loke
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
| | - Joohyung Lee
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
9
|
Farooqui A, Tazyeen S, Ahmed MM, Alam A, Ali S, Malik MZ, Ali S, Ishrat R. Assessment of the key regulatory genes and their Interologs for Turner Syndrome employing network approach. Sci Rep 2018; 8:10091. [PMID: 29973620 PMCID: PMC6031616 DOI: 10.1038/s41598-018-28375-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
Turner Syndrome (TS) is a condition where several genes are affected but the molecular mechanism remains unknown. Identifying the genes that regulate the TS network is one of the main challenges in understanding its aetiology. Here, we studied the regulatory network from manually curated genes reported in the literature and identified essential proteins involved in TS. The power-law distribution analysis showed that TS network carries scale-free hierarchical fractal attributes. This organization of the network maintained the self-ruled constitution of nodes at various levels without having centrality-lethality control systems. Out of twenty-seven genes culminating into leading hubs in the network, we identified two key regulators (KRs) i.e. KDM6A and BDNF. These KRs serve as the backbone for all the network activities. Removal of KRs does not cause its breakdown, rather a change in the topological properties was observed. Since essential proteins are evolutionarily conserved, the orthologs of selected interacting proteins in C. elegans, cat and macaque monkey (lower to higher level organisms) were identified. We deciphered three important interologs i.e. KDM6A-WDR5, KDM6A-ASH2L and WDR5-ASH2L that form a triangular motif. In conclusion, these KRs and identified interologs are expected to regulate the TS network signifying their biological importance.
Collapse
Affiliation(s)
- Anam Farooqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Murshad Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shahnawaz Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Zubbair Malik
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sher Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
10
|
Wang Q, Tang Y, Xu Y, Xu S, Jiang Y, Dong Q, Zhou Y, Ge W. The X-linked deubiquitinase USP9X is an integral component of centrosome. J Biol Chem 2017; 292:12874-12884. [PMID: 28620049 DOI: 10.1074/jbc.m116.769943] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/02/2017] [Indexed: 12/23/2022] Open
Abstract
The X-linked deubiquitinase USP9X has been implicated in multiple pathological disorders including malignancies and X-linked intellectual disability. However, its biological function and substrate repertoire remain to be investigated. In this study, we utilized the tandem mass tag labeling assay to identify USP9X-regulated proteins and revealed that the expression of multiple genes is altered in USP9X-deficient cells. Interestingly, we showed that USP9X promotes stabilization of centrosome proteins PCM1 and CEP55 through its catalytic activity. Remarkably, we demonstrated that USP9X is physically associated and spatially co-localized with PCM1 and CEP55 in the centrosome, and we revealed that either PCM1 or CEP55 loss resulted in impairment of USP9X centrosome localization. Moreover, we showed that USP9X is required for centrosome duplication, and this effect is dependent on its catalytic activity and its N-terminal module, which is responsible for physical association of USP9X with PCM1 and CEP55. Collectively, our experiments identified USP9X as an integral component of the centrosome where it functions to stabilize PCM1 and CEP55 and promote centrosome biogenesis.
Collapse
Affiliation(s)
- Qian Wang
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yiman Tang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yue Xu
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Shilei Xu
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yong Jiang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Qiuping Dong
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China.
| | - Wenshu Ge
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| |
Collapse
|
11
|
USP9X regulates centrosome duplication and promotes breast carcinogenesis. Nat Commun 2017; 8:14866. [PMID: 28361952 PMCID: PMC5380967 DOI: 10.1038/ncomms14866] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 01/31/2017] [Indexed: 12/23/2022] Open
Abstract
Defective centrosome duplication is implicated in microcephaly and primordial dwarfism as well as various ciliopathies and cancers. Yet, how the centrosome biogenesis is regulated remains poorly understood. Here we report that the X-linked deubiquitinase USP9X is physically associated with centriolar satellite protein CEP131, thereby stabilizing CEP131 through its deubiquitinase activity. We demonstrate that USP9X is an integral component of centrosome and is required for centrosome biogenesis. Loss-of-function of USP9X impairs centrosome duplication and gain-of-function of USP9X promotes centrosome amplification and chromosome instability. Significantly, USP9X is overexpressed in breast carcinomas, and its level of expression is correlated with that of CEP131 and higher histologic grades of breast cancer. Indeed, USP9X, through regulation of CEP131 abundance, promotes breast carcinogenesis. Our experiments identify USP9X as an important regulator of centrosome biogenesis and uncover a critical role for USP9X/CEP131 in breast carcinogenesis, supporting the pursuit of USP9X/CEP131 as potential targets for breast cancer intervention. USP9X is a deubiquitinating enzyme with many known substrates and functions; it has been linked to cancer but the mechanisms remain unclear. Here Li et al. report that USP9X stabilizes the centrosomal protein CEP131 leading to centrosome amplification and breast cancer development.
Collapse
|
12
|
Burgoyne PS, Arnold AP. A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues. Biol Sex Differ 2016; 7:68. [PMID: 27999654 PMCID: PMC5154145 DOI: 10.1186/s13293-016-0115-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
In animals with heteromorphic sex chromosomes, all sex differences originate from the sex chromosomes, which are the only factors that are consistently different in male and female zygotes. In mammals, the imbalance in Y gene expression, specifically the presence vs. absence of Sry, initiates the differentiation of testes in males, setting up lifelong sex differences in the level of gonadal hormones, which in turn cause many sex differences in the phenotype of non-gonadal tissues. The inherent imbalance in the expression of X and Y genes, or in the epigenetic impact of X and Y chromosomes, also has the potential to contribute directly to the sexual differentiation of non-gonadal cells. Here, we review the research strategies to identify the X and Y genes or chromosomal regions that cause direct, sexually differentiating effects on non-gonadal cells. Some mouse models are useful for separating the effects of sex chromosomes from those of gonadal hormones. Once direct “sex chromosome effects” are detected in these models, further studies are required to narrow down the list of candidate X and/or Y genes and then to identify the sexually differentiating genes themselves. Logical approaches to the search for these genes are reviewed here.
Collapse
Affiliation(s)
- Paul S Burgoyne
- Stem Cell Biology and Developmental Genetics, Mill Hill Laboratory, Francis Crick Institute, The Ridgeway, London, NW7 1AA UK
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 610 Charles Young Drive South, Los Angeles, CA 90095-7239 USA
| |
Collapse
|
13
|
Sex-Specific Effects of Testosterone on the Sexually Dimorphic Transcriptome and Epigenome of Embryonic Neural Stem/Progenitor Cells. Sci Rep 2016; 6:36916. [PMID: 27845378 PMCID: PMC5109279 DOI: 10.1038/srep36916] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/20/2016] [Indexed: 11/17/2022] Open
Abstract
The mechanisms by which sex differences in the mammalian brain arise are poorly understood, but are influenced by a combination of underlying genetic differences and gonadal hormone exposure. Using a mouse embryonic neural stem cell (eNSC) model to understand early events contributing to sexually dimorphic brain development, we identified novel interactions between chromosomal sex and hormonal exposure that are instrumental to early brain sex differences. RNA-sequencing identified 103 transcripts that were differentially expressed between XX and XY eNSCs at baseline (FDR = 0.10). Treatment with testosterone-propionate (TP) reveals sex-specific gene expression changes, causing 2854 and 792 transcripts to become differentially expressed on XX and XY genetic backgrounds respectively. Within the TP responsive transcripts, there was enrichment for genes which function as epigenetic regulators that affect both histone modifications and DNA methylation patterning. We observed that TP caused a global decrease in 5-methylcytosine abundance in both sexes, a transmissible effect that was maintained in cellular progeny. Additionally, we determined that TP was associated with residue-specific alterations in acetylation of histone tails. These findings highlight an unknown component of androgen action on cells within the developmental CNS, and contribute to a novel mechanism of action by which early hormonal organization is initiated and maintained.
Collapse
|
14
|
Gao C, McDowell IC, Zhao S, Brown CD, Engelhardt BE. Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering. PLoS Comput Biol 2016; 12:e1004791. [PMID: 27467526 PMCID: PMC4965098 DOI: 10.1371/journal.pcbi.1004791] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 02/03/2016] [Indexed: 01/15/2023] Open
Abstract
Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues.
Collapse
Affiliation(s)
- Chuan Gao
- Department of Statistical Science, Duke University, Durham, North Carolina, United States of America
| | - Ian C. McDowell
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Shiwen Zhao
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Christopher D. Brown
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Barbara E. Engelhardt
- Department of Computer Science, Center for Statistics and Machine Learning, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
15
|
Reijnders M, Zachariadis V, Latour B, Jolly L, Mancini G, Pfundt R, Wu K, van Ravenswaaij-Arts C, Veenstra-Knol H, Anderlid BM, Wood S, Cheung S, Barnicoat A, Probst F, Magoulas P, Brooks A, Malmgren H, Harila-Saari A, Marcelis C, Vreeburg M, Hobson E, Sutton V, Stark Z, Vogt J, Cooper N, Lim J, Price S, Lai A, Domingo D, Reversade B, Gecz J, Gilissen C, Brunner H, Kini U, Roepman R, Nordgren A, Kleefstra T, Kleefstra T. De Novo Loss-of-Function Mutations in USP9X Cause a Female-Specific Recognizable Syndrome with Developmental Delay and Congenital Malformations. Am J Hum Genet 2016; 98:373-81. [PMID: 26833328 DOI: 10.1016/j.ajhg.2015.12.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/15/2015] [Indexed: 12/24/2022] Open
Abstract
Mutations in more than a hundred genes have been reported to cause X-linked recessive intellectual disability (ID) mainly in males. In contrast, the number of identified X-linked genes in which de novo mutations specifically cause ID in females is limited. Here, we report 17 females with de novo loss-of-function mutations in USP9X, encoding a highly conserved deubiquitinating enzyme. The females in our study have a specific phenotype that includes ID/developmental delay (DD), characteristic facial features, short stature, and distinct congenital malformations comprising choanal atresia, anal abnormalities, post-axial polydactyly, heart defects, hypomastia, cleft palate/bifid uvula, progressive scoliosis, and structural brain abnormalities. Four females from our cohort were identified by targeted genetic testing because their phenotype was suggestive for USP9X mutations. In several females, pigment changes along Blaschko lines and body asymmetry were observed, which is probably related to differential (escape from) X-inactivation between tissues. Expression studies on both mRNA and protein level in affected-female-derived fibroblasts showed significant reduction of USP9X level, confirming the loss-of-function effect of the identified mutations. Given that some features of affected females are also reported in known ciliopathy syndromes, we examined the role of USP9X in the primary cilium and found that endogenous USP9X localizes along the length of the ciliary axoneme, indicating that its loss of function could indeed disrupt cilium-regulated processes. Absence of dysregulated ciliary parameters in affected female-derived fibroblasts, however, points toward spatiotemporal specificity of ciliary USP9X (dys-)function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
16
|
Seo M, Caetano-Anolles K, Rodriguez-Zas S, Ka S, Jeong JY, Park S, Kim MJ, Nho WG, Cho S, Kim H, Lee HJ. Comprehensive identification of sexually dimorphic genes in diverse cattle tissues using RNA-seq. BMC Genomics 2016; 17:81. [PMID: 26818975 PMCID: PMC4728830 DOI: 10.1186/s12864-016-2400-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 01/18/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Molecular mechanisms associated with sexual dimorphism in cattle have not been well elucidated. Furthermore, as recent studies have implied that gene expression patterns are highly tissue specific, it is essential to investigate gene expression in a variety of tissues using RNA-seq. Here, we employed and compared two statistical methods, a simple two group test and Analysis of deviance (ANODEV), in order to investigate bovine sexually dimorphic genes in 40 RNA-seq samples distributed across two factors: sex and tissue. RESULTS As a result, we detected 752 sexually dimorphic genes across tissues from two statistical approaches and identified strong tissue-specific patterns of gene expression. Additionally, significantly detected sex-related genes shared between two mammal species (cattle and rat) were identified using qRT-PCR. CONCLUSIONS Results of our analyses reveal that sexual dimorphism of metabolic tissues and pituitary gland in cattle involves various biological processes. Several differentially expressed genes between sexes in cattle and rat species are shared, but show tissue-specific patterns. Finally, we concluded that two distinct statistical approaches have their advantages and disadvantages in RNA-seq studies investigating multiple tissues.
Collapse
Affiliation(s)
- Minseok Seo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, South Korea, 151-741, Republic of Korea.
- CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Gwanakgu, Seoul, 151-919, Republic of Korea.
| | | | | | - Sojeong Ka
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Jin Young Jeong
- Division of Animal Products R&D, National Institute of Animal science, #1500 Kongjwipatjwi-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 565-851, Republic of Korea.
| | - Sungkwon Park
- Department of food science and technology, Sejong University, 98 Gun-Ja-Dong, Seoul, 143-747, Republic of Korea.
| | - Min Ji Kim
- Department of food science and technology, Sejong University, 98 Gun-Ja-Dong, Seoul, 143-747, Republic of Korea.
| | - Whan-Gook Nho
- Department of Swine & Poultry Science, National College of Agriculture and Fisheries, #1515 Kongjwipatjwi-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 560-500, Republic of Korea.
| | - Seoae Cho
- CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Gwanakgu, Seoul, 151-919, Republic of Korea.
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, South Korea, 151-741, Republic of Korea.
- CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Gwanakgu, Seoul, 151-919, Republic of Korea.
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Hyun-Jeong Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, South Korea, 151-741, Republic of Korea.
- Division of Animal Products R&D, National Institute of Animal science, #1500 Kongjwipatjwi-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, 565-851, Republic of Korea.
| |
Collapse
|
17
|
Te Riet L, van Esch JHM, Roks AJM, van den Meiracker AH, Danser AHJ. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 2015; 116:960-75. [PMID: 25767283 DOI: 10.1161/circresaha.116.303587] [Citation(s) in RCA: 474] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension.
Collapse
Affiliation(s)
- Luuk Te Riet
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joep H M van Esch
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton H van den Meiracker
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Loke H, Harley V, Lee J. Biological factors underlying sex differences in neurological disorders. Int J Biochem Cell Biol 2015; 65:139-50. [PMID: 26028290 DOI: 10.1016/j.biocel.2015.05.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 11/28/2022]
Abstract
The prevalence, age of onset, pathophysiology, and symptomatology of many neurological and neuropsychiatric conditions differ significantly between males and females. Females suffer more from mood disorders such as depression and anxiety, whereas males are more susceptible to deficits in the dopamine system including Parkinson's disease (PD), attention-deficit hyperactivity disorder (ADHD), schizophrenia, and autism spectrum disorders (ASD). Until recently, these sex differences have been explained solely by the neuroprotective actions of sex hormones in females. Emerging evidence however indicates that the sex chromosome genes (i.e. X- and Y-linked genes) also contribute to brain sex differences. In particular, the Y-chromosome gene, SRY (Sex-determining Region on the Y chromosome) is an interesting candidate as it is expressed in dopamine-abundant brain regions, where it regulates dopamine biosynthesis and dopamine-mediated functions such as voluntary movement in males. Furthermore, SRY expression is dysregulated in a toxin-induced model of PD, suggesting a role for SRY in the pathogenesis of dopamine cells. Taken together, these studies highlight the importance of understanding the interplay between sex-specific hormones and sex-specific genes in healthy and diseased brain. In particular, better understanding of regulation and function of SRY in the male brain could provide entirely novel and important insights into genetic factors involved in the susceptibility of men to neurological disorders, as well as development of novel sex-specific therapies.
Collapse
Affiliation(s)
- Hannah Loke
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Vincent Harley
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
| | - Joohyung Lee
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
19
|
Itoh Y, Mackie R, Kampf K, Domadia S, Brown JD, O’Neill R, Arnold AP. Four core genotypes mouse model: localization of the Sry transgene and bioassay for testicular hormone levels. BMC Res Notes 2015; 8:69. [PMID: 25870930 PMCID: PMC4354741 DOI: 10.1186/s13104-015-0986-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/20/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The "four core genotypes" (FCG) mouse model has emerged as a major model testing if sex differences in phenotypes are caused by sex chromosome complement (XX vs. XY) or gonadal hormones or both. The model involves deletion of the testis-determining gene Sry from the Y chromosome and insertion of an Sry transgene onto an autosome. It produces XX and XY mice with testes, and XX and XY mice with ovaries, so that XX and XY mice with the same type of gonad can be compared to assess phenotypic effects of sex chromosome complement in cells and tissues. FINDINGS We used PCR to amplify the Sry transgene and adjacent genomic sequences, to resolve the location of the Sry transgene to chromosome 3 and confirmed this location by fluorescence in situ hybridization (FISH) of the Sry construct to metaphase chromosomes. Using quantitative PCR, we estimate that 12-14 copies of the transgene were inserted. The anogenital distance (AGD) of FCG pups at 27-29 days after birth was not different in XX vs. XY males, or XX vs. XY females, suggesting that differences between XX and XY mice with the same type of gonad are not caused by difference in prenatal androgen levels. CONCLUSION The Sry transgene in FCG mice is present in multiple copies at one locus on chromosome 3, which does not interrupt known genes. XX and XY mice with the same type of gonad do not show evidence of different androgen levels prenatally.
Collapse
Affiliation(s)
- Yuichiro Itoh
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Ryan Mackie
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Kathy Kampf
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Shelly Domadia
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Judith D Brown
- />Institute for Systems Genomics and the Department of Allied Health Sciences, University of CT, Storrs, CT USA
| | - Rachel O’Neill
- />Institute for Systems Genomics and the Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT USA
| | - Arthur P Arnold
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| |
Collapse
|
20
|
Cox KH, Bonthuis PJ, Rissman EF. Mouse model systems to study sex chromosome genes and behavior: relevance to humans. Front Neuroendocrinol 2014; 35:405-19. [PMID: 24388960 PMCID: PMC4079771 DOI: 10.1016/j.yfrne.2013.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
Sex chromosome genes directly influence sex differences in behavior. The discovery of the Sry gene on the Y chromosome (Gubbay et al., 1990; Koopman et al., 1990) substantiated the sex chromosome mechanistic link to sex differences. Moreover, the pronounced connection between X chromosome gene mutations and mental illness produces a strong sex bias in these diseases. Yet, the dominant explanation for sex differences continues to be the gonadal hormones. Here we review progress made on behavioral differences in mouse models that uncouple sex chromosome complement from gonadal sex. We conclude that many social and cognitive behaviors are modified by sex chromosome complement, and discuss the implications for human research. Future directions need to include identification of the genes involved and interactions with these genes and gonadal hormones.
Collapse
Affiliation(s)
- Kimberly H Cox
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Paul J Bonthuis
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Emilie F Rissman
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| |
Collapse
|
21
|
Maehiro S, Takeuchi A, Yamashita J, Hiraki T, Kawabata Y, Nakasone K, Hosono K, Usami T, Paul-Prasanth B, Nagahama Y, Oka Y, Okubo K. Sexually dimorphic expression of the sex chromosome-linked genes cntfa and pdlim3a in the medaka brain. Biochem Biophys Res Commun 2014; 445:113-9. [DOI: 10.1016/j.bbrc.2014.01.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
|
22
|
Seney ML, Chang LC, Oh H, Wang X, Tseng GC, Lewis DA, Sibille E. The Role of Genetic Sex in Affect Regulation and Expression of GABA-Related Genes Across Species. Front Psychiatry 2013; 4:104. [PMID: 24062698 PMCID: PMC3775314 DOI: 10.3389/fpsyt.2013.00104] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/29/2013] [Indexed: 12/14/2022] Open
Abstract
Although circulating hormones and inhibitory gamma-aminobutyric acid (GABA)-related factors are known to affect mood, considerable knowledge gaps persist for biological mechanisms underlying the female bias in mood disorders. Here, we combine human and mouse studies to investigate sexual dimorphism in the GABA system in the context of major depressive disorder (MDD) and then use a genetic model to dissect the role of sex-related factors in GABA-related gene expression and anxiety-/depressive-like behaviors in mice. First, using meta-analysis of gene array data in human postmortem brain (N = 51 MDD subjects, 50 controls), we show that the previously reported down-regulation in MDD of somatostatin (SST), a marker of a GABA neuron subtype, is significantly greater in women with MDD. Second, using gene co-expression network analysis in control human subjects (N = 214; two frontal cortex regions) and expression quantitative trait loci mapping (N = 170 subjects), we show that expression of SST and the GABA-synthesizing enzymes glutamate decarboxylase 67 (GAD67) and GAD65 are tightly co-regulated and influenced by X-chromosome genetic polymorphisms. Third, using a rodent genetic model [Four Core Genotypes (FCG) mice], in which genetic and gonadal sex are artificially dissociated (N ≥ 12/group), we show that genetic sex (i.e., X/Y-chromosome) influences both gene expression (lower Sst, Gad67, Gad65 in XY mice) and anxiety-like behaviors (higher in XY mice). This suggests that in an intact male animal, the observed behavior represents the outcomes of male genetic sex increasing and male-like testosterone decreasing anxiety-like behaviors. Gonadal sex was the only factor influencing depressive-like behavior (gonadal males < gonadal females). Collectively, these combined human and mouse studies provide mechanistic insight into sexual dimorphism in mood disorders, and specifically demonstrate an unexpected role of male-like factors (XY genetic sex) on GABA-related genes and anxiety-like behaviors.
Collapse
Affiliation(s)
- Marianne L Seney
- Department of Psychiatry, University of Pittsburgh , Pittsburgh, PA , USA ; Translational Neuroscience Program, University of Pittsburgh , Pittsburgh, PA , USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Chen X, McClusky R, Chen J, Beaven SW, Tontonoz P, Arnold AP, Reue K. The number of x chromosomes causes sex differences in adiposity in mice. PLoS Genet 2012; 8:e1002709. [PMID: 22589744 PMCID: PMC3349739 DOI: 10.1371/journal.pgen.1002709] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/28/2012] [Indexed: 12/12/2022] Open
Abstract
Sexual dimorphism in body weight, fat distribution, and metabolic disease has been attributed largely to differential effects of male and female gonadal hormones. Here, we report that the number of X chromosomes within cells also contributes to these sex differences. We employed a unique mouse model, known as the “four core genotypes,” to distinguish between effects of gonadal sex (testes or ovaries) and sex chromosomes (XX or XY). With this model, we produced gonadal male and female mice carrying XX or XY sex chromosome complements. Mice were gonadectomized to remove the acute effects of gonadal hormones and to uncover effects of sex chromosome complement on obesity. Mice with XX sex chromosomes (relative to XY), regardless of their type of gonad, had up to 2-fold increased adiposity and greater food intake during daylight hours, when mice are normally inactive. Mice with two X chromosomes also had accelerated weight gain on a high fat diet and developed fatty liver and elevated lipid and insulin levels. Further genetic studies with mice carrying XO and XXY chromosome complements revealed that the differences between XX and XY mice are attributable to dosage of the X chromosome, rather than effects of the Y chromosome. A subset of genes that escape X chromosome inactivation exhibited higher expression levels in adipose tissue and liver of XX compared to XY mice, and may contribute to the sex differences in obesity. Overall, our study is the first to identify sex chromosome complement, a factor distinguishing all male and female cells, as a cause of sex differences in obesity and metabolism. Differences exist between men and women in the development of obesity and related metabolic diseases such as type 2 diabetes and cardiovascular disease. Previous studies have focused on the sex-biasing role of hormones produced by male and female gonads, but these cannot account fully for the sex differences in metabolism. We discovered that removal of the gonads uncovers an important genetic determinant of sex differences in obesity—the presence of XX or XY sex chromosomes. We used a novel mouse model to tease apart the effects of male and female gonads from the effects of XX or XY chromosomes. Mice with XX sex chromosomes (relative to XY), regardless of their type of gonad, had increased body fat and ate more food during the sleep period. Mice with two X chromosomes also had accelerated weight gain, fatty liver, and hyperinsulinemia on a high fat diet. The higher expression levels of a subset of genes on the X chromosome that escape inactivation may influence adiposity and metabolic disease. The effect of X chromosome genes is present throughout life, but may become particularly significant with increases in longevity and extension of the period spent with reduced gonadal hormone levels.
Collapse
Affiliation(s)
- Xuqi Chen
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology or the Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Rebecca McClusky
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology or the Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jenny Chen
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Simon W. Beaven
- Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Peter Tontonoz
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Arthur P. Arnold
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology or the Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Arnold AP. The end of gonad-centric sex determination in mammals. Trends Genet 2012; 28:55-61. [PMID: 22078126 PMCID: PMC3268825 DOI: 10.1016/j.tig.2011.10.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/16/2011] [Accepted: 10/17/2011] [Indexed: 01/18/2023]
Abstract
The 20th-century theory of mammalian sex determination states that the embryo is sexually indifferent until the differentiation of gonads, after which sex differences in phenotype are caused by the differential effects of gonadal hormones. However, this theory is inadequate because some sex differences precede differentiation of the gonads and/or are determined by non-gonadal effects of the sexual inequality in the number and type of sex chromosomes. In this article, I propose a general theory of sex determination, which recognizes multiple parallel primary sex-determining pathways initiated by genes or factors encoded by the sex chromosomes. The separate sex-specific pathways interact to synergize with or antagonize each other, enhancing or reducing sex differences in phenotype.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology & Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA 90095-7239, USA.
| |
Collapse
|
25
|
Arnold AP, Chen X, Itoh Y. What a difference an X or Y makes: sex chromosomes, gene dose, and epigenetics in sexual differentiation. Handb Exp Pharmacol 2012:67-88. [PMID: 23027446 PMCID: PMC4150872 DOI: 10.1007/978-3-642-30726-3_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A modern general theory of sex determination and sexual differentiation identifies the factors that cause sexual bias in gene networks, leading to sex differences in physiology and disease. The primary sex-biasing factors are those encoded on the sex chromosomes that are inherently different in the male and female zygotes. These factors, and downstream factors such as gonadal hormones, act directly on tissues to produce sex differences and antagonize each other to reduce sex differences. Recent studies of mouse models such as the four core genotypes have begun to distinguish between the direct effects of sex chromosome complement (XX vs. XY) and hormonal effects. Several lines of evidence implicate epigenetic processes in the control of sex differences, although a great deal of information is needed about sex differences in the epigenome.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
26
|
Xu J, Andreassi M. Reversible histone methylation regulates brain gene expression and behavior. Horm Behav 2011; 59:383-92. [PMID: 20816965 PMCID: PMC3084016 DOI: 10.1016/j.yhbeh.2010.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 12/27/2022]
Abstract
Epigenetic chromatin remodeling, including reversible histone methylation, regulates gene transcription in brain development and synaptic plasticity. Aberrant chromatin modifications due to mutant chromatin enzymes or chemical exposures have been associated with neurological or psychiatric disorders such as mental retardation, schizophrenia, depression, and drug addiction. Some chromatin enzymes, such as histone demethylases JARID1C and UTX, are coded by X-linked genes which are not X-inactivated in females. The higher expression of JARID1C and UTX in females could contribute to sex differences in brain development and behavior.
Collapse
Affiliation(s)
- Jun Xu
- Tufts University, Department of Biomedical Sciences, North Grafton, MA 01536, USA.
| | | |
Collapse
|
27
|
Curley JP, Mashoodh R. Parent-of-origin and trans-generational germline influences on behavioral development: the interacting roles of mothers, fathers, and grandparents. Dev Psychobiol 2010; 52:312-30. [PMID: 20373326 DOI: 10.1002/dev.20430] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mothers and fathers do not contribute equally to the development of their offspring. In addition to the differential investment of mothers versus fathers in the rearing of offspring, there are also a number of germline factors that are transmitted unequally from one parent or the other that contribute significantly to offspring development. This article shall review four major sources of such parent-of-origin effects. Firstly, there is increasing evidence that genes inherited on the sex chromosomes including the nonpseudoautosomal part of the Y chromosome that is only inherited from fathers to sons, contribute to brain development and behavior independently of the organizing effects of sex hormones. Secondly, recent work has demonstrated that mitochondrial DNA that is primarily inherited only from mothers may play a much greater than anticipated role in neurobehavioral development. Thirdly, there exists a class of genes known as imprinted genes that are epigenetically silenced when passed on in a parent-of-origin specific manner and have been shown to regulate brain development and a variety of behaviors. Finally, there is converging evidence from several disciplines that environmental variations experienced by mothers and fathers may lead to plasticity in the development and behavior of offspring and that this phenotypic inheritance can be solely transmitted through the germline. Mechanistically, this may be achieved through altered programming within germ cells of the epigenetic status of particular genes such as retrotransposons and imprinted genes or potentially through altered expression of RNAs within gametes.
Collapse
Affiliation(s)
- J P Curley
- Department of Psychology, Columbia University, Room 406, Schermerhorn Hall, 1190 Amsterdam Avenue, New York, NY 10027, USA.
| | | |
Collapse
|
28
|
Abstract
The brains of males and females differ anatomically and physiologically, including sex differences in neurone size or number, synapse morphology and specific patterns of gene expression. Brain sex differences may underlie critical sex differences in physiology or behaviour, including several aspects of reproduction, such as the timing of sexual maturation (earlier in females than males) and the ability to generate a preovulatory gonadotrophin surge (in females only). The reproductive axis is controlled by afferent pathways that converge upon forebrain gonadotrophin-releasing hormone (GnRH) neurones, but GnRH neurones are not sexually dimorphic. Although most reproductive sex differences probably reflect sex differences in the upstream circuits and factors that regulate GnRH secretion, the key sexually-dimorphic factors that influence reproductive status have remained poorly defined. The recently-identified neuropeptide kisspeptin, encoded by the Kiss1 gene, is an important regulator of GnRH secretion, and Kiss1 neurones in rodents are sexually dimorphic in specific hypothalamic populations, including the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN) and the arcuate nucleus (ARC). In the adult AVPV/PeN, Kiss1 neurones are more abundant in females than males, representing a sex difference that is regulated by oestradiol signalling during critical periods of postnatal and pubertal development. By contrast, Kiss1 neurones in the ARC are not sexually differentiated in adult rodents but, in mice, the regulation of ARC Kiss1 cells by gonadal hormone-independent factors is sexually dimorphic during prepubertal development. These various sex differences in hypothalamic Kiss1 neurones may relate to known sex differences in reproductive physiology, such as puberty onset and positive feedback.
Collapse
Affiliation(s)
- A S Kauffman
- Department of Reproductive Medicine, Center for Chronobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
29
|
Mizuno K, Giese KP. Towards a molecular understanding of sex differences in memory formation. Trends Neurosci 2010; 33:285-91. [PMID: 20356635 DOI: 10.1016/j.tins.2010.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/04/2010] [Accepted: 03/04/2010] [Indexed: 11/29/2022]
Abstract
Sex differences exist in brain function and behavior. However, the underlying molecular mechanisms are only beginning to emerge. Recent studies in rodents have revealed molecular mechanisms underlying sex differences in memory formation. It is becoming clear that sex differences are not simply reflective of differences in sex hormones, but also reflect distinctions in synaptic signaling mechanisms including the role of synaptic kinases. Furthermore, there are sex differences in the activation of transcription factors and gene transcription during memory formation. This review discusses emerging evidence in the field and how these findings are providing a first step towards a molecular understanding of how sex differences impact on memory formation both in health and disease.
Collapse
Affiliation(s)
- Keiko Mizuno
- King's College London, Institute of Psychiatry, Department of Neuroscience, London SE5 9NU, UK.
| | | |
Collapse
|
30
|
Wang J, Bingaman S, Huxley VH. Intrinsic sex-specific differences in microvascular endothelial cell phosphodiesterases. Am J Physiol Heart Circ Physiol 2010; 298:H1146-54. [PMID: 20139324 DOI: 10.1152/ajpheart.00252.2009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The importance of gonadal hormones in the regulation of vascular function has been documented. An alternate and essential contribution of the sex chromosomes to sex differences in vascular function is poorly understood. We reported previously sex differences in microvessel permeability (P(s)) responses to adenosine that were mediated by the cAMP signaling pathway (Wang J, PhD thesis, 2005; Wang J and Huxley V, Proceedings of the VIII World Congress of Microcirculation, 2007; Wang J and Huxley VH, Am J Physiol Heart Circ Physiol 291: H3094-H3105, 2006). The two cyclic nucleotides, cAMP and cGMP, central to the regulation of vascular barrier integrity, are hydrolyzed by phosphodiesterases (PDE). We hypothesized that microvascular endothelial cells (EC) would retain intrinsic and inheritable sexually dimorphic genes with respect to the PDEs modulating EC barrier function. Primary cultured microvascular EC from skeletal muscles isolated from male and female rats, respectively, were used. SRY (a sex-determining region Y gene) mRNA expression was observed exclusively in male, not female, cells. The predominant isoform among PDE1-5, present in both XY and XX EC, was PDE4. Expression mRNA levels of PDE1A (male > female) and PDE3B (male < female) were sex dependent; PDE2A, PDE4D, and PDE5A were sex independent. Barrier function, P(s), was determined from measures of albumin flux across confluent primary cultured microvessel XY and XX EC monolayers. Consistent with intact in situ microvessels, basal monolayer P(s) did not differ between XY (1.7 +/- 0.2 x 10(-6) cm/s; n = 8) and XX (1.8 +/- 0.1 x 10(-6) cm/s; n = 10) EC. Cilostazol, a PDE3 inhibitor, reduced (11%, P < 0.05) P(s) in XX, not XY, cells. These findings demonstrate the presence and maintenance of intrinsic sex-related differences in gene expression and cellular phenotype by microvascular EC in a gonadal-hormone-free environment. Furthermore, intrinsic cell-sex likely contributes significantly to sexual dimorphism in cardiovascular function.
Collapse
Affiliation(s)
- Jianjie Wang
- Dept. of Biomedical Science, Missouri State Univ., Springfield, 65897, USA.
| | | | | |
Collapse
|
31
|
Lopes AM, Burgoyne PS, Ojarikre A, Bauer J, Sargent CA, Amorim A, Affara NA. Transcriptional changes in response to X chromosome dosage in the mouse: implications for X inactivation and the molecular basis of Turner Syndrome. BMC Genomics 2010; 11:82. [PMID: 20122165 PMCID: PMC2837040 DOI: 10.1186/1471-2164-11-82] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/01/2010] [Indexed: 11/12/2022] Open
Abstract
Background X monosomic mice (39,XO) have a remarkably mild phenotype when compared to women with Turner syndrome (45,XO). The generally accepted hypothesis to explain this discrepancy is that the number of genes on the mouse X chromosome which escape X inactivation, and thus are expressed at higher levels in females, is very small. However this hypothesis has never been tested and only a small number of genes have been assayed for their X-inactivation status in the mouse. We performed a global expression analysis in four somatic tissues (brain, liver, kidney and muscle) of adult 40,XX and 39,XO mice using the Illumina Mouse WG-6 v1_1 Expression BeadChip and an extensive validation by quantitative real time PCR, in order to identify which genes are expressed from both X chromosomes. Results We identified several genes on the X chromosome which are overexpressed in XX females, including those previously reported as escaping X inactivation, as well as new candidates. However, the results obtained by microarray and qPCR were not fully concordant, illustrating the difficulty in ascertaining modest fold changes, such as those expected for genes escaping X inactivation. Remarkably, considerable variation was observed between tissues, suggesting that inactivation patterns may be tissue-dependent. Our analysis also exposed several autosomal genes involved in mitochondrial metabolism and in protein translation which are differentially expressed between XX and XO mice, revealing secondary transcriptional changes to the alteration in X chromosome dosage. Conclusions Our results support the prediction that the mouse inactive X chromosome is largely silent, while providing a list of the genes potentially escaping X inactivation in rodents. Although the lower expression of X-linked genes in XO mice may not be relevant in the particular tissues/systems which are affected in human X chromosome monosomy, genes deregulated in XO mice are good candidates for further study in an involvement in Turner Syndrome phenotype.
Collapse
Affiliation(s)
- Alexandra M Lopes
- IPATIMUP, Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-465 Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
32
|
Qureshi IA, Mehler MF. Genetic and epigenetic underpinnings of sex differences in the brain and in neurological and psychiatric disease susceptibility. PROGRESS IN BRAIN RESEARCH 2010; 186:77-95. [PMID: 21094887 PMCID: PMC4465286 DOI: 10.1016/b978-0-444-53630-3.00006-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There are numerous examples of sex differences in brain and behavior and in susceptibility to a broad range of brain diseases. For example, gene expression is sexually dimorphic during brain development, adult life, and aging. These differences are orchestrated by the interplay between genetic, hormonal, and environmental influences. However, the molecular mechanisms that underpin these differences have not been fully elucidated. Because recent studies have highlighted the key roles played by epigenetic processes in regulating gene expression and mediating brain form and function, this chapter reviews emerging evidence that shows how epigenetic mechanisms including DNA methylation, histone modifications, and chromatin remodeling, and non-coding RNAs (ncRNAs) are responsible for promoting sexual dimorphism in the brain. Differential profiles of DNA methylation and histone modifications are found in dimorphic brain regions such as the hypothalamus as a result of sex hormone exposure during developmental critical periods. The elaboration of specific epigenetic marks is also linked with regulating sex hormone signaling pathways later in life. Furthermore, the expression and function of epigenetic factors such as the methyl-CpG-binding protein, MeCP2, and the histone-modifying enzymes, UTX and UTY, are sexually dimorphic in the brain. ncRNAs are also implicated in promoting sex differences. For example, X inactivation-specific transcript (XIST) is a long ncRNA that mediates X chromosome inactivation, a seminal developmental process that is particularly important in brain. These observations imply that understanding epigenetic mechanisms, which regulate dimorphic gene expression and function, is necessary for developing a more comprehensive view of sex differences in brain. These emerging findings also suggest that epigenetic mechanisms are, in part, responsible for the differential susceptibility between males and females that is characteristic of a spectrum of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Irfan A. Qureshi
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mark F. Mehler
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
33
|
Chen X, Grisham W, Arnold AP. X chromosome number causes sex differences in gene expression in adult mouse striatum. Eur J Neurosci 2009; 29:768-76. [PMID: 19250439 DOI: 10.1111/j.1460-9568.2009.06610.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous research suggests that sex differences in the nigrostriatal system are created by direct effects of the sex chromosomes (XX vs. XY), independent of the action of gonadal hormones. Here we tested for sex chromosome effects on expression of three mRNAs in the striatum and nucleus accumbens of adult mice of the four core genotypes model (XX and XY gonadal males, XX and XY gonadal females). Mice were gonadectomized (GDX) at 47-51 days old to eliminate group differences in the levels of gonadal steroids. Three weeks later, mice were killed and brains collected for in situ hybridization of the striatum, or the striatum was dissected out for quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Expression in XX and XY mice was measured by in situ hybridization using riboprobes encoding the dynorphin precursor Pdyn (prodynorphin), the substance P precursor Tac1 (preprotachykinin) or dopamine D2 receptor. XX mice had higher expression, relative to XY mice of the same gonadal sex, of Pdyn and Tac1 mRNA in specific striatal regions. Quantitative PCR confirmed that GDX XX mice have higher Pdyn expression in striatum than XY mice, regardless of their gonadal sex. XX had higher Pdyn expression than XY or XO mice, indicating that the sex chromosome effect is the result of XX vs. XY differences in the number of X chromosomes, probably because of sex differences in the expression of X gene(s) that escape inactivation. We detected no sex chromosome effect on D2 receptor mRNA.
Collapse
Affiliation(s)
- Xuqi Chen
- Department of Physiological Science, and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA 90095-1606, USA
| | | | | |
Collapse
|
34
|
Abstract
XX and XY cells have a different number of X and Y genes. These differences in their genomes cause sex differences in the functions of cells, both in the gonads and in non-gonadal tissues. This review discusses mouse models that have shed light on these direct genetic effects of sex chromosomes that cause sex differences in physiology. Because many sex differences in tissues are caused by different effects of male and female gonadal hormones, it is important to attempt to discriminate between direct genetic and hormonal effects. Numerous mouse models exist in which the number of X or Y genes is manipulated, aiming to observe the effects on phenotype. In two models, namely the four core genotypes model and SF1 knockout gonadless mice, it is possible to detect sex chromosome effects that are not explained by group differences in gonadal hormones. Moreover, mouse models are available to determine whether the sex chromosome effects are caused by X or Y genes.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Physiological Science and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA 90095-1606, USA.
| |
Collapse
|
35
|
Arnold AP, Chen X. What does the "four core genotypes" mouse model tell us about sex differences in the brain and other tissues? Front Neuroendocrinol 2009; 30:1-9. [PMID: 19028515 PMCID: PMC3282561 DOI: 10.1016/j.yfrne.2008.11.001] [Citation(s) in RCA: 408] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/02/2008] [Accepted: 11/04/2008] [Indexed: 11/28/2022]
Abstract
The "four core genotypes" (FCG) model comprises mice in which sex chromosome complement (XX vs. XY) is unrelated to the animal's gonadal sex. The four genotypes are XX gonadal males or females, and XY gonadal males or females. The model allows one to measure (1) the differences in phenotypes caused by sex chromosome complement (XX vs. XY), (2) the differential effects of ovarian and testicular secretions, and (3) the interactive effects of (1) and (2). Thus, the FCG model provides new information regarding the origins of sex differences in phenotype that has not been available from studies that manipulate gonadal hormone levels in normal XY males and XX females. Studies of the FCG model have uncovered XX vs. XY differences in behaviors (aggression, parenting, habit formation, nociception, social interactions), gene expression (septal vasopressin), and susceptibility to disease (neural tube closure and autoimmune disease) not mediated by gonadal hormones. Some sex chromosome effects are mediated by sex differences in dose of X genes or their parental imprint. Future studies will identify the genes involved and their mechanisms of action.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Physiological Science, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA 90095-1606, USA.
| | | |
Collapse
|
36
|
McPhie-Lalmansingh AA, Tejada LD, Weaver JL, Rissman EF. Sex chromosome complement affects social interactions in mice. Horm Behav 2008; 54:565-70. [PMID: 18590732 PMCID: PMC2561329 DOI: 10.1016/j.yhbeh.2008.05.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/21/2008] [Accepted: 05/27/2008] [Indexed: 12/12/2022]
Abstract
Sex differences in behavior can be attributed to differences in steroid hormones. Sex chromosome complement can also influence behavior, independent of gonadal differentiation. The mice used for this work combined a spontaneous mutation of the Sry gene with a transgene for Sry that is incorporated into an autosome thus disassociating gonad differentiation from sex chromosome complement. The resulting genotypes are XX and XY(-) females (ovary-bearing) along with XXSry and XY(-)Sry males (testes-bearing). Here we report results of basic behavioral phenotyping conducted with these mice. Motor coordination, use of olfactory cues to find a food item, general activity, foot shock threshold, and behavior in an elevated plus maze were not affected by gonadal sex or sex chromosome complement. In a one-way active avoidance learning task females were faster to escape an electric shock than males. In addition, sex chromosome complement differences were noted during social interactions with submissive intruders. Female XY(-) mice were faster to follow an intruder than XX female mice. All XY(-) mice spent more time sniffing and grooming the intruder than the XX mice, with XY(-) females spending the most amount of time in this activity. Finally, XX females were faster to display an asocial behavior, digging, and engaged in more digging than XXSry male mice. All of these behaviors were tested in gonadectomized adults, thus, differences in circulating levels of gonadal steroids cannot account for these effects. Taken together, these data show that sex chromosome complement affects social interaction style in mice.
Collapse
Affiliation(s)
| | | | | | - Emilie F. Rissman
- Corresponding author. PO Box 800733, Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Fax: +1 434 243 8433. E-mail address: (E.F. Rissman)
| |
Collapse
|
37
|
Sex-specific differences in expression of histone demethylases Utx and Uty in mouse brain and neurons. J Neurosci 2008; 28:4521-7. [PMID: 18434530 DOI: 10.1523/jneurosci.5382-07.2008] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although X inactivation is thought to balance gene expression between the sexes, some genes escape inactivation, potentially contributing to differences between males and females. Utx (ubiquitously transcribed tetratricopeptide repeat gene on X chromosome) is an escapee gene that encodes a demethylase specific for lysine 27 of histone H3, a mark of repressed chromatin. We found Utx to be expressed higher in females than in males in developing and adult brains and in adult liver. XX mice had a higher level of Utx than XY mice, regardless of whether they had testes or ovaries, indicating that the sexually dimorphic gene expression was a consequence of the sex chromosome complement. Females had significantly higher levels of Utx than males in most brain regions except in the amygdala. The regional expression of the Y-linked paralogue Uty (ubiquitously transcribed tetratricopeptide repeat gene on Y chromosome) was somewhat distinct from that of Utx, specifically in the paraventricular nucleus of the hypothalamus (high Uty) and the amygdala (high Utx), implying that the two paralogues may be differentially regulated. Higher expression of Utx compared with Uty was detected in P19 pluripotent embryonic carcinoma cells as well as in P19-derived neurons. This transcriptional divergence between the two paralogues was associated with high levels of histone H3 lysine 4 dimethylation at the Utx promoter and of histone H4 lysine 16 acetylation throughout the gene body, which suggests that epigenetic mechanisms control differential expression of paralogous genes.
Collapse
|
38
|
Davies W, Wilkinson LS. It is not all hormones: Alternative explanations for sexual differentiation of the brain. Brain Res 2006; 1126:36-45. [PMID: 17101121 DOI: 10.1016/j.brainres.2006.09.105] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 09/22/2006] [Accepted: 09/22/2006] [Indexed: 12/11/2022]
Abstract
Males and females of many species differ with regard to neurodevelopment, ongoing brain function and behavior. For many years, it was assumed that these differences primarily arose due to hormonal masculinization of the male brain (and to a lesser extent hormonal feminization of the female brain). Recent elegant experiments in model systems have revealed that, while gonadal hormones undoubtedly play an important role in sexual differentiation of the brain, they are not the only possible mechanism for this phenomenon. In the present review, we discuss the concept that genes residing upon the sex chromosomes (which are asymmetrically inherited between males and females) may influence sexually dimorphic neurobiology directly, and suggest possible mechanisms. Future work will be directed towards understanding the extent and specificity with which sex-linked genes and hormones define brain structure and function, and towards elucidating potential interactions between the two mechanisms. Ultimately, it is hoped that such studies will provide insights into why men and women are differentially vulnerable to certain mental disorders, and will enable the development of effective sex-tailored therapeutics.
Collapse
Affiliation(s)
- William Davies
- The Babraham Institute, Babraham Research Campus, Babraham, Cambridge CB2 4AT, UK.
| | | |
Collapse
|
39
|
Xu J, Disteche CM. Sex differences in brain expression of X- and Y-linked genes. Brain Res 2006; 1126:50-5. [PMID: 16962077 DOI: 10.1016/j.brainres.2006.08.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/07/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
The X chromosome plays an important role in brain development and function, as evidenced by its disproportionately high content of genes whose mutations cause mental retardation. These X-linked brain genes may play a role in sexual differentiation if they are expressed at a higher level in XX females than in XY males, due to incomplete X inactivation in females. The expression of several X escapee genes is indeed higher in brain tissues from females when compared to males. In mouse, some of the sex differences are only found in adult brains but not in other tissues. Determining the brain expression pattern of these X escapee genes is important for a better understanding of their role in the neurological phenotypes of XO Turner syndrome.
Collapse
Affiliation(s)
- Jun Xu
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
40
|
Lopes AM, Ross N, Close J, Dagnall A, Amorim A, Crow TJ. Inactivation status of PCDH11X: sexual dimorphisms in gene expression levels in brain. Hum Genet 2006; 119:267-75. [PMID: 16425037 DOI: 10.1007/s00439-006-0134-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Genes escaping X-inactivation are predicted to contribute to differences in gene dosage between the sexes and are the prime candidates for being involved in the phenotype observed in individuals with X chromosome aneuploidies. Of particular interest is ProtocadherinX (PCDH11X or PCDHX), a recently described gene expressed in brain. In humans, PCDH11X has a homologue on the Y chromosome and is predicted to escape from X-inactivation. Employing bisulphite sequencing analysis we found absence of CpG island methylation on both the active and the inactive X chromosomes, providing a strong indication that PCDH11X escapes inactivation in humans. Furthermore, a sexual dimorphism in levels of expression in brain tissue was observed by quantitative real-time PCR, with females presenting an up to 2-fold excess in the abundance of PCDH11X transcripts. We relate these findings to sexually dimorphic traits in the human brain. Interestingly, PCDH11X/Y gene pair is unique to Homo sapiens, since the X-linked gene was transposed to the Y chromosome after the human-chimpanzee lineages split. Although no differences in promoter methylation were found between humans and chimpanzees, evidence of an upregulation of PCDH11X in humans deserves further investigation.
Collapse
Affiliation(s)
- Alexandra M Lopes
- IPATIMUP, Instituto de Patologia e Imunologia Molecular da Universidade do Porto, R. Dr Roberto Frias, S/N, 4200-465, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
41
|
Ross J, Roeltgen D, Zinn A. Cognition and the sex chromosomes: studies in Turner syndrome. HORMONE RESEARCH 2006; 65:47-56. [PMID: 16397401 DOI: 10.1159/000090698] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Turner syndrome (TS) is a human genetic disorder involving females who lack all or part of one X chromosome. The complex phenotype includes ovarian failure, a characteristic neurocognitive profile and typical physical features. TS features are associated not only with complete monosomy X but also with partial deletions of either the short (Xp) or long (Xq) arm (partial monosomy X). Impaired visual-spatial/perceptual abilities are characteristic of TS children and adults of varying races and socioeconomic status, but global developmental delay is uncommon. The cognitive phenotype generally includes normal verbal function with relatively impaired visual-spatial ability, attention, working memory, and spatially dependent executive function. The constellation of neurocognitive deficits observed in TS is most likely multifactorial and related to a complex interaction between genetic abnormalities and hormonal deficiencies. Furthermore, other determinants, including an additional genetic mechanism, imprinting, may also contribute to cognitive deficits associated with monosomy X. As a relatively common genetic disorder with well-defined manifestations, TS presents an opportunity to investigate genetic and hormonal factors that influence female cognitive development. TS is an excellent model for such studies because of its prevalence, the well-characterized phenotype, and the wealth of molecular resources available for the X chromosome. In the current review, we summarize the hormonal and genetic factors that may contribute to the TS neurocognitive phenotype. The hormonal determinants of cognition in TS are related to estrogen and androgen deficiency. Our genetic hypothesis is that haploinsufficiency for gene/genes on the short arm of the X chromosome (Xp) is responsible for the hallmark features of the TS cognitive phenotype. Careful clinical and molecular characterization of adult subjects missing part of Xp links the TS phenotype of impaired visual spatial/perceptual ability to specific distal Xp chromosome regions. We demonstrate that small, nonmosaic deletion of the distal short arm of the X chromosome in adult women is associated with the same hallmark cognitive profile seen in adult women with TS. Future studies will elucidate the cognitive deficits and the underlying etiology. These results should allow us to begin to design cognitive interventions that might lessen those deficits in the TS population.
Collapse
Affiliation(s)
- Judith Ross
- Department of Pediatrics, Thomas Jefferson University, A.I. duPont Hospital for Children, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|