1
|
de Jager C, Soliman E, Theus MH. Interrogating mediators of single-cell transcriptional changes in the acute damaged cerebral cortex: Insights into endothelial-astrocyte interactions. Mol Cell Neurosci 2025; 133:104003. [PMID: 40090391 PMCID: PMC12146052 DOI: 10.1016/j.mcn.2025.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025] Open
Abstract
Traumatic brain injury (TBI) induces complex cellular and molecular changes, challenging recovery and therapeutic development. Although molecular pathways have been implicated in TBI pathology, the cellular specificity of these mechanisms remains underexplored. Here, we investigate the role of endothelial cell (EC) EphA4, a receptor tyrosine kinase receptor involved in axonal guidance, in modulating cell-specific transcriptomic changes within the damaged cerebral cortex. Utilizing single-cell RNA sequencing (scRNA-seq) in an experimental TBI model, we mapped transcriptional changes across various cell types, with a focus on astrocytes and ECs. Our analysis reveals that EC-specific knockout (KO) of EphA4 triggers significant alterations in astrocyte gene expression and shifts predominate subclusters. We identified six distinct astrocyte clusters (C0-C5) in the damaged cortex including as C0-Mobp/Plp1+; C1-Slc1a3/Clu+; C2-Hbb-bs/Hba-a1/Ndrg2+; C3-GFAP/Lcn2+; C4-Gli3/Mertk+, and C5-Cox8a+. We validate a new Sox9+ cluster expressing Mertk and Gas, which mediates efferocytosis to facilitate apoptotic cell clearance and anti-inflammatory responses. Transcriptomic and CellChat analyses of EC-KO cells highlights upregulation of neuroprotective pathways, including increased amyloid precursor protein (APP) and Gas6. Key pathways predicted to be modulated in astrocytes from EC-KO mice include oxidative phosphorylation and FOXO signaling, mitochondrial dysfunction and ephrin B signaling. Concurrently, metabolic and signaling pathways in endothelial cells-such as ceramide and sphingosine phosphate metabolism and NGF-stimulated transcription-indicate an adaptive response to a metabolically demanding post-injury hypoxic environment. These findings elucidate potential interplay between astrocytic and endothelial responses as well as transcriptional networks underlying cortical tissue damage.
Collapse
Affiliation(s)
- Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Blacksburg, VA 24061, USA
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Blacksburg, VA 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Blacksburg, VA 24061, USA; Center for Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
2
|
Zhao JY, Zhou Y, Zhou CW, Zhan KB, Yang M, Wen M, Zhu LQ. Revisiting the critical roles of reactive microglia in traumatic brain injury. Int J Surg 2025; 111:3942-3978. [PMID: 40358653 PMCID: PMC12165506 DOI: 10.1097/js9.0000000000002420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025]
Abstract
Traumatic brain injury (TBI) triggers a complex neuroinflammatory cascade, with microglia serving as key regulators of both pathological damage and tissue structural restoration. Despite extensive research, the precise temporal evolution of microglial activation and its implications for long-term neurological outcomes remain incompletely understood. Here, we provide a comprehensive review of the molecular and cellular mechanisms underlying microglial responses in TBI, highlighting their role in neuroinflammation, neurogenesis, and tissue remodeling. We systematically compare clinical and preclinical TBI classifications, lesion patterns, and animal modeling strategies, evaluating their translational relevance. Furthermore, we explore the limitations of the conventional M1/M2 dichotomy and emphasize recent insights from single-cell transcriptomic analyses that reveal distinct microglial subpopulations across different injury phases. Finally, we discuss current therapeutic strategies targeting microglial modulation and propose future directions for neuroimmune interventions in TBI. By integrating findings from experimental and clinical studies, this review aims to bridge mechanistic insights with therapeutic advancements, paving the way for precision-targeted neuroimmune therapies.
Collapse
Affiliation(s)
- Jing-Yu Zhao
- Department of Neurosurgery, Wuhan Hankou Hospital, Hankou Hospital Affiliated to Wuhan University of Science and Technology, Jiang`an District, Wuhan, People’s Republic of China
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yang Zhou
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chao-Wen Zhou
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ke-Bin Zhan
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Ming Yang
- Department of Neurosurgery, Wuhan Hankou Hospital, Hankou Hospital Affiliated to Wuhan University of Science and Technology, Jiang`an District, Wuhan, People’s Republic of China
| | - Ming Wen
- Department of Neurosurgery, Wuhan Hankou Hospital, Hankou Hospital Affiliated to Wuhan University of Science and Technology, Jiang`an District, Wuhan, People’s Republic of China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
3
|
Chin SP, Abd Rahim ENA, Nor Arfuzir NN. Neuroprotective effects of human umbilical cord mesenchymal stem cells (Neuroncell-EX) in a rat model of ischemic stroke are mediated by immunomodulation, blood-brain barrier integrity, angiogenesis, and neurogenesis. In Vitro Cell Dev Biol Anim 2025; 61:389-402. [PMID: 40360812 DOI: 10.1007/s11626-025-01037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/07/2025] [Indexed: 05/15/2025]
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are a potential off-the-shelf product for acute ischemic stroke. This study explored the underlying mechanism of Cytopeutics® hUC-MSCs (Neuroncell-EX) as well as its feasibility and efficacy at two different doses: 2 × 106 cells per rat and 4 × 106 cells/rat in middle cerebral artery occlusion (MCAO) ischemic stroke model for 28 d. Modified neurological severity score (mNSS) and rotarod tests were evaluated at days 1, 4, 7, and 14. Transforming growth factor-beta 1 (TGF-β1), interleukin-1 receptor antagonist (IL-1Ra), and vascular endothelial growth factor (VEGF) were evaluated by enzyme-linked immunosorbent assay (ELISA) at days 4 and 28. Immunohistochemistry expression of aquaporin-4 (AQP4) and neuronal protein marker (NeuN) were performed at days 4 and 28, respectively. Both doses of Neuroncell-EX showed significant lower mNSS scores at days 7 and 14 compared to stroke control. Both Neuroncell-EX groups showed significant longer latency time at day 7, with only 4 × 10⁶ cells/rat group having significant longer time at day 14 than stroke control. At both time points, the 2 × 10⁶ cells/rat group had significantly higher TGF-β1 and IL-1Ra levels, with significantly increased TGF-β1 only observed in 4 × 10⁶ cells/rat group at day 4 compared to stroke control. The VEGF levels were significantly lower at day 4 but then significantly increased at day 28 in both Neuroncell-EX groups than stroke control. AQP4 expression was significantly higher in stroke control compared to healthy control at day 4. Both doses of Neuroncell-EX showed significantly higher NeuN expression compared to stroke control at day 28. There is a weak correlation between TGF-β1 with VEGF and inversely with AQP4. These results suggest that Neuroncell-EX is feasible and effective in promoting functional recovery and neuroprotection in ischemic rats, potentially through immunomodulation, angiogenesis, and neurogenesis mechanisms.
Collapse
Affiliation(s)
- Sze-Piaw Chin
- Cytopeutics Sdn Bhd, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia.
- CMH Specialist Hospital, Jalan Tun Dr. Ismail, 70200, Seremban, Negeri Sembilan, Malaysia.
- M.Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman (UTAR), Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia.
| | - Erlena Nor Asmira Abd Rahim
- Cytopeutics Sdn Bhd, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Natasha Najwa Nor Arfuzir
- Cytopeutics Sdn Bhd, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| |
Collapse
|
4
|
Santos M, Moreira JAF, Santos SS, Solá S. Sustaining Brain Youth by Neural Stem Cells: Physiological and Therapeutic Perspectives. Mol Neurobiol 2025:10.1007/s12035-025-04774-z. [PMID: 39985708 DOI: 10.1007/s12035-025-04774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
In the last two decades, stem cells (SCs) have attracted considerable interest for their research value and therapeutic potential in many fields, namely in neuroscience. On the other hand, the discovery of adult neurogenesis, the process by which new neurons are generated in the adult brain, challenged the traditional view that the brain is a static structure after development. The recent findings showing that adult neurogenesis has a significant role in brain plasticity, learning and memory, and emotional behavior, together with the fact that it is strongly dependent on several external and internal factors, have sparked more interest in this area. The mechanisms of adult neural stem cell (NSC) regulation, the physiological role of NSC-mediated neuroplasticity throughout life, and the most recent NSC-based therapeutic applications will be concisely reviewed. Noteworthy, due to their multipotency, self-renewal potential, and ability to secrete growth and immunomodulatory factors, NSCs have been mainly suggested for (1) transplantation, (2) neurotoxicology tests, and (3) drug screening approaches. The clinical trials of NSC-based therapy for different neurologic conditions are, nonetheless, mostly in the early phases and have not yet demonstrated conclusive efficacy or safety. Here, we provide an outlook of the major challenges and limitations, as well as some promising directions that could help to move toward stem cell widespread use in the treatment and prevention of several neurological disorders.
Collapse
Affiliation(s)
- Matilde Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - João A Ferreira Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Sónia Sá Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| |
Collapse
|
5
|
Demmings MD, da Silva Chagas L, Traetta ME, Rodrigues RS, Acutain MF, Barykin E, Datusalia AK, German-Castelan L, Mattera VS, Mazengenya P, Skoug C, Umemori H. (Re)building the nervous system: A review of neuron-glia interactions from development to disease. J Neurochem 2025; 169:e16258. [PMID: 39680483 DOI: 10.1111/jnc.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024]
Abstract
Neuron-glia interactions are fundamental to the development and function of the nervous system. During development, glia, including astrocytes, microglia, and oligodendrocytes, influence neuronal differentiation and migration, synapse formation and refinement, and myelination. In the mature brain, glia are crucial for maintaining neural homeostasis, modulating synaptic activity, and supporting metabolic functions. Neurons, inherently vulnerable to various stressors, rely on glia for protection and repair. However, glia, in their reactive state, can also promote neuronal damage, which contributes to neurodegenerative and neuropsychiatric diseases. Understanding the dual role of glia-as both protectors and potential aggressors-sheds light on their complex contributions to disease etiology and pathology. By appropriately modulating glial activity, it may be possible to mitigate neurodegeneration and restore neuronal function. In this review, which originated from the International Society for Neurochemistry (ISN) Advanced School in 2019 held in Montreal, Canada, we first describe the critical importance of glia in the development and maintenance of a healthy nervous system as well as their contributions to neuronal damage and neurological disorders. We then discuss potential strategies to modulate glial activity during disease to protect and promote a properly functioning nervous system. We propose that targeting glial cells presents a promising therapeutic avenue for rebuilding the nervous system.
Collapse
Affiliation(s)
- Matthew D Demmings
- Neuroscience Program, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Luana da Silva Chagas
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marianela E Traetta
- Instituto de Biología Celular y Neurociencia (IBCN), Facultad de Medicina, Conicet, Buenos Aires, Argentina
| | - Rui S Rodrigues
- University of Bordeaux, INSERM, Neurocentre Magendie U1215, Bordeaux, France
| | - Maria Florencia Acutain
- Instituto de Biología Celular y Neurociencia (IBCN), Facultad de Medicina, Conicet, Buenos Aires, Argentina
| | - Evgeny Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER Raebareli), Raebareli, UP, India
| | - Liliana German-Castelan
- Neuroscience Program, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Vanesa S Mattera
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB-FFyB-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedzisai Mazengenya
- Center of Medical and bio-Allied Health Sciences Research, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Cecilia Skoug
- Department of Neuroscience, Physiology & Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Nishiguchi T, Yamanishi K, Gorantla N, Shimura A, Seki T, Ishii T, Aoyama B, Malicoat JR, Phuong NJ, Dye NJ, Yamanashi T, Iwata M, Shinozaki G. Lipopolysaccharide-Induced Delirium-Like Behavior and Microglial Activation in Mice Correlate With Bispectral Electroencephalography. J Gerontol A Biol Sci Med Sci 2024; 79:glae261. [PMID: 39492697 PMCID: PMC11584909 DOI: 10.1093/gerona/glae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Indexed: 11/05/2024] Open
Abstract
Delirium is a multifactorial medical condition characterized by impairment across various mental functions and is one of the greatest risk factors for prolonged hospitalization, morbidity, and mortality. Research focused on delirium has proven to be challenging due to a lack of objective measures for diagnosing patients, and few laboratory models have been validated. Our recent studies report the efficacy of bispectral electroencephalography (BSEEG) in diagnosing delirium in patients and predicting patient outcomes. We applied BSEEG to validate a lipopolysaccharide-induced mouse model of delirium. Moreover, we investigated the relationship between BSEEG score, delirium-like behaviors, and microglia activation in hippocampal dentate gyrus and cortex regions in young and aged mice. There was a significant correlation between BSEEG score and impairment of attention in young mice. Additionally, there was a significant correlation between BSEEG score and microglial activation in hippocampal dentate gyrus and cortex regions in young and aged mice. We have successfully validated the BSEEG method by showing its associations with a level of behavioral change and microglial activation in an lipopolysaccharide-induced mouse model of delirium. In addition, the BSEEG method was able to sensitively capture an lipopolysaccharide-induced delirium-like condition that behavioral tests could not capture because of a hypoactive state.
Collapse
Affiliation(s)
- Tsuyoshi Nishiguchi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Kyosuke Yamanishi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Nipun Gorantla
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Akiyoshi Shimura
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Psychiatry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Tomoteru Seki
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Psychiatry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Takaya Ishii
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- iPS Cell-Based Drug Discovery Group, Regenerative and Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Osaka, Osaka, Japan
| | - Bun Aoyama
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Division of Anesthesiology, National Hospital Organization Kochi Hospital, Kochi, Kochi, Japan
| | - Johnny R Malicoat
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nathan James Phuong
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Nicole Jade Dye
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Takehiko Yamanashi
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Masaaki Iwata
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Gen Shinozaki
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
7
|
Tahmasian N, Feng MY, Arbabi K, Rusu B, Cao W, Kukreja B, Lubotzky A, Wainberg M, Tripathy SJ, Kalish BT. Neonatal Brain Injury Triggers Niche-Specific Changes to Cellular Biogeography. eNeuro 2024; 11:ENEURO.0224-24.2024. [PMID: 39681473 DOI: 10.1523/eneuro.0224-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Preterm infants are at risk for brain injury and neurodevelopmental impairment due, in part, to white matter injury following chronic hypoxia exposure. However, the precise molecular mechanisms by which neonatal hypoxia disrupts early neurodevelopment are poorly understood. Here, we constructed a brain-wide map of the regenerative response to newborn brain injury using high-resolution imaging-based spatial transcriptomics to analyze over 800,000 cells in a mouse model of chronic neonatal hypoxia. Additionally, we developed a new method for inferring condition-associated differences in cell type spatial proximity, enabling the identification of niche-specific changes in cellular architecture. We observed hypoxia-associated changes in region-specific cell states, cell type composition, and spatial organization. Importantly, our analysis revealed mechanisms underlying reparative neurogenesis and gliogenesis, while also nominating pathways that may impede circuit rewiring following neonatal hypoxia. Altogether, our work provides a comprehensive description of the molecular response to newborn brain injury.
Collapse
Affiliation(s)
- Nareh Tahmasian
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Min Yi Feng
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Keon Arbabi
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Bianca Rusu
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Wuxinhao Cao
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Bharti Kukreja
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Asael Lubotzky
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Michael Wainberg
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Shreejoy J Tripathy
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Brian T Kalish
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
8
|
Mirarchi A, Albi E, Arcuri C. Microglia Signatures: A Cause or Consequence of Microglia-Related Brain Disorders? Int J Mol Sci 2024; 25:10951. [PMID: 39456734 PMCID: PMC11507570 DOI: 10.3390/ijms252010951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Microglia signatures refer to distinct gene expression profiles or patterns of gene activity that are characteristic of microglia. Advances in gene expression profiling techniques, such as single-cell RNA sequencing, have allowed us to study microglia at a more detailed level and identify unique gene expression patterns that are associated, but not always, with different functional states of these cells. Microglial signatures depend on the developmental stage, brain region, and specific pathological conditions. By studying these signatures, it has been possible to gain insights into the underlying mechanisms of microglial activation and begin to develop targeted therapies to modulate microglia-mediated immune responses in the CNS. Historically, the first two signatures coincide with M1 pro-inflammatory and M2 anti-inflammatory phenotypes. The first one includes upregulation of genes such as CD86, TNF-α, IL-1β, and iNOS, while the second one may involve genes like CD206, Arg1, Chil3, and TGF-β. However, it has long been known that many and more specific phenotypes exist between M1 and M2, likely with corresponding signatures. Here, we discuss specific microglial signatures and their association, if any, with neurodegenerative pathologies and other brain disorders.
Collapse
Affiliation(s)
- Alessandra Mirarchi
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi 1, 06132 Perugia, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy;
| | - Cataldo Arcuri
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi 1, 06132 Perugia, Italy;
| |
Collapse
|
9
|
Früholz I, Meyer-Luehmann M. The intricate interplay between microglia and adult neurogenesis in Alzheimer's disease. Front Cell Neurosci 2024; 18:1456253. [PMID: 39360265 PMCID: PMC11445663 DOI: 10.3389/fncel.2024.1456253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system, play a crucial role in regulating adult neurogenesis and contribute significantly to the pathogenesis of Alzheimer's disease (AD). Under physiological conditions, microglia support and modulate neurogenesis through the secretion of neurotrophic factors, phagocytosis of apoptotic cells, and synaptic pruning, thereby promoting the proliferation, differentiation, and survival of neural progenitor cells (NPCs). However, in AD, microglial function becomes dysregulated, leading to chronic neuroinflammation and impaired neurogenesis. This review explores the intricate interplay between microglia and adult neurogenesis in health and AD, synthesizing recent findings to provide a comprehensive overview of the current understanding of microglia-mediated regulation of adult neurogenesis. Furthermore, it highlights the potential of microglia-targeted therapies to modulate neurogenesis and offers insights into potential avenues for developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Iris Früholz
- Department of Neurology, Medical Center ˗ University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center ˗ University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Huang Q, Wang Y, Chen S, Liang F. Glycometabolic Reprogramming of Microglia in Neurodegenerative Diseases: Insights from Neuroinflammation. Aging Dis 2024; 15:1155-1175. [PMID: 37611905 PMCID: PMC11081147 DOI: 10.14336/ad.2023.0807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Neurodegenerative diseases (ND) are conditions defined by progressive deterioration of the structure and function of the nervous system. Some major examples include Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS). These diseases lead to various dysfunctions, like impaired cognition, memory, and movement. Chronic neuroinflammation may underlie numerous neurodegenerative disorders. Microglia, an important immunocell in the brain, plays a vital role in defending against neuroinflammation. When exposed to different stimuli, microglia are activated and assume different phenotypes, participating in immune regulation of the nervous system and maintaining tissue homeostasis. The immunological activity of activated microglia is affected by glucose metabolic alterations. However, in the context of chronic neuroinflammation, specific alterations of microglial glucose metabolism and their mechanisms of action remain unclear. Thus, in this paper, we review the glycometabolic reprogramming of microglia in ND. The key molecular targets and main metabolic pathways are the focus of this research. Additionally, this study explores the mechanisms underlying microglial glucose metabolism reprogramming in ND and offers an analysis of the most recent therapeutic advancements. The ultimate aim is to provide insights into the development of potential treatments for ND.
Collapse
Affiliation(s)
- Qi Huang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Yanfu Wang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fengxia Liang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
11
|
Ma W, Yang J, Zhang J, He R, Luo Y, Li C, Zhao F, Tao F, Fan J, Yin L, Zhu K, Niu S, Li L. Cerebral protective effect of in situ and remote ischemic postconditioning on ischemic stroke rat via the TGFβ1-Smad2/3 signaling pathway. Brain Res 2024; 1824:148685. [PMID: 38006988 DOI: 10.1016/j.brainres.2023.148685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Patients with acute ischemic stroke achieve inadequate benefit due to the short therapeutic window for thrombolysis and the risk of ischemia/reperfusion (IR) injury. Ischemic postconditioning induces endogenous cerebral protection for acute ischemic stroke, although the protective mechanisms associated with ischemic postconditioning haven't been well clarified. In present study, the rat models of ischemic cerebral stroke with in situ and remote ischemic postconditioning (ISP and RIP) were established successfully. The Zea Longa and the modified neurological severity scoring (mNSS) were carried out to evaluate neurological function in the rats, while the open field test was explored to estimate their autonomic athletic ability. The 2,3,5-riphenyltetrazolium chloride (TTC) staining method was used to measure the size of the infarcts. TUNEL and Nissl's staining were used to detect the apoptosis rate of cells in the ischemic penumbra, with the expression of TGFβ1, Smad2, and Smad3 in the ischemic penumbra and serum detected by immunohistochemical staining, qRT-PCR, Western blots, and ELISA analysis. We showed that application of both types of ischemic postconditioning had cerebral protective effects for the ischemic stroke rats, that included effective reduction in the volume of cerebral infarction, alleviation of apoptosis and inflammation in the ischemic penumbra, and promotion of recovery of neurological function. These effects included significantly enriched gene ontology (GO) terms after RIP intervention that were related to TGFβ1, increased protein levels of TGFβ1 and decreased levels of p-Smad2/3 and smad3 following RIP intervention. We showed that the TGFβ1-Smad2/3 signaling pathway was associated with the cerebral protection of ischemic postconditioning.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Jinwei Yang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China; Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jinfen Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Rui He
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Yi Luo
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China; Department of Neurology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Feng Zhao
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Fengping Tao
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Jingjing Fan
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Luwei Yin
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Kewei Zhu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Shourui Niu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Liyan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
12
|
Šimončičová E, Henderson Pekarik K, Vecchiarelli HA, Lauro C, Maggi L, Tremblay MÈ. Adult Neurogenesis, Learning and Memory. ADVANCES IN NEUROBIOLOGY 2024; 37:221-242. [PMID: 39207695 DOI: 10.1007/978-3-031-55529-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neural plasticity can be defined as the ability of neural circuits to be shaped by external and internal factors. It provides the brain with a capacity for functional and morphological remodelling, with many lines of evidence indicating that these changes are vital for learning and memory formation. The basis of this brain plasticity resides in activity- and experience-driven modifications of synaptic strength, including synaptic formation, elimination or weakening, as well as of modulation of neuronal population, which drive the structural reorganization of neural networks. Recent evidence indicates that brain-resident glial cells actively participate in these processes, suggesting that mechanisms underlying plasticity in the brain are multifaceted. Establishing the 'tripartite' synapse, the role of astrocytes in modulating synaptic transmission in response to neuronal activity was recognized first. Further redefinition of the synapse as 'quad-partite' followed to acknowledge the contribution of microglia which were revealed to affect numerous brain functions via dynamic interactions with synapses, acting as 'synaptic sensors' that respond to neuronal activity and neurotransmitter release, as well as crosstalk with astrocytes. Early studies identified microglial ability to dynamically survey their local brain environment and established their integral role in the active interfacing of environmental stimuli (both internal and external), with brain plasticity and remodelling. Following the introduction to neurogenesis, this chapter details the role that microglia play in regulating neurogenesis in adulthood, specifically as it relates to learning and memory, as well as factors involved in modulation of microglia. Further, a microglial perspective is introduced for the context of environmental enrichment impact on neurogenesis, learning and memory across states of stress, ageing, disease and injury.
Collapse
Affiliation(s)
- Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | | | - Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
13
|
Harry GJ. Microglia Colonization Associated with Angiogenesis and Neural Cell Development. ADVANCES IN NEUROBIOLOGY 2024; 37:163-178. [PMID: 39207692 DOI: 10.1007/978-3-031-55529-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The temporal and spatial pattern of microglia colonization of the nervous system implies a role in early stages of organ development including cell proliferation, differentiation, and neurovascularization. As microglia colonize and establish within the developing nervous system, they assume a neural-specific identity and contribute to key developmental events. Their association around blood vessels implicates them in development of the vascular system or vice versa. A similar association has been reported for neural cell proliferation and associated phenotypic shifts and for cell fate differentiation to neuronal or glial phenotypes. These processes are accomplished by phagocytic activities, cell-cell contact relationships, and secretion of various factors. This chapter will present data currently available from studies evaluating the dynamic and interactive nature of these processes throughout the progression of nervous system development.
Collapse
Affiliation(s)
- G Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
14
|
Mirarchi A, Albi E, Beccari T, Arcuri C. Microglia and Brain Disorders: The Role of Vitamin D and Its Receptor. Int J Mol Sci 2023; 24:11892. [PMID: 37569267 PMCID: PMC10419106 DOI: 10.3390/ijms241511892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Accounting for 5-20% of the total glial cells present in the adult brain, microglia are involved in several functions: maintenance of the neural environment, response to injury and repair, immunesurveillance, cytokine secretion, regulation of phagocytosis, synaptic pruning, and sculpting postnatal neural circuits. Microglia contribute to some neurodevelopmental disorders, such as Nasu-Hakola disease (NHD), Tourette syndrome (TS), autism spectrum disorder (ASD), and schizophrenia. Moreover, microglial involvement in neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, has also been well established. During the last two decades, epidemiological and research studies have demonstrated the involvement of vitamin D3 (VD3) in the brain's pathophysiology. VD3 is a fat-soluble metabolite that is required for the proper regulation of many of the body's systems, as well as for normal human growth and development, and shows neurotrophic and neuroprotective actions and influences on neurotransmission and synaptic plasticity, playing a role in various neurological diseases. In order to better understand the exact mechanisms behind the diverse actions of VD3 in the brain, a large number of studies have been performed on isolated cells or tissues of the central nervous system (CNS). Here, we discuss the involvement of VD3 and microglia on neurodegeneration- and aging-related diseases.
Collapse
Affiliation(s)
- Alessandra Mirarchi
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Cataldo Arcuri
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
15
|
Song ZH, Song XJ, Yang CL, Cao P, Mao Y, Jin Y, Xu MY, Wang HT, Zhu X, Wang W, Zhang Z, Tao WJ. Up-regulation of microglial chemokine CXCL12 in anterior cingulate cortex mediates neuropathic pain in diabetic mice. Acta Pharmacol Sin 2023; 44:1337-1349. [PMID: 36697977 PMCID: PMC10310783 DOI: 10.1038/s41401-022-01046-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023]
Abstract
Diabetic patients frequently experience neuropathic pain, which currently lacks effective treatments. The mechanisms underlying diabetic neuropathic pain remain unclear. The anterior cingulate cortex (ACC) is well-known to participate in the processing and transformation of pain information derived from internal and external sensory stimulation. Accumulating evidence shows that dysfunction of microglia in the central nervous system contributes to many diseases, including chronic pain and neurodegenerative diseases. In this study, we investigated the role of microglial chemokine CXCL12 and its neuronal receptor CXCR4 in diabetic pain development in a mouse diabetic model established by injection of streptozotocin (STZ). Pain sensitization was assessed by the left hindpaw pain threshold in von Frey filament test. Iba1+ microglia in ACC was examined using combined immunohistochemistry and three-dimensional reconstruction. The activity of glutamatergic neurons in ACC (ACCGlu) was detected by whole-cell recording in ACC slices from STZ mice, in vivo multi-tetrode electrophysiological and fiber photometric recordings. We showed that microglia in ACC was significantly activated and microglial CXCL12 expression was up-regulated at the 7-th week post-injection, resulting in hyperactivity of ACCGlu and pain sensitization. Pharmacological inhibition of microglia or blockade of CXCR4 in ACC by infusing minocycline or AMD3100 significantly alleviated diabetic pain through preventing ACCGlu hyperactivity in STZ mice. In addition, inhibition of microglia by infusing minocycline markedly decreased STZ-induced upregulation of microglial CXCL12. Together, this study demonstrated that microglia-mediated ACCGlu hyperactivity drives the development of diabetic pain via the CXCL12/CXCR4 signaling, thus revealing viable therapeutic targets for the treatment of diabetic pain.
Collapse
Affiliation(s)
- Zi-Hua Song
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, China
| | - Xiang-Jie Song
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Chen-Ling Yang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230022, China
- College & Hospital of stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230022, China
| | - Peng Cao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yu Mao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yan Jin
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Meng-Yun Xu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Hai-Tao Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xia Zhu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Wei Wang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wen-Juan Tao
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230022, China.
- College & Hospital of stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230022, China.
| |
Collapse
|
16
|
Esmaeilzadeh A, Mohammadi V, Elahi R. Transforming growth factor β (TGF-β) pathway in the immunopathogenesis of multiple sclerosis (MS); molecular approaches. Mol Biol Rep 2023:10.1007/s11033-023-08419-z. [PMID: 37204543 DOI: 10.1007/s11033-023-08419-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/30/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is an acute demyelinating disease with an autoimmune nature, followed by gradual neurodegeneration and enervating scar formation. Dysregulated immune response is a crucial dilemma contributing to the pathogenesis of MS. The role of chemokines and cytokines, such as transforming growth factor-β (TGF-β), have been recently highlighted regarding their altered expressions in MS. TGF-β has three isoforms, TGF-β1, TGF-β2, and TGF-β3, that are structurally similar; however, they can show different functions. RESULTS All three isoforms are known to induce immune tolerance by modifying Foxp3+ regulatory T cells. Nevertheless, there are controversial reports concerning the role of TGF-β1 and 2 in the progression of scar formation in MS. At the same time, these proteins also improve oligodendrocyte differentiation and have shown neuroprotective behavior, two cellular processes that suppress the pathogenesis of MS. TGF-β3 shares the same properties but is less likely contributes to scar formation, and its direct role in MS remains elusive. DISCUSSION To develop novel neuroimmunological treatment strategies for MS, the optimal strategy could be the one that causes immune modulation, induces neurogenesis, stimulates remyelination, and prevents excessive scar formation. Therefore, regarding its immunological properties, TGF-β could be an appropriate candidate; however, contradictory results of previous studies have questioned its role and therapeutic potential in MS. In this review article, we provide an overview of the role of TGF-β in immunopathogenesis of MS, related clinical and animal studies, and the treatment potential of TGF-β in MS, emphasizing the role of different TGF-β isoforms.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Vahid Mohammadi
- School of Medicine, Zanjan University of medical sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of medical sciences, Zanjan, Iran
| |
Collapse
|
17
|
Raschick M, Richter A, Fischer L, Knopf L, Schult A, Yakupov R, Behnisch G, Guttek K, Düzel E, Dunay IR, Seidenbecher CI, Schraven B, Reinhold D, Schott BH. Plasma concentrations of anti-inflammatory cytokine TGF-β are associated with hippocampal structure related to explicit memory performance in older adults. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02638-1. [PMID: 37115329 PMCID: PMC10374779 DOI: 10.1007/s00702-023-02638-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Human cognitive abilities, and particularly hippocampus-dependent memory performance typically decline with increasing age. Immunosenescence, the age-related disintegration of the immune system, is increasingly coming into the focus of research as a considerable factor contributing to cognitive decline. In the present study, we investigated potential associations between plasma levels of pro- and anti-inflammatory cytokines and learning and memory performance as well as hippocampal anatomy in young and older adults. Plasma concentrations of the inflammation marker CRP as well as the pro-inflammatory cytokines IL-6 and TNF-α and the anti-inflammatory cytokine TGF-β1 were measured in 142 healthy adults (57 young, 24.47 ± 4.48 years; 85 older, 63.66 ± 7.32 years) who performed tests of explicit memory (Verbal Learning and Memory Test, VLMT; Wechsler Memory Scale, Logical Memory, WMS) with an additional delayed recall test after 24 h. Hippocampal volumetry and hippocampal subfield segmentation were performed using FreeSurfer, based on T1-weighted and high-resolution T2-weighted MR images. When investigating the relationship between memory performance, hippocampal structure, and plasma cytokine levels, we found that TGF-β1 concentrations were positively correlated with the volumes of the hippocampal CA4-dentate gyrus region in older adults. These volumes were in turn positively associated with better performance in the WMS, particularly in the delayed memory test. Our results support the notion that endogenous anti-inflammatory mechanisms may act as protective factors in neurocognitive aging.
Collapse
Affiliation(s)
- Matthias Raschick
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Larissa Fischer
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Lea Knopf
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Annika Schult
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Gusalija Behnisch
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Emrah Düzel
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Ildiko Rita Dunay
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Institute for Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
18
|
Chen Y, Nagib MM, Yasmen N, Sluter MN, Littlejohn TL, Yu Y, Jiang J. Neuroinflammatory mediators in acquired epilepsy: an update. Inflamm Res 2023; 72:683-701. [PMID: 36745211 DOI: 10.1007/s00011-023-01700-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is a group of chronic neurological disorders that have diverse etiologies but are commonly characterized by spontaneous seizures and behavioral comorbidities. Although the mechanisms underlying the epileptic seizures mostly remain poorly understood and the causes often can be idiopathic, a considerable portion of cases are known as acquired epilepsy. This form of epilepsy is typically associated with prior neurological insults, which lead to the initiation and progression of epileptogenesis, eventually resulting in unprovoked seizures. A convergence of evidence in the past two decades suggests that inflammation within the brain may be a major contributing factor to acquired epileptogenesis. As evidenced in mounting preclinical and human studies, neuroinflammatory processes, such as activation and proliferation of microglia and astrocytes, elevated production of pro-inflammatory cytokines and chemokines, blood-brain barrier breakdown, and upregulation of inflammatory signaling pathways, are commonly observed after seizure-precipitating events. An increased knowledge of these neuroinflammatory processes in the epileptic brain has led to a growing list of inflammatory mediators that can be leveraged as potential targets for new therapies of epilepsy and/or biomarkers that may provide valued information for the diagnosis and prognosis of the otherwise unpredictable seizures. In this review, we mainly focus on the most recent progress in understanding the roles of these inflammatory molecules in acquired epilepsy and highlight the emerging evidence supporting their candidacy as novel molecular targets for new pharmacotherapies of acquired epilepsy and the associated behavioral deficits.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marwa M Nagib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Taylor L Littlejohn
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
19
|
HS, an Ancient Molecular Recognition and Information Storage Glycosaminoglycan, Equips HS-Proteoglycans with Diverse Matrix and Cell-Interactive Properties Operative in Tissue Development and Tissue Function in Health and Disease. Int J Mol Sci 2023; 24:ijms24021148. [PMID: 36674659 PMCID: PMC9867265 DOI: 10.3390/ijms24021148] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate is a ubiquitous, variably sulfated interactive glycosaminoglycan that consists of repeating disaccharides of glucuronic acid and glucosamine that are subject to a number of modifications (acetylation, de-acetylation, epimerization, sulfation). Variable heparan sulfate chain lengths and sequences within the heparan sulfate chains provide structural diversity generating interactive oligosaccharide binding motifs with a diverse range of extracellular ligands and cellular receptors providing instructional cues over cellular behaviour and tissue homeostasis through the regulation of essential physiological processes in development, health, and disease. heparan sulfate and heparan sulfate-PGs are integral components of the specialized glycocalyx surrounding cells. Heparan sulfate is the most heterogeneous glycosaminoglycan, in terms of its sequence and biosynthetic modifications making it a difficult molecule to fully characterize, multiple ligands also make an elucidation of heparan sulfate functional properties complicated. Spatio-temporal presentation of heparan sulfate sulfate groups is an important functional determinant in tissue development and in cellular control of wound healing and extracellular remodelling in pathological tissues. The regulatory properties of heparan sulfate are mediated via interactions with chemokines, chemokine receptors, growth factors and morphogens in cell proliferation, differentiation, development, tissue remodelling, wound healing, immune regulation, inflammation, and tumour development. A greater understanding of these HS interactive processes will improve therapeutic procedures and prognoses. Advances in glycosaminoglycan synthesis and sequencing, computational analytical carbohydrate algorithms and advanced software for the evaluation of molecular docking of heparan sulfate with its molecular partners are now available. These advanced analytic techniques and artificial intelligence offer predictive capability in the elucidation of heparan sulfate conformational effects on heparan sulfate-ligand interactions significantly aiding heparan sulfate therapeutics development.
Collapse
|
20
|
Kot M, Neglur PK, Pietraszewska A, Buzanska L. Boosting Neurogenesis in the Adult Hippocampus Using Antidepressants and Mesenchymal Stem Cells. Cells 2022; 11:cells11203234. [PMID: 36291101 PMCID: PMC9600461 DOI: 10.3390/cells11203234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The hippocampus is one of the few privileged regions (neural stem cell niche) of the brain, where neural stem cells differentiate into new neurons throughout adulthood. However, dysregulation of hippocampal neurogenesis with aging, injury, depression and neurodegenerative disease leads to debilitating cognitive impacts. These debilitating symptoms deteriorate the quality of life in the afflicted individuals. Impaired hippocampal neurogenesis is especially difficult to rescue with increasing age and neurodegeneration. However, the potential to boost endogenous Wnt signaling by influencing pathway modulators such as receptors, agonists, and antagonists through drug and cell therapy-based interventions offers hope. Restoration and augmentation of hampered Wnt signaling to facilitate increased hippocampal neurogenesis would serve as an endogenous repair mechanism and contribute to hippocampal structural and functional plasticity. This review focuses on the possible interaction between neurogenesis and Wnt signaling under the control of antidepressants and mesenchymal stem cells (MSCs) to overcome debilitating symptoms caused by age, diseases, or environmental factors such as stress. It will also address some current limitations hindering the direct extrapolation of research from animal models to human application, and the technical challenges associated with the MSCs and their cellular products as potential therapeutic solutions.
Collapse
Affiliation(s)
- Marta Kot
- Correspondence: ; Tel.: +48-22-60-86-563
| | | | | | | |
Collapse
|
21
|
Cserép C, Schwarcz AD, Pósfai B, László ZI, Kellermayer A, Környei Z, Kisfali M, Nyerges M, Lele Z, Katona I, Ádám Dénes. Microglial control of neuronal development via somatic purinergic junctions. Cell Rep 2022; 40:111369. [PMID: 36130488 PMCID: PMC9513806 DOI: 10.1016/j.celrep.2022.111369] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/28/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Microglia, the resident immune cells of the brain, play important roles during development. Although bi-directional communication between microglia and neuronal progenitors or immature neurons has been demonstrated, the main sites of interaction and the underlying mechanisms remain elusive. By using advanced methods, here we provide evidence that microglial processes form specialized contacts with the cell bodies of developing neurons throughout embryonic, early postnatal, and adult neurogenesis. These early developmental contacts are highly reminiscent of somatic purinergic junctions that are instrumental for microglia-neuron communication in the adult brain. The formation and maintenance of these junctions is regulated by functional microglial P2Y12 receptors, and deletion of P2Y12Rs disturbs proliferation of neuronal precursors and leads to aberrant cortical cytoarchitecture during development and in adulthood. We propose that early developmental formation of somatic purinergic junctions represents an important interface for microglia to monitor the status of immature neurons and control neurodevelopment.
Collapse
Affiliation(s)
- Csaba Cserép
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary.
| | - Anett D Schwarcz
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Balázs Pósfai
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary; Szentágothai János Doctoral School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Zsófia I László
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary; University of Dundee, School of Medicine, Dundee DD1 9SY, UK
| | - Anna Kellermayer
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Zsuzsanna Környei
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Máté Kisfali
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Miklós Nyerges
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Zsolt Lele
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - István Katona
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary.
| |
Collapse
|
22
|
Mu JL, Liu XD, Dong YH, Fang YY, Qiu SD, Zhang F, Liu KX. Peripheral interleukin-6-associated microglial QUIN elevation in basolateral amygdala contributed to cognitive dysfunction in a mouse model of postoperative delirium. Front Med (Lausanne) 2022; 9:998397. [PMID: 36160165 PMCID: PMC9500157 DOI: 10.3389/fmed.2022.998397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Developing effective approaches for postoperative delirium has been hampered due to the lack of a pathophysiologically similar animal model to offer insights into the pathogenesis. The study, therefore, aimed to develop a delirium-like mouse model and explore the underlying mechanism. METHODS The three cycles of 10-min clamp following 5-min reopening of the superior mesenteric artery (SMA) were performed in adult male C57BL/6 mice to induce a delirium-like phenotype. Composite Z score calculated based on the results of Open Field, Y Maze and Buried Food Tests was employed to assess the delirium phenotype in mice. Microglia activities were monitored by immunofluorescence staining and comprehensive morphological analysis. Systemic administration of minocycline (MINO), IL-6 antibody or IL-6 neutralizing antibody, was applied to manipulate microglia. The expressions of Indoleamine 2,3-dioxygenase-1 (IDO-1) and quinolinic acid (QUIN) were examined by RT-PCR and High-Performance Liquid Chromatography/Mass Spectrometry, respectively. Cytokines were measured using fluorescence activated cell sorting method. RESULTS The repeated ischemia/reperfusion (I/R) surgery caused significant anxiety (P < 0.05) and cognition decline in working memory and orientation (P < 0.05) in mice at postoperative 24 h. The composite Z score, indicating an overall disturbance of brain function, fluctuated over 24 h after I/R surgery (P < 0.001). Immunofluorescent staining showed that the percentage of microglia in the basolateral amygdala (BLA) (P < 0.05) was reactivated after I/R surgery and was negatively correlated with dwell time at Y maze (R = -0.759, P = 0.035). Inhibiting microglia activities by MINO reduced QUIN productions (P < 0.01) that improved cognitive deficits (P < 0.05). The peripheral IL-6 might cause IL-6 elevation in the BLA. Systemic administration of IL-6 antibodies suppressed I/R-induced IL-6 elevations (P < 0.05), microglial reactivations (P < 0.05), IDO-1 expressions (P < 0.01), and neuroactive metabolite QUIN productions (P < 0.05) in the BLA, resulting in a recovery of cognitive deficits (P < 0.05). Injection of IL-6 exerted opposite effects. CONCLUSION The repeated intestinal I/R surgery-induced mouse model is a simple and reproducible one of postoperative delirium. Peripheral IL-6-associated microglial QUIN elevations in the BLA contributed to cognitive dysfunction in the model of postoperative delirium.
Collapse
Affiliation(s)
- Jing-Lan Mu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Dong Liu
- Department of Anesthesia and Intensive Care, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ye-Hong Dong
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying-Ying Fang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi-Da Qiu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fu Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Deus CM, Tavares H, Beatriz M, Mota S, Lopes C. Mitochondrial Damage-Associated Molecular Patterns Content in Extracellular Vesicles Promotes Early Inflammation in Neurodegenerative Disorders. Cells 2022; 11:2364. [PMID: 35954208 PMCID: PMC9367540 DOI: 10.3390/cells11152364] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a common hallmark in different neurodegenerative conditions that share neuronal dysfunction and a progressive loss of a selectively vulnerable brain cell population. Alongside ageing and genetics, inflammation, oxidative stress and mitochondrial dysfunction are considered key risk factors. Microglia are considered immune sentinels of the central nervous system capable of initiating an innate and adaptive immune response. Nevertheless, the pathological mechanisms underlying the initiation and spread of inflammation in the brain are still poorly described. Recently, a new mechanism of intercellular signalling mediated by small extracellular vesicles (EVs) has been identified. EVs are nanosized particles (30-150 nm) with a bilipid membrane that carries cell-specific bioactive cargos that participate in physiological or pathological processes. Damage-associated molecular patterns (DAMPs) are cellular components recognised by the immune receptors of microglia, inducing or aggravating neuroinflammation in neurodegenerative disorders. Diverse evidence links mitochondrial dysfunction and inflammation mediated by mitochondrial-DAMPs (mtDAMPs) such as mitochondrial DNA, mitochondrial transcription factor A (TFAM) and cardiolipin, among others. Mitochondrial-derived vesicles (MDVs) are a subtype of EVs produced after mild damage to mitochondria and, upon fusion with multivesicular bodies are released as EVs to the extracellular space. MDVs are particularly enriched in mtDAMPs which can induce an immune response and the release of pro-inflammatory cytokines. Importantly, growing evidence supports the association between mitochondrial dysfunction, EV release and inflammation. Here, we describe the role of extracellular vesicles-associated mtDAMPS in physiological conditions and as neuroinflammation activators contributing to neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Sandra Mota
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; (C.M.D.); (H.T.); (M.B.)
| | - Carla Lopes
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; (C.M.D.); (H.T.); (M.B.)
| |
Collapse
|
24
|
Zhang SY, Zhao J, Ni JJ, Li H, Quan ZZ, Qing H. Application and prospects of high-throughput screening for in vitro neurogenesis. World J Stem Cells 2022; 14:393-419. [PMID: 35949394 PMCID: PMC9244953 DOI: 10.4252/wjsc.v14.i6.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/07/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, high-throughput screening (HTS) has made great contributions to new drug discovery. HTS technology is equipped with higher throughput, minimized platforms, more automated and computerized operating systems, more efficient and sensitive detection devices, and rapid data processing systems. At the same time, in vitro neurogenesis is gradually becoming important in establishing models to investigate the mechanisms of neural disease or developmental processes. However, challenges remain in generating more mature and functional neurons with specific subtypes and in establishing robust and standardized three-dimensional (3D) in vitro models with neural cells cultured in 3D matrices or organoids representing specific brain regions. Here, we review the applications of HTS technologies on in vitro neurogenesis, especially aiming at identifying the essential genes, chemical small molecules and adaptive microenvironments that hold great prospects for generating functional neurons or more reproductive and homogeneous 3D organoids. We also discuss the developmental tendency of HTS technology, e.g., so-called next-generation screening, which utilizes 3D organoid-based screening combined with microfluidic devices to narrow the gap between in vitro models and in vivo situations both physiologically and pathologically.
Collapse
Affiliation(s)
- Shu-Yuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing 100049, China
| | - Jun-Jun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen-Zhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
25
|
Basic principles of neuroimmunology. Semin Immunopathol 2022; 44:685-695. [PMID: 35732977 DOI: 10.1007/s00281-022-00951-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/08/2022] [Indexed: 01/20/2023]
Abstract
The brain is an immune-privileged organ such that immune cell infiltration is highly regulated and better tolerating the introduction of antigen to reduce risk of harmful inflammation. Thus, the composition and the nature of the immune response is fundamentally different in the brain where avoiding immunopathology is prioritized compared to other peripheral organs. While the principle of immune privilege in the central nervous system (CNS) still holds true, the role of the immune system in the CNS has been revisited over the recent years. This redefining of immune privilege in the brain is a result of the recent re-discovery of the extensive CNS meningeal lymphatic system and the identification of resident T cells in the brain, meningeal layers, and its surrounding cerebrospinal fluid (CSF) in both humans and rodents. While neuro-immune interactions have been classically studied in the context of neuroinflammatory disease, recent works have also elucidated unconventional roles of immune-derived cytokines in neurological function, highlighting the many implications and potential of neuro-immune interactions. As a result, the study of neuro-immune interactions is becoming increasingly important in understanding both CNS homeostasis and disease. Here, we review the anatomically distinct immune compartments within the brain, the known mechanisms of leukocyte trafficking and infiltration into the CNS and unique transcriptional and functional characteristics of CNS-resident immune cells.
Collapse
|
26
|
Kaminska A, Radoszkiewicz K, Rybkowska P, Wedzinska A, Sarnowska A. Interaction of Neural Stem Cells (NSCs) and Mesenchymal Stem Cells (MSCs) as a Promising Approach in Brain Study and Nerve Regeneration. Cells 2022; 11:cells11091464. [PMID: 35563770 PMCID: PMC9105617 DOI: 10.3390/cells11091464] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Rapid developments in stem cell research in recent years have provided a solid foundation for their use in medicine. Over the last few years, hundreds of clinical trials have been initiated in a wide panel of indications. Disorders and injuries of the nervous system still remain a challenge for the regenerative medicine. Neural stem cells (NSCs) are the optimal cells for the central nervous system restoration as they can differentiate into mature cells and, most importantly, functional neurons and glial cells. However, their application is limited by multiple factors such as difficult access to source material, limited cells number, problematic, long and expensive cultivation in vitro, and ethical considerations. On the other hand, according to the available clinical databases, most of the registered clinical trials involving cell therapies were carried out with the use of mesenchymal stem/stromal/signalling cells (MSCs) obtained from afterbirth or adult human somatic tissues. MSCs are the multipotent cells which can also differentiate into neuron-like and glia-like cells under proper conditions in vitro; however, their main therapeutic effect is more associated with secretory and supportive properties. MSCs, as a natural component of cell niche, affect the environment through immunomodulation as well as through the secretion of the trophic factors. In this review, we discuss various therapeutic strategies and activated mechanisms related to bilateral MSC–NSC interactions, differentiation of MSCs towards the neural cells (subpopulation of crest-derived cells) under the environmental conditions, bioscaffolds, or co-culture with NSCs by recreating the conditions of the neural cell niche.
Collapse
|
27
|
Wu C, Pan Y, Wang L, Liu M, Wu M, Wang J, Yang G, Guo Y, Ma Y. A new method for primary culture of microglia in rats with spinal cord injury. Biochem Biophys Res Commun 2022; 599:63-68. [PMID: 35176626 DOI: 10.1016/j.bbrc.2022.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
At present, the primary culture method of microglia is complicated, and the culture of spinal cord microglia is rare, so we will explore to establish a new and efficient primary culture method of microglia in rats with spinal cord injury (SCI). The SCI model of SD rats was established by modified A11en's method, and the model of SCI was performed on 1 d, 3 d, 7 d and 14 d respectively. Then the injured spinal cord was removed, mechanically separated and filtered. The morphology of microglia was observed the next day and its purity was identified by CD11b and Iba1 immunofluorescence labeling. According to the above results, the morphological changes of microglia after 3 d of SCI were observed at 1 d, 2 d and 4 d. The results showed that the purity of microglia was 98%. The number of microglia after 3 d of SCI was the most. After SCI, the migration ability of microglia was enhanced, the number of microglia in the injured area increased, and the number was the highest at 3 d, then gradually decreased. In addition, the microglia after SCI would gradually change from active state to resting state with the passage of time. Therefore, we can use a simple and efficient mechanical separation method to extract primary microglia, which provides the basis for the study of microglia.
Collapse
Affiliation(s)
- Chengjie Wu
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yalan Pan
- Laboratory of Chinese Medicine Nursing Intervention for Chronic Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lining Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing, China
| | - Mengmin Liu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing, China
| | - Mao Wu
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Jianwei Wang
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Guanglu Yang
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Guo
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yong Ma
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing, China.
| |
Collapse
|
28
|
Chronic IL-10 overproduction disrupts microglia-neuron dialogue similar to aging, resulting in impaired hippocampal neurogenesis and spatial memory. Brain Behav Immun 2022; 101:231-245. [PMID: 34990747 DOI: 10.1016/j.bbi.2021.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
The subgranular zone of the dentate gyrus is an adult neurogenic niche where new neurons are continuously generated. A dramatic hippocampal neurogenesis decline occurs with increasing age, contributing to cognitive deficits. The process of neurogenesis is intimately regulated by the microenvironment, with inflammation being considered a strong negative factor for this process. Thus, we hypothesize that the reduction of new neurons in the aged brain could be attributed to the age-related microenvironmental changes towards a pro-inflammatory status. In this work, we evaluated whether an anti-inflammatory microenvironment could counteract the negative effect of age on promoting new hippocampal neurons. Surprisingly, our results show that transgenic animals chronically overexpressing IL-10 by astrocytes present a decreased hippocampal neurogenesis in adulthood. This results from an impairment in the survival of neural newborn cells without differences in cell proliferation. In parallel, hippocampal-dependent spatial learning and memory processes were affected by IL-10 overproduction as assessed by the Morris water maze test. Microglial cells, which are key players in the neurogenesis process, presented a different phenotype in transgenic animals characterized by high activation together with alterations in receptors involved in neuronal communication, such as CD200R and CX3CR1. Interestingly, the changes described in adult transgenic animals were similar to those observed by the effect of normal aging. Thus, our data suggest that chronic IL-10 overproduction mimics the physiological age-related disruption of the microglia-neuron dialogue, resulting in hippocampal neurogenesis decrease and spatial memory impairment.
Collapse
|
29
|
Intercellular Communication in the Brain through Tunneling Nanotubes. Cancers (Basel) 2022; 14:cancers14051207. [PMID: 35267518 PMCID: PMC8909287 DOI: 10.3390/cancers14051207] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Tunneling nanotubes (TNTs) are a means of cell communication which have been recently discovered. They allow the intercellular trafficking of many types of cellular compounds ranging from ions, such as Ca2+, to whole organelles such as mitochondria. TNTs are found in many tissues, both in physiological and pathological conditions. They are also found in the brain where they contribute to brain development and function and also to degenerative diseases and glioma. Abstract Intercellular communication is essential for tissue homeostasis and function. Understanding how cells interact with each other is paramount, as crosstalk between cells is often dysregulated in diseases and can contribute to their progression. Cells communicate with each other through several modalities, including paracrine secretion and specialized structures ensuring physical contact between them. Among these intercellular specialized structures, tunneling nanotubes (TNTs) are now recognized as a means of cell-to-cell communication through the exchange of cellular cargo, controlled by a variety of biological triggers, as described here. Intercellular communication is fundamental to brain function. It allows the dialogue between the many cells, including neurons, astrocytes, oligodendrocytes, glial cells, microglia, necessary for the proper development and function of the brain. We highlight here the role of TNTs in connecting these cells, for the physiological functioning of the brain and in pathologies such as stroke, neurodegenerative diseases, and gliomas. Understanding these processes could pave the way for future therapies.
Collapse
|
30
|
Zhang J, Jiang H, Wu F, Chi X, Pang Y, Jin H, Sun Y, Zhang S. Neuroprotective Effects of Hesperetin in Regulating Microglia Polarization after Ischemic Stroke by Inhibiting TLR4/NF- κB Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9938874. [PMID: 34956584 PMCID: PMC8709759 DOI: 10.1155/2021/9938874] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
This study aimed to explore the influence of hesperidin on the polarization of microglia to clarify the key mechanism of regulating the polarization of M2 microglia. C57BL/6 mice were randomly divided into middle cerebral artery occlusion model group (MCAO group), MCAO + hesperidin treatment group (MCAO + hesperidin group), and sham group (sham operation group). The mice were assessed with neurological scores for their functional status. 2,3,5-Triphenyltetrazole chloride (TTC) was used to determine the volume of cerebral infarction. Hematoxylin and eosin (H&E) staining was performed to detect brain loss. The system with 1% O2, 5% CO2, and 92% N2 was applied to establish BV2 in vitro model induced by MCAO. TNF-α, IL-1β, TGF-β, and IL-10 levels of cytokines in the supernatant were detected by ELISA. RT-qPCR was used to detect mRNA levels of M1 iNOS, CD11b, CD32, and CD86, and mRNA levels of M2 CD206, Arg-1, and TGF-β. The Iba-1, iNOS, and Arg-1 of microglia and protein levels of TLR4 and p-NF-κB related to the pathway were detected by Western blot. After treatment with hesperidin, BV2 cells induced by MCAO in vitro can reduce the proinflammatory cytokines of TNF-α and IL-1β significantly, further upregulating anti-inflammatory cytokines of TGF-β, IL-10 while inhibiting TLR4 and p-NF-κB expression. The MCAO-induced BV2 cells treated by TLR-4 inhibitor TAK-242 and NF-κB inhibitor BAY 11-7082 had similar polarization effects to those treated with hesperidin. This study found that hesperetin gavage treatment can improve the neurological deficit and regulate the polarization of microglia in MCAO mice. In vitro experiments further verified that hesperidin plays a neuroprotective role by inhibiting the TLR4-NF-κB pathway, thus providing new targets and strategies for neuroprotection and nerve repair after ischemic stroke.
Collapse
Affiliation(s)
- Jiawen Zhang
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Hao Jiang
- The Fifth Affiliated Hospital of Harbin Medical University, Qiqihar 161000, China
| | - Fang Wu
- Division of Liver Disease, Qiqihar Seventh Hospital, Qiqihar 161000, China
| | - Xiaofei Chi
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Yu Pang
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Hongwei Jin
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Yuyang Sun
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Shicun Zhang
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| |
Collapse
|
31
|
Levin SG, Pershina EV, Bugaev-Makarovskiy NA, Chernomorets IY, Konakov MV, Arkhipov VI. Why Do Levels Of Anti-inflammatory Cytokines Increase During Memory Acquisition? Neuroscience 2021; 473:159-169. [PMID: 34418518 DOI: 10.1016/j.neuroscience.2021.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/14/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
The role of anti-inflammatory cytokines in the mechanisms of learning and memory, modulation of synaptic plasticity in the mammalian brain has not received sufficient attention. These issues are discussed in this review, and among the many cytokines, attention is paid to the most studied in this respect IL-10, IL-4, IL-13 and TGF-β. The level of anti-inflammatory cytokines in the brain tends to increase during memory acquisition, but the significance of such an increase is unclear. We hypothesize that anti-inflammatory cytokines primarily protect and optimize the functioning of neuronal circuits involved in information processing. The increased local activity of neurons during memory acquisition activates many signaling molecules, and some of them can trigger unwanted processes (including neuroinflammation), but increased levels of anti-inflammatory cytokines prevent this triggering. Each of the anti-inflammatory cytokines plays a specific role in supporting information processing. For example, the role of IL-4 and IL-13 in recruiting T cells to the meninges during training in healthy animals has been most studied. It has also been shown that TGF-β is able to optimize late stage LTP in the hippocampus and support the consolidation of memory traces in behavioral studies. Cytokines have an effect on learning and memory through their influence on neuroplasticity, neurogenesis in the hippocampus and regulation of the neurovascular unit. Experiments have shown such an effect, and the data obtained create the prerequisites for new therapeutic approaches to the correction of cognitive impairments.
Collapse
Affiliation(s)
- Sergey G Levin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Ekaterina V Pershina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Nickolay A Bugaev-Makarovskiy
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Irina Yu Chernomorets
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Maxim V Konakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Vladimir I Arkhipov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
32
|
Hartl CL, Ramaswami G, Pembroke WG, Muller S, Pintacuda G, Saha A, Parsana P, Battle A, Lage K, Geschwind DH. Coexpression network architecture reveals the brain-wide and multiregional basis of disease susceptibility. Nat Neurosci 2021; 24:1313-1323. [PMID: 34294919 PMCID: PMC10263365 DOI: 10.1038/s41593-021-00887-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Gene networks have yielded numerous neurobiological insights, yet an integrated view across brain regions is lacking. We leverage RNA sequencing in 864 samples representing 12 brain regions to robustly identify 12 brain-wide, 50 cross-regional and 114 region-specific coexpression modules. Nearly 40% of genes fall into brain-wide modules, while 25% comprise region-specific modules reflecting regional biology, such as oxytocin signaling in the hypothalamus, or addiction pathways in the nucleus accumbens. Schizophrenia and autism genetic risk are enriched in brain-wide and multiregional modules, indicative of broad impact; these modules implicate neuronal proliferation and activity-dependent processes, including endocytosis and splicing, in disease pathophysiology. We find that cell-type-specific long noncoding RNA and gene isoforms contribute substantially to regional synaptic diversity and that constrained, mutation-intolerant genes are primarily enriched in neurons. We leverage these data using an omnigenic-inspired network framework to characterize how coexpression and gene regulatory networks reflect neuropsychiatric disease risk, supporting polygenic models.
Collapse
Affiliation(s)
- Christopher L Hartl
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gokul Ramaswami
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - William G Pembroke
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sandrine Muller
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Greta Pintacuda
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Medicine, Harvard University, Cambridge, MA, USA
| | - Ashis Saha
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Princy Parsana
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Alexis Battle
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kasper Lage
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Institute for Biological Psychiatry, Mental Health Center Sct. Hans, University of Copenhagen, Roskilde, Denmark
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry and Biobehavioral Sciences, Semel Institue, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Hayes AJ, Melrose J. Neural Tissue Homeostasis and Repair Is Regulated via CS and DS Proteoglycan Motifs. Front Cell Dev Biol 2021; 9:696640. [PMID: 34409033 PMCID: PMC8365427 DOI: 10.3389/fcell.2021.696640] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023] Open
Abstract
Chondroitin sulfate (CS) is the most abundant and widely distributed glycosaminoglycan (GAG) in the human body. As a component of proteoglycans (PGs) it has numerous roles in matrix stabilization and cellular regulation. This chapter highlights the roles of CS and CS-PGs in the central and peripheral nervous systems (CNS/PNS). CS has specific cell regulatory roles that control tissue function and homeostasis. The CNS/PNS contains a diverse range of CS-PGs which direct the development of embryonic neural axonal networks, and the responses of neural cell populations in mature tissues to traumatic injury. Following brain trauma and spinal cord injury, a stabilizing CS-PG-rich scar tissue is laid down at the defect site to protect neural tissues, which are amongst the softest tissues of the human body. Unfortunately, the CS concentrated in gliotic scars also inhibits neural outgrowth and functional recovery. CS has well known inhibitory properties over neural behavior, and animal models of CNS/PNS injury have demonstrated that selective degradation of CS using chondroitinase improves neuronal functional recovery. CS-PGs are present diffusely in the CNS but also form denser regions of extracellular matrix termed perineuronal nets which surround neurons. Hyaluronan is immobilized in hyalectan CS-PG aggregates in these perineural structures, which provide neural protection, synapse, and neural plasticity, and have roles in memory and cognitive learning. Despite the generally inhibitory cues delivered by CS-A and CS-C, some CS-PGs containing highly charged CS disaccharides (CS-D, CS-E) or dermatan sulfate (DS) disaccharides that promote neural outgrowth and functional recovery. CS/DS thus has varied cell regulatory properties and structural ECM supportive roles in the CNS/PNS depending on the glycoform present and its location in tissue niches and specific cellular contexts. Studies on the fruit fly, Drosophila melanogaster and the nematode Caenorhabditis elegans have provided insightful information on neural interconnectivity and the role of the ECM and its PGs in neural development and in tissue morphogenesis in a whole organism environment.
Collapse
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Wales, United Kingdom
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonard’s, NSW, Australia
| |
Collapse
|
34
|
Beecher K, Wang J, Jacques A, Chaaya N, Chehrehasa F, Belmer A, Bartlett SE. Sucrose Consumption Alters Serotonin/Glutamate Co-localisation Within the Prefrontal Cortex and Hippocampus of Mice. Front Mol Neurosci 2021; 14:678267. [PMID: 34262435 PMCID: PMC8273284 DOI: 10.3389/fnmol.2021.678267] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
The overconsumption of sugar-sweetened food and beverages underpins the current rise in obesity rates. Sugar overconsumption induces maladaptive neuroplasticity to decrease dietary control. Although serotonin and glutamate co-localisation has been implicated in reward processing, it is still unknown how chronic sucrose consumption changes this transmission in regions associated with executive control over feeding—such as the prefrontal cortex (PFC) and dentate gyrus (DG) of the hippocampus. To address this, a total of 16 C57Bl6 mice received either 5% w/v sucrose or water as a control for 12 weeks using the Drinking-In-The-Dark paradigm (n = 8 mice per group). We then examined the effects of chronic sucrose consumption on the immunological distribution of serotonin (5-HT), vesicular glutamate transporter 3 (VGLUT3) and 5-HT+/VGLUT3+ co-localised axonal varicosities. Sucrose consumption over 12 weeks decreased the number of 5-HT–/VGLUT3+ and 5-HT+/VGLUT3+ varicosities within the PFC and DG. The number of 5-HT+/VGLUT3– varicosities remained unchanged within the PFC but decreased in the DG following sucrose consumption. Given that serotonin mediates DG neurogenesis through microglial migration, the number of microglia within the DG was also assessed in both experimental groups. Sucrose consumption decreased the number of DG microglia. Although the DG and PFC are associated with executive control over rewarding activities and emotional memory formation, we did not detect a subsequent change in DG neurogenesis or anxiety-like behaviour or depressive-like behaviour. Overall, these findings suggest that the chronic consumption of sugar alters serotonergic neuroplasticity within neural circuits responsible for feeding control. Although these alterations alone were not sufficient to induce changes in neurogenesis or behaviour, it is proposed that the sucrose consumption may predispose individuals to these cognitive deficits which ultimately promote further sugar intake.
Collapse
Affiliation(s)
- Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua Wang
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jacques
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas Chaaya
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Fatemeh Chehrehasa
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Arnauld Belmer
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Selena E Bartlett
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
35
|
Shigemoto-Mogami Y, Sato K. [Central Nervous System Developmental Regulation of Microglia via Cytokines and Chemokines]. YAKUGAKU ZASSHI 2021; 141:359-368. [PMID: 33642504 DOI: 10.1248/yakushi.20-00198-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microglia are immune cells resident in the central nervous system (CNS). It has been gradually clarified that microglia play various roles at the developmental stage of the CNS. From embryonic to early postnatal age, microglia remove apoptotic cells by phagocytosis and refine the neural circuits by synaptic pruning. In addition, microglia promote the proliferation and differentiation of neural stem cells by releasing physiologically active substances. Our group has focused on the physiological actions of microglia via cytokines and chemokines at the early postnatal developmental stage. We found that a large number of activated microglia accumulate in the early postnatal subventricular zone (SVZ). We demonstrated that the these SVZ microglia facilitate neurogenesis and oligodendrogenesis via inflammatory cytokines including IL-1β, TNFα, IL-6, IFNγ. We have also found that microglia regulate the functional maturation of the blood brain barrier (BBB) and identified the cytokines and chemokines involved in the effects of microglia. These findings indicate that microglia are physiologically more important than ever thought to reveal robust brain functions. Furthermore, the new mode of microglial action may lead to the discovery of drug targets of the incurable CNS diseases.
Collapse
Affiliation(s)
| | - Kaoru Sato
- Division of Pharmacology, National Institute of Health Sciences
| |
Collapse
|
36
|
Lorenzen K, Mathy NW, Whiteford ER, Eischeid A, Chen J, Behrens M, Chen XM, Shibata A. Microglia induce neurogenic protein expression in primary cortical cells by stimulating PI3K/AKT intracellular signaling in vitro. Mol Biol Rep 2021; 48:563-584. [PMID: 33387198 PMCID: PMC7884585 DOI: 10.1007/s11033-020-06092-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Emerging evidence suggests that microglia can support neurogenesis. Little is known about the mechanisms by which microglia regulate the cortical environment and stimulate cortical neurogenesis. We used an in vitro co-culture model system to investigate the hypothesis that microglia respond to soluble signals from cortical cells, particularly following mechanical injury, to alter the cortical environment and promote cortical cell proliferation, differentiation, and survival. Analyses of cortical cell proliferation, cell death, neurogenic protein expression, and intracellular signaling were performed on uninjured and injured cortical cells in co-culture with microglial cell lines. Microglia soluble cues enhanced cortical cell viability and proliferation cortical cells. Co-culture of injured cortical cells with microglia significantly reduced cell death of cortical cells. Microglial co-culture significantly increased Nestin + and α-internexin + cortical cells. Multiplex ELISA and RT-PCR showed decreased pro-inflammatory cytokine production by microglia co-cultured with injured cortical cells. Inhibition of AKT phosphorylation in cortical cells blocked microglial-enhanced cortical cell viability and expression of neurogenic markers in vitro. This in vitro model system allows for assessment of the effect of microglial-derived soluble signals on cortical cell viability, proliferation, and stages of differentiation during homeostasis or following mechanical injury. These data suggest that microglia cells can downregulate inflammatory cytokine production following activation by mechanical injury to enhance proliferation of new cells capable of neurogenesis via activation of AKT intracellular signaling. Increasing our understanding of the mechanisms that drive microglial-enhanced cortical neurogenesis during homeostasis and following injury in vitro will provide useful information for future primary cell and in vivo studies.
Collapse
Affiliation(s)
- Kristi Lorenzen
- Biology Department, Creighton University, Omaha, NE, USA
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicholas W Mathy
- Biology Department, Creighton University, Omaha, NE, USA
- Pediatric Medicine, St. Joseph Heritage Healthcare, Chino Hills, CA, USA
| | - Erin R Whiteford
- Biology Department, Creighton University, Omaha, NE, USA
- Pediatric Medicine, St. Joseph Heritage Healthcare, Chino Hills, CA, USA
| | - Alex Eischeid
- Biology Department, Creighton University, Omaha, NE, USA
- Stanford Hospital and Clinics, 300 Pasteur Dr, Stanford, CA, USA
| | - Jing Chen
- Biology Department, Creighton University, Omaha, NE, USA
- Pediatric Medicine, St. Joseph Heritage Healthcare, Chino Hills, CA, USA
| | - Matthew Behrens
- Biology Department, Creighton University, Omaha, NE, USA
- University of Nebraska College of Medicine, Omaha, NE, USA
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Creighton University, Omaha, NE, USA
| | | |
Collapse
|
37
|
Dos Santos IRC, Dias MNC, Gomes-Leal W. Microglial activation and adult neurogenesis after brain stroke. Neural Regen Res 2021; 16:456-459. [PMID: 32985465 PMCID: PMC7996005 DOI: 10.4103/1673-5374.291383] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery that new neurons are produced in some regions of the adult mammalian brain is a paradigm-shift in neuroscience research. These new-born cells are produced from neuroprogenitors mainly in the subventricular zone at the margin of the lateral ventricle, subgranular zone in the hippocampal dentate gyrus and in the striatum, a component of the basal ganglia, even in humans. In the human hippocampus, neuroblasts are produced even in elderlies. The regulation of adult neurogenesis is a complex phenomenon involving a multitude of molecules, neurotransmitters and soluble factors released by different sources including glial cells. Microglia, the resident macrophages of the central nervous system, are considered to play an important role on the regulation of adult neurogenesis both in physiological and pathological conditions. Following stroke and other acute neural disorders, there is an increase in the numbers of neuroblast production in the neurogenic niches. Microglial activation is believed to display both beneficial and detrimental role on adult neurogenesis after stroke, depending on the activation level and brain location. In this article, we review the scientific evidence addressing the role of microglial activation on adult neurogenesis after ischemia. A comprehensive understanding of the microglial role after stroke and other neural disorders it is an important step for development of future therapies based on manipulation of adult neurogenesis.
Collapse
Affiliation(s)
- Ijair R C Dos Santos
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará-Brazil, Belém-Pará, Brazil
| | - Michelle Nerissa C Dias
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará-Brazil, Belém-Pará, Brazil
| | - Walace Gomes-Leal
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará-Brazil, Belém-Pará, Brazil
| |
Collapse
|
38
|
Role of Microglia in Modulating Adult Neurogenesis in Health and Neurodegeneration. Int J Mol Sci 2020; 21:ijms21186875. [PMID: 32961703 PMCID: PMC7555074 DOI: 10.3390/ijms21186875] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Microglia are the resident immune cells of the brain, constituting the powerhouse of brain innate immunity. They originate from hematopoietic precursors that infiltrate the developing brain during different stages of embryogenesis, acquiring a phenotype characterized by the presence of dense ramifications. Microglial cells play key roles in maintaining brain homeostasis and regulating brain immune responses. They continuously scan and sense the brain environment to detect any occurring changes. Upon detection of a signal related to physiological or pathological processes, the cells are activated and transform to an amoeboid-like phenotype, mounting adequate responses that range from phagocytosis to secretion of inflammatory and trophic factors. The overwhelming evidence suggests that microglia are crucially implicated in influencing neuronal proliferation and differentiation, as well as synaptic connections, and thereby cognitive and behavioral functions. Here, we review the role of microglia in adult neurogenesis under physiological conditions, and how this role is affected in neurodegenerative diseases.
Collapse
|
39
|
Worthen RJ, Garzon Zighelboim SS, Torres Jaramillo CS, Beurel E. Anti-inflammatory IL-10 administration rescues depression-associated learning and memory deficits in mice. J Neuroinflammation 2020; 17:246. [PMID: 32828124 PMCID: PMC7443292 DOI: 10.1186/s12974-020-01922-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Major depressive disorder is a widespread mood disorder. One of the most debilitating symptoms patients often experience is cognitive impairment. Recent findings suggest that inflammation is associated with depression and impaired cognition. Pro-inflammatory cytokines are elevated in the blood of depressed patients and impair learning and memory processes, suggesting that an anti-inflammatory approach might be beneficial for both depression and cognition. METHODS We subjected mice to the learned helplessness paradigm and evaluated novel object recognition and spatial memory. Mice were treated with IL-10 intranasally or/and microglia cells were depleted using PLX5622. Statistical differences were tested using ANOVA or t tests. RESULTS We first established a mouse model of depression in which learning and memory are impaired. We found that learned helplessness (LH) impairs novel object recognition (NOR) and spatial working memory. LH mice also exhibit reduced hippocampal dendritic spine density and increased microglial activation compared to non-shocked (NS) mice or mice that were subjected to the learned helpless paradigm but did not exhibit learned helplessness (non-learned helpless or NLH). These effects are mediated by microglia, as treatment with PLX5622, which depletes microglia, restores learning and memory and hippocampal dendritic spine density in LH mice. However, PLX5622 also impairs learning and memory and reduces hippocampal dendritic spine density in NLH mice, suggesting that microglia in NLH mice produce molecules that promote learning and memory. We found that microglial interleukin (IL)-10 levels are reduced in LH mice, and IL-10 administration is sufficient to restore NOR, spatial working memory, and hippocampal dendritic spine density in LH mice, and in NLH mice treated with PLX5622 consistent with a pro-cognitive role for IL-10. CONCLUSIONS Altogether these data demonstrate the critical role of IL-10 in promoting learning and memory after learned helplessness.
Collapse
Affiliation(s)
- Ryan J Worthen
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Gautier Building room 415, 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Susan S Garzon Zighelboim
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Gautier Building room, 4151011 NW 15th Street, Miami, FL, 33136, USA
| | - Camila S Torres Jaramillo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Gautier Building room, 4151011 NW 15th Street, Miami, FL, 33136, USA
| | - Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Gautier Building room 415, 1011 NW 15th Street, Miami, FL, 33136, USA.
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Gautier Building room, 4151011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
40
|
Abstract
In the adult mammalian hippocampus, new neurons arise from stem and progenitor cell division, in a process known as adult neurogenesis. Adult-generated neurons are sensitive to experience and may participate in hippocampal functions, including learning and memory, anxiety and stress regulation, and social behavior. Increasing evidence emphasizes the importance of new neuron connectivity within hippocampal circuitry for understanding the impact of adult neurogenesis on brain function. In this Review, we discuss how the functional consequences of new neurons arise from the collective interactions of presynaptic and postsynaptic neurons, glial cells, and the extracellular matrix, which together form the "tetrapartite synapse."
Collapse
Affiliation(s)
- Elise C Cope
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
41
|
Gray SC, Kinghorn KJ, Woodling NS. Shifting equilibriums in Alzheimer's disease: the complex roles of microglia in neuroinflammation, neuronal survival and neurogenesis. Neural Regen Res 2020; 15:1208-1219. [PMID: 31960800 PMCID: PMC7047786 DOI: 10.4103/1673-5374.272571] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/02/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease is the leading cause of dementia. Its increased prevalence in developed countries, due to the sharp rise in ageing populations, presents one of the costliest challenges to modern medicine. In order to find disease-modifying therapies to confront this challenge, a more complete understanding of the pathogenesis of Alzheimer's disease is necessary. Recent studies have revealed increasing evidence for the roles played by microglia, the resident innate immune system cells of the brain. Reflecting the well-established roles of microglia in reacting to pathogens and inflammatory stimuli, there is now a growing literature describing both protective and detrimental effects for individual cytokines and chemokines produced by microglia in Alzheimer's disease. A smaller but increasing number of studies have also addressed the divergent roles played by microglial neurotrophic and neurogenic factors, and how their perturbation may play a key role in the pathogenesis of Alzheimer's disease. Here we review recent findings on the roles played by microglia in neuroinflammation, neuronal survival and neurogenesis in Alzheimer's disease. In each case, landmark studies have provided evidence for the divergent ways in which microglia can either promote neuronal function and survival, or perturb neuronal function, leading to cell death. In many cases, the secreted molecules of microglia can lead to divergent effects depending on the magnitude and context of microglial activation. This suggests that microglial functions must be maintained in a fine equilibrium, in order to support healthy neuronal function, and that the cellular microenvironment in the Alzheimer's disease brain disrupts this fine balance, leading to neurodegeneration. Thus, an understanding of microglial homeostasis, both in health and across the trajectory of the disease state, will improve our understanding of the pathogenic mechanisms underlying Alzheimer's disease, and will hopefully lead to the development of microglial-based therapeutic strategies to restore equilibrium in the Alzheimer's disease brain.
Collapse
Affiliation(s)
- Sophie C. Gray
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kerri J. Kinghorn
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Nathaniel S. Woodling
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
42
|
Mecha M, Yanguas-Casás N, Feliú A, Mestre L, Carrillo-Salinas FJ, Riecken K, Gomez-Nicola D, Guaza C. Involvement of Wnt7a in the role of M2c microglia in neural stem cell oligodendrogenesis. J Neuroinflammation 2020; 17:88. [PMID: 32192522 PMCID: PMC7081569 DOI: 10.1186/s12974-020-01734-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/03/2020] [Indexed: 12/22/2022] Open
Abstract
Background The participation of microglia in CNS development and homeostasis indicate that these cells are pivotal for the regeneration that occurs after demyelination. The clearance of myelin debris and the inflammatory-dependent activation of local oligodendrocyte progenitor cells in a demyelinated lesion is dependent on the activation of M2c microglia, which display both phagocytic and healing functions. Emerging interest has been raised about the role of Wnt/β-catenin signaling in oligodendrogenesis and myelination. Besides, cytokines and growth factors released by microglia can control the survival, proliferation, migration, and differentiation of neural stem cells (NSCs), contributing to remyelination through the oligodendrocyte specification of this adult neurogenic niche. Methods TMEV-IDD model was used to study the contribution of dorsal SVZ stem cells to newly born oligodendrocytes in the corpus callosum following demyelination by (i) en-face dorsal SVZ preparations; (ii) immunohistochemistry; and (iii) cellular tracking. By RT-PCR, we analyzed the expression of Wnt proteins in demyelinated and remyelinating corpus callosum. Using in vitro approaches with microglia cultures and embryonic NSCs, we studied the role of purified myelin, Wnt proteins, and polarized microglia-conditioned medium to NSC proliferation and differentiation. One-way ANOVA followed by Bonferroni’s post-hoc test, or a Student’s t test were used to establish statistical significance. Results The demyelination caused by TMEV infection is paralleled by an increase in B1 cells and pinwheels in the dorsal SVZ, resulting in the mobilization of SVZ proliferative progenitors and their differentiation into mature oligodendrocytes. Demyelination decreased the gene expression of Wnt5a and Wnt7a, which was restored during remyelination. In vitro approaches show that Wnt3a enhances NSC proliferation, while Wnt7a and myelin debris promotes oligodendrogenesis from NSCs. As phagocytic M2c microglia secrete Wnt 7a, their conditioned media was found to induce Wnt/β-Catenin signaling in NSCs promoting an oligodendroglial fate. Conclusions We define here the contribution of microglia to Wnt production depending on their activation state, with M1 microglia secreting the Wnt5a protein and M2c microglia secreting Wnt7a. Collectively, our data reveal the role of reparative microglia in NSC oligodendrogenesis with the involvement of Wnt7a.
Collapse
Affiliation(s)
- Miriam Mecha
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain.
| | - Natalia Yanguas-Casás
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain.,Present address: Grupo de Investigación en Linfomas, Instituto Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Majadahonda, Madrid, Spain
| | - Ana Feliú
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain
| | - Leyre Mestre
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain
| | | | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Diego Gomez-Nicola
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Carmen Guaza
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain.
| |
Collapse
|
43
|
Abstract
There are vast literatures on the neural effects of alcohol and the neural effects of exercise. Simply put, exercise is associated with brain health, alcohol is not, and the mechanisms by which exercise benefits the brain directly counteract the mechanisms by which alcohol damages it. Although a degree of brain recovery naturally occurs upon cessation of alcohol consumption, effective treatments for alcohol-induced brain damage are badly needed, and exercise is an excellent candidate from a mechanistic standpoint. In this chapter, we cover the small but growing literature on the interactive neural effects of alcohol and exercise, and the capacity of exercise to repair alcohol-induced brain damage. Increasingly, exercise is being used as a component of treatment for alcohol use disorders (AUD), not because it reverses alcohol-induced brain damage, but because it represents a rewarding, alcohol-free activity that could reduce alcohol cravings and improve comorbid conditions such as anxiety and depression. It is important to bear in mind, however, that multiple studies attest to a counterintuitive positive relationship between alcohol intake and exercise. We therefore conclude with cautionary notes regarding the use of exercise to repair the brain after alcohol damage.
Collapse
|
44
|
Sotomayor-Sobrino M, Ochoa-Aguilar A, Méndez-Cuesta L, Gómez-Acevedo C. Neuroimmunological interactions in stroke. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2018.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
45
|
Cai B, Seong KJ, Bae SW, Kook MS, Chun C, Lee JH, Choi WS, Jung JY, Kim WJ. Water-Soluble Arginyl–Diosgenin Analog Attenuates Hippocampal Neurogenesis Impairment Through Blocking Microglial Activation Underlying NF-κB and JNK MAPK Signaling in Adult Mice Challenged by LPS. Mol Neurobiol 2019; 56:6218-6238. [DOI: 10.1007/s12035-019-1496-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/15/2019] [Indexed: 12/20/2022]
|
46
|
West RK, Wooden JI, Barton EA, Leasure JL. Recurrent binge ethanol is associated with significant loss of dentate gyrus granule neurons in female rats despite concomitant increase in neurogenesis. Neuropharmacology 2019; 148:272-283. [PMID: 30659841 DOI: 10.1016/j.neuropharm.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Abstract
Binge drinking is becoming increasingly common among American women and girls. We have previously shown significant cell loss, downregulation of neurotrophins and microgliosis in female rats after a single 4-day ethanol exposure. To determine whether recurrent binge exposure would produce similar effects, we administered ethanol (5 g/kg) or iso-caloric control diet once-weekly for 11 weeks to adult female rats. As we have previously shown exercise neuroprotection against binge-induced damage, half the rats were given access to exercise wheels. Blood ethanol concentration (BEC) did not differ between sedentary and exercised groups, nor did it change across time. Using stereology, we quantified the number and/or size of neurons in the medial prefrontal cortex (mPFC) and hippocampal dentate gyrus (DG), as well as the number and activation state of microglia. Binged sedentary rats had significant cell loss in the dentate gyrus, but exercise eliminated this effect. Compared to sedentary controls, sedentary binged rats and all exercised rats showed increased neurogenesis in the DG. Number and nuclear volume of neurons in the mPFC were not changed. In the hippocampus and mPFC, the number of microglia with morphology indicative of partial activation was increased by recurrent binge ethanol and decreased by exercise. In summary, we show significant binge-induced loss of DG granule neurons despite increased neurogenesis, suggesting an unsuccessful compensatory response. Although exercise eliminated cell loss, our results indicate that infrequent, but recurrent exposure to clinically relevant BEC is neurotoxic.
Collapse
Affiliation(s)
- Rebecca K West
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States
| | - Jessica I Wooden
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States
| | - Emily A Barton
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States; Department of Biology & Biochemistry, University of Houston, Houston, TX, 77204-5022, United States.
| |
Collapse
|
47
|
MiR-124 Enriched Exosomes Promoted the M2 Polarization of Microglia and Enhanced Hippocampus Neurogenesis After Traumatic Brain Injury by Inhibiting TLR4 Pathway. Neurochem Res 2019; 44:811-828. [DOI: 10.1007/s11064-018-02714-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/31/2018] [Indexed: 12/21/2022]
|
48
|
Perez-Dominguez M, Ávila-Muñoz E, Domínguez-Rivas E, Zepeda A. The detrimental effects of lipopolysaccharide-induced neuroinflammation on adult hippocampal neurogenesis depend on the duration of the pro-inflammatory response. Neural Regen Res 2019; 14:817-825. [PMID: 30688267 PMCID: PMC6375041 DOI: 10.4103/1673-5374.249229] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Adult hippocampal neurogenesis is a finely tuned process regulated by extrinsic factors. Neuroinflammation is a hallmark of several pathological conditions underlying dysregulation of neurogenesis. In animal models, lipopolysaccharide (LPS)-induced neuroinflammation leads to a neurogenic decrease mainly associated to the early inflammatory response. However, it is not well understood how the neuroinflammatory response progresses over time and if neurogenesis continues to be diminished during the late neuroinflammatory response. Moreover, it is unknown if repeated intermittent administration of LPS along time induces a greater reduction in neurogenesis. We administered one single intraperitoneal injection of LPS or saline or four repeated injections (one per week) of LPS or saline to young-adult mice. A cohort of new cells was labeled with three 5-bromo-2-deoxyuridine injections (one per day) 4 days after the last LPS injection. We evaluated systemic and neuroinflammation-associated parameters and compared the effects of the late neuroinflammatory response on neurogenesis induced by each protocol. Our results show that 1) a single LPS injection leads to a late pro-inflammatory response characterized by microglial activation, moderate astrocytic reaction and increased interleukin-6 levels. This response correlates in time with decreased neurogenesis and 2) a repeated intermittent injection of LPS does not elicit a late pro-inflammatory response although activated microglia persists. The latter profile is not accompanied by a continued long-term hippocampal neurogenic decrease. Hereby, we provide evidence that the neuroinflammatory response is a dynamic process that progresses in a milieu-dependent manner and does not necessarily lead to a neurogenic decrease, highlighting the complex interaction between the immune system and neurogenesis.
Collapse
Affiliation(s)
- Martha Perez-Dominguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México, CDMX, México
| | - Evangelina Ávila-Muñoz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México, CDMX, México
| | - Eduardo Domínguez-Rivas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México, CDMX, México
| | - Angélica Zepeda
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México, CDMX, México
| |
Collapse
|
49
|
Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD, Kim E, Rompala A, Oram MK, Asselin C, Aronson J, Zhang C, Miller SJ, Lesinski A, Chen JW, Kim DY, van Praag H, Spiegelman BM, Gage FH, Tanzi RE. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science 2018; 361:eaan8821. [PMID: 30190379 PMCID: PMC6149542 DOI: 10.1126/science.aan8821] [Citation(s) in RCA: 553] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/04/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Adult hippocampal neurogenesis (AHN) is impaired before the onset of Alzheimer's disease (AD) pathology. We found that exercise provided cognitive benefit to 5×FAD mice, a mouse model of AD, by inducing AHN and elevating levels of brain-derived neurotrophic factor (BDNF). Neither stimulation of AHN alone, nor exercise, in the absence of increased AHN, ameliorated cognition. We successfully mimicked the beneficial effects of exercise on AD mice by genetically and pharmacologically inducing AHN in combination with elevating BDNF levels. Suppressing AHN later led to worsened cognitive performance and loss of preexisting dentate neurons. Thus, pharmacological mimetics of exercise, enhancing AHN and elevating BDNF levels, may improve cognition in AD. Furthermore, applied at early stages of AD, these mimetics may protect against subsequent neuronal cell death.
Collapse
Affiliation(s)
- Se Hoon Choi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Enjana Bylykbashi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Zena K Chatila
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Star W Lee
- Laboratoy of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Benjamin Pulli
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gregory D Clemenson
- Laboratoy of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Eunhee Kim
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Alexander Rompala
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mary K Oram
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Caroline Asselin
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jenna Aronson
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Can Zhang
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sean J Miller
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Andrea Lesinski
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - John W Chen
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Henriette van Praag
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Fred H Gage
- Laboratoy of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
50
|
Matarredona ER, Talaverón R, Pastor AM. Interactions Between Neural Progenitor Cells and Microglia in the Subventricular Zone: Physiological Implications in the Neurogenic Niche and After Implantation in the Injured Brain. Front Cell Neurosci 2018; 12:268. [PMID: 30177874 PMCID: PMC6109750 DOI: 10.3389/fncel.2018.00268] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
The adult subventricular zone (SVZ) of the mammalian brain contains neural progenitor cells (NPCs) that continuously produce neuroblasts throughout life. These neuroblasts migrate towards the olfactory bulb where they differentiate into local interneurons. The neurogenic niche of the SVZ includes, in addition to NPCs and neuroblasts, astrocytes, ependymal cells, blood vessels and the molecules released by these cell types. In the last few years, microglial cells have also been included as a key component of the SVZ neurogenic niche. Microglia in the SVZ display unique phenotypic features, and are more densely populated and activated than in non-neurogenic regions. In this article we will review literature reporting microglia-NPC interactions in the SVZ and the role of this bilateral communication in microglial function and in NPC biology. This interaction can take place through the release of soluble factors, extracellular vesicles or gap junctional communication. In addition, as NPCs are used for cell replacement therapies, they can establish therapeutically relevant crosstalks with host microglia which will also be summarized throughout the article.
Collapse
Affiliation(s)
| | - Rocío Talaverón
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|