1
|
Yamashiro K, Ikegaya Y, Matsumoto N. Automatic detection of foot-strike onsets in a rhythmic forelimb movement. Neurosci Res 2024; 206:41-50. [PMID: 38642677 DOI: 10.1016/j.neures.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
Rhythmic movement is the fundamental motion dynamics characterized by repetitive patterns. Precisely defining onsets in rhythmic movement is essential for a comprehensive analysis of motor functions. Our study introduces an automated method for detecting rat's forelimb foot-strike onsets using deep learning tools. This method demonstrates high accuracy of onset detection by combining two techniques using joint coordinates and behavioral confidence scale. The analysis extends to neural oscillatory responses in the rat's somatosensory cortex, validating the effectiveness of our combined approach. Our technique streamlines experimentation, demanding only a camera and GPU-accelerated computer. This approach is applicable across various contexts and promotes our understanding of brain functions during rhythmic movements.
Collapse
Affiliation(s)
- Kotaro Yamashiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
2
|
Lemke SM, Celotto M, Maffulli R, Ganguly K, Panzeri S. Information flow between motor cortex and striatum reverses during skill learning. Curr Biol 2024; 34:1831-1843.e7. [PMID: 38604168 PMCID: PMC11078609 DOI: 10.1016/j.cub.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/22/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
The coordination of neural activity across brain areas during a specific behavior is often interpreted as neural communication involved in controlling the behavior. However, whether information relevant to the behavior is actually transferred between areas is often untested. Here, we used information-theoretic tools to quantify how motor cortex and striatum encode and exchange behaviorally relevant information about specific reach-to-grasp movement features during skill learning in rats. We found a temporal shift in the encoding of behaviorally relevant information during skill learning, as well as a reversal in the primary direction of behaviorally relevant information flow, from cortex-to-striatum during naive movements to striatum-to-cortex during skilled movements. Standard analytical methods that quantify the evolution of overall neural activity during learning-such as changes in neural signal amplitude or the overall exchange of information between areas-failed to capture these behaviorally relevant information dynamics. Using these standard methods, we instead found a consistent coactivation of overall neural signals during movement production and a bidirectional increase in overall information propagation between areas during learning. Our results show that skill learning is achieved through a transformation in how behaviorally relevant information is routed across cortical and subcortical brain areas and that isolating the components of neural activity relevant to and informative about behavior is critical to uncover directional interactions within a coactive and coordinated network.
Collapse
Affiliation(s)
- Stefan M Lemke
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy; Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA; Department of Neurology, University of California, San Francisco, 1700 Owens Street, San Francisco, CA 94158, USA; Neuroscience Center, University of North Carolina, Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599, USA.
| | - Marco Celotto
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
| | - Roberto Maffulli
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
| | - Karunesh Ganguly
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA; Department of Neurology, University of California, San Francisco, 1700 Owens Street, San Francisco, CA 94158, USA
| | - Stefano Panzeri
- Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
3
|
Powers BE, Ton ST, Farrer RG, Chaudhary S, Nockels RP, Kartje GL, Tsai SY. Anti-Nogo-A Antibody Therapy Improves Functional Outcome Following Traumatic Brain Injury. Neurorehabil Neural Repair 2023; 37:682-693. [PMID: 37837331 PMCID: PMC10843026 DOI: 10.1177/15459683231203194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) can cause sensorimotor deficits, and recovery is slow and incomplete. There are no effective pharmacological treatments for recovery from TBI, but research indicates potential for anti-Nogo-A antibody (Ab) therapy. This Ab neutralizes Nogo-A, an endogenous transmembrane protein that inhibits neuronal plasticity and regeneration. OBJECTIVE We hypothesized that anti-Nogo-A Ab treatment following TBI results in disinhibited axonal growth from the contralesional cortex, the establishment of new compensatory neuronal connections, and improved function. METHODS We modeled TBI in rats using the controlled cortical impact method, resulting in focal brain damage and motor deficits like those observed in humans with a moderate cortical TBI. Rats were trained on the skilled forelimb reaching task and the horizontal ladder rung walking task. They were then given a TBI, targeting the caudal forelimb motor cortex, and randomly divided into 3 groups: TBI-only, TBI + Anti-Nogo-A Ab, and TBI + Control Ab. Testing resumed 3 days after TBI and continued for 8 weeks, when rats received an injection of the anterograde neuronal tracer, biotinylated dextran amine (BDA), into the corresponding area contralateral to the TBI. RESULTS We observed significant improvement in rats that received anti-Nogo-A Ab treatment post-TBI compared to controls. Analysis of BDA-positive axons revealed that anti-Nogo-A Ab treatment resulted in cortico-rubral plasticity to the deafferented red nucleus. Conclusions. Anti-Nogo-A Ab treatment may improve functional recovery via neuronal plasticity to brain areas important for skilled movements, and this treatment shows promise to improve outcomes in humans who have suffered a TBI.
Collapse
Affiliation(s)
- Brian E Powers
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, USA
| | - Son T Ton
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, USA
| | | | | | - Russ P Nockels
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Gwendolyn L Kartje
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Health Sciences Division, Maywood, IL, USA
| | - Shih-Yen Tsai
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, USA
| |
Collapse
|
4
|
Mizes KGC, Lindsey J, Escola GS, Ölveczky BP. Motor cortex is required for flexible but not automatic motor sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556348. [PMID: 37732225 PMCID: PMC10508748 DOI: 10.1101/2023.09.05.556348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
How motor cortex contributes to motor sequence execution is much debated, with studies supporting disparate views. Here we probe the degree to which motor cortex's engagement depends on task demands, specifically whether its role differs for highly practiced, or 'automatic', sequences versus flexible sequences informed by external events. To test this, we trained rats to generate three-element motor sequences either by overtraining them on a single sequence or by having them follow instructive visual cues. Lesioning motor cortex revealed that it is necessary for flexible cue-driven motor sequences but dispensable for single automatic behaviors trained in isolation. However, when an automatic motor sequence was practiced alongside the flexible task, it became motor cortex-dependent, suggesting that subcortical consolidation of an automatic motor sequence is delayed or prevented when the same sequence is produced also in a flexible context. A simple neural network model recapitulated these results and explained the underlying circuit mechanisms. Our results critically delineate the role of motor cortex in motor sequence execution, describing the condition under which it is engaged and the functions it fulfills, thus reconciling seemingly conflicting views about motor cortex's role in motor sequence generation.
Collapse
Affiliation(s)
- Kevin G. C. Mizes
- Program in Biophysics, Harvard University, Cambridge, MA 02138,
USA
- Department of Organismic and Evolutionary Biology and Center for
Brain Science, Harvard University, Cambridge, MA, USA
| | - Jack Lindsey
- Zuckerman Mind Brain and Behavior Institute, Columbia
University, New York, NY, 10027, USA
| | - G. Sean Escola
- Zuckerman Mind Brain and Behavior Institute, Columbia
University, New York, NY, 10027, USA
- Department of Psychiatry, Columbia University, New York, NY,
10032, USA
| | - Bence P. Ölveczky
- Department of Organismic and Evolutionary Biology and Center for
Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
5
|
Serradj N, Marino F, Moreno-López Y, Bernstein A, Agger S, Soliman M, Sloan A, Hollis E. Task-specific modulation of corticospinal neuron activity during motor learning in mice. Nat Commun 2023; 14:2708. [PMID: 37169765 PMCID: PMC10175564 DOI: 10.1038/s41467-023-38418-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
Motor skill learning relies on the plasticity of the primary motor cortex as task acquisition drives cortical motor network remodeling. Large-scale cortical remodeling of evoked motor outputs occurs during the learning of corticospinal-dependent prehension behavior, but not simple, non-dexterous tasks. Here we determine the response of corticospinal neurons to two distinct motor training paradigms and assess the role of corticospinal neurons in the execution of a task requiring precise modulation of forelimb movement and one that does not. In vivo calcium imaging in mice revealed temporal coding of corticospinal activity coincident with the development of precise prehension movements, but not more simplistic movement patterns. Transection of the corticospinal tract and optogenetic regulation of corticospinal activity show the necessity for patterned corticospinal network activity in the execution of precise movements but not simplistic ones. Our findings reveal a critical role for corticospinal network modulation in the learning and execution of precise motor movements.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edmund Hollis
- Burke Neurological Institute, White Plains, NY, USA.
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Hart M, Blackwell AA, Whishaw IQ, Wallace DG, Cheatwood JL. Impairments and Compensation in String-pulling After Middle Cerebral Artery Occlusion in the Rat. Behav Brain Res 2023; 450:114469. [PMID: 37146723 DOI: 10.1016/j.bbr.2023.114469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 05/07/2023]
Abstract
Stroke is a leading cause of long-term disability in humans, and it is frequently associated with impairments in the skilled use of the arms and hands. Many human upper limb impairments and compensatory changes have been successfully modeled in rodent studies of neocortical stroke, especially those that evaluate single limb use in tasks, such as reaching for food. Humans also use their hands for bilaterally coordinated movements, dependent upon interhemispheric cortical projections, which are also compromised by unilateral stroke. This study describes middle cerebral artery occlusion (MCAO) dependent changes in the bilaterally dependent hand use behavior of string-pulling in the rat. The task involves making hand-over-hand movements to pull down a string that contains a food reward attached to its end. MCAO rats missed the string more often with both hands than Sham rats. When the string was missed on the contralateral to MCAO body side, rats continued to cycle through subcomponents of string-pulling behavior as if the string were grasped in the hand. Rats also failed to make a grasping motion with the contralateral to MCAO hand when the string was missed and instead, demonstrated an open-handed raking-like motions. Nevertheless, with repeated attempts, rats performed components of string-pulling well enough to obtain a reward on the end of the string. Thus, string-pulling behavior is sensitive to bilateral impairments but is achieved with compensatory adjustments following MCAO. These aspects of MCAO string-pulling provide a foundation for studies that investigate the efficacy of therapeutic intervention which might enhance neuroplasticity and recovery. DATA AVAILABILITY: The datasets generated during the current study are available upon request.
Collapse
Affiliation(s)
- Muriel Hart
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Ashley A Blackwell
- Department of Psychology, Northern Illinois University, De Kalb, Illinois, 60115 USA.
| | - Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Douglas G Wallace
- Department of Psychology, Northern Illinois University, De Kalb, Illinois, 60115 USA
| | - Joseph L Cheatwood
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| |
Collapse
|
7
|
Lopes G, Nogueira J, Dimitriadis G, Menendez JA, Paton JJ, Kampff AR. A robust role for motor cortex. Front Neurosci 2023; 17:971980. [PMID: 36845435 PMCID: PMC9950416 DOI: 10.3389/fnins.2023.971980] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/11/2023] [Indexed: 02/12/2023] Open
Abstract
The role of motor cortex in non-primate mammals remains unclear. More than a century of stimulation, anatomical and electrophysiological studies has implicated neural activity in this region with all kinds of movement. However, following the removal of motor cortex, rats retain most of their adaptive behaviors, including previously learned skilled movements. Here we revisit these two conflicting views of motor cortex and present a new behavior assay, challenging animals to respond to unexpected situations while navigating a dynamic obstacle course. Surprisingly, rats with motor cortical lesions show clear impairments facing an unexpected collapse of the obstacles, while showing no impairment with repeated trials in many motor and cognitive metrics of performance. We propose a new role for motor cortex: extending the robustness of sub-cortical movement systems, specifically to unexpected situations demanding rapid motor responses adapted to environmental context. The implications of this idea for current and future research are discussed.
Collapse
Affiliation(s)
- Gonçalo Lopes
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
- NeuroGEARS Ltd., London, United Kingdom
| | - Joana Nogueira
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
- NeuroGEARS Ltd., London, United Kingdom
| | - George Dimitriadis
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
| | - Jorge Aurelio Menendez
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
- Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom
| | - Joseph J. Paton
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Adam R. Kampff
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
- Voight-Kampff Ltd., London, United Kingdom
| |
Collapse
|
8
|
Ohno Y, Horikoshi A, Imamura K. Reaching Task in Rats: Quantitative Evaluation and Effects of 6-OHDA into the Striatum. J Mot Behav 2022; 54:648-655. [PMID: 35392775 DOI: 10.1080/00222895.2022.2061410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, we developed an evaluation method using image analysis for reaching tasks. Using this method, we studied forearm function during the reaching task in rats that received a unilateral injection of 6-OHDA into the striatum. The success ratio of the reaching task reduced to 40.5% seven days after the injection. In addition, significant changes were observed in the pronation angle of the forearm, posture control, and targeting (i.e., the distance between all fingertips and the center of the target pellet). Thus, unilateral injection of 6-OHDA reduces dopaminergic function in the brain and causes deterioration of forearm function and posture control in the reaching task.
Collapse
Affiliation(s)
- Yoichi Ohno
- Department of Physical Therapy, Faculty of Health Care, Takasaki Univ. Health and Welfare, Takasaki City, Gunma, Japan.,Department of System Life Engineering, Maebashi Institute of Technology, Maebashi City, Gunma, Japan
| | - Akinori Horikoshi
- Department of System Life Engineering, Maebashi Institute of Technology, Maebashi City, Gunma, Japan
| | - Kazuyuki Imamura
- Department of System Life Engineering, Maebashi Institute of Technology, Maebashi City, Gunma, Japan
| |
Collapse
|
9
|
Wolff SBE, Ko R, Ölveczky BP. Distinct roles for motor cortical and thalamic inputs to striatum during motor skill learning and execution. SCIENCE ADVANCES 2022; 8:eabk0231. [PMID: 35213216 PMCID: PMC8880788 DOI: 10.1126/sciadv.abk0231] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/03/2022] [Indexed: 05/11/2023]
Abstract
The acquisition and execution of motor skills are mediated by a distributed motor network, spanning cortical and subcortical brain areas. The sensorimotor striatum is an important cog in this network, yet the roles of its two main inputs, from motor cortex and thalamus, remain largely unknown. To address this, we silenced the inputs in rats trained on a task that results in highly stereotyped and idiosyncratic movement patterns. While striatal-projecting motor cortex neurons were critical for learning these skills, silencing this pathway after learning had no effect on performance. In contrast, silencing striatal-projecting thalamus neurons disrupted the execution of the learned skills, causing rats to revert to species-typical pressing behaviors and preventing them from relearning the task. These results show distinct roles for motor cortex and thalamus in the learning and execution of motor skills and suggest that their interaction in the striatum underlies experience-dependent changes in subcortical motor circuits.
Collapse
Affiliation(s)
| | - Raymond Ko
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
10
|
Sobinov AR, Bensmaia SJ. The neural mechanisms of manual dexterity. Nat Rev Neurosci 2021; 22:741-757. [PMID: 34711956 DOI: 10.1038/s41583-021-00528-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
The hand endows us with unparalleled precision and versatility in our interactions with objects, from mundane activities such as grasping to extraordinary ones such as virtuoso pianism. The complex anatomy of the human hand combined with expansive and specialized neuronal control circuits allows a wide range of precise manual behaviours. To support these behaviours, an exquisite sensory apparatus, spanning the modalities of touch and proprioception, conveys detailed and timely information about our interactions with objects and about the objects themselves. The study of manual dexterity provides a unique lens into the sensorimotor mechanisms that endow the nervous system with the ability to flexibly generate complex behaviour.
Collapse
Affiliation(s)
- Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.,Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA. .,Neuroscience Institute, University of Chicago, Chicago, IL, USA. .,Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Evolution of Gross Forelimb and Fine Digit Kinematics during Skilled Reaching Acquisition in Rats. eNeuro 2021; 8:ENEURO.0153-21.2021. [PMID: 34625461 PMCID: PMC8555885 DOI: 10.1523/eneuro.0153-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Abstract
The ability to learn dexterous motor skills is a fundamental aspect of human behavior. However, the underlying neural circuit mechanisms for dexterous skill learning are unclear. Advancing our understanding of motor skill learning requires the integration of modern neuroscientific techniques with a rigorously characterized dexterous task. The development of automated rodent skilled reaching with paw tracking allows detailed analysis of how reach-to-grasp kinematics evolve during learning. We assessed how both "gross" forelimb and "fine" digit kinematics changed as rats learned skilled reaching. Rats whose success rates increased (learners) consistently reduced the variability in their reach trajectories. Refinement of fine digit control generally continued after consistency in gross hand transport to the pellet plateaued. Interestingly, most rats whose success rates did not increase (non-learners) also converged on consistent reach kinematics. Some non-learners, however, maintained substantial variability in hand and digit trajectories throughout training. These results suggest that gross and fine motor components of dexterous skill are, on average, learned over different timescales. Nonetheless, there is significant intersubject variability in learning rates as assessed by both reaching success and consistency of reach kinematics.
Collapse
|
12
|
van Assche M, Dirren E, Bourgeois A, Kleinschmidt A, Richiardi J, Carrera E. Periinfarct rewiring supports recovery after primary motor cortex stroke. J Cereb Blood Flow Metab 2021; 41:2174-2184. [PMID: 33757315 PMCID: PMC8392854 DOI: 10.1177/0271678x211002968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After stroke restricted to the primary motor cortex (M1), it is uncertain whether network reorganization associated with recovery involves the periinfarct or more remote regions. We studied 16 patients with focal M1 stroke and hand paresis. Motor function and resting-state MRI functional connectivity (FC) were assessed at three time points: acute (<10 days), early subacute (3 weeks), and late subacute (3 months). FC correlates of recovery were investigated at three spatial scales, (i) ipsilesional non-infarcted M1, (ii) core motor network (M1, premotor cortex (PMC), supplementary motor area (SMA), and primary somatosensory cortex), and (iii) extended motor network including all regions structurally connected to the upper limb representation of M1. Hand dexterity was impaired only in the acute phase (P = 0.036). At a small spatial scale, clinical recovery was more frequently associated with connections involving ipsilesional non-infarcted M1 (Odds Ratio = 6.29; P = 0.036). At a larger scale, recovery correlated with increased FC strength in the core network compared to the extended motor network (rho = 0.71;P = 0.006). These results suggest that FC changes associated with motor improvement involve the perilesional M1 and do not extend beyond the core motor network. Core motor regions, and more specifically ipsilesional non-infarcted M1, could hence become primary targets for restorative therapies.
Collapse
Affiliation(s)
- Mitsouko van Assche
- Stroke Research Group, Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Elisabeth Dirren
- Stroke Research Group, Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Alexia Bourgeois
- Stroke Research Group, Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva, Switzerland.,Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andreas Kleinschmidt
- Stroke Research Group, Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Jonas Richiardi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Emmanuel Carrera
- Stroke Research Group, Department of Clinical Neurosciences, University Hospital and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
13
|
Tsai SY, Schreiber JA, Adamczyk NS, Wu JY, Ton ST, Hofler RC, Walter JS, O'Brien TE, Kartje GL, Nockels RP. Improved Functional Outcome After Peripheral Nerve Stimulation of the Impaired Forelimb Post-stroke. Front Neurol 2021; 12:610434. [PMID: 33959086 PMCID: PMC8093517 DOI: 10.3389/fneur.2021.610434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Lack of blood flow to the brain, i.e., ischemic stroke, results in loss of nerve cells and therefore loss of function in the effected brain regions. There is no effective treatment to improve lost function except restoring blood flow within the first several hours. Rehabilitation strategies are widely used with limited success. The purpose of this study was to examine the effect of electrical stimulation on the impaired upper extremity to improve functional recovery after stroke. We developed a rodent model using an electrode cuff implant onto a single peripheral nerve (median nerve) of the paretic forelimb and applied daily electrical stimulation. The skilled forelimb reaching test was used to evaluate functional outcome after stroke and electrical stimulation. Anterograde axonal tracing from layer V pyramidal neurons with biotinylated dextran amine was done to evaluate the formation of new neuronal connections from the contralesional cortex to the deafferented spinal cord. Rats receiving electrical stimulation on the median nerve showed significant improvement in the skilled forelimb reaching test in comparison with stroke only and stroke with sham stimulation. Rats that received electrical stimulation also exhibited significant improvement in the latency to initiate adhesive removal from the impaired forelimb, indicating better sensory recovery. Furthermore, axonal tracing analysis showed a significant higher midline fiber crossing index in the cervical spinal cord of rats receiving electrical stimulation. Our results indicate that direct peripheral nerve stimulation leads to improved sensorimotor recovery in the stroke-impaired forelimb, and may be a useful approach to improve post-stroke deficits in human patients.
Collapse
Affiliation(s)
- Shih-Yen Tsai
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Jennifer A Schreiber
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States.,Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, United States
| | | | - Joanna Y Wu
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Son T Ton
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Ryan C Hofler
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, United States
| | - James S Walter
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States
| | - Timothy E O'Brien
- Department of Mathematics and Statistics and Institute of Environmental Sustainability, Loyola University Chicago, Chicago, IL, United States
| | - Gwendolyn L Kartje
- Edward Hines Jr. Veteran Affairs Hospital, Hines, IL, United States.,Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Science Division, Chicago, IL, United States
| | - Russ P Nockels
- Department of Neurological Surgery, Loyola University Medical Center, Maywood, IL, United States
| |
Collapse
|
14
|
Becker AM, Betz DM, Goldberg MP. Forelimb Cortical Stroke Reduces Precision of Motor Control in Mice. Neurorehabil Neural Repair 2020; 34:475-478. [PMID: 32431214 DOI: 10.1177/1545968320921825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background and Objective. Rodent models of stroke impairment should capture translatable features of behavioral injury. This study characterized poststroke impairment of motor precision separately from strength in an automated behavioral assay. Methods. We measured skilled distal forelimb reach-and-grasp motions within a target force range requiring moderate-strength. We assessed whether deficits reflected an increase in errors on only one or both sides of the target force range after photothrombotic cortical stroke. Results. Pull accuracy was impaired for 6 weeks after stroke, with errors redistributing to both sides of the target range. No decrease in maximum force was measured. Conclusions. This automated reach task measures sustained loss of motor precision following cortical stroke in mice.
Collapse
Affiliation(s)
- April M Becker
- UT Southwestern Medical Center, Dallas, TX, USA.,University of North Texas, Denton, TX, USA
| | - Dene M Betz
- UT Southwestern Medical Center, Dallas, TX, USA.,University of Texas Health San Antonio, Dallas, TX, USA
| | | |
Collapse
|
15
|
Lee C, Lavoie A, Liu J, Chen SX, Liu BH. Light Up the Brain: The Application of Optogenetics in Cell-Type Specific Dissection of Mouse Brain Circuits. Front Neural Circuits 2020; 14:18. [PMID: 32390806 PMCID: PMC7193678 DOI: 10.3389/fncir.2020.00018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Abstract
The exquisite intricacies of neural circuits are fundamental to an animal’s diverse and complex repertoire of sensory and motor functions. The ability to precisely map neural circuits and to selectively manipulate neural activity is critical to understanding brain function and has, therefore been a long-standing goal for neuroscientists. The recent development of optogenetic tools, combined with transgenic mouse lines, has endowed us with unprecedented spatiotemporal precision in circuit analysis. These advances greatly expand the scope of tractable experimental investigations. Here, in the first half of the review, we will present applications of optogenetics in identifying connectivity between different local neuronal cell types and of long-range projections with both in vitro and in vivo methods. We will then discuss how these tools can be used to reveal the functional roles of these cell-type specific connections in governing sensory information processing, and learning and memory in the visual cortex, somatosensory cortex, and motor cortex. Finally, we will discuss the prospect of new optogenetic tools and how their application can further advance modern neuroscience. In summary, this review serves as a primer to exemplify how optogenetics can be used in sophisticated modern circuit analyses at the levels of synapses, cells, network connectivity and behaviors.
Collapse
Affiliation(s)
- Candice Lee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Andreanne Lavoie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jiashu Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Simon X Chen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.,Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
| | - Bao-Hua Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Context-dependent limb movement encoding in neuronal populations of motor cortex. Nat Commun 2019; 10:4812. [PMID: 31645554 PMCID: PMC6811620 DOI: 10.1038/s41467-019-12670-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Neuronal networks of the mammalian motor cortex (M1) are important for dexterous control of limb joints. Yet it remains unclear how encoding of joint movement in M1 depends on varying environmental contexts. Using calcium imaging we measured neuronal activity in layer 2/3 of the M1 forelimb region while mice grasped regularly or irregularly spaced ladder rungs during locomotion. We found that population coding of forelimb joint movements is sparse and varies according to the flexibility demanded from individual joints in the regular and irregular context, even for equivalent grasping actions across conditions. This context-dependence of M1 encoding emerged during task learning, fostering higher precision of grasping actions, but broke apart upon silencing of projections from secondary motor cortex (M2). These findings suggest that M1 exploits information from M2 to adapt encoding of joint movements to the flexibility demands of distinct familiar contexts, thereby increasing the accuracy of motor output. Network activity in primary motor cortex (M1) controls dexterous limb movements. Here, the authors show that the M1 population code varies according to contextual motor demands that are conveyed via the secondary motor cortex (M2).
Collapse
|
17
|
Lemke SM, Ramanathan DS, Guo L, Won SJ, Ganguly K. Emergent modular neural control drives coordinated motor actions. Nat Neurosci 2019; 22:1122-1131. [PMID: 31133689 PMCID: PMC6592763 DOI: 10.1038/s41593-019-0407-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 04/11/2019] [Indexed: 11/08/2022]
Abstract
A remarkable feature of motor control is the ability to coordinate movements across distinct body parts into a consistent, skilled action. To reach and grasp an object, 'gross' arm and 'fine' dexterous movements must be coordinated as a single action. How the nervous system achieves this coordination is currently unknown. One possibility is that, with training, gross and fine movements are co-optimized to produce a coordinated action; alternatively, gross and fine movements may be modularly refined to function together. To address this question, we recorded neural activity in the primary motor cortex and dorsolateral striatum during reach-to-grasp skill learning in rats. During learning, the refinement of fine and gross movements was behaviorally and neurally dissociable. Furthermore, inactivation of the primary motor cortex and dorsolateral striatum had distinct effects on skilled fine and gross movements. Our results indicate that skilled movement coordination is achieved through emergent modular neural control.
Collapse
Affiliation(s)
- Stefan M Lemke
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Dhakshin S Ramanathan
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Mental Health Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
- Mental Health Service, San Diego Veterans Affairs Medical Center, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Ling Guo
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Seok Joon Won
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Karunesh Ganguly
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
18
|
Galiñanes GL, Huber D. Circuits for Raiders. Neuron 2018; 99:872-873. [DOI: 10.1016/j.neuron.2018.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Podraza KM, Mehta Y, Husak VA, Lippmann E, O'Brien TE, Kartje GL, Tsai SY. Improved functional outcome after chronic stroke with delayed anti-Nogo-A therapy: A clinically relevant intention-to-treat analysis. J Cereb Blood Flow Metab 2018; 38:1327-1338. [PMID: 28952904 PMCID: PMC6077927 DOI: 10.1177/0271678x17730994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 11/15/2022]
Abstract
Many preclinical treatment strategies for stroke have failed when tested in human trials. Although the reasons for these translation failures are multifactorial, one potential concern is the statistical analysis of the preclinical data. One way to rigorously evaluate new therapies is to use an intention-to-treat analysis in preclinical studies. Therefore, in this study, we set out to evaluate the treatment efficacy of a potential clinically relevant therapeutic agent for stroke, i.e., anti-Nogo-A immunotherapy, using an intention-to-treat analysis. Adult rats were trained on the skilled forelimb reaching task and subsequently underwent an ischemic stroke. Nine weeks later, the rats either received intracerebroventricular anti-Nogo-A antibody, control antibody, or no treatment. Skilled reaching performance was assessed by a non-linear model using both an intention-to-treat and per-protocol analysis. Following testing, dendritic complexity was evaluated in the contralesional and perilesional sensorimotor cortex. Both intention-to-treat and per-protocol analysis showed that anti-Nogo-A immunotherapy resulted in statistically significant improved recovery on the skilled forelimb reaching task, although treatment effect was less (though statistically significant) in the intention-to-treat group. Improved functional performance was not shown to be associated with dendritic changes. In conclusion, this study provides evidence for the importance of using intention-to-treat paradigms in testing preclinical therapeutic strategies.
Collapse
Affiliation(s)
- Katherine M Podraza
- Research Service,
Edward
Hines Jr. Veterans Affairs Hospital, Hines,
IL, USA
- Loyola University Chicago Health
Sciences Division, Maywood, IL, USA
| | - Yasmin Mehta
- Research Service,
Edward
Hines Jr. Veterans Affairs Hospital, Hines,
IL, USA
| | - Vicki A Husak
- Research Service,
Edward
Hines Jr. Veterans Affairs Hospital, Hines,
IL, USA
| | - Elise Lippmann
- Loyola University Chicago Health
Sciences Division, Maywood, IL, USA
| | - Timothy E O'Brien
- Department of Mathematics and Statistics
and Institute of Environmental Sustainability, Loyola University Chicago, Chicago,
IL, USA
| | - Gwendolyn L Kartje
- Research Service,
Edward
Hines Jr. Veterans Affairs Hospital, Hines,
IL, USA
- Loyola University Chicago Health
Sciences Division, Maywood, IL, USA
| | - Shih-Yen Tsai
- Research Service,
Edward
Hines Jr. Veterans Affairs Hospital, Hines,
IL, USA
| |
Collapse
|
20
|
Balbinot G, Schuch CP, Jeffers MS, McDonald MW, Livingston-Thomas JM, Corbett D. Post-stroke kinematic analysis in rats reveals similar reaching abnormalities as humans. Sci Rep 2018; 8:8738. [PMID: 29880827 PMCID: PMC5992226 DOI: 10.1038/s41598-018-27101-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
A coordinated pattern of multi-muscle activation is essential to produce efficient reaching trajectories. Disruption of these coordinated activation patterns, termed synergies, is evident following stroke and results in reaching deficits; however, preclinical investigation of this phenomenon has been largely ignored. Furthermore, traditional outcome measures of post-stroke performance seldom distinguish between impairment restitution and compensatory movement strategies. We sought to address this by using kinematic analysis to characterize reaching movements and kinematic synergies of rats performing the Montoya staircase task, before and after ischemic stroke. Synergy was defined as the simultaneous movement of the wrist and other proximal forelimb joints (i.e. shoulder, elbow) during reaching. Following stroke, rats exhibited less individuation between joints, moving the affected limb more as a unit. Moreover, abnormal flexor synergy characterized by concurrent elbow flexion, shoulder adduction, and external rotation was evident. These abnormalities ultimately led to inefficient and unstable reaching trajectories, and decreased reaching performance (pellets retrieved). The observed reaching abnormalities in this preclinical stroke model are similar to those classically observed in humans. This highlights the potential of kinematic analysis to better align preclinical and clinical outcome measures, which is essential for developing future rehabilitation strategies following stroke.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Clarissa Pedrini Schuch
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew S Jeffers
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
| | - Matthew W McDonald
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
| | - Jessica M Livingston-Thomas
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
21
|
Developmental abnormality contributes to cortex-dependent motor impairments and higher intracortical current requirement in the reeler homozygous mutants. Brain Struct Funct 2018. [PMID: 29536172 DOI: 10.1007/s00429-018-1647-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The motor deficit of the reeler mutants has largely been considered cerebellum related, and the developmental consequences of the cortex on reeler motor behavior have not been examined. We herein showed that there is a behavioral consequence to reeler mutation in models examined at cortex-dependent bimanual tasks that require forepaw dexterity. Using intracortical microstimulation, we found the forelimb representation in the motor cortex was significantly reduced in the reeler. The reeler cortex required a significantly higher current to evoke skeletal muscle movements, suggesting the cortical trans-synaptic propagation is disrupted. When the higher current was applied, the reeler motor representation was found preserved. To elucidate the influence of cerebellum atrophy and ataxia on the obtained results, the behavioral and neurophysiological findings in reeler mice were reproduced using the Disabled-1 (Dab1) cKO mice, in which the Reelin-Dab1 signal deficiency is confined to the cerebral cortex. The Dab1 cKO mice were further assessed at the single-pellet reach and retrieval task, displaying a lower number of successfully retrieved pellets. It suggests the abnormality confined to the cortex still reduced the dexterous motor performance. Although possible muscular dysfunction was reported in REELIN-deficient humans, the function of the reeler forelimb muscle examined by electromyography, morphology of neuromuscular junction and the expression level of choline acetyltransferase were normal. Our results suggest that the mammalian laminar structure is necessary for the forepaw skill performance and for trans-synaptic efficacy in the cortical output.
Collapse
|
22
|
Blackwell AA, Köppen JR, Whishaw IQ, Wallace DG. String-pulling for food by the rat: Assessment of movement, topography and kinematics of a bilaterally skilled forelimb act. LEARNING AND MOTIVATION 2018. [DOI: 10.1016/j.lmot.2017.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Nica I, Deprez M, Nuttin B, Aerts JM. Automated Assessment of Endpoint and Kinematic Features of Skilled Reaching in Rats. Front Behav Neurosci 2018; 11:255. [PMID: 29354039 PMCID: PMC5758496 DOI: 10.3389/fnbeh.2017.00255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022] Open
Abstract
Background: Neural injury to the motor cortex may result in long-term impairments. As a model for human impairments, rodents are often used to study deficits related to reaching and grasping, using the single-pellet reach-to-grasp task. Current assessments of this test capture mostly endpoint outcome. While qualitative features have been proposed, they usually involve manual scoring. Objective: To detect three phases of movement during the single-pellet reach-to-grasp test and assess completion of each phase. To automatically monitor rat forelimb trajectory so as to extract kinematics and classify phase outcome. Methods: A top-view camera is used to monitor three rats during training, healthy and impaired testing, over 33 days. By monitoring the coordinates of the forelimb tip along with the position of the pellet, the algorithm divides a trial into reaching, grasping and retraction. Unfulfilling any of the phases results in one of three possible errors: miss, slip or drop. If all phases are complete, the outcome label is success. Along with endpoints, movement kinematics are assessed: variability, convex hull, mean and maximum reaching speed, length of trajectory and peak forelimb extension. Results: The set of behavior endpoints was extended to include miss, slip, drop and success rate. The labeling algorithm was tested on pre- and post-lesion datasets, with overall accuracy rates of 86% and 92%, respectively. These endpoint features capture a drop in skill after motor cortical lesion as the success rate of 59.6 ± 11.8% pre-lesion decreases to 13.9 ± 8.2% post-lesion, along with a significant increase in miss rate from 7.2 ± 6.7% pre-lesion to 50.2 ± 18.7% post-lesion. Kinematics reveals individual-specific strategies of improvement during training, with a common trend of trajectory variability decreasing with success. Correlations between kinematics and endpoints reveal a more complex pattern of relationships during rehabilitation (18 significant pairs of features) than during training (nine correlated pairs). Conclusion: Extended endpoint outcomes and kinematics of reaching and grasping are captured automatically with a robust computer program. Both endpoints and kinematics capture intra-animal drop in skill after a motor cortical lesion. Correlations between kinematics and endpoints change from training to rehabilitation, suggesting different mechanisms that underlie motor improvement.
Collapse
Affiliation(s)
- Ioana Nica
- Measure, Model & Manage Bioresponse (M3-BIORES), Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Marjolijn Deprez
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Bart Nuttin
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium.,Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Marie Aerts
- Measure, Model & Manage Bioresponse (M3-BIORES), Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
The role of forelimb motor cortex areas in goal directed action in mice. Sci Rep 2017; 7:15759. [PMID: 29150620 PMCID: PMC5693936 DOI: 10.1038/s41598-017-15835-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/02/2017] [Indexed: 12/31/2022] Open
Abstract
Mammalian motor cortex consists of several interconnected subregions thought to play distinct roles in voluntary movements, yet their specific role in decision making and execution is not completely elucidated. Here we used transient optogenetic inactivation of the caudal forelimb area (CFA) and rostral forelimb area (RFA) in mice as they performed a directional joystick task. Based on a vibrotactile cue applied to their forepaw, mice were trained to push or pull a joystick after a delay period. We found that choice and execution are temporally segregated processes. CFA and RFA were both essential during the stimulus delivery for correct choice and during the answer period for motor execution. Fine, distal motor deficits were restricted to CFA inactivation. Surprisingly, during the delay period neither area alone, but only combined inactivation was able to affect choice. Our findings suggest transient and partially distributed neural processing of choice and execution across different subregions of the motor cortex.
Collapse
|
25
|
Loubinoux I, Brihmat N, Castel-Lacanal E, Marque P. Cerebral imaging of post-stroke plasticity and tissue repair. Rev Neurol (Paris) 2017; 173:577-583. [DOI: 10.1016/j.neurol.2017.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 01/17/2023]
|
26
|
Carvalho WA, Bahia CP, Teixeira JC, Gomes-Leal W, Pereira A. Interlimb Dynamic after Unilateral Focal Lesion of the Cervical Dorsal Corticospinal Tract with Endothelin-1. Front Neuroanat 2017; 11:89. [PMID: 29081738 PMCID: PMC5645515 DOI: 10.3389/fnana.2017.00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/21/2017] [Indexed: 11/23/2022] Open
Abstract
Handedness is one of the most recognized lateralized behavior in humans. Usually, it is associated with manual superiority regarding performance proficiency. For instance, more than 90% of the human population is considered more skilled with the right hand, which is controlled by the left hemisphere, than with the left. However, during the performance of bimanual tasks, the two hands usually assume asymmetric roles, with one hand acting on objects while the other provides support, stabilizing the object. Traditionally, the role of the two hands is viewed as fixed. However, several studies support an alternate view with flexible assignments for the two hands depending on the task. The supporting role of the hand depends on a closed loop pathway based on proprioceptive inputs from the periphery. The circuit’s efferent arm courses through the dorsal corticospinal tract (dCST) in rodents and terminate on spinal cord interneurons which modulate the excitability of motoneurons in the ventral horn. In the present work, we developed an experimental model of unilateral lesion targeting the cervical dCST with microinjections of the vasoconstrictor endothelin-1 (ET-1) to evaluate the degree of flexibility of forelimb assignment during a food manipulation task. Our results show that just 3 days after unilateral corticospinal tract (CST) injury in the cervical region, rats display severe motor impairment of the ipsilateral forepaw together with a remarkable reversal of motor assignment between the forelimbs.
Collapse
Affiliation(s)
- Walther A Carvalho
- Pará State University Center, Belém, Brazil.,Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Carlomagno P Bahia
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Jéssica C Teixeira
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Walace Gomes-Leal
- Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Antonio Pereira
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará (UFPA), Belém, Brazil.,Institute of Technology, Federal University of Pará (UFPA), Belém, Brazil
| |
Collapse
|
27
|
Abstract
The motor cortex is a large frontal structure in the cerebral cortex of eutherian mammals. A vast array of evidence implicates the motor cortex in the volitional control of motor output, but how does the motor cortex exert this 'control'? Historically, ideas regarding motor cortex function have been shaped by the discovery of cortical 'motor maps' - that is, ordered representations of stimulation-evoked movements in anaesthetized animals. Volitional control, however, entails the initiation of movements and the ability to suppress undesired movements. In this article, we highlight classic and recent findings that emphasize that motor cortex neurons have a role in both processes.
Collapse
|
28
|
Butensky SD, Bethea T, Santos J, Sindhurakar A, Meyers E, Sloan AM, Rennaker RL, Carmel JB. The Knob Supination Task: A Semi-automated Method for Assessing Forelimb Function in Rats. J Vis Exp 2017. [PMID: 28994796 PMCID: PMC5752340 DOI: 10.3791/56341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tasks that accurately measure dexterity in animal models are critical to understand hand function. Current rat behavioral tasks that measure dexterity largely use video analysis of reaching or food manipulation. While these tasks are easy to implement and are robust across disease models, they are subjective and laborious for the experimenter. Automating traditional tasks or creating new automated tasks can make the tasks more efficient, objective, and quantitative. Since rats are less dexterous than primates, central nervous system (CNS) injury produces more subtle deficits in dexterity, however, supination is highly affected in rodents and crucial to hand function in primates. Therefore, we designed a semi-automated task that measures forelimb supination in rats. Rats are trained to reach and grasp a knob-shaped manipulandum and turn the manipulandum in supination to receive a reward. Rats can acquire the skill within 20 ± 5 days. While the early part of training is highly supervised, much of the training is done without direct supervision. The task reliably and reproducibly captures subtle deficits after injury and shows functional recovery that accurately reflects clinical recovery curves. Analysis of data is performed by specialized software through a graphical user interface that is designed to be intuitive. We also give solutions to common problems encountered during training, and show that minor corrections to behavior early in training produce reliable acquisition of supination. Thus, the knob supination task provides efficient and quantitative evaluation of a critical movement for dexterity in rats.
Collapse
Affiliation(s)
| | | | | | | | - Eric Meyers
- Texas Biomedical Center, The University of Texas at Dallas; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas
| | - Andrew M Sloan
- Texas Biomedical Center, The University of Texas at Dallas; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas
| | - Robert L Rennaker
- Texas Biomedical Center, The University of Texas at Dallas; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas
| | - Jason B Carmel
- Burke Medical Research Institute; Brain and Mind Research Institute, Weill Cornell Medical College; Departments of Neurology and Pediatrics, Weill Cornell Medical College;
| |
Collapse
|
29
|
Circuit changes in motor cortex during motor skill learning. Neuroscience 2017; 368:283-297. [PMID: 28918262 DOI: 10.1016/j.neuroscience.2017.09.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
Abstract
Motor cortex is important for motor skill learning, particularly the dexterous skills necessary for our favorite sports and careers. We are especially interested in understanding how plasticity in motor cortex contributes to skill learning. Although human studies have been helpful in understanding the importance of motor cortex in learning skilled tasks, animal models are necessary for achieving a detailed understanding of the circuitry underlying these behaviors and the changes that occur during training. We review data from these models to try to identify sites of plasticity in motor cortex, focusing on rodents asa model system. Rodent neocortex contains well-differentiated motor and sensory regions, as well as neurons expressing similar genetic markers to many of the same circuit components in human cortex. Furthermore, rodents have circuit mapping tools for labeling, targeting, and manipulating these cell types as circuit nodes. Crucially, the projection from rodent primary somatosensory cortex to primary motor cortex is a well-studied corticocortical projection and a model of sensorimotor integration. We first summarize some of the descending pathways involved in making dexterous movements, including reaching. We then describe local and long-range circuitry in mouse motor cortex, summarizing structural and functional changes associated with motor skill acquisition. We then address which specific connections might be responsible for plasticity. For insight into the range of plasticity mechanisms employed by cortex, we review plasticity in sensory systems. The similarities and differences between motor cortex plasticity and critical periods of plasticity in sensory systems are discussed.
Collapse
|
30
|
Miri A, Warriner CL, Seely JS, Elsayed GF, Cunningham JP, Churchland MM, Jessell TM. Behaviorally Selective Engagement of Short-Latency Effector Pathways by Motor Cortex. Neuron 2017; 95:683-696.e11. [PMID: 28735748 PMCID: PMC5593145 DOI: 10.1016/j.neuron.2017.06.042] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/27/2017] [Accepted: 06/26/2017] [Indexed: 12/23/2022]
Abstract
Blocking motor cortical output with lesions or pharmacological inactivation has identified movements that require motor cortex. Yet, when and how motor cortex influences muscle activity during movement execution remains unresolved. We addressed this ambiguity using measurement and perturbation of motor cortical activity together with electromyography in mice during two forelimb movements that differ in their requirement for cortical involvement. Rapid optogenetic silencing and electrical stimulation indicated that short-latency pathways linking motor cortex with spinal motor neurons are selectively activated during one behavior. Analysis of motor cortical activity revealed a dramatic change between behaviors in the coordination of firing patterns across neurons that could account for this differential influence. Thus, our results suggest that changes in motor cortical output patterns enable a behaviorally selective engagement of short-latency effector pathways. The model of motor cortical influence implied by our findings helps reconcile previous observations on the function of motor cortex.
Collapse
Affiliation(s)
- Andrew Miri
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Kavli Institute of Brain Science, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA.
| | - Claire L Warriner
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Kavli Institute of Brain Science, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Jeffrey S Seely
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10032, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10032, USA; David Mahoney Center for Brain and Behavior Research, Columbia University, New York, NY 10032, USA; Kavli Institute of Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Gamaleldin F Elsayed
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10032, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10032, USA
| | - John P Cunningham
- Department of Statistics, Columbia University, New York, NY 10032, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10032, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Mark M Churchland
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10032, USA; David Mahoney Center for Brain and Behavior Research, Columbia University, New York, NY 10032, USA; Kavli Institute of Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Thomas M Jessell
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Kavli Institute of Brain Science, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| |
Collapse
|
31
|
Abstract
The motor cortex is far from a stable conduit for motor commands and instead undergoes significant changes during learning. An understanding of motor cortex plasticity has been advanced greatly using rodents as experimental animals. Two major focuses of this research have been on the connectivity and activity of the motor cortex. The motor cortex exhibits structural changes in response to learning, and substantial evidence has implicated the local formation and maintenance of new synapses as crucial substrates of motor learning. This synaptic reorganization translates into changes in spiking activity, which appear to result in a modification and refinement of the relationship between motor cortical activity and movement. This review presents the progress that has been made using rodents to establish the motor cortex as an adaptive structure that supports motor learning.
Collapse
Affiliation(s)
- Andrew J Peters
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, California 92093; , ,
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Haixin Liu
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, California 92093; , ,
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, California 92093; , ,
| |
Collapse
|
32
|
Ahmed J, Dwyer DM, Farr TD, Harrison DJ, Dunnett SB, Trueman RC. Lickometry: A novel and sensitive method for assessing functional deficits in rats after stroke. J Cereb Blood Flow Metab 2017; 37:755-761. [PMID: 28056584 PMCID: PMC5305038 DOI: 10.1177/0271678x16684141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/14/2016] [Accepted: 10/21/2016] [Indexed: 12/30/2022]
Abstract
The need for sensitive, easy to administer assessments of long-term functional deficits is crucial in pre-clinical stroke research. In the present study, we introduce lickometry (lick microstructure analysis) as a precise method to assess sensorimotor deficits up to 40 days after middle cerebral artery occlusion in rats. Impairments in drinking efficiency compared to controls, and a compensatory increase in the number of drinking clusters were observed. This highlights the utility of this easy to administer task in assessing subtle, long-term deficits, which could be likened to oral deficits in patients.
Collapse
Affiliation(s)
- Jewel Ahmed
- School of Life Sciences, University of Nottingham, UK
| | | | - Tracy D Farr
- School of Life Sciences, University of Nottingham, UK
| | - David J Harrison
- Brain Repair Group, School of Biosciences, Cardiff University, UK
| | | | | |
Collapse
|
33
|
Mosberger AC, de Clauser L, Kasper H, Schwab ME. Motivational state, reward value, and Pavlovian cues differentially affect skilled forelimb grasping in rats. ACTA ACUST UNITED AC 2016; 23:289-302. [PMID: 27194796 PMCID: PMC4880147 DOI: 10.1101/lm.039537.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 03/21/2016] [Indexed: 12/01/2022]
Abstract
Motor skills represent high-precision movements performed at optimal speed and accuracy. Such motor skills are learned with practice over time. Besides practice, effects of motivation have also been shown to influence speed and accuracy of movements, suggesting that fast movements are performed to maximize gained reward over time as noted in previous studies. In rodents, skilled motor performance has been successfully modeled with the skilled grasping task, in which animals use their forepaw to grasp for sugar pellet rewards through a narrow window. Using sugar pellets, the skilled grasping task is inherently tied to motivation processes. In the present study, we performed three experiments modulating animals’ motivation during skilled grasping by changing the motivational state, presenting different reward value ratios, and displaying Pavlovian stimuli. We found in all three studies that motivation affected the speed of skilled grasping movements, with the strongest effects seen due to motivational state and reward value. Furthermore, accuracy of the movement, measured in success rate, showed a strong dependence on motivational state as well. Pavlovian cues had only minor effects on skilled grasping, but results indicate an inverse Pavlovian-instrumental transfer effect on movement speed. These findings have broad implications considering the increasing use of skilled grasping in studies of motor system structure, function, and recovery after injuries.
Collapse
Affiliation(s)
- Alice C Mosberger
- Brain Research Institute, University of Zurich, Switzerland; Department of Health Sciences and Technology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Larissa de Clauser
- Brain Research Institute, University of Zurich, Switzerland; Department of Health Sciences and Technology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Hansjörg Kasper
- Brain Research Institute, University of Zurich, Switzerland; Department of Health Sciences and Technology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Switzerland; Department of Health Sciences and Technology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
34
|
Kadoya K, Lu P, Nguyen K, Lee-Kubli C, Kumamaru H, Yao L, Knackert J, Poplawski G, Dulin JN, Strobl H, Takashima Y, Biane J, Conner J, Zhang SC, Tuszynski MH. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med 2016; 22:479-87. [PMID: 27019328 PMCID: PMC4860037 DOI: 10.1038/nm.4066] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 02/12/2016] [Indexed: 02/07/2023]
Abstract
The corticospinal tract (CST) is the most important motor system in humans, yet robust regeneration of this projection after spinal cord injury (SCI) has not been accomplished. In murine models of SCI, we report robust corticospinal axon regeneration, functional synapse formation and improved skilled forelimb function after grafting multipotent neural progenitor cells into sites of SCI. Corticospinal regeneration requires grafts to be driven toward caudalized (spinal cord), rather than rostralized, fates. Fully mature caudalized neural grafts also support corticospinal regeneration. Moreover, corticospinal axons can emerge from neural grafts and regenerate beyond the lesion, a process that is potentially related to the attenuation of the glial scar. Rat corticospinal axons also regenerate into human donor grafts of caudal spinal cord identity. Collectively, these findings indicate that spinal cord 'replacement' with homologous neural stem cells enables robust regeneration of the corticospinal projection within and beyond spinal cord lesion sites, achieving a major unmet goal of SCI research and offering new possibilities for clinical translation.
Collapse
Affiliation(s)
- Ken Kadoya
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.,Department of Orthopaedic Surgery, Hokkaido University, Sapporo, Japan
| | - Paul Lu
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.,Veterans Administration San Diego Healthcare System, San Diego, California, USA
| | - Kenny Nguyen
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Corinne Lee-Kubli
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Hiromi Kumamaru
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Lin Yao
- Waisman Center, University of Wisconsin-Madison, Wisconsin, USA.,Department of Neuroscience, University of Wisconsin-Madison, Wisconsin, USA.,Department of Neurology, University of Wisconsin-Madison, Wisconsin, USA
| | - Joshua Knackert
- Waisman Center, University of Wisconsin-Madison, Wisconsin, USA.,Department of Neuroscience, University of Wisconsin-Madison, Wisconsin, USA.,Department of Neurology, University of Wisconsin-Madison, Wisconsin, USA
| | - Gunnar Poplawski
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Jennifer N Dulin
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Hans Strobl
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Yoshio Takashima
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Jeremy Biane
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - James Conner
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Wisconsin, USA
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.,Veterans Administration San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
35
|
Kawai R, Markman T, Poddar R, Ko R, Fantana AL, Dhawale AK, Kampff AR, Ölveczky BP. Motor cortex is required for learning but not for executing a motor skill. Neuron 2015; 86:800-12. [PMID: 25892304 DOI: 10.1016/j.neuron.2015.03.024] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 12/15/2014] [Accepted: 03/09/2015] [Indexed: 12/20/2022]
Abstract
Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning.
Collapse
Affiliation(s)
- Risa Kawai
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Timothy Markman
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Rajesh Poddar
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA
| | - Raymond Ko
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Antoniu L Fantana
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ashesh K Dhawale
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Adam R Kampff
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Bence P Ölveczky
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
36
|
Dancause N, Touvykine B, Mansoori BK. Inhibition of the contralesional hemisphere after stroke. PROGRESS IN BRAIN RESEARCH 2015; 218:361-87. [DOI: 10.1016/bs.pbr.2015.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Nishibe M, Urban ETR, Barbay S, Nudo RJ. Rehabilitative training promotes rapid motor recovery but delayed motor map reorganization in a rat cortical ischemic infarct model. Neurorehabil Neural Repair 2014; 29:472-82. [PMID: 25055836 DOI: 10.1177/1545968314543499] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND In preclinical stroke models, improvement in motor performance is associated with reorganization of cortical motor maps. However, the temporal relationship between performance gains and map plasticity is not clear. OBJECTIVE This study was designed to assess the effects of rehabilitative training on the temporal dynamics of behavioral and neurophysiological endpoints in a rat model of focal cortical infarct. METHODS Eight days after an ischemic infarct in primary motor cortex, adult rats received either rehabilitative training or were allowed to recover spontaneously. Motor performance and movement quality of the paretic forelimb was assessed on a skilled reach task. Intracortical microstimulation mapping procedures were conducted to assess the topography of spared forelimb representations either at the end of training (post-lesion day 18) or at the end of a 3-week follow-up period (post-lesion day 38). RESULTS Rats receiving rehabilitative training demonstrated more rapid improvement in motor performance and movement quality during the training period that persisted through the follow-up period. Motor maps in both groups were unusually small on post-lesion day 18. On post-lesion day 38, forelimb motor maps in the rehabilitative training group were significantly enlarged compared with the no-rehab group, and within the range of normal maps. CONCLUSIONS Postinfarct rehabilitative training rapidly improves motor performance and movement quality after an ischemic infarct in motor cortex. However, training-induced motor improvements are not reflected in spared motor maps until substantially later, suggesting that early motor training after stroke can help shape the evolving poststroke neural network.
Collapse
Affiliation(s)
| | | | - Scott Barbay
- University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
38
|
Alstermark B, Pettersson LG. Skilled reaching and grasping in the rat: lacking effect of corticospinal lesion. Front Neurol 2014; 5:103. [PMID: 24999340 PMCID: PMC4064553 DOI: 10.3389/fneur.2014.00103] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/06/2014] [Indexed: 11/27/2022] Open
Abstract
The corticospinal system is a major motor pathway in the control of skilled voluntary movements such as reaching and grasping. It has developed considerably phylogenetically to reach a peak in humans. Because rodents possess advanced forelimb movements that can be used for reaching and grasping food, it is commonly considered that the corticospinal tract (CST) is of major importance for this control also in rodents. A close homology to primate reaching and grasping has been described but with obvious limitations as to independent digit movements, which are lacking in rodents. Nevertheless, it was believed that there are, as in the primate, direct cortico-motoneuronal connections. Later, it was shown that there are no such connections. The fastest excitatory pathway is disynaptic, mediated via cortico-reticulospinal neurons and in the spinal cord the excitation is mainly polysynaptically mediated via segmental interneurons. Earlier behavioral studies have aimed at investigating the role of the CST by using pyramidotomy in the brainstem. However, in addition to interrupting the CST, a pyramidal transection abolishes the input to reticulospinal neurons. It is therefore not possible to conclude if the deficits after pyramidotomy result from interruption of the CST or the input to reticulospinal neurons or both. We have re-investigated the role of the CST by examining the effect of a CST lesion in the C1–C2 spinal segments on the success rate of reaching and grasping. This lesion spares the cortico-reticulospinal pathway. In contrast to investigations using pyramidal transections, the present study did not demonstrate marked deficits in reaching and grasping. We propose that the difference in results can be explained by the intact cortical input to reticulospinal neurons in our study and thus implicate an important role of this pathway in the control of reaching and grasping in the rat.
Collapse
Affiliation(s)
- Bror Alstermark
- Section of Physiology, Department of Integrative Medical Biology, Umeå University , Umeå , Sweden
| | - Lars-Gunnar Pettersson
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
39
|
Sankaranarayani R, Raghavan M, Nalini A, Laxmi TR, Raju TR. Reach task-associated excitatory overdrive of motor cortical neurons following infusion with ALS-CSF. J Neural Transm (Vienna) 2013; 121:49-58. [PMID: 23900732 DOI: 10.1007/s00702-013-1071-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/16/2013] [Indexed: 12/12/2022]
Abstract
Converging evidence from transgenic animal models of amyotrophic lateral sclerosis (ALS) and human studies suggest alterations in excitability of the motor neurons in ALS. Specifically, in studies on human subjects with ALS the motor cortex was reported to be hyperexcitable. The present study was designed to test the hypothesis that infusion of cerebrospinal fluid from patients with sporadic ALS (ALS-CSF) into the rat brain ventricle can induce hyperexcitability and structural changes in the motor cortex leading to motor dysfunction. A robust model of sporadic ALS was developed experimentally by infusing ALS-CSF into the rat ventricle. The effects of ALS-CSF at the single neuron level were examined by recording extracellular single unit activity from the motor cortex while rats were performing a reach to grasp task. We observed an increase in the firing rate of the neurons of the motor cortex in rats infused with ALS-CSF compared to control groups. This was associated with impairment in a specific component of reach with alterations in the morphological characteristics of the motor cortex. It is likely that the increased cortical excitability observed in the present study could be the result of changes in the intrinsic properties of motor cortical neurons, a dysfunctional inhibitory mechanism and/or an underlying structural change culminating in a behavioral deficit.
Collapse
Affiliation(s)
- R Sankaranarayani
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Post Box No: 2900, Hosur Road, Bangalore, 560 029, Karnataka, India
| | | | | | | | | |
Collapse
|
40
|
Faraji J, Gomez-Palacio-Schjetnan A, Luczak A, Metz GA. Beyond the silence: bilateral somatosensory stimulation enhances skilled movement quality and neural density in intact behaving rats. Behav Brain Res 2013; 253:78-89. [PMID: 23871611 DOI: 10.1016/j.bbr.2013.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/11/2013] [Indexed: 02/01/2023]
Abstract
It is thought that a close dialogue between the primary motor (M1) and somatosensory (S1) cortices is necessary for skilled motor learning. The extent of the relative S1 contribution in producing skilled reaching movements, however, is still unclear. Here we used anodal transcranial direct current stimulation (tDCS), which is able to alter polarity-specific excitability in the S1, to facilitate skilled movement in intact behaving rats. We hypothesized that the critical role of S1 in reaching performance can be enhanced by bilateral tDCS. Pretrained rats were assigned to control or stimulation conditions: (1) UnAno: the unilateral application of an anodal current to the side contralateral to the paw preferred for reaching; (2) BiAno1: bilateral anodal current; (3) BiAno2: a bilateral anodal current with additional 30ms of 65μA pulses every 5s. Rats received tDCS (65μA; 10min/rat) to the S1 during skilled reach training for 20 days (online-effect phase). After-effect assessment occurred for the next ten days in the absence of electrical stimulation. Quantitative and qualitative analyses of online-effects of tDCS showed that UnAno and BiAno1 somatosensory stimulation significantly improve skilled reaching performance. Bilateral BiAno1 stimulation was associated with greater qualitative functional improvement than unilateral UnAno stimulation. tDCS-induced improvements were not observed in the after-effects phase. Quantitative cytoarchitectonic analysis revealed that somatosensory tDCS bilaterally increases cortical neural density. The findings emphasize the central role of bilateral somatosensory feedback in skill acquisition through modulation of cortico-motor excitability.
Collapse
Affiliation(s)
- Jamshid Faraji
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4.
| | | | | | | |
Collapse
|
41
|
A behavioral method for identifying recovery and compensation: Hand use in a preclinical stroke model using the single pellet reaching task. Neurosci Biobehav Rev 2013; 37:950-67. [DOI: 10.1016/j.neubiorev.2013.03.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/23/2013] [Accepted: 03/27/2013] [Indexed: 12/12/2022]
|
42
|
Liu Z, Chopp M, Ding X, Cui Y, Li Y. Axonal remodeling of the corticospinal tract in the spinal cord contributes to voluntary motor recovery after stroke in adult mice. Stroke 2013; 44:1951-6. [PMID: 23696550 DOI: 10.1161/strokeaha.113.001162] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We sought to demonstrate the contribution of axonal remodeling of the corticospinal tract (CST) in the spinal cord to functional outcome after stroke. METHODS Bilateral pyramidotomy (BPT) or sham-BPT was performed in mice with transgenic yellow fluorescent protein labeling in the CST subjected to middle cerebral artery occlusion (MCAo). Foot-fault and single pellet reaching tests were performed 3 days after MCAo and weekly thereafter. Mice were euthanized at day 14 or 28 after stroke. Immunofluorescent staining for growth-associated protein-43 and Synaptophysin was performed on cervical sections. RESULTS Functional improvements were evident during the initial 14 days in both MCAo-sham-BPT and MCAo-BPT mice (P<0.01, versus day 3). Progressive recovery was present during the subsequent 14 days in MCAo-sham-BPT mice (P<0.001, versus day 14) but not in MCAo-BPT mice. In the stroke-affected cervical gray matter of MCAo-sham-BPT mice, growth-associated protein-43-Cy3 staining on CST axons were significantly increased at day 14 after stroke compared with normal mice (P<0.001), and CST axonal density and Synaptophysin-Cy3 staining of CST-yellow fluorescent protein axonal terminals were significantly increased at day 28 compared with day 14 after MCAo (P<0.001). CONCLUSIONS Our data demonstrate that voluntary motor recovery is associated with CST axonal outgrowth and synaptic formation in the denervated side of the spinal gray matter during the later phase after stroke, suggesting that the CST axonal plasticity in the spinal cord contributes to neurological recovery.
Collapse
Affiliation(s)
- Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
43
|
de Fátima Dos Santos Sampaio M, Marcilio FDS, Giraldi-Guimarães A. Does treatment with bone marrow mononuclear cells recover skilled motor function after focal cortical ischemia? Analysis with a forelimb skilled motor task in rats. Brain Res 2012. [PMID: 23178695 DOI: 10.1016/j.brainres.2012.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies have shown sensorimotor recovery by treatment with bone marrow mononuclear cells (BMMCs) after focal brain ischemia. However, sensorimotor tests commonly used are designed to examine motor patterns that do not involve skill or training. We evaluated whether BMMCs treatment was able to recover forelimb skilled movements. Reaching chamber/pellet retrieval (RCPR) task was used, in which animals had to learn to grasp a single food pellet and lead it to its mouth. We also evaluated therapeutic effect of this training on unskilled sensorimotor function. Adult male Wistar rats suffered unilateral cortical ischemia by thermocoagulation in motor and somesthetic primary areas. A day later, they received i.v. injection of 3×10(7) BMMCs or vehicle (saline), forming four experimental groups: BMMCs+RCPR; saline+RCPR; BMMCs and saline. Cylinder and adhesive tests were applied in all experimental groups, and all behavioral tests were performed before and along post-ischemic weeks after induction of ischemia. Results from RCPR task showed no significant difference between BMMCs+RCPR and saline+RCPR groups. In cylinder test, BMMCs-treated groups showed significant recovery, but no significant effect of RCPR training was observed. In adhesive test, BMMCs treatment promoted significant recovery. Synergistic effect was found since only together they were able to accelerate recovery. The results showed that BMMCs treatment promoted increased recovery of unsophisticated sensorimotor function, but not of skilled forepaw movements. Thus, BMMCs might not be able to recover all aspects of sensorimotor functions, although further studies are still needed to investigate this treatment in ischemic lesions with different locations and extensions.
Collapse
Affiliation(s)
- Maria de Fátima Dos Santos Sampaio
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | | | | |
Collapse
|
44
|
Faraji J, Kurio K, Metz GA. Concurrent silent strokes impair motor function by limiting behavioral compensation. Exp Neurol 2012; 236:241-8. [DOI: 10.1016/j.expneurol.2012.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/30/2012] [Accepted: 05/09/2012] [Indexed: 01/08/2023]
|
45
|
Mouse models of the fragile x premutation and the fragile X associated tremor/ataxia syndrome. Results Probl Cell Differ 2012; 54:255-69. [PMID: 22009357 DOI: 10.1007/978-3-642-21649-7_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The use of mutant mouse models of neurodevelopmental and neurodegenerative disease is essential in order to understand the pathogenesis of many genetic diseases such as fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS). The choice of which animal model is most suitable to mimic a particular disease depends on a range of factors, including anatomical, physiological, and pathological similarities; presence of orthologs of genes of interest; and conservation of basic cell biological and metabolic processes. In this chapter, we will discuss two mouse models of the fragile X premutation which have been generated to study the pathogenesis of FXTAS and the effects of potential therapeutic interventions. Behavioral, molecular, neuropathological, and endocrine features of the mouse models and their relation to human FXTAS are discussed.
Collapse
|
46
|
Karl JM, Whishaw IQ. Rodent Skilled Reaching for Modeling Pathological Conditions of the Human Motor System. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-1-61779-298-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
47
|
Dunham KA, Siriphorn A, Chompoopong S, Floyd CL. Characterization of a graded cervical hemicontusion spinal cord injury model in adult male rats. J Neurotrauma 2011; 27:2091-106. [PMID: 21087156 DOI: 10.1089/neu.2010.1424] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most experimental models of spinal cord injury (SCI) in rodents induce damage in the thoracic cord and subsequently examine hindlimb function as an indicator of recovery. In these models, functional recovery is most attributable to white-matter preservation and is less influenced by grey-matter sparing. In contrast, most clinical cases of SCI occur at the lower cervical levels, a region in which both grey-matter and white-matter sparing contribute to functional motor recovery. Thus experimental cervical SCI models are beginning to be developed and used to assess protective and pharmacological interventions following SCI. The objective of this study was to characterize a model of graded cervical hemicontusion SCI with regard to several histological and behavioral outcome measures, including novel forelimb behavioral tasks. Using a commercially available rodent spinal cord impactor, adult male rats received hemicontusion SCI at vertebral level C5 at 100, 200, or 300 kdyn force, to produce mild, moderate, or severe injury severities. Tests of skilled and unskilled forelimb and locomotor function were employed to assess functional recovery, and spinal cord tissue was collected to assess lesion severity. Deficits in skilled and unskilled forelimb function and locomotion relating to injury severity were observed, as well as decreases in neuronal numbers, white-matter area, and white-matter gliosis. Significant correlations were observed between behavioral and histological data. Taken together, these data suggest that the forelimb functional and locomotor assessments employed here are sensitive enough to measure functional changes, and that this hemicontusion model can be used to evaluate potential protective and regenerative therapeutic strategies.
Collapse
Affiliation(s)
- Kelly A Dunham
- Department of Physical Medicine and Rehabilitation, Center for Glial Biology in Medicine, University of Alabama-Birmingham, Birmingham, Alabama 35249, USA
| | | | | | | |
Collapse
|
48
|
Whishaw IQ, Sacrey LAR, Travis SG, Gholamrezaei G, Karl JM. The functional origins of speech-related hand gestures. Behav Brain Res 2010; 214:206-15. [PMID: 20573589 DOI: 10.1016/j.bbr.2010.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 11/25/2022]
|
49
|
Mair RG, Onos KD, Hembrook JR. Cognitive activation by central thalamic stimulation: the yerkes-dodson law revisited. Dose Response 2010; 9:313-31. [PMID: 22013395 DOI: 10.2203/dose-response.10-017.mair] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Central thalamus regulates forebrain arousal, influencing activity in distributed neural networks that give rise to organized actions during alert, wakeful states. Central thalamus has been implicated in working memory by the effects of lesions and microinjected drugs in this part of the brain. Lesions and drugs that inhibit neural activity have been found to impair working memory. Drugs that increase activity have been found to enhance and impair memory depending on the dose tested. Electrical deep brain stimulation (DBS) similarly enhances working memory at low stimulating currents and impairs it at higher currents. These effects are time dependent. They were observed when DBS was applied during the memory delay (retention) or choice response (retrieval) but not earlier in trials during the sample (acquisition) phase. The effects of microinjected drugs and DBS are consistent with the Yerkes-Dodson law, which describes an inverted-U relationship between arousal and behavioral performance. Alternatively these results may reflect desensitization associated with higher levels of stimulation, spread of drugs or current to adjacent structures, or activation of less sensitive neurons or receptors at higher DBS currents or drug doses.
Collapse
Affiliation(s)
- Robert G Mair
- Department of Psychology, University of New Hampshire
| | | | | |
Collapse
|
50
|
Umeda T, Takahashi M, Isa K, Isa T. Formation of descending pathways mediating cortical command to forelimb motoneurons in neonatally hemidecorticated rats. J Neurophysiol 2010; 104:1707-16. [PMID: 20660415 DOI: 10.1152/jn.00968.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neonatally hemidecorticated rats show fairly normal reaching and grasping behaviors of the forelimb contralateral to the lesion at the adult stage. Previous experiments using an anterograde tracer showed that the corticospinal fibers originating from the sensorimotor cortex of the intact side projected aberrant collaterals to the spinal gray matter on the ipsilateral side. The present study used electrophysiological methods to investigate whether the aberrant projections of the corticospinal tract mediated the pyramidal excitation to the ipsilateral forelimb motoneurons and, if so, which pathways mediate the effect in the hemidecorticated rats. Electrical stimulation to the intact medullary pyramid elicited bilateral negative field potentials in the dorsal horn of the spinal cord. In intracellular recordings of forelimb motoneurons, oligosynaptic pyramidal excitation was detected on both sides of the spinal cord in the hemidecorticated rats, whereas pyramidal excitation of motoneurons on the side ipsilateral to the stimulation was much smaller in normal rats. By lesioning the dorsal funiculus at the upper cervical level, we clarified that the excitation was transmitted to the ipsilateral motoneurons by at least two pathways: one via the corticospinal tract and spinal interneurons and the other via the cortico-reticulo-spinal pathways. These results suggested that in the neonatally hemidecorticated rats, the forelimb movements on the side contralateral to the lesion were modulated by motor commands through the indirect ipsilateral descending pathways from the sensorimotor cortex of the intact side either via the spinal interneurons or reticulospinal neurons.
Collapse
Affiliation(s)
- Tatsuya Umeda
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Department of Developmental Physiology, Myodaiji, Okazaki 444-8585, Japan.
| | | | | | | |
Collapse
|