1
|
Suriano CM, Kumar N, Verpeut JL, Ma J, Jung C, Dunn CE, Carvajal BV, Nguyen AV, Boulanger LM. An innate immune response to adeno-associated virus genomes decreases cortical dendritic complexity and disrupts synaptic transmission. Mol Ther 2024; 32:1721-1738. [PMID: 38566414 PMCID: PMC11184335 DOI: 10.1016/j.ymthe.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/07/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Recombinant adeno-associated viruses (AAVs) allow rapid and efficient gene delivery to the nervous system, are widely used in neuroscience research, and are the basis of FDA-approved neuron-targeting gene therapies. Here we find that an innate immune response to the AAV genome reduces dendritic length and complexity and disrupts synaptic transmission in mouse somatosensory cortex. Dendritic loss is apparent 3 weeks after injection of experimentally relevant viral titers, is not restricted to a particular capsid serotype, transgene, promoter, or production facility, and cannot be explained by responses to surgery or transgene expression. AAV-associated dendritic loss is accompanied by a decrease in the frequency and amplitude of miniature excitatory postsynaptic currents and an increase in the proportion of GluA2-lacking, calcium-permeable AMPA receptors. The AAV genome is rich in unmethylated CpG DNA, which is recognized by the innate immunoreceptor Toll-like receptor 9 (TLR9), and acutely blocking TLR9 preserves dendritic complexity and AMPA receptor subunit composition in AAV-injected mice. These results reveal unexpected impacts of an immune response to the AAV genome on neuronal structure and function and identify approaches to improve the safety and efficacy of AAV-mediated gene delivery in the nervous system.
Collapse
Affiliation(s)
- Christos M Suriano
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA; Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08540, USA; Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA; Sokol Institute for Pharmaceutical Life Sciences, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA.
| | - Neerav Kumar
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Jessica L Verpeut
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Jie Ma
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA; Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Caroline Jung
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Connor E Dunn
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Brigett V Carvajal
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Ai Vy Nguyen
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Lisa M Boulanger
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA; Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08540, USA.
| |
Collapse
|
2
|
Moss A, Kuttippurathu L, Srivastava A, Schwaber JS, Vadigepalli R. Dynamic dysregulation of transcriptomic networks in brainstem autonomic nuclei during hypertension development in the female spontaneously hypertensive rat. Physiol Genomics 2024; 56:283-300. [PMID: 38145287 PMCID: PMC11283910 DOI: 10.1152/physiolgenomics.00073.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Neurogenic hypertension stems from an imbalance in autonomic function that shifts the central cardiovascular control circuits toward a state of dysfunction. Using the female spontaneously hypertensive rat and the normotensive Wistar-Kyoto rat model, we compared the transcriptomic changes in three autonomic nuclei in the brainstem, nucleus of the solitary tract (NTS), caudal ventrolateral medulla, and rostral ventrolateral medulla (RVLM) in a time series at 8, 10, 12, 16, and 24 wk of age, spanning the prehypertensive stage through extended chronic hypertension. RNA-sequencing data were analyzed using an unbiased, dynamic pattern-based approach that uncovered dominant and several subtle differential gene regulatory signatures. Our results showed a persistent dysregulation across all three autonomic nuclei regardless of the stage of hypertension development as well as a cascade of transient dysregulation beginning in the RVLM at the prehypertensive stage that shifts toward the NTS at the hypertension onset. Genes that were persistently dysregulated were heavily enriched for immunological processes such as antigen processing and presentation, the adaptive immune response, and the complement system. Genes with transient dysregulation were also largely region-specific and were annotated for processes that influence neuronal excitability such as synaptic vesicle release, neurotransmitter transport, and an array of neuropeptides and ion channels. Our results demonstrate that neurogenic hypertension is characterized by brainstem region-specific transcriptomic changes that are highly dynamic with significant gene regulatory changes occurring at the hypertension onset as a key time window for dysregulation of homeostatic processes across the autonomic control circuits.NEW & NOTEWORTHY Hypertension is a major disease and is the primary risk factor for cardiovascular complications and stroke. The gene expression changes in the central nervous system circuits driving hypertension are understudied. Here, we show that coordinated and region-specific gene expression changes occur in the brainstem autonomic circuits over time during the development of a high blood pressure phenotype in a rat model of human essential hypertension.
Collapse
Affiliation(s)
- Alison Moss
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Ankita Srivastava
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
3
|
Li Z, Bao X, Liu X, Wang W, Yang J. Gene network analyses of larvae under different egg-protecting behaviors provide novel insights into immune response mechanisms of Amphioctopus fangsiao. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108733. [PMID: 37028690 DOI: 10.1016/j.fsi.2023.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Amphioctopus fangsiao was a representative economic species in cephalopods, which was vulnerable to marine bacteria. Vibrio anguillarum was a highly infectious pathogen that have recently been found to infect A. fangsiao and inhibit its growth and development. There were significant differences in the immune response mechanisms between egg-protected and egg-unprotected larvae. To explore larval immunity under different egg-protecting behaviors, we infected A. fangsiao larvae with V. anguillarum for 24 h and analyzed the transcriptome data about egg-protected and egg-unprotected larvae infected with 0, 4, 12, and 24 h using weighted gene co-expression networks (WGCNA) and protein-protein interaction (PPI) networks. Network analyses revealed a series of immune response processes after infection, and identified six key modules and multiple immune-related hub genes. Meanwhile, we found that ZNF family, such as ZNF32, ZNF160, ZNF271, ZNF479, and ZNF493 might play significant roles in A. fangsiao immune response processes. We first creatively combined WGCNA and PPI network analysis to deeply explore the immune response mechanisms of A. fangsiao larvae with different egg-protecting behaviors. Our results provided further insights into the immunity of V. anguillarum infected invertebrates, and laid the foundation for exploring the immune differences among cephalopods with different egg protecting behaviors.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
4
|
Shen Y, Zhang J. Tight Regulation of Major Histocompatibility Complex I for the Spatial and Temporal Expression in the Hippocampal Neurons. Front Cell Neurosci 2021; 15:739136. [PMID: 34658795 PMCID: PMC8517433 DOI: 10.3389/fncel.2021.739136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
The expression and function of immune molecules, such as major histocompatibility complex (MHC), within the developing and adult brain have been discovered over the past few years. Studies utilizing classical class I MHC knockout animals suggest that these molecules, in fact, play essential roles in the establishment, function, and modification of synapses in the CNS. Altered neuronal expression of class I MHC, as has been reported in pathological conditions, leads to aberrations in neuronal development and repair. In the hippocampus, cellular and molecular mechanisms that regulate synaptic plasticity have heretofore been extensively studied. It is for this reason that multiple studies directed at better understanding the expression, regulation, and function of class I MHC within the hippocampus have been undertaken. Since several previous reviews have addressed the roles of class I MHC in the formation and function of hippocampal connections, the present review will focus on describing the spatial and temporal expression of class I MHC in developing, healthy adult, and aging hippocampus. Herein, we also review current literatures exploring mechanisms that regulate class I MHC expression in murine hippocampus. With this review, we aim to facilitate a deeper mechanistic understanding into the complex tight regulation of MHC I expression in hippocampus, which are needed as we explore the potential for targeting MHC I for therapeutic intervention in normal aging and in neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Yuqing Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China.,Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Vitaliti G, Falsaperla R. Chorioamnionitis, Inflammation and Neonatal Apnea: Effects on Preterm Neonatal Brainstem and on Peripheral Airways: Chorioamnionitis and Neonatal Respiratory Functions. CHILDREN-BASEL 2021; 8:children8100917. [PMID: 34682182 PMCID: PMC8534519 DOI: 10.3390/children8100917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Background: The present manuscript aims to be a narrative review evaluating the association between inflammation in chorioamnionitis and damage on respiratory centers, peripheral airways, and lungs, explaining the pathways responsible for apnea in preterm babies born by delivery after chorioamnionitis. Methods: A combination of keywords and MESH words was used, including: "inflammation", "chorioamnionitis", "brainstem", "cytokines storm", "preterm birth", "neonatal apnea", and "apnea physiopathology". All identified papers were screened for title and abstracts by the two authors to verify whether they met the proper criteria to write the topic. Results: Chorioamnionitis is usually associated with Fetal Inflammatory Response Syndrome (FIRS), resulting in injury of brain and lungs. Literature data have shown that infections causing chorioamnionitis are mostly associated with inflammation and consequent hypoxia-mediated brain injury. Moreover, inflammation and infection induce apneic episodes in neonates, as well as in animal samples. Chorioamnionitis-induced inflammation favors the systemic secretion of pro-inflammatory cytokines that are involved in abnormal development of the respiratory centers in the brainstem and in alterations of peripheral airways and lungs. Conclusions: Preterm birth shows a suboptimal development of the brainstem and abnormalities and altered development of peripheral airways and lungs. These alterations are responsible for reduced respiratory control and apnea. To date, mostly animal studies have been published. Therefore, more clinical studies on the role of chorioamninitis-induced inflammation on prematurity and neonatal apnea are necessary.
Collapse
Affiliation(s)
- Giovanna Vitaliti
- Unit of Pediatrics, Department of Medical Sciences, Section of Pediatrics, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-34-0471-0614
| | - Raffaele Falsaperla
- Pediatrics and Pediatric Emergency Operative Unit, Azienda Ospedaliero Universitaria Policlinico G.Rodolico-San Marco, San Marco Hospital, University of Catania, 95124 Catania, Italy;
- Neonatal Intensive Care Unit, Azienda Ospedaliero Universitaria Policlinico G.Rodolico-San Marco, San Marco Hospital, San Marco Hospital, University of Catania, 95124 Catania, Italy
| |
Collapse
|
6
|
Katrinli S, Smith AK. Immune system regulation and role of the human leukocyte antigen in posttraumatic stress disorder. Neurobiol Stress 2021; 15:100366. [PMID: 34355049 PMCID: PMC8322450 DOI: 10.1016/j.ynstr.2021.100366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 11/01/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating condition that adversely affect mental and physical health. Recent studies have increasingly explored the role of the immune system in risk for PTSD and its related symptoms. Dysregulation of the immune system may lead to central nervous system tissue damage and impair learning and memory processes. Individuals with PTSD often have comorbid inflammatory or auto-immune disorders. Evidence shows associations between PTSD and multiple genes that are involved in immune-related or inflammatory pathways. In this review, we will summarize the evidence of immune dysregulation in PTSD, outlining the contributions of distinct cell types, genes, and biological pathways. We use the Human Leukocyte Antigen (HLA) locus to illustrate the contribution of genetic variation to function in different tissues that contribute to PTSD etiology, severity, and comorbidities.
Collapse
Affiliation(s)
- Seyma Katrinli
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
| | - Alicia K Smith
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA.,Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| |
Collapse
|
7
|
Keck T. Microglia Tweak Retinogeniculate Pathways during Visual Circuit Refinement. Neuron 2020; 108:397-399. [PMID: 33181071 DOI: 10.1016/j.neuron.2020.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cheadle et al. reveal that microglia expressing TWEAK facilitate synapse elimination through a novel, non-phagocytic mechanism in the retinogeniculate pathway during visual circuit development. This mechanism is experience-dependent and occurs through the local binding of TWEAK to postsynaptic Fn14.
Collapse
Affiliation(s)
- Tara Keck
- Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University St., London WC1E 6DE, UK.
| |
Collapse
|
8
|
Ramos AB, Cruz RA, Villemarette-Pittman NR, Olejniczak PW, Mader EC. Dexamethasone as Abortive Treatment for Refractory Seizures or Status Epilepticus in the Inpatient Setting. J Investig Med High Impact Case Rep 2020; 7:2324709619848816. [PMID: 31104535 PMCID: PMC6537247 DOI: 10.1177/2324709619848816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Refractory seizures or status epilepticus (RS/SE) continues to be a challenge in
the inpatient setting. Failure to abort a seizure with antiepileptic drugs
(AEDs) may lead to intubation and treatment with general anesthesia exposing
patients to complications, extending hospitalization, and increasing the cost of
care. Studies have shown a key role of inflammatory mediators in seizure
generation and termination. We describe 4 patients with RS/SE that was aborted
when dexamethasone was added to conventional AEDs: a 61-year-old female with
temporal lobe epilepsy who presented with delirium, nonconvulsive status
epilepticus, and oculomyoclonic status; a 56-year-old female with history of
traumatic left frontal lobe hemorrhage who developed right face and hand
epilepsia partialis continua followed by refractory focal clonic seizures; a
51-year-old male with history of traumatic intracranial hemorrhage who exhibited
left-sided epilepsia partialis continua; and a 75-year-old female with history
of breast cancer who manifested nonconvulsive status epilepticus and refractory
focal clonic seizures. All patients continued experiencing RS/SE despite first-
and second-line therapy, and one patient continued to experience RS/SE despite
third-line therapy. Failure to abort RS/SE with conventional therapy motivated
us to administer intravenous dexamethasone. A 10-mg load was given (except in
one patient) followed by 4.0- 5.2 mg q6h. All clinical and electrographic
seizures stopped 3-4 days after starting dexamethasone. When dexamethasone was
discontinued 1-3 days after seizures stopped, all patients remained seizure-free
on 2-3 AEDs. The cessation of RS/SE when dexamethasone was added to conventional
antiseizure therapy suggests that inflammatory processes are involved in the
pathogenesis of RS/SE.
Collapse
Affiliation(s)
- Alexander B Ramos
- 1 Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Roberto A Cruz
- 1 Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Piotr W Olejniczak
- 1 Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Edward C Mader
- 1 Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
9
|
Cartarozzi LP, Perez M, Kirchhoff F, Oliveira ALRD. Role of MHC-I Expression on Spinal Motoneuron Survival and Glial Reactions Following Ventral Root Crush in Mice. Cells 2019; 8:E483. [PMID: 31117227 PMCID: PMC6563038 DOI: 10.3390/cells8050483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 11/28/2022] Open
Abstract
Lesions to the CNS/PNS interface are especially severe, leading to elevated neuronal degeneration. In the present work, we establish the ventral root crush model for mice, and demonstrate the potential of such an approach, by analyzing injury evoked motoneuron loss, changes of synaptic coverage and concomitant glial responses in β2-microglobulin knockout mice (β2m KO). Young adult (8-12 weeks old) C57BL/6J (WT) and β2m KO mice were submitted to a L4-L6 ventral roots crush. Neuronal survival revealed a time-dependent motoneuron-like cell loss, both in WT and β2m KO mice. Along with neuronal loss, astrogliosis increased in WT mice, which was not observed in β2m KO mice. Microglial responses were more pronounced during the acute phase after lesion and decreased over time, in WT and KO mice. At 7 days after lesion β2m KO mice showed stronger Iba-1+ cell reaction. The synaptic inputs were reduced over time, but in β2m KO, the synaptic loss was more prominent between 7 and 28 days after lesion. Taken together, the results herein demonstrate that ventral root crushing in mice provides robust data regarding neuronal loss and glial reaction. The retrograde reactions after injury were altered in the absence of functional MHC-I surface expression.
Collapse
Affiliation(s)
- Luciana Politti Cartarozzi
- Laboratory of Nerve Regeneration, University of Campinas-UNICAMP, Cidade Universitaria "Zeferino Vaz, Rua Monteiro Lobato, 255, 13083-970 Campinas, SP, Brazil.
| | - Matheus Perez
- School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14040-907 Ribeirão Preto, SP, Brazil.
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421 Homburg, Germany.
| | - Alexandre Leite Rodrigues de Oliveira
- Laboratory of Nerve Regeneration, University of Campinas-UNICAMP, Cidade Universitaria "Zeferino Vaz, Rua Monteiro Lobato, 255, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
10
|
Coiro P, Pollak DD. Sex and gender bias in the experimental neurosciences: the case of the maternal immune activation model. Transl Psychiatry 2019; 9:90. [PMID: 30765690 PMCID: PMC6375995 DOI: 10.1038/s41398-019-0423-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Recent and rapidly developing movements relating to the increasing awareness and reports of gender bias, discrimination, and abuse have reached the academic environments. The consideration that negative attitudes toward women and abuse of power creates a hostile environment for female scientists, facilitating sexual harassment and driving women out of science, can be easily related to. Rationally inaccessible gender biases are not only evident at the level of the researchers, but are also paralleled by a corresponding imbalance at the level of the research subjects. Here, we focus on the maternal immune activation (MIA) animal model to illustrate exemplarily the current state of ex-/inclusion of female research subjects and the consideration of sex as biological variable in the basic neurosciences. We demonstrate a strong sex disparity with a major emphasis on male animals in studies examining behavioral and neurochemical alterations in MIA offspring. We put forward the hypothesis that this neglect of female subjects in basic research may stem from a hard-wired sex/gender bias, which may also be reflected in a similar attitude toward female scientists. We suggest exploring the possibility that by dismantling sex bias and male dominance in basic research one would get an additional handle on favorably modifying the perception and appreciation for women in science.
Collapse
Affiliation(s)
- Pierluca Coiro
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Aguilera G, Colín-González AL, Rangel-López E, Chavarría A, Santamaría A. Redox Signaling, Neuroinflammation, and Neurodegeneration. Antioxid Redox Signal 2018; 28:1626-1651. [PMID: 28467722 DOI: 10.1089/ars.2017.7099] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Production of pro-inflammatory and anti-inflammatory cytokines is part of the defense system that mostly microglia and macrophages display to induce normal signaling to counteract the deleterious actions of invading pathogens in the brain. Also, redox activity in the central nervous system (CNS) constitutes an integral part of the metabolic processes needed by cells to exert their normal molecular and biochemical functions. Under normal conditions, the formation of reactive oxygen and nitrogen species, and the following oxidative activity encounter a healthy balance with immunological responses to preserve cell functions in the brain. However, under different pathological conditions, inflammatory responses recruit pro-oxidant signals and vice versa. The aim of this article is to review the basic concepts about the triggering of inflammatory and oxidative responses in the CNS. Recent Advances: Diverse concurrent toxic pathways are described to provide a solid mechanistic scope for considering intervention at the experimental and clinical levels that are aimed at diminishing the harmful actions of these two contributing factors to nerve cell damage. Critical Issues and Future Directions: The main conclusion supports the existence of a narrow cross-talk between pro-inflammatory and oxidative signals that can lead to neuronal damage and subsequent neurodegeneration. Further investigation about critical pathways crosslinking oxidative stress and inflammation will strength our knowlegde on this topic. Antioxid. Redox Signal. 28, 1626-1651.
Collapse
Affiliation(s)
- Gabriela Aguilera
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| | - Ana Laura Colín-González
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| | - Edgar Rangel-López
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| | - Anahí Chavarría
- 2 Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Abel Santamaría
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| |
Collapse
|
12
|
|
13
|
Vezzani A, Dingledine R, Rossetti AO. Immunity and inflammation in status epilepticus and its sequelae: possibilities for therapeutic application. Expert Rev Neurother 2018; 15:1081-92. [PMID: 26312647 DOI: 10.1586/14737175.2015.1079130] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Status epilepticus (SE) is a life-threatening neurological emergency often refractory to available treatment options. It is a very heterogeneous condition in terms of clinical presentation and causes, which besides genetic, vascular and other structural causes also include CNS or severe systemic infections, sudden withdrawal from benzodiazepines or anticonvulsants and rare autoimmune etiologies. Treatment of SE is essentially based on expert opinions and antiepileptic drug treatment per se seems to have no major impact on prognosis. There is, therefore, urgent need of novel therapies that rely upon a better understanding of the basic mechanisms underlying this clinical condition. Accumulating evidence in animal models highlights that inflammation ensuing in the brain during SE may play a determinant role in ongoing seizures and their long-term detrimental consequences, independent of an infection or auto-immune cause; this evidence encourages reconsideration of the treatment flow in SE patients.
Collapse
Affiliation(s)
- Annamaria Vezzani
- a 1 Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | | | | |
Collapse
|
14
|
Stojanovska V, Miller SL, Hooper SB, Polglase GR. The Consequences of Preterm Birth and Chorioamnionitis on Brainstem Respiratory Centers: Implications for Neurochemical Development and Altered Functions by Inflammation and Prostaglandins. Front Cell Neurosci 2018; 12:26. [PMID: 29449803 PMCID: PMC5799271 DOI: 10.3389/fncel.2018.00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/17/2018] [Indexed: 11/16/2022] Open
Abstract
Preterm birth is a major cause for neonatal morbidity and mortality, and is frequently associated with adverse neurological outcomes. The transition from intrauterine to extrauterine life at birth is particularly challenging for preterm infants. The main physiological driver for extrauterine transition is the establishment of spontaneous breathing. However, preterm infants have difficulty clearing lung liquid, have insufficient surfactant levels, and underdeveloped lungs. Further, preterm infants have an underdeveloped brainstem, resulting in reduced respiratory drive. These factors facilitate the increased requirement for respiratory support. A principal cause of preterm birth is intrauterine infection/inflammation (chorioamnionitis), and infants with chorioamnionitis have an increased risk and severity of neurological damage, but also demonstrate impaired autoresuscitation capacity and prevalent apnoeic episodes. The brainstem contains vital respiratory centers which provide the neural drive for breathing, but the impact of preterm birth and/or chorioamnionitis on this brain region is not well understood. The aim of this review is to provide an overview of the role and function of the brainstem respiratory centers, and to highlight the proposed mechanisms of how preterm birth and chorioamnionitis may affect central respiratory functions.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Li D, Tomljenovic L, Li Y, Shaw CA. RETRACTED: Subcutaneous injections of aluminum at vaccine adjuvant levels activate innate immune genes in mouse brain that are homologous with biomarkers of autism. J Inorg Biochem 2017; 177:39-54. [PMID: 28923356 DOI: 10.1016/j.jinorgbio.2017.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Dan Li
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lucija Tomljenovic
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yongling Li
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Shaw
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Program in Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
16
|
Mazarati AM, Lewis ML, Pittman QJ. Neurobehavioral comorbidities of epilepsy: Role of inflammation. Epilepsia 2017; 58 Suppl 3:48-56. [DOI: 10.1111/epi.13786] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Andrey M. Mazarati
- Neurology Division; Department of Pediatrics; David Geffen School of Medicine; University of California Los Angeles; Los Angeles California U.S.A
| | - Megan L. Lewis
- Department of Physiology & Pharmacology; Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| | - Quentin J. Pittman
- Department of Physiology & Pharmacology; Hotchkiss Brain Institute; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
17
|
Tanaka T, Matsuda T, Hayes LN, Yang S, Rodriguez K, Severance EG, Yolken RH, Sawa A, Eaton WW. Infection and inflammation in schizophrenia and bipolar disorder. Neurosci Res 2016; 115:59-63. [PMID: 27856235 DOI: 10.1016/j.neures.2016.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 12/18/2022]
Abstract
The present study investigated the relationship between exposure to infectious agents and inflammation markers in individuals with schizophrenia (SZ), bipolar disorder (BP), and controls without a psychiatric disorder. We measured plasma levels of antibodies and innate immune markers and correlated them with clinical symptoms and cognitive function. In both SZ and BP, we found an increase in soluble CD14, and in BP an increase in C-reactive protein, IgM class antibodies against cytomegalovirus (CMV), and IgG class antibodies against herpes simplex virus 2. Furthermore in BP, we observed a negative relationship between IgG antibodies against CMV and scores for cognitive function.
Collapse
Affiliation(s)
- Teppei Tanaka
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Taro Matsuda
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Lindsay N Hayes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shuojia Yang
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Katrina Rodriguez
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Emily G Severance
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert H Yolken
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| | - William W Eaton
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
18
|
Marco C, Antonio D, Antonina S, Alessandro S, Concetta C, Antonina S, Serretti A, Alessandro S, Crisafulli C, Concetta C. Genes involved in pruning and inflammation are enriched in a large mega-sample of patients affected by Schizophrenia and Bipolar Disorder and controls. Psychiatry Res 2015; 228:945-9. [PMID: 26160200 PMCID: PMC4532584 DOI: 10.1016/j.psychres.2015.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/08/2015] [Accepted: 06/24/2015] [Indexed: 12/26/2022]
Abstract
A molecular pathway analysis has been performed in order to complement previous genetic investigations on Schizophrenia. 4486 Schizophrenic patients and 4477 controls served as the investigation sample. 3521 Bipolar patients and 3195 controls served as replication sample. A molecular pathway associated with the neuronal pruning activity was found to be enriched in subjects with Schizophrenia compared to controls. HLA-C and HLA-DRA had more SNPs associated with both Schizophrenia and Bipolar Disorder than expected by chance.
Collapse
Affiliation(s)
- Calabrò Marco
- Department of Biomedical Science and morphological and functional images, University of Messina, Italy,Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy,IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Drago Antonio
- Department of Biomedical and Neuromotor Sciences – DIBINEM -, University of Bologna, Italy,I.R.C.C.S. “San Giovanni di Dio”, Fatebenefratelli, Brescia, Italy, Telephone: +39 051 6584233. Fax +39 051 521030
| | - Sidoti Antonina
- Department of Biomedical Science and morphological and functional images, University of Messina, Italy,IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Serretti Alessandro
- Department of Biomedical and Neuromotor Sciences – DIBINEM -, University of Bologna, Italy
| | - Crisafulli Concetta
- Department of Biomedical Science and morphological and functional images, University of Messina, Italy
| | - Sidoti Antonina
- .Department of Biomedical Science and morphological and functional images, University of Messina, Italy; IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | | | - Serretti Alessandro
- Department of Biomedical and Neuromotor Sciences - DIBINEM -, University of Bologna, Italy
| | | | - Crisafulli Concetta
- .Department of Biomedical Science and morphological and functional images, University of Messina, Italy
| |
Collapse
|
19
|
Schapansky J, Nardozzi JD, LaVoie MJ. The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson's disease. Neuroscience 2014; 302:74-88. [PMID: 25284317 DOI: 10.1016/j.neuroscience.2014.09.049] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022]
Abstract
The proteins alpha-synuclein (αSyn) and leucine rich repeat kinase 2 (LRRK2) are both key players in the pathogenesis of the neurodegenerative disorder Parkinson's disease (PD), but establishing a functional link between the two proteins has proven elusive. Research studies for these two proteins have traditionally and justifiably focused in neuronal cells, but recent studies indicate that each protein could play a greater pathological role elsewhere. αSyn is expressed at high levels within neurons, but they also secrete the protein into the extracellular milieu, where it can have broad ranging effects in the nervous system and relevance to disease etiology. Similarly, low neuronal LRRK2 expression and activity suggests that LRRK2-related functions could be more relevant in cells with higher expression, such as brain-resident microglia. Microglia are monocytic immune cells that protect neurons from noxious stimuli, including pathological αSyn species, and microglial activation is believed to contribute to neuroinflammation and neuronal death in PD. Interestingly, both αSyn and LRRK2 can be linked to microglial function. Secreted αSyn can directly activate microglia, and can be taken up by microglia for clearance, while LRRK2 has been implicated in the intrinsic regulation of microglial activation and of lysosomal degradation processes. Based on these observations, the present review will focus on how PD-associated mutations in LRRK2 could potentially alter microglial biology with respect to neuronally secreted αSyn, resulting in cell dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- J Schapansky
- Center for Neurologic Diseases, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, United States
| | - J D Nardozzi
- Center for Neurologic Diseases, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, United States
| | - M J LaVoie
- Center for Neurologic Diseases, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA 02115, United States.
| |
Collapse
|
20
|
Merega E, Prisco SD, Lanfranco M, Severi P, Pittaluga A. Complement selectively elicits glutamate release from nerve endings in different regions of mammal central nervous system. J Neurochem 2014; 129:473-83. [DOI: 10.1111/jnc.12650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/29/2013] [Accepted: 01/02/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Elisa Merega
- Department of Pharmacy; Pharmacology and Toxicology Section; University of Genoa; Genoa Italy
| | - Silvia Di Prisco
- Department of Pharmacy; Pharmacology and Toxicology Section; University of Genoa; Genoa Italy
| | | | - Paolo Severi
- Division of Neurosurgery; Galliera Hospital; Genoa Italy
| | - Anna Pittaluga
- Department of Pharmacy; Pharmacology and Toxicology Section; University of Genoa; Genoa Italy
- Center of Excellence for Biomedical Research; University of Genoa; Genoa Italy
| |
Collapse
|
21
|
Kadam SD, French BM, Kim ST, Morris-Berry CM, Zimmerman AW, Blue ME, Singer HS. Altered postnatal cell proliferation in brains of mouse pups prenatally exposed to IgG from mothers of children with autistic disorder. J Exp Neurosci 2013; 7:93-9. [PMID: 25157212 PMCID: PMC4089726 DOI: 10.4137/jen.s12979] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Auto antibodies found in the mothers of children with autistic disorder (MCAD) when passively transferred to pregnant mice cause behavioral alterations in juvenile and adult offspring. The goal of this study was to identify whether intraperitoneal injection of MCAD-IgG during gestation affected postnatal cell proliferation and survival in P7 offspring. Pooled MCAD-IgG or IgG from mothers of unaffected children (MUC) or phosphate-buffered saline was injected daily into C57BL/J6 pregnant dams (gestational days E13–E18). MCAD-IgG exposure significantly increased cell proliferation in the subventricular and subgranular zones. In contrast, BrdU-labeled cells on P1 and surviving until P7 (P1-generated cells) showed reduced cell densities in layers 2–4 of frontal and parietal cortices of MCAD mice compared to those in MUC and PBS-injected mice. In conclusion, significant increases in cell proliferation at P7 and reduced densities of P1-generated cells distinguish in utero exposure to MCAD compared to MUC and PBS.
Collapse
Affiliation(s)
- Shilpa D Kadam
- Neuroscience Laboratory, Hugo W Moser Research Institute ; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Beth M French
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S-T Kim
- Neuroscience Laboratory, Hugo W Moser Research Institute
| | - Christy M Morris-Berry
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Mary E Blue
- Neuroscience Laboratory, Hugo W Moser Research Institute ; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. ; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harvey S Singer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. ; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Capogna M. Which molecules regulate synaptic brain asymmetries? J Physiol 2013; 591:4687-8. [PMID: 24085492 DOI: 10.1113/jphysiol.2013.263806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
23
|
Carmichael DA, Simner J. The immune hypothesis of synesthesia. Front Hum Neurosci 2013; 7:563. [PMID: 24062665 PMCID: PMC3769635 DOI: 10.3389/fnhum.2013.00563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/23/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Duncan A Carmichael
- Department of Psychology, University of Edinburgh Edinburgh, UK ; Institute for Adaptive and Neural Computation, University of Edinburgh Edinburgh, UK ; Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh Edinburgh, UK
| | | |
Collapse
|
24
|
Nelson PA, Sage JR, Wood SC, Davenport CM, Anagnostaras SG, Boulanger LM. MHC class I immune proteins are critical for hippocampus-dependent memory and gate NMDAR-dependent hippocampal long-term depression. Learn Mem 2013; 20:505-17. [PMID: 23959708 PMCID: PMC3744042 DOI: 10.1101/lm.031351.113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Memory impairment is a common feature of conditions that involve changes in inflammatory signaling in the brain, including traumatic brain injury, infection, neurodegenerative disorders, and normal aging. However, the causal importance of inflammatory mediators in cognitive impairments in these conditions remains unclear. Here we show that specific immune proteins, members of the major histocompatibility complex class I (MHC class I), are essential for normal hippocampus-dependent memory, and are specifically required for NMDAR-dependent forms of long-term depression (LTD) in the healthy adult hippocampus. In β2m−/−TAP−/−mice, which lack stable cell-surface expression of most MHC class I proteins, NMDAR-dependent LTD in area CA1 of adult hippocampus is abolished, while NMDAR-independent forms of potentiation, facilitation, and depression are unaffected. Altered NMDAR-dependent synaptic plasticity in the hippocampus of β2m−/−TAP−/−mice is accompanied by pervasive deficits in hippocampus-dependent memory, including contextual fear memory, object recognition memory, and social recognition memory. Thus normal MHC class I expression is essential for NMDAR-dependent hippocampal synaptic depression and hippocampus-dependent memory. These results suggest that changes in MHC class I expression could be an unexpected cause of disrupted synaptic plasticity and cognitive deficits in the aging, damaged, and diseased brain.
Collapse
Affiliation(s)
- P Austin Nelson
- Department of Neuroscience, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kawahara A, Kurauchi S, Fukata Y, Martínez-Hernández J, Yagihashi T, Itadani Y, Sho R, Kajiyama T, Shinzato N, Narusuye K, Fukata M, Luján R, Shigemoto R, Ito I. Neuronal major histocompatibility complex class I molecules are implicated in the generation of asymmetries in hippocampal circuitry. J Physiol 2013; 591:4777-91. [PMID: 23878366 DOI: 10.1113/jphysiol.2013.252122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Left-right asymmetry is a fundamental feature of higher-order brain function; however, the molecular basis of brain asymmetry has remained unclear. We have recently demonstrated asymmetries in hippocampal circuitry resulting from the asymmetrical allocation of NMDA receptor (NMDAR) subunit GluR2 (NR2B) in pyramidal cell synapses. This asymmetrical allocation of 2 subunits affects the properties of NMDARs and generates two populations of synapses, '2-dominant' and '2-non-dominant' synapses, according to the hemispheric origin of presynaptic inputs and cell polarity of the postsynaptic neurone. To identify key regulators for generating asymmetries, we analysed the hippocampus of β2-microglobulin (β2m)-deficient mice lacking cell surface expression of major histocompatibility complex class I (MHCI). Although MHCI proteins are well known in the immune system, accumulating evidence indicates that MHCI proteins are expressed in the brain and are required for activity-dependent refinement of neuronal connections and normal synaptic plasticity. We found that β2m proteins were localised in hippocampal synapses in wild-type mice. NMDA EPSCs in β2m-deficient hippocampal synapses receiving inputs from both hemispheres showed similar sensitivity to Ro 25-6981, an 2 subunit-selective antagonist, with those in '2-dominant' synapses for both the apical and basal synapses of pyramidal neurones. The structural features of the β2m-deficient synapse in addition to the relationship between the stimulation frequency and synaptic plasticity were also comparable to those of '2-dominant' synapses. These observations indicate that the β2m-deficient hippocampus lacks '2-non-dominant' synapses and circuit asymmetries. Our findings provide evidence supporting a critical role of MHCI molecules for generating asymmetries in hippocampal circuitry.
Collapse
Affiliation(s)
- Aiko Kawahara
- I. Ito: Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Debnath M, Cannon DM, Venkatasubramanian G. Variation in the major histocompatibility complex [MHC] gene family in schizophrenia: associations and functional implications. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:49-62. [PMID: 22813842 DOI: 10.1016/j.pnpbp.2012.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/23/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a chronic debilitating neuropsychiatric disorder with a complex genetic contribution. Although multiple genetic, immunological and environmental factors are known to contribute to schizophrenia susceptibility, the underlying neurobiological mechanism(s) is yet to be established. The immune system dysfunction theory of schizophrenia is experiencing a period of renewal due to a growth in evidence implicating components of the immune system in brain function and human behavior. Current evidence indicates that certain immune molecules such as Major Histocompatibility Complex (MHC) and cytokines, the key regulators of immunity and inflammation are directly involved in the neurobiological processes related to neurodevelopment, neuronal plasticity, learning, memory and behavior. However, the strongest support in favor of the immune hypothesis has recently emerged from on-going genome wide association studies advocating MHC region variants as major determinants of one's risk for developing schizophrenia. Further identification of the interacting partners and receptors of MHC molecules in the brain and their role in down-stream signaling pathways of neurotransmission have implicated these molecules as potential schizophrenia risk factors. More recently, combined brain imaging and genetic studies have revealed a relationship between genetic variations within the MHC region and neuromorphometric changes during schizophrenia. Furthermore, MHC molecules play a significant role in the immune-infective and neurodevelopmental pathogenetic pathways, currently hypothesized to contribute to the pathophysiology of schizophrenia. Herein, we review the immunological, genetic and expression studies assessing the role of the MHC in conferring risk for developing schizophrenia, we summarize and discuss the possible mechanisms involved, making note of the challenges to, and future directions of, immunogenetic research in schizophrenia.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore-560029, India.
| | | | | |
Collapse
|
27
|
Simonetti M, Hagenston AM, Vardeh D, Freitag HE, Mauceri D, Lu J, Satagopam VP, Schneider R, Costigan M, Bading H, Kuner R. Nuclear calcium signaling in spinal neurons drives a genomic program required for persistent inflammatory pain. Neuron 2013; 77:43-57. [PMID: 23312515 DOI: 10.1016/j.neuron.2012.10.037] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 12/17/2022]
Abstract
Persistent pain induced by noxious stimuli is characterized by the transition from normosensitivity to hypersensitivity. Underlying mechanisms are not well understood, although gene expression is considered important. Here, we show that persistent nociceptive-like activity triggers calcium transients in neuronal nuclei within the superficial spinal dorsal horn, and that nuclear calcium is necessary for the development of long-term inflammatory hypersensitivity. Using a nucleus-specific calcium signal perturbation strategy in vivo complemented by gene profiling, bioinformatics, and functional analyses, we discovered a pain-associated, nuclear calcium-regulated gene program in spinal excitatory neurons. This includes C1q, a modulator of synaptic spine morphogenesis, which we found to contribute to activity-dependent spine remodelling on spinal neurons in a manner functionally associated with inflammatory hypersensitivity. Thus, nuclear calcium integrates synapse-to-nucleus communication following noxious stimulation and controls a spinal genomic response that mediates the transition between acute and long-term nociceptive sensitization by modulating functional and structural plasticity.
Collapse
Affiliation(s)
- Manuela Simonetti
- Institute for Pharmacology, University of Heidelberg, Im Neuenheimer Feld, Heidelberg 69120, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Needleman LA, McAllister AK. The major histocompatibility complex and autism spectrum disorder. Dev Neurobiol 2012; 72:1288-301. [PMID: 22760919 PMCID: PMC4365477 DOI: 10.1002/dneu.22046] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 01/02/2023]
Abstract
Autism spectrum disorder (ASD) is a complex disorder that appears to be caused by interactions between genetic changes and environmental insults during early development. A wide range of factors have been linked to the onset of ASD, but recently both genetic associations and environmental factors point to a central role for immune-related genes and immune responses to environmental stimuli. Specifically, many of the proteins encoded by the major histocompatibility complex (MHC) play a vital role in the formation, refinement, maintenance, and plasticity of the brain. Manipulations of levels of MHC molecules have illustrated how disrupted MHC signaling can significantly alter brain connectivity and function. Thus, an emerging hypothesis in our field is that disruptions in MHC expression in the developing brain caused by mutations and/or immune dysregulation may contribute to the altered brain connectivity and function characteristic of ASD. This review provides an overview of the structure and function of the three classes of MHC molecules in the immune system, healthy brain, and their possible involvement in ASD.
Collapse
|
29
|
Rana SA, Aavani T, Pittman QJ. Sex effects on neurodevelopmental outcomes of innate immune activation during prenatal and neonatal life. Horm Behav 2012; 62:228-36. [PMID: 22516179 PMCID: PMC3522744 DOI: 10.1016/j.yhbeh.2012.03.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/25/2012] [Accepted: 03/28/2012] [Indexed: 11/15/2022]
Abstract
Humans are exposed to potentially harmful agents (bacteria, viruses, toxins) throughout our lifespan; the consequences of such exposure can alter central nervous system development. Exposure to immunogens during pregnancy increases the risk of developing neurological disorders such as schizophrenia and autism. Further, sex hormones, such as estrogen, have strong modulatory effects on immune function and have also been implicated in the development of neuropathologies (e.g., schizophrenia and depression). Similarly, animal studies have demonstrated that immunogen exposure in utero or during the neonatal period, at a time when the brain is undergoing maturation, can induce changes in learning and memory, as well as dopamine-mediated behaviors in a sex-specific manner. Literature that covers the effects of immunogens on innate immune activation and ultimately the development of the adult brain and behavior is riddled with contradictory findings, and the addition of sex as a factor only adds to the complexity. This review provides evidence that innate immune activation during critical periods of development may have effects on the adult brain in a sex-specific manner. Issues regarding sex bias in research as well as variability in animal models of immune function are discussed.
Collapse
Affiliation(s)
| | | | - Quentin J. Pittman
- Corresponding author at: Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada. Fax: +1 403 283 2700. (Q.J. Pittman)
| |
Collapse
|
30
|
VanGuilder Starkey HD, Van Kirk CA, Bixler GV, Imperio CG, Kale VP, Serfass JM, Farley JA, Yan H, Warrington JP, Han S, Mitschelen M, Sonntag WE, Freeman WM. Neuroglial expression of the MHCI pathway and PirB receptor is upregulated in the hippocampus with advanced aging. J Mol Neurosci 2012; 48:111-26. [PMID: 22562814 DOI: 10.1007/s12031-012-9783-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/16/2012] [Indexed: 12/31/2022]
Abstract
The hippocampus undergoes changes with aging that impact neuronal function, such as synapse loss and altered neurotransmitter release. Nearly half of the aged population also develops deficits in spatial learning and memory. To identify age-related hippocampal changes that may contribute to cognitive decline, transcriptomic analysis of synaptosome preparations from adult (12 months) and aged (28 months) Fischer 344-Brown Norway rats assessed for spatial learning and memory was performed. Bioinformatic analysis identified the MHCI pathway as significantly upregulated with aging. Age-related increases in mRNAs encoding the MHCI genes RT1-A1, RT1-A2, and RT1-A3 were confirmed by qPCR in synaptosomes and in CA1 and CA3 dissections. Elevated levels of the MHCI cofactor (B2m), antigen-loading components (Tap1, Tap2, Tapbp), and two known MHCI receptors (PirB, Klra2) were also confirmed. Protein expression of MHCI was elevated with aging in synaptosomes, CA1, and DG, while PirB protein expression was induced in both CA1 and DG. MHCI expression was localized to microglia and neuronal excitatory postsynaptic densities, and PirB was localized to neuronal somata, axons, and dendrites. Induction of the MHCI antigen processing and presentation pathway in hippocampal neurons and glia may contribute to age-related hippocampal dysfunction by increasing neuroimmune signaling or altering synaptic homeostasis.
Collapse
|
31
|
Galic MA, Riazi K, Pittman QJ. Cytokines and brain excitability. Front Neuroendocrinol 2012; 33:116-25. [PMID: 22214786 PMCID: PMC3547977 DOI: 10.1016/j.yfrne.2011.12.002] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/07/2011] [Accepted: 12/15/2011] [Indexed: 01/21/2023]
Abstract
Cytokines are molecules secreted by peripheral immune cells, microglia, astrocytes and neurons in the central nervous system. Peripheral or central inflammation is characterized by an upregulation of cytokines and their receptors in the brain. Emerging evidence indicates that pro-inflammatory cytokines modulate brain excitability. Findings from both the clinical literature and from in vivo and in vitro laboratory studies suggest that cytokines can increase seizure susceptibility and may be involved in epileptogenesis. Cellular mechanisms that underlie these effects include upregulation of excitatory glutamatergic transmission and downregulation of inhibitory GABAergic transmission.
Collapse
Affiliation(s)
- Michael A Galic
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Health Sciences Centre, 3330 Hospital Dr. NW, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
32
|
Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp Neurol 2011; 244:11-21. [PMID: 21985866 DOI: 10.1016/j.expneurol.2011.09.033] [Citation(s) in RCA: 404] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/15/2011] [Accepted: 09/26/2011] [Indexed: 02/06/2023]
Abstract
During the last decade, experimental research has demonstrated a prominent role of glial cells, activated in brain by various injuries, in the mechanisms of seizure precipitation and recurrence. In particular, alterations in the phenotype and function of activated astrocytes and microglial cells have been described in experimental and human epileptic tissue, including modifications in potassium and water channels, alterations of glutamine/glutamate cycle, changes in glutamate receptor expression and transporters, release of neuromodulatory molecules (e.g. gliotransmitters, neurotrophic factors), and induction of molecules involved in inflammatory processes (e.g. cytokines, chemokines, prostaglandins, complement factors, cell adhesion molecules) (Seifert et al., 2006; Vezzani et al., 2011; Wetherington et al., 2008). In particular, brain injury or proconvulsant events can activate microglia and astrocytes to release a number of proinflammatory mediators, thus initiating a cascade of inflammatory processes in brain tissue. Proinflammatory molecules can alter neuronal excitability and affect the physiological functions of glia by paracrine or autocrine actions, thus perturbing the glioneuronal communications. In experimental models, these changes contribute to decreasing the threshold to seizures and may compromise neuronal survival (Riazi et al., 2010; Vezzani et al., 2008). In this context, understanding which are the soluble mediators and the molecular mechanisms crucially involved in glio-neuronal interactions is instrumental to shed light on how brain inflammation may contribute to neuronal hyperexcitability in epilepsy. This review will report the clinical observations in drug-resistant human epilepsies and the experimental findings in adult and immature rodents linking brain inflammation to the epileptic process in a causal and reciprocal manner. By confronting the clinical evidence with the experimental findings, we will discuss the role of specific soluble inflammatory mediators in the etiopathogenesis of seizures, reporting evidence for both their acute and long term effects on seizure threshold. The possible contribution of these mediators to co-morbidities often described in epilepsy patients will be also discussed. Finally, we will report on the anti-inflammatory treatments with anticonvulsant actions in experimental models highlighting possible therapeutic options for treating drug-resistant seizures and for prevention of epileptogenesis.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via G. La Masa 19, 20156 Milano, Italy.
| | | | | | | |
Collapse
|
33
|
Graeber MB, Li W, Rodriguez ML. Role of microglia in CNS inflammation. FEBS Lett 2011; 585:3798-805. [PMID: 21889505 DOI: 10.1016/j.febslet.2011.08.033] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 08/20/2011] [Accepted: 08/22/2011] [Indexed: 12/26/2022]
Abstract
There is increasing confusion about the meaning of the terms inflammation, neuroinflammation, and microglial inflammation. We aim in this review to achieve greater clarity regarding these terms, which are essential for our understanding of the role of microglia in CNS inflammatory conditions. The important concept of sterile inflammation is explained against the backdrop of classical inflammation, and its key differences from what researchers refer to when they use the terms neuroinflammation and microglial inflammation are illustrated. We propose to replace the term "neuroinflammation" with "microglial activation" or "CNS pseudo-inflammation", if microglial activation does not suffice. In addition, we recommend abandoning the terms "microglial inflammation" and "inflamed microglia" because of the lack of a clear concept behind them.
Collapse
Affiliation(s)
- Manuel B Graeber
- Brain Tumor Research Laboratories, The Brain and Mind Research Institute, University of Sydney, Camperdown, Sydney, NSW 2050, Australia.
| | | | | |
Collapse
|
34
|
Tomljenovic L, Shaw CA. Do aluminum vaccine adjuvants contribute to the rising prevalence of autism? J Inorg Biochem 2011; 105:1489-99. [PMID: 22099159 DOI: 10.1016/j.jinorgbio.2011.08.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/13/2011] [Accepted: 08/14/2011] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASD) are serious multisystem developmental disorders and an urgent global public health concern. Dysfunctional immunity and impaired brain function are core deficits in ASD. Aluminum (Al), the most commonly used vaccine adjuvant, is a demonstrated neurotoxin and a strong immune stimulator. Hence, adjuvant Al has the potential to induce neuroimmune disorders. When assessing adjuvant toxicity in children, two key points ought to be considered: (i) children should not be viewed as "small adults" as their unique physiology makes them much more vulnerable to toxic insults; and (ii) if exposure to Al from only few vaccines can lead to cognitive impairment and autoimmunity in adults, is it unreasonable to question whether the current pediatric schedules, often containing 18 Al adjuvanted vaccines, are safe for children? By applying Hill's criteria for establishing causality between exposure and outcome we investigated whether exposure to Al from vaccines could be contributing to the rise in ASD prevalence in the Western world. Our results show that: (i) children from countries with the highest ASD prevalence appear to have the highest exposure to Al from vaccines; (ii) the increase in exposure to Al adjuvants significantly correlates with the increase in ASD prevalence in the United States observed over the last two decades (Pearson r=0.92, p<0.0001); and (iii) a significant correlation exists between the amounts of Al administered to preschool children and the current prevalence of ASD in seven Western countries, particularly at 3-4 months of age (Pearson r=0.89-0.94, p=0.0018-0.0248). The application of the Hill's criteria to these data indicates that the correlation between Al in vaccines and ASD may be causal. Because children represent a fraction of the population most at risk for complications following exposure to Al, a more rigorous evaluation of Al adjuvant safety seems warranted.
Collapse
Affiliation(s)
- Lucija Tomljenovic
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, 828 W. 10th Ave, Vancouver, BC, Canada V5Z 1L8.
| | | |
Collapse
|
35
|
Diamond B, Huerta PT, Tracey K, Volpe BT. It takes guts to grow a brain: Increasing evidence of the important role of the intestinal microflora in neuro- and immune-modulatory functions during development and adulthood. Bioessays 2011; 33:588-91. [PMID: 21681774 DOI: 10.1002/bies.201100042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A new study entitled "Normal gut microbiota modulates brain development and behavior", published in the Proceedings of the National Academy of Sciences, requires that we reconsider the notion that the brain is an immune-privileged site. The authors demonstrate that intestinal microbiota must be present within a set time-frame for normal synaptogenesis to occur in the brain. In the absence of intestinal microbiota, histopathological and behavioral abnormalities arise. These observations necessitate a new look at the many interconnections of the immune system and the brain, suggesting new frontiers for research and new therapeutic strategies for neurodevelopmental diseases.
Collapse
Affiliation(s)
- Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY, USA.
| | | | | | | |
Collapse
|
36
|
MHC class I modulates NMDA receptor function and AMPA receptor trafficking. Proc Natl Acad Sci U S A 2010; 107:22278-83. [PMID: 21135233 DOI: 10.1073/pnas.0914064107] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Proteins of the major histocompatibility complex class I (MHCI) are known for their role in immunity and have recently been implicated in long-term plasticity of excitatory synaptic transmission. However, the mechanisms by which MHCI influences synaptic plasticity remain unknown. Here we show that endogenous MHCI regulates synaptic responses mediated by NMDA-type glutamate receptors (NMDARs) in the mammalian central nervous system (CNS). The AMPA/NMDA ratio is decreased at MHCI-deficient hippocampal synapses, reflecting an increase in NMDAR-mediated currents. This enhanced NMDAR response is not associated with changes in the levels, subunit composition, or gross subcellular distribution of NMDARs. Increased NMDAR-mediated currents in MHCI-deficient neurons are associated with characteristic changes in AMPA receptor trafficking in response to NMDAR activation. Thus, endogenous MHCI tonically inhibits NMDAR function and controls downstream NMDAR-induced AMPA receptor trafficking during the expression of plasticity.
Collapse
|