1
|
Yan Y, Ji J, Wang H. Fungal Parasite Transmission in a Planktonic Ecosystem Under Light and Nutrient Constraints. Bull Math Biol 2024; 86:136. [PMID: 39397103 DOI: 10.1007/s11538-024-01365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The two main components of the planktonic ecosystem are phytoplankton and zooplankton. Fungal parasites can infect zooplankton and spread between them. In this paper, we construct a dynamic model to describe the spread of fungal parasites among zooplankton. Basic reproduction number for fungal parasite transmission among zooplankton are rigorously derived. The dynamics of this system are analyzed including dissipativity and equilibria. We further explore the effects of ecological factors on population dynamics and the relationship between fungal parasite transmission and phytoplankton blooms. Interestingly, our theoretical and numerical results indicate that a low-light or oligotrophic aquatic environment is helpful in mitigating the transmission of fungal parasites. We also show that fungal parasites on zooplankton can increase phytoplankton biomass and induce blooms.
Collapse
Affiliation(s)
- Yawen Yan
- School of Mathematical Sciences, Heilongjiang University, Harbin, Heilongjiang, 150080, P.R. China
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada
| | - Juping Ji
- School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, P.R. China.
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada.
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada
| |
Collapse
|
2
|
Dziuba MK, McIntire KM, Seto K, Davenport ES, Rogalski MA, Gowler CD, Baird E, Vaandrager M, Huerta C, Jaye R, Corcoran FE, Withrow A, Ahrendt S, Salamov A, Nolan M, Tejomurthula S, Barry K, Grigoriev IV, James TY, Duffy MA. Phylogeny, morphology, virulence, ecology, and host range of Ordospora pajunii (Ordosporidae), a microsporidian symbiont of Daphnia spp. mBio 2024; 15:e0058224. [PMID: 38651867 PMCID: PMC11237803 DOI: 10.1128/mbio.00582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont of Daphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont is Ordospora pajunii, a newly described microsporidian parasite of Daphnia. We show that O. pajunii infection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North American O. pajunii were able to infect multiple Daphnia species, including the European species Daphnia longispina, as well as Ceriodaphnia spp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, this Daphnia-O. pajunii symbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources. IMPORTANCE The net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to its Daphnia hosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidium Ordospora pajunii. Despite the parasitic nature of microsporidia, we found O. pajunii to be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establish O. pajunii is a valuable model for investigating shifts along the mutualism-parasitism continuum.
Collapse
Affiliation(s)
- Marcin K. Dziuba
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristina M. McIntire
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kensuke Seto
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Elizabeth S. Davenport
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary A. Rogalski
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Biology Department, Bowdoin College, Brunswick, Maine, USA
| | - Camden D. Gowler
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emma Baird
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Megan Vaandrager
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristian Huerta
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Riley Jaye
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Fiona E. Corcoran
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alicia Withrow
- Center for Advanced Microscopy, Michigan State University, East Lansing, Michigan, USA
| | - Steven Ahrendt
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Asaf Salamov
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Matt Nolan
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sravanthi Tejomurthula
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Igor V. Grigoriev
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Timothy Y. James
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Penczykowski RM, Fearon ML, Hite JL, Shocket MS, Hall SR, Duffy MA. Pathways linking nutrient enrichment, habitat structure, and parasitism to host-resource interactions. Oecologia 2024; 204:439-449. [PMID: 37951848 DOI: 10.1007/s00442-023-05469-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Human activities simultaneously alter nutrient levels, habitat structure, and levels of parasitism. These activities likely have individual and joint impacts on food webs. Furthermore, there is particular concern that nutrient additions and changes to habitat structure might exacerbate the size of epidemics and impacts on host density. We used a well-studied zooplankton-fungus host-parasite system and experimental whole water column enclosures to factorially manipulate nutrient levels, habitat structure (specifically: mixing), and presence of parasites. Nutrient addition increased infection prevalence, density of infected hosts, and total host density. We hypothesized that nutrients, mixing, and parasitism were linked in multiple ways, including via their combined effects on phytoplankton (resource) abundance, and we used structural equation modeling to disentangle these pathways. In the absence of the parasite, both nutrients and mixing increased abundance of phytoplankton, whereas host density was negatively related to phytoplankton abundance, suggesting a mixture of bottom-up and top-down control of phytoplankton. In the presence of the parasite, nutrients still increased phytoplankton abundance but mixing no longer did, and there was no longer a significant relationship between host density and phytoplankton. This decoupling of host-resource dynamics may have resulted from reduced grazing due to illness-mediated changes in feeding behavior. Overall, our results show that the impact of one human activity (e.g., altered habitat structure) might depend on other human impacts (e.g., parasite introduction). Fortunately, carefully designed experiments and analyses can help tease apart these multifaceted relationships, allowing us to understand how human activities alter food webs, including interactions between hosts and their parasites and resources.
Collapse
Affiliation(s)
- Rachel M Penczykowski
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Michelle L Fearon
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jessica L Hite
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Marta S Shocket
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Geography, University of Florida, Gainesville, FL, 32611, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Meghan A Duffy
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Fearon ML, Gowler CD, Duffy MA. Inconsistent dilution: experimental but not field evidence for a dilution effect in Daphnia-bacteria interactions. Oecologia 2024; 204:351-363. [PMID: 38105355 DOI: 10.1007/s00442-023-05486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
The dilution effect hypothesis, which suggests greater host biodiversity can reduce infectious disease transmission, occurs in many systems but is not universal. Most studies only investigate the dilution of a single parasite in a community, but many host communities have multiple parasites circulating. We studied a zooplankton host community with prior support for a dilution effect in laboratory- and field-based studies of a fungal parasite, Metschnikowia bicuspidata. We used paired experiments and field studies to ask whether dilution also occurred for a bacterial parasite, Pasteuria ramosa. We hypothesized that the similarities between the parasites might mean the dilution pattern seen in Metschnikowia would also be seen in Pasteuria. However, because Daphnia-Pasteuria interactions have strong host-parasite genotype specificity, dilution may be less likely if diluter host genotypes vary in their capacity to dilute Pasteuria. In a lab experiment, Pasteuria prevalence in susceptible Daphnia dentifera was reduced strongly by higher densities of D. pulicaria and marginally by higher densities of D. retrocurva. In a second experiment, different D. pulicaria genotypes had a similar capacity to dilute both Metschnikowia and Pasteuria, suggesting that Pasteuria's strong host-parasite genotype specificity should not prevent dilution. However, we found no evidence of an impact of the dilution effect on the size of Pasteuria epidemics in D. dentifera in Midwestern U.S. lakes. Our finding that a second parasite infecting the same host community does not show a similar dilution effect in the field suggests the impact of biodiversity can differ even among parasites in the same host community.
Collapse
Affiliation(s)
- Michelle L Fearon
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Camden D Gowler
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Meghan A Duffy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Shaw KE, Cloud RE, Syed R, Civitello DJ. Parasite transmission in size-structured populations. Ecology 2024; 105:e4221. [PMID: 38032549 PMCID: PMC10842837 DOI: 10.1002/ecy.4221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Host heterogeneity can affect parasite transmission, but determining underlying traits and incorporating them into transmission models remains challenging. Body size is easily measured and affects numerous ecological interactions, including transmission. In the snail-schistosome system, larger snails have a higher exposure to parasites but lower susceptibility to infection per parasite. We quantified the effect of size-based heterogeneity on population-level transmission by conducting transmission trials in differently size-structured snail populations and competing size-dependent transmission models. Populations with greater proportions of large snails had lower prevalence, and small snails were shielded from infection by co-occurring large conspecifics. Furthermore, a fully dependent transmission model that incorporated body size in both exposure and susceptibility outperformed other candidate models considered. Incorporating traits such as body size, which are affected by and directly affect host ecology, into transmission models could yield insights into natural dynamics and disease mitigation in many systems.
Collapse
Affiliation(s)
- Kelsey E Shaw
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Rebecca E Cloud
- School of Integrative Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Raeyan Syed
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
6
|
Butterworth NJ, Heffernan L, Hall MD. Is there a sicker sex? Dose relationships modify male-female differences in infection prevalence. Proc Biol Sci 2024; 291:20232575. [PMID: 38196362 PMCID: PMC10777155 DOI: 10.1098/rspb.2023.2575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
Throughout the animal kingdom, there are striking differences in the propensity of one sex or the other to become infected. However, precisely when we should expect males or females to be the sicker sex remains unclear. A major barrier to answering this question is that very few studies have considered how the susceptibility of males and females changes across the full range of pathogen doses encountered in nature. Without quantifying this 'dose-susceptibility' relationship, we have likely underestimated the scope for sex differences to arise. Here, we use the Daphnia magnia-Pasteuria ramosa system to reveal that sex differences in susceptibility are entirely dose-dependent, with pathogens having a higher probability of successfully establishing an infection in mature males at low doses, but mature females at high doses. The scope for male-female differences to emerge is therefore much greater than previously appreciated-extending to sex differences in the upper limits to infection success, per-propagule infectivity risks and density-dependent pathogen behaviour. Applying this expanded scope across the animal kingdom will help us understand when and why a sicker sex emerges, and the implications for diseases in nature-where sex ratios, age structure and pathogen densities vary drastically.
Collapse
Affiliation(s)
- Nathan J. Butterworth
- School of Biological Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Lindsey Heffernan
- School of Biological Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Matthew D. Hall
- School of Biological Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Sun SJ, Dziuba MK, Jaye RN, Duffy MA. Temperature modifies trait-mediated infection outcomes in a Daphnia-fungal parasite system. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220009. [PMID: 36744571 PMCID: PMC9900708 DOI: 10.1098/rstb.2022.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/24/2022] [Indexed: 02/07/2023] Open
Abstract
One major concern related to climate change is that elevated temperatures will drive increases in parasite outbreaks. Increasing temperature is known to alter host traits and host-parasite interactions, but we know relatively little about how these are connected mechanistically-that is, about how warmer temperatures impact the relationship between epidemiologically relevant host traits and infection outcomes. Here, we used a zooplankton-fungus (Daphnia dentifera-Metschnikowia bicuspidata) disease system to experimentally investigate how temperature impacted physical barriers to infection and cellular immune responses. We found that Daphnia reared at warmer temperatures had more robust physical barriers to infection but decreased cellular immune responses during the initial infection process. Infected hosts at warmer temperatures also suffered greater reductions in fecundity and lifespan. Furthermore, the relationship between a key trait-gut epithelium thickness, a physical barrier-and the likelihood of terminal infection reversed at warmer temperatures. Together, our results highlight the complex ways that temperatures can modulate host-parasite interactions and show that different defense components can have qualitatively different responses to warmer temperatures, highlighting the importance of considering key host traits when predicting disease dynamics in a warmer world. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Syuan-Jyun Sun
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- International Degree Program in Climate Change and Sustainable Development, National Taiwan University, Taipei 10617, Taiwan
| | - Marcin K. Dziuba
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Riley N. Jaye
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Pfenning‐Butterworth AC, Vetter RE, Hite JL. Natural variation in host feeding behaviors impacts host disease and pathogen transmission potential. Ecol Evol 2023; 13:e9865. [PMID: 36911315 PMCID: PMC9992943 DOI: 10.1002/ece3.9865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023] Open
Abstract
Animals ranging from mosquitoes to humans often vary their feeding behavior when infected or merely exposed to pathogens. These so-called "sickness behaviors" are part of the innate immune response with many consequences, including avoiding orally transmitted pathogens. Fully understanding the role of this ubiquitous behavior in host defense and pathogen evolution requires a quantitative account of its impact on host and pathogen fitness across environmentally relevant contexts. Here, we use a zooplankton host and fungal pathogen as a case study to ask if infection-mediated feeding behaviors vary across pathogen exposure levels and natural genetic variation in susceptibility to infection. Then, we connect these changes in behavior to pathogen transmission potential (spore yield) and fitness and growth costs to the host. Our results validate a protective effect of altered feeding behavior during pathogen exposure while also revealing significant variation in the magnitude of this response across host susceptibility and pathogen exposure levels. Across all four host genotypes, feeding rates were negatively correlated with susceptibility to infection and transmission potential. The most susceptible genotypes exhibited either strong anorexia, reducing food intake by 26%-42%, ("Standard") or pronounced hyperphagia, increasing food intake by 20%-54% ("A45"). Together, these results suggest that infection-mediated changes in host feeding behavior-which are traditionally interpreted as immunopathology- may in fact serve as crucial components of host defense strategies and warrant further investigation.
Collapse
Affiliation(s)
- Alaina C. Pfenning‐Butterworth
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Rachel E. Vetter
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Jessica L. Hite
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Department of Pathobiological SciencesUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
9
|
Sun S, Dziuba MK, Jaye RN, Duffy MA. Transgenerational plasticity in a zooplankton in response to elevated temperature and parasitism. Ecol Evol 2023; 13:e9767. [PMID: 36760704 PMCID: PMC9897957 DOI: 10.1002/ece3.9767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Organisms are increasingly facing multiple stressors, which can simultaneously interact to cause unpredictable impacts compared with a single stressor alone. Recent evidence suggests that phenotypic plasticity can allow for rapid responses to altered environments, including biotic and abiotic stressors, both within a generation and across generations (transgenerational plasticity). Parents can potentially "prime" their offspring to better cope with similar stressors or, alternatively, might produce offspring that are less fit because of energetic constraints. At present, it remains unclear exactly how biotic and abiotic stressors jointly mediate the responses of transgenerational plasticity and whether this plasticity is adaptive. Here, we test the effects of biotic and abiotic environmental changes on within- and transgenerational plasticity using a Daphnia-Metschnikowia zooplankton-fungal parasite system. By exposing parents and their offspring consecutively to the single and combined effects of elevated temperature and parasite infection, we showed that transgenerational plasticity induced by temperature and parasite stress influenced host fecundity and lifespan; offsprings of mothers who were exposed to one of the stressors were better able to tolerate elevated temperature, compared with the offspring of mothers who were exposed to neither or both stressors. Yet, the negative effects caused by parasite infection were much stronger, and this greater reduction in host fitness was not mitigated by transgenerational plasticity. We also showed that elevated temperature led to a lower average immune response, and that the relationship between immune response and lifetime fecundity reversed under elevated temperature: the daughters of exposed mothers showed decreased fecundity with increased hemocyte production at ambient temperature but the opposite relationship at elevated temperature. Together, our results highlight the need to address questions at the interface of multiple stressors and transgenerational plasticity and the importance of considering multiple fitness-associated traits when evaluating the adaptive value of transgenerational plasticity under changing environments.
Collapse
Affiliation(s)
- Syuan‐Jyun Sun
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- International Degree Program in Climate Change and Sustainable DevelopmentNational Taiwan UniversityTaipeiTaiwan
| | - Marcin K. Dziuba
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Riley N. Jaye
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Meghan A. Duffy
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
10
|
Shaw CL, Kennedy DA. Developing an empirical model for spillover and emergence: Orsay virus host range in Caenorhabditis. Proc Biol Sci 2022; 289:20221165. [PMID: 36126684 PMCID: PMC9489279 DOI: 10.1098/rspb.2022.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
A lack of tractable experimental systems in which to test hypotheses about the ecological and evolutionary drivers of disease spillover and emergence has limited our understanding of these processes. Here we introduce a promising system: Caenorhabditis hosts and Orsay virus, a positive-sense single-stranded RNA virus that naturally infects C. elegans. We assayed species across the Caenorhabditis tree and found Orsay virus susceptibility in 21 of 84 wild strains belonging to 14 of 44 species. Confirming patterns documented in other systems, we detected effects of host phylogeny on susceptibility. We then tested whether susceptible strains were capable of transmitting Orsay virus by transplanting exposed hosts and determining whether they transmitted infection to conspecifics during serial passage. We found no evidence of transmission in 10 strains (virus undetectable after passaging in all replicates), evidence of low-level transmission in 5 strains (virus lost between passage 1 and 5 in at least one replicate) and evidence of sustained transmission in 6 strains (including all three experimental C. elegans strains) in at least one replicate. Transmission was strongly associated with viral amplification in exposed populations. Variation in Orsay virus susceptibility and transmission among Caenorhabditis strains suggests that the system could be powerful for studying spillover and emergence.
Collapse
Affiliation(s)
- Clara L. Shaw
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David A. Kennedy
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Pathogens and predators: examining the separate and combined effects of natural enemies on assemblage structure. Oecologia 2022; 200:307-322. [PMID: 35969272 DOI: 10.1007/s00442-022-05228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/20/2022] [Indexed: 10/15/2022]
Abstract
Natural enemy ecology strives to unify predator-prey and host-pathogen interactions under a common framework to gain insights into community- and ecosystem-level processes. To address this goal, ecologists need a greater emphasis on: (1) quantifying pathogen-mediated effects on community structure to enable comparisons with predator-mediated effects and (2) determining the interactive effects of combined natural enemies on communities. We conducted a mesocosm experiment to assess the individual and combined effects of predators (dragonfly larvae and adult water bugs) and a pathogen (ranavirus) on the abundance and composition of a larval amphibian assemblage. We found that our three natural enemies structured victim assemblages in unique ways, producing distinct assemblages. Additionally, we found that in combination treatments, predators mainly drove assemblage structure such that the assemblages most closely resembled their respective predator treatments. We also found that predators reduced infection prevalence in combination treatments, and that the magnitude of this effect was dependent on predator identity. Compared to virus-alone treatments, the presence of dragonflies and water bugs reduced infection prevalence by 79% and 63%, respectively. Additionally, the presence of dragonflies eliminated ranavirus infection in two species, which demonstrates the prominent role of predators in disease dynamics in this system. Overall, this work demonstrates the importance of considering natural enemies in community ecology, as each enemy can elicit a unique structural change. Additionally, this study provides a unique empirical test of the healthy herds hypothesis for multi-species assemblages and underscores the importance of advancing our understanding of multi-enemy interactions within communities.
Collapse
|
12
|
Machado C, Cuco AP, Cássio F, Wolinska J, Castro BB. Antiparasitic potential of agrochemical fungicides on a non-target aquatic model (Daphnia × Metschnikowia host-parasite system). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155296. [PMID: 35429554 DOI: 10.1016/j.scitotenv.2022.155296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Pesticides are a major anthropogenic threat to the biodiversity of freshwater ecosystems, having the potential to affect non-target aquatic organisms and disrupt the processes in which they intervene. Important knowledge gaps have been recognised concerning the ecological effects of synthetic fungicides on non-target symbiotic aquatic fungi and the ecological processes where they intervene. The goal of this work was to assess the influence of three commonly used fungicides (myclobutanil, metalaxyl and cymoxanil), which differ in their mode of action, on a host (the crustacean Daphnia magna) × parasite (the yeast Metschnikowia bicuspidata) experimental model. Using a set of life history experiments, we evaluated the effect of each fungicide on the outcome of this relationship (disease) and on the fitness of both host and parasite. Contrasting results were observed: (i) cymoxanil and metalaxyl were overall innocuous to host and parasite at the tested concentrations, although host reproduction was occasionally reduced in the simultaneous presence of parasite and fungicide; (ii) on the contrary, myclobutanil displayed a clear antifungal effect, decreasing parasite prevalence and alleviating infection signs in the hosts. This antiparasitic effect of myclobutanil was further investigated with a follow-up experiment that manipulated the timing of application of the fungicide, to understand which stage of parasite development was most susceptible: while myclobutanil did not interfere in the early stages of infection, its antifungal activity was clearly observable at a later stage of the disease (by impairing the production of transmission stages of the parasite). More research is needed to understand the broader consequences of this parasite-clearance effect, especially in face of increasing evidence that parasites are ecologically more important than their cryptic nature might suggest.
Collapse
Affiliation(s)
- Cláudia Machado
- CBMA (Centre of Molecular and Environmental Biology) & Department of Biology, School of Sciences, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, Braga, Portugal
| | - Ana P Cuco
- CBMA (Centre of Molecular and Environmental Biology) & Department of Biology, School of Sciences, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, Braga, Portugal
| | - Fernanda Cássio
- CBMA (Centre of Molecular and Environmental Biology) & Department of Biology, School of Sciences, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, Braga, Portugal
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology) & Department of Biology, School of Sciences, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, Braga, Portugal.
| |
Collapse
|
13
|
Gutierrez SO, Minchella DJ, Bernal XE. Survival of the sickest: selective predation differentially modulates ecological and evolutionary disease dynamics. OIKOS 2022. [DOI: 10.1111/oik.09126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Ximena E. Bernal
- Dept of Biology, Purdue Univ. West Lafayette IN USA
- Smithsonian Tropical Research Inst. Panama Republic of Panama
| |
Collapse
|
14
|
Parasitic manipulation or by-product of infection: an experimental approach using trematode-infected snails. J Helminthol 2022; 96:e2. [PMID: 34991736 DOI: 10.1017/s0022149x21000699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Natural selection should favour parasite genotypes that manipulate hosts in ways that enhance parasite fitness. However, it is also possible that the effects of infection are not adaptive. Here we experimentally examined the phenotypic effects of infection in a snail-trematode system. These trematodes (Atriophallophorus winterbourni) produce larval cysts within the snail's shell (Potamopyrgus antipodarum); hence the internal shell volume determines the total number of parasite cysts produced. Infected snails in the field tend to be larger than uninfected snails, suggesting the hypothesis that parasites manipulate host growth so as to increase the space available for trematode reproduction. To test the hypothesis, we exposed juvenile snails to trematode eggs. Snails were then left to grow for about one year in 800-l outdoor mesocosms. We found that uninfected males were smaller than uninfected females (sexual dimorphism). We also found that infection did not affect the shell dimensions of males. However, infected females were smaller than uninfected females. Hence, infection stunts the growth of females, and (contrary to the hypothesis) it results in a smaller internal volume for larval cysts. Finally, infected females resembled males in size and shape, suggesting the possibility that parasitic castration prevents the normal development of females. These results thus indicate that the parasite is not manipulating the growth of infected hosts so as to increase the number of larval cysts, although alternative adaptive explanations are possible.
Collapse
|
15
|
Penczykowski RM, Shocket MS, Ochs JH, Lemanski BCP, Sundar H, Duffy MA, Hall SR. Virulent Disease Epidemics Can Increase Host Density by Depressing Foraging of Hosts. Am Nat 2022; 199:75-90. [DOI: 10.1086/717175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Sequential infection of Daphnia magna by a gut microsporidium followed by a haemolymph yeast decreases transmission of both parasites. Parasitology 2021; 148:1566-1577. [PMID: 35060463 PMCID: PMC8564772 DOI: 10.1017/s0031182021001384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Over the course of seasonal epidemics, populations of susceptible hosts may encounter a wide variety of parasites. Parasite phenology affects the order in which these species encounter their hosts, leading to sequential infections, with potentially strong effects on within-host growth and host population dynamics. Here, the cladoceran Daphnia magna was exposed sequentially to a haemolymph-infecting yeast (Metschnikowia bicuspidata) and a gut microsporidium (Ordospora colligata), with experimental treatments reflecting two possible scenarios of parasite succession. The effects of single and co-exposure were compared on parasite infectivity, spore production and the overall virulence experienced by the host. We show that neither parasite benefited from coinfection; instead, when hosts encountered Ordospora, followed by Metschnikowia, higher levels of host mortality contributed to an overall decrease in the transmission of both parasites. These results showcase an example of sequential infections generating unilateral priority effects, in which antagonistic interactions between parasites can alleviate the intensity of infection and coincide with maladaptive levels of damage inflicted on the host.
Collapse
|
17
|
Shaw CL, Bilich R, O'Brien B, Cáceres CE, Hall SR, James TY, Duffy MA. Genotypic variation in an ecologically important parasite is associated with host species, lake and spore size. Parasitology 2021; 148:1303-1312. [PMID: 34103104 PMCID: PMC8383271 DOI: 10.1017/s0031182021000949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 11/10/2022]
Abstract
Genetic variation in parasites has important consequences for host–parasite interactions. Prior studies of the ecologically important parasite Metschnikowia bicuspidata have suggested low genetic variation in the species. Here, we collected M. bicuspidata from two host species (Daphnia dentifera and Ceriodaphnia dubia) and two regions (Michigan and Indiana, USA). Within a lake, outbreaks tended to occur in one host species but not the other. Using microsatellite markers, we identified six parasite genotypes grouped within three distinct clades, one of which was rare. Of the two main clades, one was generally associated with D. dentifera, with lakes in both regions containing a single genotype. The other M. bicuspidata clade was mainly associated with C. dubia, with a different genotype dominating in each region. Despite these associations, both D. dentifera- and C. dubia-associated genotypes were found infecting both hosts in lakes. However, in lab experiments, the D. dentifera-associated genotype infected both D. dentifera and C. dubia, but the C. dubia-associated genotype, which had spores that were approximately 30% smaller, did not infect D. dentifera. We hypothesize that variation in spore size might help explain patterns of cross-species transmission. Future studies exploring the causes and consequences of variation in spore size may help explain patterns of infection and the maintenance of genotypic diversity in this ecologically important system.
Collapse
Affiliation(s)
- Clara L. Shaw
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| | - Rebecca Bilich
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| | - Bruce O'Brien
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| | - Carla E. Cáceres
- Department of Evolution, Ecology, & Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801, USA
| | - Spencer R. Hall
- Department of Biology, Indiana University, Bloomington, IN47405, USA
| | - Timothy Y. James
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| |
Collapse
|
18
|
Stewart Merrill TE, Rapti Z, Cáceres CE. Host Controls of Within-Host Disease Dynamics: Insight from an Invertebrate System. Am Nat 2021; 198:317-332. [PMID: 34403315 DOI: 10.1086/715355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWithin-host processes (representing the entry, establishment, growth, and development of a parasite inside its host) may play a key role in parasite transmission but remain challenging to observe and quantify. We develop a general model for measuring host defenses and within-host disease dynamics. Our stochastic model breaks the infection process down into the stages of parasite exposure, entry, and establishment and provides associated probabilities for a host's ability to resist infections with barriers and clear internal infections. We tested our model on Daphnia dentifera and the parasitic fungus Metschnikowia bicuspidata and found that when faced with identical levels of parasite exposure, Daphnia patent (transmitting) infections depended on the strength of internal clearance. Applying a Gillespie algorithm to the model-estimated probabilities allowed us to visualize within-host dynamics, within which signatures of host defense could be clearly observed. We also found that early within-host stages were the most vulnerable to internal clearance, suggesting that hosts have a limited window during which recovery can occur. Our study demonstrates how pairing longitudinal infection data with a simple model can reveal new insight into within-host dynamics and mechanisms of host defense. Our model and methodological approach may be a powerful tool for exploring these properties in understudied host-parasite interactions.
Collapse
|
19
|
Van Wyk JI, Amponsah ER, Ng WH, Adler LS. Big bees spread disease: body size mediates transmission of a bumble bee pathogen. Ecology 2021; 102:e03429. [PMID: 34105776 DOI: 10.1002/ecy.3429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/29/2021] [Accepted: 02/22/2021] [Indexed: 11/10/2022]
Abstract
Trait variation can have important consequences for the outcomes of species interactions. Even though some traits vary as much within species as across related species, models and empirical studies typically do not consider the role of intraspecific trait variation for processes such as disease transmission. For example, many pollinator species are in decline because of a variety of stressors including pathogens, but the role of intraspecific trait variation in mediating disease dynamics is rarely considered. For example, pollinator body size could affect pathogen transmission via differences in resistance, foraging behavior and physiology. We tested effects of body size on pollinator pathogen transmission using the common eastern bumble bee Bombus impatiens in field tents, introducing an infected "donor" microcolony of large or small workers with an uninfected average-sized "recipient" microcolony and allowing bees to forage for 9-16 d. Small donor bees had nearly 50% higher infection intensity (cells/0.02 μL) than large donor bees, but large donor bees were twice as likely to transmit Crithidia bombi to recipient bees. Both behavioral and physiological mechanisms may underlie this apparent paradox. Compared to small bees, large bees foraged more and produced more feces; simulations showed that foraging and defecation rates together had stronger effects on transmission than did donor infection intensity. Thus, effects of bee size on contact rates and pathogen supply may play significant roles in disease transmission, demonstrating the multifaceted impacts of traits on transmission dynamics.
Collapse
Affiliation(s)
- Jennifer I Van Wyk
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Eugene R Amponsah
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Wee Hao Ng
- Department of Entomology, Cornell University, Ithaca, New York, 14853, USA
| | - Lynn S Adler
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
20
|
Williams M, Hernandez-Jover M, Williams T, Shamsi S. A risk scoring system for seafood supply chain breaches and examination of freshwater fish imported to Australia. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Legislative changes have altered the way imported edible seafood is inspected in Australia. Greater onus of responsibility has been placed on exporting countries to provide documentary evidence of adherence to internally recognized food safety standards. According to global trade agreements, any additional safety tests applied to freshwater fish imported into Australia must be justified. Therefore, the aim of this study was to develop a risk scoring method to provide justification for identifying countries as ‘Freshwater fish high risk’ and to examine the seafood they export to Australia for seafood supply chain breaches. Scoring was conducted using six predictor variables, identified in the literature as important contributors to seafood supply chain breaches, to achieve the outcome variable, Country considered ‘Freshwater fish high risk’. Sixty-seven fish fillets (9.55 kg) of the same species were examined from the third highest scoring country (Country 20) and 562 (5.6 kg) whole fish from the sixth highest scoring country (Country 22). Country 20 had supply chain breaches of 28 macroscopic yellow cysts in one fillet. Two hundred and thirteen parasites and other supply chain breaches were identified in fish from Country 22, including retained liver (91 per cent), visible mud (11 per cent), a variety of debris (16 per cent) and, depending on the commodity code, these fish were imported to Australia under full intestine (90 per cent), retained gills (89 per cent), and partial intestine (9 per cent). Three serious physical hazards were recovered from the edible portion of three ‘consumer-ready’ fish and snails of Genus Lymnaea and Indoplanorbis were recovered from gill mud also from ‘consumer-ready’ fish. The study showed variable results from the scoring system and vast differences in seafood supply chain breaches between the third and sixth highest scoring countries.
Collapse
Affiliation(s)
- Michelle Williams
- School of Animal and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Marta Hernandez-Jover
- School of Animal and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Thomas Williams
- School of Animal and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Shokoofeh Shamsi
- School of Animal and Veterinary Sciences & Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
21
|
Cortez MH, Duffy MA. The Context-Dependent Effects of Host Competence, Competition, and Pathogen Transmission Mode on Disease Prevalence. Am Nat 2021; 198:179-194. [PMID: 34260871 DOI: 10.1086/715110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractBiodiversity in communities is changing globally, including the gain and loss of host species in host-pathogen communities. Increased host diversity can cause infection prevalence in a focal host to increase (amplification) or decrease (dilution). However, it is unclear what general rules govern the context-dependent effects, in part because theories for pathogens with different transmission modes have developed largely independently. Using a two-host model, we explore how the pathogen transmission mode and characteristics of a second host (disease competence and competitive ability) influence disease prevalence in a focal host. Our work shows how the theories for pathogens with environmental transmission, density-dependent direct transmission, and frequency-dependent direct transmission can be unified. Our work also identifies general rules about how host and pathogen characteristics affect amplification/dilution. For example, higher-competence hosts promote amplification, unless they are strong interspecific competitors; strong interspecific competitors promote dilution, unless they are large sources of new infections; and dilution occurs under frequency-dependent direct transmission more than density-dependent direct transmission, unless interspecific host competition is sufficiently strong. Our work helps explain how the characteristics of the pathogen and a second host affect disease prevalence in a focal host.
Collapse
|
22
|
Seppälä O, Çetin C, Cereghetti T, Feulner PGD, Adema CM. Examining adaptive evolution of immune activity: opportunities provided by gastropods in the age of 'omics'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200158. [PMID: 33813886 PMCID: PMC8059600 DOI: 10.1098/rstb.2020.0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Parasites threaten all free-living organisms, including molluscs. Understanding the evolution of immune defence traits in natural host populations is crucial for predicting their long-term performance under continuous infection risk. Adaptive trait evolution requires that traits are subject to selection (i.e. contribute to organismal fitness) and that they are heritable. Despite broad interest in the evolutionary ecology of immune activity in animals, the understanding of selection on and evolutionary potential of immune defence traits is far from comprehensive. For instance, empirical observations are only rarely in line with theoretical predictions of immune activity being subject to stabilizing selection. This discrepancy may be because ecoimmunological studies can typically cover only a fraction of the complexity of an animal immune system. Similarly, molecular immunology/immunogenetics studies provide a mechanistic understanding of immunity, but neglect variation that arises from natural genetic differences among individuals and from environmental conditions. Here, we review the current literature on natural selection on and evolutionary potential of immune traits in animals, signal how merging ecological immunology and genomics will strengthen evolutionary ecological research on immunity, and indicate research opportunities for molluscan gastropods for which well-established ecological understanding and/or 'immune-omics' resources are already available. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Otto Seppälä
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Cansu Çetin
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Teo Cereghetti
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Philine G. D. Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Coen M. Adema
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
23
|
Nørgaard LS, Ghedini G, Phillips BL, Hall MD. Energetic scaling across different host densities and its consequences for pathogen proliferation. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Louise Solveig Nørgaard
- School of Biological Sciences and Centre for Geometric Biology Monash University Melbourne Vic. Australia
| | - Giulia Ghedini
- School of Biological Sciences and Centre for Geometric Biology Monash University Melbourne Vic. Australia
| | - Ben L. Phillips
- Department of Biosciences University of Melbourne Parkville Vic. Australia
| | - Matthew D. Hall
- School of Biological Sciences and Centre for Geometric Biology Monash University Melbourne Vic. Australia
| |
Collapse
|
24
|
Hite JL. Host age alters disease life history. A case study in zooplankton and a castrating pathogen. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jessica L. Hite
- School of Biological Sciences University of Nebraska Lincoln NE USA
| |
Collapse
|
25
|
Zukowski N, Kirk D, Wadhawan K, Shea D, Start D, Krkošek M. Predators can influence the host-parasite dynamics of their prey via nonconsumptive effects. Ecol Evol 2020; 10:6714-6722. [PMID: 32724544 PMCID: PMC7381593 DOI: 10.1002/ece3.6401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/04/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
Ecological communities are partly structured by indirect interactions, where one species can indirectly affect another by altering its interactions with a third species. In the absence of direct predation, nonconsumptive effects of predators on prey have important implications for subsequent community interactions. To better understand these interactions, we used a Daphnia-parasite-predator cue system to evaluate if predation risk affects Daphnia responses to a parasite. We investigated the effects of predator cues on two aspects of host-parasite interactions (susceptibility to infection and infection intensity), and whether or not these effects differed between sexes. Our results show that changes in response to predator cues caused an increase in the prevalence and intensity of parasite infections in female predator-exposed Daphnia. Importantly, the magnitude of infection risk depended on how long Daphnia were exposed to the cues. Additionally, heavily infected Daphnia that were constantly exposed to cues produced relatively more offspring. While males were ~5× less likely to become infected compared to females, we were unable to detect effects of predator cues on male Daphnia-parasite interactions. In sum, predators, prey, and their parasites can form complex subnetworks in food webs, necessitating a nuanced understanding of how nonconsumptive effects may mediate these interactions.
Collapse
Affiliation(s)
- Nicolette Zukowski
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
- School of Public Health, University of CaliforniaBerkeleyCAUSA
| | - Devin Kirk
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
- Department of BiologyStanford UniversityStanfordCAUSA
| | - Kiran Wadhawan
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Dylan Shea
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Denon Start
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
- Center for Population BiologyUniversity of CaliforniaDavisCAUSA
| | - Martin Krkošek
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| |
Collapse
|
26
|
Izhar R, Gilboa C, Ben‐Ami F. Disentangling the steps of the infection process responsible for juvenile disease susceptibility. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rony Izhar
- School of Zoology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - Chen Gilboa
- School of Zoology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - Frida Ben‐Ami
- School of Zoology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| |
Collapse
|
27
|
Crawford JW, Schrader M, Hall SR, Cáceres CE. Intraspecific variation in resource use is not explained by population persistence or seasonality. Oecologia 2020; 193:135-142. [PMID: 32307672 DOI: 10.1007/s00442-020-04651-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
Populations of generalist grazers often contain genotypes with "powerful" and "efficient" strategies. Powerful genotypes grow rapidly on rich-quality resources, but slowly on poorer-quality ones, while efficient genotypes grow relatively better on poorer resources but cannot exploit richer resources as well. Via a "power-efficiency" trade-off, variation in resource quality could maintain genetic diversity. To evaluate this mechanism, we sampled six populations of the freshwater cladoceran Daphnia pulicaria. In persisting (year-round) populations, Daphnia consume resources that vary in quality, whereas in non-persisting (spring-only) populations, Daphnia primarily encounter rich-quality resources. We hypothesized that non-persisting populations harbor no efficient clones (hence should show lower growth on poor-quality resources). Although individuals from non-persisting populations remained smaller than individuals from persisting populations, no evidence arose for a trade-off between powerful and efficient strategies. In fact, growth rates on the two diets were positively correlated (instead of negatively, as predicted). Furthermore, in the persisting populations, we predicted that clonal selection from spring to summer should shift the distribution of genotypes from powerful (specialists on richer spring resources) to efficient (poorer, summer resources). Genetic composition of populations shifted from spring to summer, but not toward more efficient genotypes. Therefore, in these lakes, maintenance of variation among genotypes must stem from more complicated factors than population persistence patterns or seasonal shifts in resource quality alone.
Collapse
Affiliation(s)
- John W Crawford
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana, IL, USA
| | - Matthew Schrader
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana, IL, USA.,Department of Biology, University of the South, Sewanee, TN, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Carla E Cáceres
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
28
|
Hite JL, Cressler CE. Parasite-Mediated Anorexia and Nutrition Modulate Virulence Evolution. Integr Comp Biol 2020; 59:1264-1274. [PMID: 31187120 DOI: 10.1093/icb/icz100] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Temporary but substantial reductions in voluntary food intake routinely accompany parasite infection in hosts ranging from insects to humans. This "parasite-mediated anorexia" drives dynamic nutrient-dependent feedbacks within and among hosts, which should alter the fitness of both hosts and parasites. Yet, few studies have examined the evolutionary and epidemiological consequences of this ubiquitous but overlooked component of infection. Moreover, numerous biomedical, veterinary, and farming practices (e.g., rapid biomass production via high-calorie or high-fat diets, low-level antibiotics to promote growth, nutritional supplementation, nonsteroidal anti-inflammatory drugs like Ibuprofen) directly or indirectly alter the magnitude of host anorexia-while also controlling host diet and therefore the nutrients available to hosts and parasites. Here, we show that anorexia can enhance or diminish disease severity, depending on whether the current dietary context provides nutrients that bolster or inhibit immune function. Feedbacks driven by nutrition-mediated competition between host immune function and parasite production can create a unimodal relationship between anorexia and parasite fitness. Subsequently, depending on the host's diet, medical or husbandry practices that suppress anorexia could backfire, and inadvertently select for more virulent parasites and larger epidemics. These findings carry implications for the development of integrated treatment programs that consider links between host feeding behavior, nutrition, and disease severity.
Collapse
Affiliation(s)
- Jessica L Hite
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Clayton E Cressler
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
29
|
Guo F, Bonebrake TC, Gibson L. Land-Use Change Alters Host and Vector Communities and May Elevate Disease Risk. ECOHEALTH 2019; 16:647-658. [PMID: 29691680 DOI: 10.1007/s10393-018-1336-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/02/2018] [Accepted: 03/20/2018] [Indexed: 05/25/2023]
Abstract
Land-use change has transformed most of the planet. Concurrently, recent outbreaks of various emerging infectious diseases have raised great attention to the health consequences of anthropogenic environmental degradation. Here, we assessed the global impacts of habitat conversion and other land-use changes on community structures of infectious disease hosts and vectors, using a meta-analysis of 37 studies. From 331 pairwise comparisons of disease hosts/vectors in pristine (undisturbed) and disturbed areas, we found a decrease in species diversity but an increase in body size associated with land-use changes, potentially suggesting higher risk of infectious disease transmission in disturbed habitats. Neither host nor vector abundance, however, changed significantly following disturbance. When grouped by subcategories like disturbance type, taxonomic group, pathogen type and region, changes in host/vector community composition varied considerably. Fragmentation and agriculture in particular benefit host and vector communities and therefore might elevate disease risk. Our results indicate that while habitat disturbance could alter disease host/vector communities in ways that exacerbate pathogen prevalence, the relationship is highly context-dependent and influenced by multiple factors.
Collapse
Affiliation(s)
- Fengyi Guo
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | | | - Luke Gibson
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
30
|
Strauss AT, Hite JL, Civitello DJ, Shocket MS, Cáceres CE, Hall SR. Genotypic variation in parasite avoidance behaviour and other mechanistic, nonlinear components of transmission. Proc Biol Sci 2019; 286:20192164. [PMID: 31744438 DOI: 10.1098/rspb.2019.2164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traditional epidemiological models assume that transmission increases proportionally to the density of parasites. However, empirical data frequently contradict this assumption. General yet mechanistic models can explain why transmission depends nonlinearly on parasite density and thereby identify potential defensive strategies of hosts. For example, hosts could decrease their exposure rates at higher parasite densities (via behavioural avoidance) or decrease their per-parasite susceptibility when encountering more parasites (e.g. via stronger immune responses). To illustrate, we fitted mechanistic transmission models to 19 genotypes of Daphnia dentifera hosts over gradients of the trophically acquired parasite, Metschnikowia bicuspidata. Exposure rate (foraging, F) frequently decreased with parasite density (Z), and per-parasite susceptibility (U) frequently decreased with parasite encounters (F × Z). Consequently, infection rates (F × U × Z) often peaked at intermediate parasite densities. Moreover, host genotypes varied substantially in these responses. Exposure rates remained constant for some genotypes but decreased sensitively with parasite density for others (up to 78%). Furthermore, genotypes with more sensitive foraging/exposure also foraged faster in the absence of parasites (suggesting 'fast and sensitive' versus 'slow and steady' strategies). These relationships suggest that high densities of parasites can inhibit transmission by decreasing exposure rates and/or per-parasite susceptibility, and identify several intriguing axes for the evolution of host defence.
Collapse
Affiliation(s)
| | - Jessica L Hite
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| | | | - Marta S Shocket
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| | - Carla E Cáceres
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
31
|
Wille M, Shi M, Klaassen M, Hurt AC, Holmes EC. Virome heterogeneity and connectivity in waterfowl and shorebird communities. THE ISME JOURNAL 2019; 13:2603-2616. [PMID: 31239538 PMCID: PMC6775988 DOI: 10.1038/s41396-019-0458-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 05/27/2019] [Indexed: 11/09/2022]
Abstract
Models of host-microbe dynamics typically assume a single-host population infected by a single pathogen. In reality, many hosts form multi-species aggregations and may be infected with an assemblage of pathogens. We used a meta-transcriptomic approach to characterize the viromes of nine avian species in the Anseriformes (ducks) and Charadriiformes (shorebirds). This revealed the presence of 27 viral species, of which 24 were novel, including double-stranded RNA viruses (Picobirnaviridae and Reoviridae), single-stranded RNA viruses (Astroviridae, Caliciviridae, Picornaviridae), a retro-transcribing DNA virus (Hepadnaviridae), and a single-stranded DNA virus (Parvoviridae). These viruses comprise multi-host generalist viruses and those that are host-specific, indicative of both virome connectivity (host sharing) and heterogeneity (host specificity). Virome connectivity was apparent in two well described multi-host virus species -avian coronavirus and influenza A virus- and a novel Rotavirus species that were shared among some Anseriform species, while virome heterogeneity was reflected in the absence of viruses shared between Anseriformes and Charadriiformes, as well as differences in viral abundance and alpha diversity among species. Overall, we demonstrate complex virome structures across host species that co-exist in multi-species aggregations.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia.
| |
Collapse
|
32
|
Shocket MS, Magnante A, Duffy MA, Cáceres CE, Hall SR. Can hot temperatures limit disease transmission? A test of mechanisms in a zooplankton–fungus system. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Meghan A. Duffy
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Carla E. Cáceres
- School of Integrative Biology University of Illinois at Urbana‐Champaign Urbana IL USA
| | | |
Collapse
|
33
|
Rapti Z, Stewart Merrill TE, Mueller-Brennan B, Kavouras JH, Cáceres CE. Indirect effects in a planktonic disease system. Theor Popul Biol 2019; 130:132-142. [PMID: 31319041 DOI: 10.1016/j.tpb.2019.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022]
Abstract
Indirect effects, both density- and trait-mediated, have been known to act in tandem with direct effects in the interactions of numerous species. They have been shown to affect populations embedded in competitive and mutualistic networks alike. In this work, we introduce a four-dimensional system of ordinary differential equations and investigate the interplay between direct density-effects and density- and trait-mediated indirect effects that take place in a yeast parasite-zooplankton host-incompetent competitor system embedded in a food web which also includes resources and predators. Among our main findings is the demonstration that indirect effects cause qualitative and quantitative changes almost indistinguishable from direct effects and the corroboration through our analysis of the fact that the effects of direct and indirect mechanisms cannot be disentangled. Our results underpin the conclusions of past studies calling for comprehensive models that incorporate both direct and indirect effects to better describe field data.
Collapse
Affiliation(s)
- Zoi Rapti
- Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green St., Urbana, IL 61801, USA.
| | - Tara E Stewart Merrill
- Program in Ecology, Evolution and Conservation Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Bridget Mueller-Brennan
- Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green St., Urbana, IL 61801, USA
| | - Jerry H Kavouras
- Department of Biology, Lewis University, Romeoville, IL 60446, USA
| | - Carla E Cáceres
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL 61801, USA
| |
Collapse
|
34
|
Kirk D, Shea D, Start D. Host traits and competitive ability jointly structure disease dynamics and community assembly. J Anim Ecol 2019; 88:1379-1391. [PMID: 31120552 DOI: 10.1111/1365-2656.13028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/03/2019] [Indexed: 01/13/2023]
Abstract
Parasitism and competition are both ubiquitous interactions in ecological communities. The ability of host species to interact directly via competition and indirectly through shared parasites suggests that host traits related to competition and parasitism are likely important in structuring communities and disease dynamics. Specifically, those host traits affecting competition and those mediating parasitism are often correlated either because of trade-offs (in resource acquisition or resource allocation) or condition dependence, yet the consequences of these trait relationships for community and epidemiological dynamics are poorly understood. We conducted a literature review of parasite-related host traits-competitive ability relationships. We found that transmission-competitive ability relationships were most often reported, and that superior competitors exhibited elevated transmission relative to their less-competitive counterparts in nearly 80% of the cases. We also found a significant number of virulence-competitive ability and parasite shedding-competitive ability relationships. We investigated these links by altering the relationship between host competitive ability and three parasite-related traits (transmission, virulence and parasite shedding rates) in a simple model, incorporating competitive asymmetries in a multi-host community. We show that these relationships can lead to a range of different communities. For example, depending on the strength and direction of these distinct trait relationships, we observed communities with anywhere from high parasite prevalence to complete parasite extinction, and either one, two or the maximum of three host species coexisting. Our results suggest that parasite-competitive ability relationships may be common in nature, that further integration of these relationships can produce novel and unexpected community and disease dynamics, and that generalizations may allow for the prediction of how parasitism and competition jointly structure disease and diversity in natural communities.
Collapse
Affiliation(s)
- Devin Kirk
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Dylan Shea
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Denon Start
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Davis AK, Prouty C. The sicker the better: nematode-infected passalus beetles provide enhanced ecosystem services. Biol Lett 2019; 15:20180842. [PMID: 31039727 DOI: 10.1098/rsbl.2018.0842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is growing appreciation for the role that parasites have in ecosystems and food webs, though the possibility that they could improve an ecosystem service has never been considered. In forest ecosystems, fallen trees naturally decay over time and slowly return their nutrients to the soil. Beetles in the family Passalidae play a key role by excavating tunnels and consuming wood from these logs, thereby breaking down the wood into smaller debris. In the eastern United States, the horned passalus ( Odontotaenius disjunctus) is host to a naturally occurring nematode, Chondronema passali, which appears to cause little harm to the beetles. We suspected this was due to compensatory food consumption by parasitized individuals, which we tested here. We collected and housed 113 adult beetles in individual containers with wood for three months, then determined the amount of wood each beetle had processed into fine debris and frass. We then assessed beetles for C. passali and compared wood processing rates between parasitized and non-parasitized groups. Results showed the average daily processing rate of parasitized beetles ([Formula: see text] = 0.77 g d-1) was 15% greater than that of unparasitized ones ([Formula: see text] = 0.67 g d-1). Parasitized beetles were 6% larger, and this may explain some of this pattern, though the effect of parasitism was still significant in our analysis. By extrapolating the daily rates, we estimate that 10 adult beetles without nematodes would break down approximately 2.4 kg of wood in a single year, while a group of 10 parasitized beetles would break down 2.8 kg. While our data are consistent with the idea of compensatory feeding, because these results are based on natural infections, we cannot rule out the possibility that beetles with heightened wood consumption are simply more likely to acquire the parasite. At an ecosystem level, it may not matter which is the case; parasitized beetles provide a more effective ecosystem service.
Collapse
Affiliation(s)
- Andrew K Davis
- Odum School of Ecology, University of Georgia , Athens, GA 30602 , USA
| | - Cody Prouty
- Odum School of Ecology, University of Georgia , Athens, GA 30602 , USA
| |
Collapse
|
36
|
Stewart Merrill TE, Hall SR, Merrill L, Cáceres CE. Variation in Immune Defense Shapes Disease Outcomes in Laboratory and Wild Daphnia. Integr Comp Biol 2019; 59:1203-1219. [DOI: 10.1093/icb/icz079] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Host susceptibility may be critical for the spread of infectious disease, and understanding its basis is a goal of ecological immunology. Here, we employed a series of mechanistic tests to evaluate four factors commonly assumed to influence host susceptibility: parasite exposure, barriers to infection, immune responses, and body size. We tested these factors in an aquatic host–parasite system (Daphnia dentifera and the fungal parasite, Metschnikowia bicuspidata) using both laboratory-reared and field-collected hosts. We found support for each factor as a driver of infection. Elevated parasite exposure, which occurs through consumption of infectious fungal spores, increased a host’s probability of infection. The host’s gut epithelium functioned as a barrier to infection, but in the opposite manner from which we predicted: thinner anterior gut epithelia were more resistant to infectious spores than thick epithelia. This relationship may be mediated by structural attributes associated with epithelial cell height. Fungal spores that breached the host’s gut barrier elicited an intensity-dependent hemocyte response that decreased the probability of infection for some Daphnia. Although larger body sizes were associated with increased levels of spore ingestion, larger hosts also had lower frequencies of parasite attack, less penetrable gut barriers, and stronger hemocyte responses. After investigating which mechanisms underlie host susceptibility, we asked: do these four factors contribute equally or asymmetrically to the outcome of infection? An information-theoretic approach revealed that host immune defenses (barriers and immune responses) played the strongest roles in mediating infection outcomes. These two immunological traits may be valuable metrics for linking host susceptibility to the spread of infectious disease.
Collapse
Affiliation(s)
- Tara E Stewart Merrill
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61801, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Loren Merrill
- Department of Natural Resources, University of Illinois, Urbana, IL 61801, USA
| | - Carla E Cáceres
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
37
|
Kirk D, Luijckx P, Stanic A, Krkošek M. Predicting the Thermal and Allometric Dependencies of Disease Transmission via the Metabolic Theory of Ecology. Am Nat 2019; 193:661-676. [PMID: 31002572 DOI: 10.1086/702846] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The metabolic theory of ecology (MTE) provides a general framework of allometric and thermal dependence that may be useful for predicting how climate change will affect disease spread. Using Daphnia magna and a microsporidian gut parasite, we conducted two experiments across a wide thermal range and fitted transmission models that utilize MTE submodels for transmission parameters. We decomposed transmission into contact rate and probability of infection and further decomposed probability of infection into a product of gut residence time (GRT) and per-parasite infection rate of gut cells. Contact rate generally increased with temperature and scaled positively with body size, whereas infection rate had a narrow hump-shaped thermal response and scaled negatively with body size. GRT increased with host size and was longest at extreme temperatures. GRT and infection rate inside the gut combined to create a 3.5 times higher probability of infection for the smallest relative to the largest individuals. Small temperature changes caused large differences in transmission. We also fit several alternative transmission models to data at individual temperatures. The more complex models-parasite antagonism or synergism and host heterogeneity-did not substantially improve the fit to the data. Our results show that transmission rate is the product of several distinct thermal and allometric functions that can be predicted continuously across temperature and host size using the MTE.
Collapse
|
38
|
Savola E, Ebert D. Assessment of parasite virulence in a natural population of a planktonic crustacean. BMC Ecol 2019; 19:14. [PMID: 30871516 PMCID: PMC6419459 DOI: 10.1186/s12898-019-0230-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/28/2019] [Indexed: 02/05/2023] Open
Abstract
Background Understanding the impact of disease in natural populations requires an understanding of infection risk and the damage that parasites cause to their hosts (= virulence). However, because these disease traits are often studied and quantified under controlled laboratory conditions and with reference to healthy control hosts, we have little knowledge about how they play out in natural conditions. In the Daphnia–Pasteuria host–parasite system, field assessments often show very low estimates of virulence, while controlled laboratory experiments indicate extremely high virulence. Results To examine this discrepancy, we sampled Daphnia magna hosts from the field during a parasite epidemic and recorded disease traits over a subsequent 3-week period in the laboratory. As predicted for chronic disease where infections in older (larger) hosts are also, on average, older, we found that larger D. magna females were infected more often, had fewer offspring prior to the onset of castration and showed signs of infection sooner than smaller hosts. Also consistent with laboratory experiments, infected animals were found in both sexes and in all sizes of hosts. Infected females were castrated at capture or became castrated soon after. As most females in the field carried no eggs in their brood pouch at the time of sampling, virulence estimates of infected females relative to uninfected females were low. However, with improved feeding conditions in the laboratory, only uninfected females resumed reproduction, resulting in very high relative virulence estimates. Conclusions Overall, our study shows that the disease manifestation of P. ramosa, as expressed under natural conditions, is consistent with what we know from laboratory experiments. However, parasite induced fecundity reduction of infected, relative to uninfected hosts depended strongly on the environmental conditions. We argue that this effect is particularly strong for castrating parasites, because infected hosts have low fecundity under all conditions.
Collapse
Affiliation(s)
- Eevi Savola
- Department of Environmental Sciences, Zoology, Basel University, Vesalgasse 1, 4051, Basel, Switzerland.,Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, Basel University, Vesalgasse 1, 4051, Basel, Switzerland.
| |
Collapse
|
39
|
Hite JL, Cressler CE. Resource-driven changes to host population stability alter the evolution of virulence and transmission. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531142 DOI: 10.1098/rstb.2017.0087] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
What drives the evolution of parasite life-history traits? Recent studies suggest that linking within- and between-host processes can provide key insight into both disease dynamics and parasite evolution. Still, it remains difficult to understand how to pinpoint the critical factors connecting these cross-scale feedbacks, particularly under non-equilibrium conditions; many natural host populations inherently fluctuate and parasites themselves can strongly alter the stability of host populations. Here, we develop a general model framework that mechanistically links resources to parasite evolution across a gradient of stable and unstable conditions. First, we dynamically link resources and between-host processes (host density, stability, transmission) to virulence evolution, using a 'non-nested' model. Then, we consider a 'nested' model where population-level processes (transmission and virulence) depend on resource-driven changes to individual-level (within-host) processes (energetics, immune function, parasite production). Contrary to 'non-nested' model predictions, the 'nested' model reveals complex effects of host population dynamics on parasite evolution, including regions of evolutionary bistability; evolution can push parasites towards strongly or weakly stabilizing strategies. This bistability results from dynamic feedbacks between resource-driven changes to host density, host immune function and parasite production. Together, these results highlight how cross-scale feedbacks can provide key insights into the structuring role of parasites and parasite evolution.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- Jessica L Hite
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Clayton E Cressler
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
40
|
Civitello DJ, Allman BE, Morozumi C, Rohr JR. Assessing the direct and indirect effects of food provisioning and nutrient enrichment on wildlife infectious disease dynamics. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531153 DOI: 10.1098/rstb.2017.0101] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Anthropogenic resource supplementation can shape wildlife disease directly by altering the traits and densities of hosts and parasites or indirectly by stimulating prey, competitor or predator species. We first assess the direct epidemiological consequences of supplementation, highlighting the similarities and differences between food provisioning and two widespread forms of nutrient input: agricultural fertilization and aquatic nutrient enrichment. We then review an aquatic disease system and a general model to assess whether predator and competitor species can enhance or overturn the direct effects of enrichment. All forms of supplementation can directly affect epidemics by increasing host population size or altering parasite production within hosts, but food provisioning is most likely to aggregate hosts and increase parasite transmission. However, if predators or competitors increase in response to supplementation, they could alter resource-fuelled outbreaks in focal hosts. We recommend identifying the traits of hosts, parasites or interacting species that best predict epidemiological responses to supplementation and evaluating the relative importance of these direct and indirect mechanisms. Theory and experiments should examine the timing of behavioural, physiological and demographic changes for realistic, variable scenarios of supplementation. A more integrative view of resource supplementation and wildlife disease could yield broadly applicable disease management strategies.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- David J Civitello
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA .,Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA 30322, USA
| | - Brent E Allman
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA 30322, USA
| | - Connor Morozumi
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA 30322, USA
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
41
|
Murray MH, Kidd AD, Curry SE, Hepinstall-Cymerman J, Yabsley MJ, Adams HC, Ellison T, Welch CN, Hernandez SM. From wetland specialist to hand-fed generalist: shifts in diet and condition with provisioning for a recently urbanized wading bird. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531152 DOI: 10.1098/rstb.2017.0100] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many wildlife species shift their diets to use novel resources in urban areas. The consequences of these shifts are not well known, and consumption of reliable-but low quality-anthropogenic food may present important trade-offs for wildlife health. This may be especially true for carnivorous species such as the American white ibis (Eudocimus albus), a nomadic wading bird which has been increasingly observed in urban parks in South Florida, USA. We tested the effects of anthropogenic provisioning on consumer nutrition (i.e. dietary protein), body condition and ectoparasite burdens along an urban gradient using stable isotope analysis, scaled mass index values and GPS transmitter data. Ibises that assimilated more provisioned food were captured at more urban sites, used more urban habitat, had lower mass-length residuals, lower ectoparasite scores, assimilated less δ15N and had smaller dietary isotopic ellipses. Our results suggest that ibises in urban areas are heavily provisioned with anthropogenic food, which appears to offer a trade-off by providing low-quality, but easily accessible, calories that may not support high mass but may increase time available for anti-parasite behaviours such as preening. Understanding such trade-offs is important for investigating the effects of provisioning on infection risk and the conservation of wildlife in human-modified habitats.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- Maureen H Murray
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA .,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Anjelika D Kidd
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Shannon E Curry
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | | - Michael J Yabsley
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Henry C Adams
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Taylor Ellison
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Catharine N Welch
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Sonia M Hernandez
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
42
|
Sánchez KF, Huntley N, Duffy MA, Hunter MD. Toxins or medicines? Phytoplankton diets mediate host and parasite fitness in a freshwater system. Proc Biol Sci 2019; 286:20182231. [PMID: 30963882 PMCID: PMC6367176 DOI: 10.1098/rspb.2018.2231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Diets must satisfy the everyday metabolic requirements of organisms and can also serve as medicines to combat disease. Currently, the medicinal role of diets is much better understood in terrestrial than in aquatic ecosystems. This is surprising because phytoplankton species synthesize secondary metabolites with known antimicrobial properties. Here, we investigated the medicinal properties of phytoplankton (including toxin-producing cyanobacteria) against parasites of the dominant freshwater herbivore, Daphnia. We fed Daphnia dentifera on green algae and toxic cyanobacteria diets known to vary in their nutritional quality and toxin production, and an additional diet of Microcystis with added pure microcystin-LR. We then exposed Daphnia to fungal and bacterial parasites. Anabaena, Microcystis and Chlorella diets prevented infection of Daphnia by the fungal parasite Metschnikowia, while Nodularia toxins increased offspring production by infected hosts. In contrast to their medicinal effects against Metschnikowia, toxic phytoplankton generally decreased the fitness of Daphnia infected with the bacterial parasite, Pasteuria. We also measured the amount of toxin produced by phytoplankton over time. Concentrations of anatoxin-a produced by Anabaena increased in the presence of Metschnikowia, suggesting parasite-induced toxin production. Our research illustrates that phytoplankton can serve as toxins or medicines for their consumers, depending upon the identity of their parasites.
Collapse
Affiliation(s)
- Kristel F. Sánchez
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
43
|
Siva-Jothy JA, Monteith KM, Vale PF. Navigating infection risk during oviposition and cannibalistic foraging in a holometabolous insect. Behav Ecol 2018; 29:1426-1435. [PMID: 30510395 PMCID: PMC6257210 DOI: 10.1093/beheco/ary106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/20/2018] [Indexed: 01/03/2023] Open
Abstract
Deciding where to eat and raise offspring carries important fitness consequences for all animals, especially if foraging, feeding, and reproduction increase pathogen exposure. In insects with complete metamorphosis, foraging mainly occurs during the larval stage, while oviposition decisions are made by adult females. Selection for infection avoidance behaviors may therefore be developmentally uncoupled. Using a combination of experimental infections and behavioral choice assays, we tested if Drosophila melanogaster fruit flies avoid infectious environments at distinct developmental stages. When given conspecific fly carcasses as a food source, larvae did not discriminate between carcasses that were clean or infected with the pathogenic Drosophila C Virus (DCV), even though cannibalism was a viable route of DCV transmission. When laying eggs, DCV-infected females did not discriminate between infectious and noninfectious carcasses, and laying eggs near potentially infectious carcasses was always preferred to sites containing only fly food. Healthy mothers, however, laid more eggs near a clean rather than an infectious carcass. Avoidance during oviposition changed over time: after an initial oviposition period, healthy mothers stopped avoiding infectious carcasses. We interpret this result as a possible trade-off between managing infection risk and maximizing reproduction. Our findings suggest infection avoidance contributes to how mothers provision their offspring and underline the need to consider infection avoidance behaviors at multiple life-stages.
Collapse
Affiliation(s)
- Jonathon A Siva-Jothy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Katy M Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
44
|
Budischak SA, Cressler CE. Fueling Defense: Effects of Resources on the Ecology and Evolution of Tolerance to Parasite Infection. Front Immunol 2018; 9:2453. [PMID: 30429848 PMCID: PMC6220035 DOI: 10.3389/fimmu.2018.02453] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/04/2018] [Indexed: 12/29/2022] Open
Abstract
Resource availability is a key environmental constraint affecting the ecology and evolution of species. Resources have strong effects on disease resistance, but they can also affect the other main parasite defense strategy, tolerance. A small but growing number of animal studies are beginning to investigate the effects of resources on tolerance phenotypes. Here, we review how resources affect tolerance strategies across animal taxa ranging from fruit flies to frogs to mice. Surprisingly, resources (quality and quantity) can increase or reduce tolerance, dependent upon the particular host-parasite system. To explore this seeming contradiction, we recast predictions of models of sterility tolerance and mortality tolerance in a resource-dependent context. Doing so reveals that resources can have very different epidemiological and evolutionary effects, depending on what aspects of the tolerance phenotype are affected. Thus, it is critical to consider both sterility and mortality in future empirical studies of how behavioral and environmental resource availability affect tolerance to infection.
Collapse
Affiliation(s)
- Sarah A. Budischak
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, United States
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Clayton E. Cressler
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
45
|
Sánchez CA, Becker DJ, Teitelbaum CS, Barriga P, Brown LM, Majewska AA, Hall RJ, Altizer S. On the relationship between body condition and parasite infection in wildlife: a review and meta-analysis. Ecol Lett 2018; 21:1869-1884. [PMID: 30369000 DOI: 10.1111/ele.13160] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/18/2018] [Accepted: 07/25/2018] [Indexed: 12/28/2022]
Abstract
Body condition metrics are widely used to infer animal health and to assess costs of parasite infection. Since parasites harm their hosts, ecologists might expect negative relationships between infection and condition in wildlife, but this assumption is challenged by studies showing positive or null condition-infection relationships. Here, we outline common condition metrics used by ecologists in studies of parasitism, and consider mechanisms that cause negative, positive, and null condition-infection relationships in wildlife systems. We then perform a meta-analysis of 553 condition-infection relationships from 187 peer-reviewed studies of animal hosts, analysing observational and experimental records separately, and noting whether authors measured binary infection status or intensity. Our analysis finds substantial heterogeneity in the strength and direction of condition-infection relationships, a small, negative average effect size that is stronger in experimental studies, and evidence for publication bias towards negative relationships. The strongest predictors of variation in study outcomes are host thermoregulation and the methods used to evaluate body condition. We recommend that studies aiming to assess parasite impacts on body condition should consider host-parasite biology, choose condition measures that can change during the course of infection, and employ longitudinal surveys or manipulate infection status when feasible.
Collapse
Affiliation(s)
- Cecilia A Sánchez
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Claire S Teitelbaum
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Paola Barriga
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Leone M Brown
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Department of Biology, Tufts University, Medford, MA, USA
| | - Ania A Majewska
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Richard J Hall
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| |
Collapse
|
46
|
Stewart Merrill TE, Cáceres CE. Within-host complexity of a plankton-parasite interaction. Ecology 2018; 99:2864-2867. [PMID: 30265378 DOI: 10.1002/ecy.2483] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Tara E Stewart Merrill
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Carla E Cáceres
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
47
|
Searle CL, Hochstedler BR, Merrick AM, Ilmain JK, Wigren MA. High resources and infectious disease facilitate invasion by a freshwater crustacean. Oecologia 2018; 188:571-581. [PMID: 30088085 DOI: 10.1007/s00442-018-4237-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/27/2018] [Indexed: 01/23/2023]
Abstract
It is well-established that both resources and infectious disease can influence species invasions, but little is known regarding interactive effects of these two factors. We performed a series of experiments to understand how resources and parasites can jointly affect the ability of a freshwater invasive zooplankton to establish in a population of a native zooplankton. In a life history trial, we found that both species increased offspring production to the same degree as algal resources increased, suggesting that changes in resources would have similar effects on both species. In a microcosm experiment simulating an invasion, we found that the invasive species reached its highest densities when there was a combination of both high resources and the presence of a shared parasite, but not for each of these conditions alone (i.e., a significant resource x parasite interaction). This result can be explained by changes in native host population density; high resource levels initially led to an increase in the density of the native host, which caused larger epidemics when the parasite was present. This high infection prevalence caused a subsequent reduction in native host density, increasing available resources and allowing the invasive species to establish relatively dense populations. Thus, in this system, native communities with a combination of high resource levels and parasitism may be the most vulnerable to invasions. More generally, our results suggest that parasitism and resource availability can have interactive, non-additive effects on the outcome of invasions.
Collapse
Affiliation(s)
- Catherine L Searle
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA.
| | - Baylie R Hochstedler
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Abigail M Merrick
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Juliana K Ilmain
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Maggie A Wigren
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
48
|
Shocket MS, Vergara D, Sickbert AJ, Walsman JM, Strauss AT, Hite JL, Duffy MA, Cáceres CE, Hall SR. Parasite rearing and infection temperatures jointly influence disease transmission and shape seasonality of epidemics. Ecology 2018; 99:1975-1987. [PMID: 29920661 DOI: 10.1002/ecy.2430] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/03/2018] [Accepted: 05/19/2018] [Indexed: 11/07/2022]
Abstract
Seasonal epidemics erupt commonly in nature and are driven by numerous mechanisms. Here, we suggest a new mechanism that could determine the size and timing of seasonal epidemics: rearing environment changes the performance of parasites. This mechanism arises when the environmental conditions in which a parasite is produced impact its performance-independently from the current environment. To illustrate the potential for "rearing effects", we show how temperature influences infection risk (transmission rate) in a Daphnia-fungus disease system through both parasite rearing temperature and infection temperature. During autumnal epidemics, zooplankton hosts contact (eat) fungal parasites (spores) reared in a gradually cooling environment. To delineate the effect of rearing temperature from temperature at exposure and infection, we used lab experiments to parameterize a mechanistic model of transmission rate. We also evaluated the rearing effect using spores collected from epidemics in cooling lakes. We found that fungal spores were more infectious when reared at warmer temperatures (in the lab and in two of three lakes). Additionally, the exposure (foraging) rate of hosts increased with warmer infection temperatures. Thus, both mechanisms cause transmission rate to drop as temperature decreases over the autumnal epidemic season (from summer to winter). Simulations show how these temperature-driven changes in transmission rate can induce waning of epidemics as lakes cool. Furthermore, via thermally dependent transmission, variation in environmental cooling patterns can alter the size and shape of epidemics. Thus, the thermal environment drives seasonal epidemics through effects on hosts (exposure rate) and the infectivity of parasites (a rearing effect). Presently, the generality of parasite rearing effects remains unknown. Our results suggest that they may provide an important but underappreciated mechanism linking temperature to the seasonality of epidemics.
Collapse
Affiliation(s)
- Marta S Shocket
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Daniela Vergara
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Andrew J Sickbert
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Jason M Walsman
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | | | - Jessica L Hite
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Meghan A Duffy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Carla E Cáceres
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| |
Collapse
|
49
|
Strauss AT, Hite JL, Shocket MS, Cáceres CE, Duffy MA, Hall SR. Rapid evolution rescues hosts from competition and disease but-despite a dilution effect-increases the density of infected hosts. Proc Biol Sci 2018; 284:rspb.2017.1970. [PMID: 29212726 DOI: 10.1098/rspb.2017.1970] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/02/2017] [Indexed: 11/12/2022] Open
Abstract
Virulent parasites can depress the densities of their hosts. Taxa that reduce disease via dilution effects might alleviate this burden. However, 'diluter' taxa can also depress host densities through competition for shared resources. The combination of disease and interspecific competition could even drive hosts extinct. Then again, genetically variable host populations can evolve in response to both competitors and parasites. Can rapid evolution rescue host density from the harm caused by these ecological enemies? How might such evolution influence dilution effects or the size of epidemics? In a mesocosm experiment with planktonic hosts, we illustrate the joint harm of competition and disease: hosts with constrained evolutionary ability (limited phenotypic variation) suffered greatly from both. However, populations starting with broader phenotypic variation evolved stronger competitive ability during epidemics. In turn, enhanced competitive ability-driven especially by parasites-rescued host densities from the negative impacts of competition, disease, and especially their combination. Interspecific competitors reduced disease (supporting dilution effects) even when hosts rapidly evolved. However, this evolutionary response also elicited a potential problem. Populations that evolved enhanced competitive ability and maintained robust total densities also supported higher densities of infections. Thus, rapid evolution rescued host densities but also unleashed larger epidemics.
Collapse
Affiliation(s)
| | - Jessica L Hite
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| | - Marta S Shocket
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| | - Carla E Cáceres
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meghan A Duffy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
50
|
Linking host traits, interactions with competitors and disease: Mechanistic foundations for disease dilution. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13066] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|