1
|
Ballarin CS, Fontúrbel FE, Rech AR, Oliveira PE, Goés GA, Polizello DS, Oliveira PH, Hachuy-Filho L, Amorim FW. How many animal-pollinated angiosperms are nectar-producing? THE NEW PHYTOLOGIST 2024; 243:2008-2020. [PMID: 38952269 DOI: 10.1111/nph.19940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
The diversity of plant-pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for pollinators. However, a global evaluation of the number of animal-pollinated nectar-producing angiosperms and their distribution world-wide remains elusive. We compiled a thorough database encompassing 7621 plant species from 322 families to estimate the number and proportion of nectar-producing angiosperms reliant on animal pollination. Through extensive sampling of plant communities, we also explored the interplay between nectar production, floral resource diversity, latitudinal and elevational gradients, contemporary climate, and environmental characteristics. Roughly 223 308 animal-pollinated angiosperms are nectar-producing, accounting for 74.4% of biotic-pollinated species. Global distribution patterns of nectar-producing plants reveal a distinct trend along latitudinal and altitudinal gradients, with increased proportions of plants producing nectar in high latitudes and altitudes. Conversely, tropical communities in warm and moist climates exhibit greater floral resource diversity and a lower proportion of nectar-producing plants. These findings suggest that ecological trends driven by climate have fostered the diversification of floral resources in warmer and less seasonal climates, reducing the proportion of solely nectar-producing plants. Our study provides a baseline for understanding plant-pollinator relationships, plant diversification, and the distribution of plant traits.
Collapse
Affiliation(s)
- Caio S Ballarin
- Laboratório de Ecologia da Polinização e Interações - LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (IBB - UNESP), Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
- Programa de Pós-graduação em Biologia Vegetal, IBB - UNESP, Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
| | - Francisco E Fontúrbel
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Valparaíso, CEP 2373223, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, CEP 5090000, Chile
| | - André R Rech
- Programas de Pós-Graduação em Biologia Animal, Estudos Rurais e Ciências Florestais, Faculdade Interdisciplinar em Humanidades, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, CEP 39100-000, Brazil
| | - Paulo E Oliveira
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, CEP 38405302, Brazil
| | - Guilherme Alcarás Goés
- Laboratório de Ecologia da Polinização e Interações - LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (IBB - UNESP), Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
- Laboratório de Restauração Florestal - LERF, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP), Botucatu, SP, CEP 18610-034, Brazil
| | - Diego S Polizello
- Laboratório de Ecologia da Polinização e Interações - LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (IBB - UNESP), Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
- Programa de Pós-graduação em Zoologia, IBB - UNESP, Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil
| | - Pablo H Oliveira
- Laboratório de Ecologia da Polinização e Interações - LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (IBB - UNESP), Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
- Programa de Pós-graduação em Zoologia, IBB - UNESP, Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil
| | - Leandro Hachuy-Filho
- Laboratório de Ecologia da Polinização e Interações - LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (IBB - UNESP), Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
- Programa de Pós-graduação em Zoologia, IBB - UNESP, Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil
| | - Felipe W Amorim
- Laboratório de Ecologia da Polinização e Interações - LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (IBB - UNESP), Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
- Programa de Pós-graduação em Biologia Vegetal, IBB - UNESP, Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, SP, CEP 18618-689, Brazil
- Programa de Pós-graduação em Zoologia, IBB - UNESP, Rua Prof. Dr Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil
| |
Collapse
|
2
|
Liu K, Li E, Cui X, Wang Y, Xu C, Suo Z, Dong W, Zhang Z. Key innovations and niche variation promoted rapid diversification of the widespread Juniperus (Cupressaceae). Commun Biol 2024; 7:1002. [PMID: 39152250 PMCID: PMC11329744 DOI: 10.1038/s42003-024-06687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
The processes of forming lineages undergoing widespread radiations remain a knowledge gap that is fundamental to our understanding of the geographic distributions of species. Although early studies emphasized the importance of dispersal ability and historical migration events, key innovations that promote rapid diversification and/or adaptation to new habitats may also strongly influence distribution ranges. Juniperus is the second largest genus of conifers and is widely distributed throughout the Northern Hemisphere. Here, we used phylogenetic, phenotypic, and climatic data to investigate the contributions of these processes to the wide distribution and rapid diversification of Juniperus. Combining a time-scaled phylogeny and macroevolutionary theory, we show that the key innovations of berry-like seed cones and dioecy promoted the rapid diversification of Juniperus and that increased dispersal ability promoted allopatric speciation. Ecological niches had significant divergence among different clades of Juniperus. Biogeographic results supported multiple long-distance dispersal events and niche variation that contributed to the modern range of Juniperus, while both phenotypic adaptation and ecological opportunity probably drove its distribution range. Our findings suggest that the current widespread distribution is likely the result of significant divergence driven by niche variation in which ecological opportunities from key innovation and phenotypic divergence.
Collapse
Affiliation(s)
- Kangjia Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Enze Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xingyong Cui
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yushuang Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Chao Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhili Suo
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wenpan Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.
| | - Zhixiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.
| |
Collapse
|
3
|
Dimitrov D, Xu X, Su X, Shrestha N, Liu Y, Kennedy JD, Lyu L, Nogués-Bravo D, Rosindell J, Yang Y, Fjeldså J, Liu J, Schmid B, Fang J, Rahbek C, Wang Z. Diversification of flowering plants in space and time. Nat Commun 2023; 14:7609. [PMID: 37993449 PMCID: PMC10665465 DOI: 10.1038/s41467-023-43396-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
The rapid diversification and high species richness of flowering plants is regarded as 'Darwin's second abominable mystery'. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous-Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics.
Collapse
Affiliation(s)
- Dimitar Dimitrov
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, 5020, Bergen, Norway
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318, Oslo, Norway
| | - Xiaoting Xu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiangyan Su
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing, 100035, China
| | - Nawal Shrestha
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yunpeng Liu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jonathan D Kennedy
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum of Denmark, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Lisha Lyu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, Shenzhen, China
| | - David Nogués-Bravo
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - James Rosindell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, 159 Longpan Rd., Nanjing, 210037, China
| | - Jon Fjeldså
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318, Oslo, Norway
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Bernhard Schmid
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jingyun Fang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum of Denmark, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| |
Collapse
|
4
|
Liu T, Liu H, Wang Y, Yang Y. Climate Change Impacts on the Potential Distribution Pattern of Osphya (Coleoptera: Melandryidae), an Old but Small Beetle Group Distributed in the Northern Hemisphere. INSECTS 2023; 14:insects14050476. [PMID: 37233104 DOI: 10.3390/insects14050476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Exploring the development of species distribution patterns under climate change is the basis of biogeography and macroecology. However, under the background of global climate change, few studies focus on how the distribution pattern and the range of insects have or will change in response to long-term climate change. An old but small, Northern-Hemisphere-distributed beetle group Osphya is an ideal subject to conduct the study in this aspect. Here, based on a comprehensive geographic dataset, we analyzed the global distribution pattern of Osphya using ArcGIS techniques, which declared a discontinuous and uneven distribution pattern across the USA, Europe, and Asia. Furthermore, we predicted the suitable habitats of Osphya under different climate scenarios via the MaxEnt model. The results showed that the high suitability areas were always concentrated in the European Mediterranean and the western coast of USA, while a low suitability exhibited in Asia. Moreover, by integrating the analyses of biogeography and habitat suitability, we inferred that the Osphya species conservatively prefer a warm, stable, and rainy climate, and they tend to expand towards higher latitude in response to the climate warming from the past to future. These results are helpful in exploring the species diversity and protection of Osphya.
Collapse
Affiliation(s)
- Tong Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Haoyu Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yongjie Wang
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Yuxia Yang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
5
|
Liu X, Cai HM, Wang WQ, Lin W, Su ZW, Ma ZH. Why is the beautyberry so colourful? Evolution, biogeography, and diversification of fruit colours in Callicarpa (Lamiaceae). PLANT DIVERSITY 2023; 45:6-19. [PMID: 36876305 PMCID: PMC9975479 DOI: 10.1016/j.pld.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 06/18/2023]
Abstract
Fruit colour is essential to seed dispersal, speciation, and biological diversity in global ecosystems. The relationship between fruit-colour variation and species diversification has long been of interest in evolutionary biology, but remains poorly understood at the genus level. Here, we used Callicarpa, a typical representative of pantropical angiosperm, to analyse whether fruit colours are correlated with biogeographic distribution, dispersal events, and diversification rate. We estimated a time-calibrated phylogeny for Callicarpa and reconstructed ancestral fruit colour. Utilizing phylogenetic methods, we estimated the major dispersal events across the phylogenetic tree and the most likely fruit colours related to each dispersal event, and tested whether the dispersal frequencies and distances of the four fruit colours between major biogeographical areas were equal. We then tested whether fruit colours are correlated with latitude, elevation, and diversification rate. Biogeographical reconstructions showed that Callicarpa originated in the East Asia and Southeast Asia during the Eocene (∼35.53 Ma) and diverse species diverged mainly in the Miocene and lasted into the Pleistocene. Large-scale dispersal events were significantly associated with violet-fruited lineages. Furthermore, different fruit colours were markedly correlated with different latitudes and elevations (e.g., violet fruits were correlated with higher latitudes and elevations; red fruits and black fruits with lower latitudes; white fruits with higher elevations). Notably, violet fruits were statistically associated with highest diversification rates, driving fruit colour variation among different regions globally. Our results contribute to further understanding why fruit colour is so variable at the genus level of angiosperms in different areas around the world.
Collapse
Affiliation(s)
- Xing Liu
- Department of Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Hui-Min Cai
- Department of Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Wen-Qiao Wang
- Department of Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Wei Lin
- Department of Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Zhi-Wei Su
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530004, Guangxi, PR China
| | - Zhong-Hui Ma
- Department of Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, PR China
| |
Collapse
|
6
|
Zhang C, Huang CH, Liu M, Hu Y, Panero JL, Luebert F, Gao T, Ma H. Phylotranscriptomic insights into Asteraceae diversity, polyploidy, and morphological innovation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1273-1293. [PMID: 33559953 DOI: 10.1111/jipb.13078] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/08/2021] [Indexed: 05/29/2023]
Abstract
Biodiversity is not evenly distributed among related groups, raising questions about the factors contributing to such disparities. The sunflower family (Asteraceae, >26,000 species) is among the largest and most diverse plant families, but its species diversity is concentrated in a few subfamilies, providing an opportunity to study the factors affecting biodiversity. Phylotranscriptomic analyses here of 244 transcriptomes and genomes produced a phylogeny with strong support for the monophyly of Asteraceae and the monophyly of most subfamilies and tribes. This phylogeny provides a reference for detecting changes in diversification rates and possible factors affecting Asteraceae diversity, which include global climate shifts, whole-genome duplications (WGDs), and morphological evolution. The origin of Asteraceae was estimated at ~83 Mya, with most subfamilies having diverged before the Cretaceous-Paleocene boundary. Phylotranscriptomic analyses supported the existence of 41 WGDs in Asteraceae. Changes to herbaceousness and capitulescence with multiple flower-like capitula, often with distinct florets and scaly pappus/receptacular bracts, are associated with multiple upshifts in diversification rate. WGDs might have contributed to the survival of early Asteraceae by providing new genetic materials to support morphological transitions. The resulting competitive advantage for adapting to different niches would have increased biodiversity in Asteraceae.
Collapse
Affiliation(s)
- Caifei Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, Pennslyvania, 16802, USA
| | - Mian Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, Pennslyvania, 16802, USA
| | - Jose L Panero
- Department of Integrative Biology, The University of Texas, University Station C0930, Austin, Texas, 78712, USA
| | - Federico Luebert
- Institut für Bodiversität der Pflanzen, Universität Bonn, Bonn, D - 53115, Germany
- Department of Silviculture and Nature Conservation, University of Chile, Santiago, 9206, Chile
| | - Tiangang Gao
- State Key Laboratory of Evolutionary and Systematic Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, Pennslyvania, 16802, USA
| |
Collapse
|
7
|
Mitchell N, Whitney KD. Limited evidence for a positive relationship between hybridization and diversification across seed plant families. Evolution 2021; 75:1966-1982. [PMID: 34156712 DOI: 10.1111/evo.14291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 01/09/2023]
Abstract
Hybridization has experimental and observational ties to evolutionary processes and outcomes such as adaptation, speciation, and radiation. Although it has been hypothesized that hybridization and diversification are positively correlated, this idea remains largely untested empirically, and hybridization can also potentially reduce diversity. Here, we use a hybridization database on 170 seed plant families, life history information, and a time-calibrated phylogeny to test for phylogenetically-corrected associations between hybridization and diversification rates, while also taking into account life-history traits that may be correlated with both processes. We use three methods to estimate diversification rates and two metrics of hybridization. Although hybridization explains only a small amount of overall variation in diversification rates, we show that diversification and hybridization are sometimes positively correlated, although the effect sizes are very small. Moreover, the relationship remains detectable when incorporating the correlations between diversification and two other life history characteristics, perenniality and woodiness. We discuss potential mechanisms for this association under four different scenarios: hybridization may drive diversification, diversification may drive hybridization, both hybridization and diversification may jointly be driven by other factors, or, as an alternative, that there is in fact no relationship between the two. We suggest future studies to disentangle the causal structure.
Collapse
Affiliation(s)
- Nora Mitchell
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131.,Department of Biology, University of Wisconsin - Eau Claire, Eau Claire, Wisconsin, 54701
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131
| |
Collapse
|
8
|
Schmidt JP, Davies TJ, Farrell MJ. Opposing macroevolutionary and trait-mediated patterns of threat and naturalisation in flowering plants. Ecol Lett 2021; 24:1237-1250. [PMID: 33786974 DOI: 10.1111/ele.13740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/27/2021] [Indexed: 11/29/2022]
Abstract
Due to expanding global trade and movement of people, new plant species are establishing in exotic ranges at increasing rates while the number of native species facing extinction from multiple threats grows. Yet, how species losses and gains globally may, together, be linked to traits and macroevolutionary processes is poorly understood. Here, we show that, adjusting for diversification rate and clade age, the proportion of threatened species across flowering plant families is negatively related to the proportion of naturalised species per family. Moreover, naturalisation is positively associated with range size, short generation time, autonomous seed production and interspecific hybridisation, but negatively with age and diversification, whereas threat is negatively associated with range size and hybridisation, and positively with biotic pollination, age and diversification rate. That we find such a pronounced signature of naturalisation and threat across plant families suggests that both trait syndromes have coexisted over deep evolutionary time and counter to intuition, that neither strategy is necessarily superior to the other over long evolutionary timespans.
Collapse
Affiliation(s)
- John Paul Schmidt
- Odum School of Ecology, University of Georgia, Athens, Georgia, 30602, USA
| | - T Jonathan Davies
- Departments of Botany, Forest & Conservation Sciences, Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,African Centre for DNA Barcoding, University of Johannesburg, Johannesburg, 2092, South Africa
| | - Maxwell J Farrell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Zhang JX, Chen MH, Gan L, Zhang CJ, Shen Y, Qian J, Han ML, Guo YX, Yan XB. Diversity Patterns of Bermuda Grass along Latitudinal Gradients at Different Temperatures in Southeastern China. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1778. [PMID: 33333783 PMCID: PMC7765174 DOI: 10.3390/plants9121778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022]
Abstract
Cynodon dactylon (L.) Pers. (common Bermuda grass) has a limited capacity to grow at low temperatures, which limits its geographical range. Exploring its evolutionary relationship across different environmental gradients is necessary to understand the effects of temperature change on the genetics of common Bermuda grass. In this study, high-throughput transcriptome sequencing was performed on 137 samples of C. dactylon from 16 latitudinal gradients to explore the differential molecular markers and analyze genetic diversity and structure along latitudinal gradients at different temperatures. We primarily sampled more high-quality single nucleotide polymorphisms (SNPs) from populations at lower and middle latitudes. Greater intraspecific genetic variation at each level of temperature treatment could be due to factors such as wind pollination and asexual breeding. Populations of C. dactylon at high latitudes differed from populations at middle and low latitudes, which was supported by a principal component analysis (PCA) and genetic structure analysis, performed at different temperatures. We observed more genetic variation for low-latitude populations at 5 °C, according to an analysis of three phylogenetic trees at different temperature levels, suggesting that low temperatures affected samples with low cold resistance. Based on the results of phylogenetic analysis, we found that samples from high latitudes evolved earlier than most samples at low latitudes. The results provide a comprehensive understanding of the evolutionary phenomenon of landscape genetics, laying the groundwork for future structural and comparative genomic studies of C. dactylon.
Collapse
Affiliation(s)
- Jing-Xue Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.-X.Z.); (M.-H.C.); (L.G.); (C.-J.Z.); (Y.S.); (J.Q.); (M.-L.H.)
| | - Ming-Hui Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.-X.Z.); (M.-H.C.); (L.G.); (C.-J.Z.); (Y.S.); (J.Q.); (M.-L.H.)
| | - Lu Gan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.-X.Z.); (M.-H.C.); (L.G.); (C.-J.Z.); (Y.S.); (J.Q.); (M.-L.H.)
| | - Chuan-Jie Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.-X.Z.); (M.-H.C.); (L.G.); (C.-J.Z.); (Y.S.); (J.Q.); (M.-L.H.)
| | - Yu Shen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.-X.Z.); (M.-H.C.); (L.G.); (C.-J.Z.); (Y.S.); (J.Q.); (M.-L.H.)
| | - Jin Qian
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.-X.Z.); (M.-H.C.); (L.G.); (C.-J.Z.); (Y.S.); (J.Q.); (M.-L.H.)
| | - Meng-Li Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.-X.Z.); (M.-H.C.); (L.G.); (C.-J.Z.); (Y.S.); (J.Q.); (M.-L.H.)
| | - Yu-Xia Guo
- College of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xue-Bing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (J.-X.Z.); (M.-H.C.); (L.G.); (C.-J.Z.); (Y.S.); (J.Q.); (M.-L.H.)
| |
Collapse
|
10
|
Morales-Barbero J, Gouveia SF, Martinez PA. Historical climatic instability predicts the inverse latitudinal pattern in speciation rate of modern mammalian biota. J Evol Biol 2020; 34:339-351. [PMID: 33169463 DOI: 10.1111/jeb.13737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022]
Abstract
Evolutionary rate explanations for latitudinal diversity gradients predict faster speciation and diversification rates in richer, older and more stable tropical regions (climatic stability hypothesis). Numerous modern lineages have emerged in high latitudes, however, suggesting that climatic oscillations can drive population divergence, at least among extratropical species (glacial refugia hypothesis). This conflicting evidence suggests that geographical patterns of evolutionary rates are more complicated than previously thought. Here, we reconstructed the complex evolutionary dynamics of a comprehensive data set of modern mammals, both terrestrial and marine. We performed global and regional regression analyses to investigate how climatic instability could have indirectly influenced contemporary diversity gradients through its effects on evolutionary rates. In particular, we explored global and regional patterns of the relationships between species richness and assemblage-level evolutionary rates and between evolutionary rates and climatic instability. We found an inverse relationship between evolutionary rates and species richness, especially in the terrestrial domain. Additionally, climatic instability was strongly associated with the highest evolutionary rates at high terrestrial latitudes, supporting the glacial refugia hypothesis there. At low latitudes, evolutionary rates were unrelated to climatic stability. The inverse relationship between evolutionary rates and the modern latitudinal diversity gradient casts doubt on the idea that higher evolutionary rates in the tropics underlie the current diversity patterns of modern mammals. Alternatively, the longer time spans for diversity to accumulate in the older and more stable tropics (and not high diversification rates) may explain the latitudinal diversity gradient.
Collapse
Affiliation(s)
- Jennifer Morales-Barbero
- PIBiLab (Laboratorio de Pesquisas Integrativas em Biodiversidade), Federal University of Sergipe, São Cristóvão, Brazil
| | - Sidney F Gouveia
- PIBiLab (Laboratorio de Pesquisas Integrativas em Biodiversidade), Federal University of Sergipe, São Cristóvão, Brazil.,Department of Ecology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Pablo A Martinez
- PIBiLab (Laboratorio de Pesquisas Integrativas em Biodiversidade), Federal University of Sergipe, São Cristóvão, Brazil.,Department of Biology, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
11
|
Yoder JB, Gomez G, Carlson CJ. Zygomorphic flowers have fewer potential pollinator species. Biol Lett 2020; 16:20200307. [PMID: 32871089 DOI: 10.1098/rsbl.2020.0307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Botanists have long identified bilaterally symmetrical (zygomorphic) flowers with more specialized pollination interactions than radially symmetrical (actinomorphic) flowers. Zygomorphic flowers facilitate more precise contact with pollinators, guide pollinator behaviour and exclude less effective pollinators. However, whether zygomorphic flowers are actually visited by a smaller subset of available pollinator species has not been broadly evaluated. We compiled 53 609 floral visitation records in 159 communities and classified the plants' floral symmetry. Globally and within individual communities, plants with zygomorphic flowers are indeed visited by fewer species. At the same time, zygomorphic flowers share a somewhat larger proportion of their visitor species with other co-occurring plants and have particularly high sharing with co-occurring plants that also have zygomorphic flowers. Visitation sub-networks for zygomorphic species also show differences that may arise from reduced visitor diversity, including greater connectance, greater web asymmetry and lower coextinction robustness of both plants and visitor species-but these changes do not necessarily translate to whole plant-visitor communities. These results provide context for widely documented associations between zygomorphy and diversification and imply that species with zygomorphic flowers may face a greater risk of extinction due to pollinator loss.
Collapse
Affiliation(s)
- Jeremy B Yoder
- Department of Biology, California State University Northridge, Los Angeles, CA 91330, USA
| | - Giancarlo Gomez
- Department of Biology, California State University Northridge, Los Angeles, CA 91330, USA
| | - Colin J Carlson
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
12
|
Igea J, Tanentzap AJ. Angiosperm speciation cools down in the tropics. Ecol Lett 2020; 23:692-700. [PMID: 32043734 PMCID: PMC7078993 DOI: 10.1111/ele.13476] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/05/2020] [Accepted: 01/19/2020] [Indexed: 01/05/2023]
Abstract
Recent evidence has questioned whether the Latitudinal Diversity Gradient (LDG), whereby species richness increases towards the Equator, results in higher rates of speciation in the tropics. Allowing for time heterogeneity in speciation rate estimates for over 60,000 angiosperm species, we found that the LDG does not arise from variation in speciation rates because lineages do not speciate faster in the tropics. These results were consistently retrieved using two other methods to test the association between occupancy of tropical habitats and speciation rates. Our speciation rate estimates were robust to the effects of both undescribed species and missing taxa. Overall, our results show that speciation rates follow an opposite pattern to global variation in species richness. Greater ecological opportunity in the temperate zones, stemming from less saturated communities, higher species turnover or greater environmental change, may ultimately explain these results.
Collapse
Affiliation(s)
- Javier Igea
- Department of Plant SciencesUniversity of CambridgeDowning StCambridgeCB2 3EAUK
| | - Andrew J. Tanentzap
- Department of Plant SciencesUniversity of CambridgeDowning StCambridgeCB2 3EAUK
| |
Collapse
|
13
|
Lyu Y, Wang X, Luo J. Geographic patterns of insect diversity across China's nature reserves: The roles of niche conservatism and range overlapping. Ecol Evol 2020; 10:3305-3317. [PMID: 32273988 PMCID: PMC7141035 DOI: 10.1002/ece3.6097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 01/18/2023] Open
Abstract
AIM Insects are the most species-rich clade in the world, but the broad-scale diversity pattern and the potential drivers have not been well documented for the clade as a whole. We aimed to examine the relative roles of contemporary and historical climate, niche conservatism, range overlapping, and other environmental factors on geographic patterns of species richness and phylogenetic structure, for insects across China. LOCATION China. METHODS We collected insect data from 184 nature reserves and examined geographic patterns of species richness and mean root distance (MRD, a metric of the evolutionary development of assemblages) for different biogeographic affinities (Palearctic, Oriental, and widespread species) and for clades originated during the warm and cold geohistorical periods ("warm clades" and "cold clades," respectively). We related richness and MRD to contemporary and historical climate, area, habitat heterogeneity, and human disturbance to evaluate their relative importance. RESULTS Total species richness revealed a hump-shaped latitudinal pattern, peaking between 30°~35°N. Richness patterns differed markedly among evolutionary groups: Oriental species richness decreased significantly with higher latitude but Palearctic species increased, while other groups again peaked between 30°~35°N. The range overlapping of different biogeographic groups in midlatitudes may be an important contributor to humped latitudinal richness patterns. MRD was positively related to latitude and increased more rapidly for "warm clades" than "cold clades." Historical climate factors (especially winter coldness) were among the strongest predictors for both richness and phylogenetic patterns, for each evolutionary group, suggesting the strong influence of niche conservatism. CONCLUSIONS The hump-shaped latitudinal pattern of insect richness in China is mainly shaped by niche conservatism and range overlapping, supplemented by habitat heterogeneity and contemporary climate. The role of niche conservatism and range overlapping may have been overlooked if only total species richness was analyzed, suggesting the importance of examining different evolutionary groups separately.
Collapse
Affiliation(s)
- Yueming Lyu
- College of ForestryBeijing Forestry UniversityBeijingChina
| | - Xiangping Wang
- College of ForestryBeijing Forestry UniversityBeijingChina
| | - Juchun Luo
- College of ForestryBeijing Forestry UniversityBeijingChina
| |
Collapse
|
14
|
Li J, Liu H, Wu Y, Zeng L, Huang X. Spatial Patterns and Determinants of the Diversity of Hemipteran Insects in the Qinghai-Tibetan Plateau. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Climatic Change Can Influence Species Diversity Patterns and Potential Habitats of Salicaceae Plants in China. FORESTS 2019. [DOI: 10.3390/f10030220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salicaceae is a family of temperate woody plants in the Northern Hemisphere that are highly valued, both ecologically and economically. China contains the highest species diversity of these plants. Despite their widespread human use, how the species diversity patterns of Salicaceae plants formed remains mostly unknown, and these may be significantly affected by global climate warming. Using past, present, and future environmental data and 2673 georeferenced specimen records, we first simulated the dynamic changes in suitable habitats and population structures of Salicaceae. Based on this, we next identified those areas at high risk of habitat loss and population declines under different climate change scenarios/years. We also mapped the patterns of species diversity by constructing niche models for 215 Salicaceae species, and assessed the driving factors affecting their current diversity patterns. The niche models showed Salicaceae family underwent extensive population expansion during the Last Inter Glacial period but retreated to lower latitudes during and since the period of the Last Glacial Maximum. Looking ahead, as climate warming intensifies, suitable habitats will shift to higher latitudes and those at lower latitudes will become less abundant. Finally, the western regions of China harbor the greatest endemism and species diversity of Salicaceae, which are significantly influenced by annual precipitation and mean temperature, ultraviolet-B (UV-B) radiation, and the anomaly of precipitation seasonality. From these results, we infer water–energy dynamic equilibrium and historical climate change are both the main factors likely regulating contemporary species diversity and distribution patterns. Nevertheless, this work also suggests that other, possibly interacting, factors (ambient energy, disturbance history, soil condition) influence the large-scale pattern of Salicaceae species diversity in China, making a simple explanation for it unlikely. Because Southwest China likely served as a refuge for Salicaceae species during the Last Glacial Maximum, it is a current hotspot for endemisms. Under predicted climate change, Salicaceae plants may well face higher risks to their persistence in southwest China, so efforts to support their in-situ conservation there are urgently needed.
Collapse
|
16
|
Keil P, Chase JM. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat Ecol Evol 2019; 3:390-399. [DOI: 10.1038/s41559-019-0799-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 01/07/2019] [Indexed: 01/01/2023]
|
17
|
Hu Y, Ding Z, Jiang Z, Quan Q, Guo K, Tian L, Hu H, Gibson L. Birds in the Himalayas: What drives beta diversity patterns along an elevational gradient? Ecol Evol 2018; 8:11704-11716. [PMID: 30598768 PMCID: PMC6303779 DOI: 10.1002/ece3.4622] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/21/2018] [Accepted: 09/07/2018] [Indexed: 12/04/2022] Open
Abstract
Beta diversity patterns along elevational gradients have become a hot topic in the study of biogeography and can help illuminate the processes structuring mountain ecosystems. Although elevational species richness patterns have been well documented, there remains much uncertainty over the causes of beta diversity patterns across elevational gradients. We conducted bird surveys and obtained high-resolution climatic data along an elevational gradient in Gyirong Valley in the central Himalayas, China, between 1,800 and 5,400 m elevation. In total, we recorded 182 bird species (including 169 breeding birds). We simulated beta diversity patterns with the mid-domain effect (MDE) null model and conducted distance-based redundancy analyses (db-RDA) to relate beta diversity to dispersal limitations, spatial constraints, habitat complexity, contemporary climate, and historical climate. Mantel tests and variation partitioning were employed to identify the magnitude of independent statistical associations of environmental factors with beta diversity. Patterns of empirical and simulated beta diversity were both hump-shaped, peaking at intermediate elevations. The db-RDA indicated that beta diversity was correlated with changes in spatially structured environmental factors, especially with contemporary climate and habitat complexity. Mantel tests and variation partitioning also suggested that climate dissimilarity was the major independent correlate of beta diversity. The random community structure and spatial constraints may also contribute to the overall hump-shaped pattern. Beta diversity of bird communities in Gyirong Valley could be explained by the combination of different factors but is mainly shaped by the spatially structured environmental factors, especially contemporary climate.
Collapse
Affiliation(s)
- Yiming Hu
- School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote SensingWuhan UniversityWuhanChina
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and UtilizationGuangdong Institute of Applied Biological ResourcesGuangzhouChina
| | - Zhifeng Ding
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and UtilizationGuangdong Institute of Applied Biological ResourcesGuangzhouChina
| | - Zhigang Jiang
- Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing Quan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and UtilizationGuangdong Institute of Applied Biological ResourcesGuangzhouChina
| | - Keji Guo
- Central South Forest Inventory and Planning Institute of State Forestry AdministrationChangshaChina
| | - Liqiao Tian
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote SensingWuhan UniversityWuhanChina
| | - Huijian Hu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and UtilizationGuangdong Institute of Applied Biological ResourcesGuangzhouChina
| | - Luke Gibson
- School of Environmental Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
18
|
Zhang QG, Lu HS, Buckling A. Temperature drives diversification in a model adaptive radiation. Proc Biol Sci 2018; 285:rspb.2018.1515. [PMID: 30185639 DOI: 10.1098/rspb.2018.1515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/15/2018] [Indexed: 01/10/2023] Open
Abstract
The warmer regions harbour more species, attributable to accelerated speciation and increased ecological opportunities for coexistence. While correlations between temperature and energy availability and habitat area have been suggested as major drivers of these biodiversity patterns, temperature can theoretically also have direct effects on the evolution of diversity. Here, we experimentally studied the evolution of diversity in a model adaptive radiation of the bacterium Pseudomonas fluorescens across a temperature gradient. Diversification increased at higher temperatures, driven by both faster generation of genetic variation and stronger diversifying selection. Specifically, low temperatures could limit the generation of diversity, suggested by the observation that supply of genetic variation through immigration increased diversity at low, but not high temperatures. The two major determinants of mutation supply, population size and mutation rate, both showed a positive temperature dependence. Stronger diversifying selection in warmer environments was suggested by promoted coexistence, and further explicitly inferred by the ability of evolved phenotypes to invade the ancestral type from rare. We discuss possible physiological and environmental mechanisms underlying the findings, most of which are likely to be general.
Collapse
Affiliation(s)
- Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Han-Shu Lu
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Angus Buckling
- ESI and CEC, Biosciences, University of Exeter, Penryn, Cornwall TR10 9EZ, UK
| |
Collapse
|
19
|
Kodandaramaiah U, Murali G. What affects power to estimate speciation rate shifts? PeerJ 2018; 6:e5495. [PMID: 30155369 PMCID: PMC6108317 DOI: 10.7717/peerj.5495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 07/30/2018] [Indexed: 02/04/2023] Open
Abstract
The development of methods to estimate rates of speciation and extinction from time-calibrated phylogenies has revolutionized evolutionary biology by allowing researchers to correlate diversification rate shifts with causal factors. A growing number of researchers are interested in testing whether the evolution of a trait or a trait variant has influenced speciation rate, and three modelling methods-BiSSE, MEDUSA and BAMM-have been widely used in such studies. We simulated phylogenies with a single speciation rate shift each, and evaluated the power of the three methods to detect these shifts. We varied the degree of increase in speciation rate (speciation rate asymmetry), the number of tips, the tip-ratio bias (ratio of number of tips with each character state) and the relative age in relation to overall tree age when the rate shift occurred. All methods had good power to detect rate shifts when the rate asymmetry was strong and the sizes of the two lineages with the distinct speciation rates were large. Even when lineage size was small, power was good when rate asymmetry was high. In our simulated scenarios, small lineage sizes appear to affect BAMM most strongly. Tip-ratio influenced the accuracy of speciation rate estimation but did not have a strong effect on power to detect rate shifts. Based on our results, we provide suggestions to users of these methods.
Collapse
Affiliation(s)
- Ullasa Kodandaramaiah
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Gopal Murali
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| |
Collapse
|
20
|
Rundel PW, Arroyo MTK, Cowling RM, Keeley JE, Lamont BB, Pausas JG, Vargas P. Fire and Plant Diversification in Mediterranean-Climate Regions. FRONTIERS IN PLANT SCIENCE 2018; 9:851. [PMID: 30018621 PMCID: PMC6038726 DOI: 10.3389/fpls.2018.00851] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/31/2018] [Indexed: 05/29/2023]
Abstract
Despite decades of broad interest in global patterns of biodiversity, little attention has been given to understanding the remarkable levels of plant diversity present in the world's five Mediterranean-type climate (MTC) regions, all of which are considered to be biodiversity hotspots. Comprising the Mediterranean Basin, California, central Chile, the Cape Region of South Africa, and southwestern Australia, these regions share the unusual climatic regime of mild wet winters and warm dry summers. Despite their small extent, covering only about 2.2% of world land area, these regions are home to approximately one-sixth of the world vascular plant flora. The onset of MTCs in the middle Miocene brought summer drought, a novel climatic condition, but also a regime of recurrent fire. Fire has been a significant agent of selection in assembling the modern floras of four of the five MTC regions, with central Chile an exception following the uplift of the Andes in the middle Miocene. Selection for persistence in a fire-prone environment as a key causal factor for species diversification in MTC regions has been under-appreciated or ignored. Mechanisms for fire-driven speciation are diverse and may include both directional (novel traits) and stabilizing selection (retained traits) for appropriate morphological and life-history traits. Both museum and nursery hypotheses have important relevance in explaining the extant species richness of the MTC floras, with fire as a strong stimulant for diversification in a manner distinct from other temperate floras. Spatial and temporal niche separation across topographic, climatic and edaphic gradients has occurred in all five regions. The Mediterranean Basin, California, and central Chile are seen as nurseries for strong but not spectacular rates of Neogene diversification, while the older landscapes of southwestern Australia and the Cape Region show significant components of both Paleogene and younger Neogene speciation in their diversity. Low rates of extinction suggesting a long association with fire more than high rates of speciation have been key to the extant levels of species richness.
Collapse
Affiliation(s)
- Philip W. Rundel
- Department of Ecology and Evolutionary Biology and Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mary T. K. Arroyo
- Department of Ecological Science, Faculty of Sciences, Institute of Ecology and Biodiversity, University of Chile, Santiago, Chile
| | - Richard M. Cowling
- African Centre for Coastal Palaeoscience, Nelson Mandela University, Port Elizabeth, South Africa
| | - Jon E. Keeley
- Sequoia Field Station, Western Ecological Research Center, United States Geological Survey, Reston, VA, United States
| | - Byron B. Lamont
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Juli G. Pausas
- Centro de Investigaciones sobre Desertificación, University of Valencia, CSIC, Valencia, Spain
| | - Pablo Vargas
- Department of Biodiversity and Conservation, Royal Botanical Garden of Madrid, CSIC, Madrid, Spain
| |
Collapse
|
21
|
Vamosi JC, Magallón S, Mayrose I, Otto SP, Sauquet H. Macroevolutionary Patterns of Flowering Plant Speciation and Extinction. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:685-706. [PMID: 29489399 DOI: 10.1146/annurev-arplant-042817-040348] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Species diversity is remarkably unevenly distributed among flowering plant lineages. Despite a growing toolbox of research methods, the reasons underlying this patchy pattern have continued to perplex plant biologists for the past two decades. In this review, we examine the present understanding of transitions in flowering plant evolution that have been proposed to influence speciation and extinction. In particular, ploidy changes, transitions between tropical and nontropical biomes, and shifts in floral form have received attention and have offered some surprises in terms of which factors influence speciation and extinction rates. Mating systems and dispersal characteristics once predominated as determining factors, yet recent evidence suggests that these changes are not as influential as previously thought or are important only when paired with range shifts. Although range extent is an important correlate of speciation, it also influences extinction and brings an applied focus to diversification research. Recent studies that find that past diversification can predict present-day extinction risk open an exciting avenue for future research to help guide conservation prioritization.
Collapse
Affiliation(s)
- Jana C Vamosi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada;
| | - Susana Magallón
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Itay Mayrose
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sarah P Otto
- Department of Zoology and the Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Hervé Sauquet
- Laboratoire Écologie, Systématique, Évolution, Université Paris-Sud, CNRS UMR 8079, 91405 Orsay, France
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia
| |
Collapse
|
22
|
Hua X. The impact of seasonality on niche breadth, distribution range and species richness: a theoretical exploration of Janzen's hypothesis. Proc Biol Sci 2017; 283:rspb.2016.0349. [PMID: 27466445 DOI: 10.1098/rspb.2016.0349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/04/2016] [Indexed: 12/18/2022] Open
Abstract
Being invoked as one of the candidate mechanisms for the latitudinal patterns in biodiversity, Janzen's hypothesis states that the limited seasonal temperature variation in the tropics generates greater temperature stratification across elevations, which makes tropical species adapted to narrower ranges of temperatures and have lower effective dispersal across elevations than species in temperate regions. Numerous empirical studies have documented latitudinal patterns in species elevational ranges and thermal niche breadths that are consistent with the hypothesis, but the theoretical underpinnings remain unclear. This study presents the first mathematical model to examine the evolutionary processes that could back up Janzen's hypothesis and assess the effectiveness of limited seasonal temperature variation to promote speciation along elevation in the tropics. Results suggest that trade-offs in thermal tolerances provide a mechanism for Janzen's hypothesis. Limited seasonal temperature variation promotes gradient speciation not due to the reduction in gene flow that is associated with narrow thermal niche, but due to the pleiotropic effects of more stable divergent selection of thermal tolerance on the evolution of reproductive incompatibility. The proposed modelling approach also provides a potential way to test a speciation model against genetic data.
Collapse
Affiliation(s)
- Xia Hua
- Division of Evolution, Ecology, and Genetics, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, 0200, Australia
| |
Collapse
|
23
|
|
24
|
Kong H, Condamine FL, Harris AJ, Chen J, Pan B, Möller M, Hoang VS, Kang M. Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from southern China. Mol Ecol 2017; 26:6414-6429. [PMID: 28960701 DOI: 10.1111/mec.14367] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 01/19/2023]
Abstract
Karst ecosystems in southern China are species-rich and have high levels of endemism, yet little is known regarding the evolutionary processes responsible for the origin and diversification of karst biodiversity. The genus Primulina (Gesneriaceae) comprises ca. 170 species endemic to southern China with high levels of ecological (edaphic) specialization, providing an exceptional model to study the plant diversification in karsts. We used molecular data from nine chloroplast and 11 nuclear regions and macroevolutionary analyses to assess the origin and cause of species diversification due to palaeoenvironmental changes and edaphic specialization in Primulina. We found that speciation was positively associated with changes in past temperatures and East Asian monsoons through the evolutionary history of Primulina. Climatic change around the mid-Miocene triggered an early burst followed by a slowdown of diversification rate towards the present with the climate cooling. We detected different speciation rates among edaphic types, and transitions among soil types were infrequently and did not impact the overall speciation rate. Our findings suggest that both global temperature changes and East Asian monsoons have played crucial roles in floristic diversification within the karst ecosystems in southern China, such that speciation was higher when climate was warmer and wetter. This is the first study to directly demonstrate that past monsoon activity is positively correlated with speciation rate in East Asia. This case study could motivate further investigations to assess the impacts of past environmental changes on the origin and diversification of biodiversity in global karst ecosystems, most of which are under threat.
Collapse
Affiliation(s)
- Hanghui Kong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Evolution (Université de Montpellier), Montpellier, France
| | - A J Harris
- Department of Botany, MRC 166, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Junlin Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Bo Pan
- Guangxi Institute of Botany, Guangxi Zhang Autonomous Region and the Chinese Academy of Sciences, Guilin, China
| | | | - Van Sam Hoang
- Forest Plant Department, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
| |
Collapse
|
25
|
Rodríguez-Castañeda G, Hof AR, Jansson R. How bird clades diversify in response to climatic and geographic factors. Ecol Lett 2017; 20:1129-1139. [PMID: 28704887 DOI: 10.1111/ele.12809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/18/2017] [Accepted: 06/09/2017] [Indexed: 11/29/2022]
Abstract
While the environmental correlates of global patterns in standing species richness are well understood, it is poorly known which environmental factors promote diversification (speciation minus extinction) in clades. We tested several hypotheses for how geographic and climatic variables should affect diversification using a large dataset of bird sister genera endemic to the New World. We found support for the area, evolutionary speed, environmental predictability and climatic stability hypotheses, but productivity and topographic complexity were rejected as explanations. Genera that had accumulated more species tend to occupy wider niche space, manifested both as occurrence over wider areas and in more habitats. Genera with geographic ranges that have remained more stable in response to glacial-interglacial changes in climate were also more species rich. Since many relevant explanatory variables vary latitudinally, it is crucial to control for latitude when testing alternative mechanistic explanations for geographic variation in diversification among clades.
Collapse
Affiliation(s)
- Genoveva Rodríguez-Castañeda
- Department of Ecology and Environmental Science, Umeå University, SE-901 87, Umeå, Sweden.,Section of Integrative Biology, The University of Texas, Austin, 205 W 24th Street, Austin, TX, 78712, USA
| | - Anouschka R Hof
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3, 6708, PB, Wageningen, The Netherlands.,Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), SE-901 83, Umeå, Sweden
| | - Roland Jansson
- Department of Ecology and Environmental Science, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
26
|
Brunbjerg AK, Bruun HH, Moeslund JE, Sadler JP, Svenning JC, Ejrnæs R. Ecospace: A unified framework for understanding variation in terrestrial biodiversity. Basic Appl Ecol 2017. [DOI: 10.1016/j.baae.2016.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Abstract
The effects of regional diversity on diversification remain controversial. The classic hypothesis that diversification decelerates as regional diversity increases has been recently revived. Yet, there is little geographic evidence for slower diversification across regions of high diversity, and diversity is often thought to promote diversification through its effects on ecological divergence and speciation. Here, we use the newest phylogeny for mammals (4,990 species) and two different methods to test the effects of regional diversity on diversification. We find that regions of high diversity are dominated by expanding clades that are far from their estimated carrying capacities. Regions of low diversity host clades that are small and mostly saturated. These results were supported across mammals and their six largest orders. They were corroborated by the two methods when controlling for clade relatedness, clade nestedness, and clade size. Together, these results reject the hypothesis that high geographic concentration of mammals effectively suppresses their further diversification. Instead, highly diverse regions (especially the tropics) seem to act as the engine of mammalian richness.
Collapse
|
28
|
Pulido-Santacruz P, Weir JT. Extinction as a driver of avian latitudinal diversity gradients. Evolution 2016; 70:860-72. [DOI: 10.1111/evo.12899] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/22/2022]
Affiliation(s)
| | - Jason T. Weir
- Current Address: Department of Ecology and Evolutionary Biology; University of Toronto; 1265 Military Trail Scarborough Ontario M1C 1A4 Canada
- Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| |
Collapse
|
29
|
Roalson EH, Roberts WR. Distinct Processes Drive Diversification in Different Clades of Gesneriaceae. Syst Biol 2016; 65:662-84. [DOI: 10.1093/sysbio/syw012] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/02/2016] [Indexed: 01/19/2023] Open
|
30
|
Reconsidering the Loss of Evolutionary History: How Does Non-random Extinction Prune the Tree-of-Life? BIODIVERSITY CONSERVATION AND PHYLOGENETIC SYSTEMATICS 2016. [DOI: 10.1007/978-3-319-22461-9_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Schluter D. Speciation, Ecological Opportunity, and Latitude (American Society of Naturalists Address). Am Nat 2016; 187:1-18. [PMID: 26814593 DOI: 10.1086/684193] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Evolutionary hypotheses to explain the greater numbers of species in the tropics than the temperate zone include greater age and area, higher temperature and metabolic rates, and greater ecological opportunity. These ideas make contrasting predictions about the relationship between speciation processes and latitude, which I elaborate and evaluate. Available data suggest that per capita speciation rates are currently highest in the temperate zone and that diversification rates (speciation minus extinction) are similar between latitudes. In contrast, clades whose oldest analyzed dates precede the Eocene thermal maximum, when the extent of the tropics was much greater than today, tend to show highest speciation and diversification rates in the tropics. These findings are consistent with age and area, which is alone among hypotheses in predicting a time trend. Higher recent speciation rates in the temperate zone than the tropics suggest an additional response to high ecological opportunity associated with low species diversity. These broad patterns are compelling but provide limited insights into underlying mechanisms, arguing that studies of speciation processes along the latitudinal gradient will be vital. Using threespine stickleback in depauperate northern lakes as an example, I show how high ecological opportunity can lead to rapid speciation. The results support a role for ecological opportunity in speciation, but its importance in the evolution of the latitudinal gradient remains uncertain. I conclude that per capita evolutionary rates are no longer higher in the tropics than the temperate zone. Nevertheless, the vast numbers of species that have already accumulated in the tropics ensure that total rate of species production remains highest there. Thus, tropical evolutionary momentum helps to perpetuate the steep latitudinal biodiversity gradient.
Collapse
|
32
|
Fine PV. Ecological and Evolutionary Drivers of Geographic Variation in Species Diversity. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054102] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paul V.A. Fine
- Department of Integrative Biology and University and Jepson Herbaria, University of California, Berkeley, California 94720;
| |
Collapse
|
33
|
Richardson JE, Whitlock BA, Meerow AW, Madriñán S. The age of chocolate: a diversification history of Theobroma and Malvaceae. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00120] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Breitkopf H, Onstein RE, Cafasso D, Schlüter PM, Cozzolino S. Multiple shifts to different pollinators fuelled rapid diversification in sexually deceptive Ophrys orchids. THE NEW PHYTOLOGIST 2015; 207:377-389. [PMID: 25521237 DOI: 10.1111/nph.13219] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/31/2014] [Indexed: 05/03/2023]
Abstract
Episodes of rapid speciation provide unique insights into evolutionary processes underlying species radiations and patterns of biodiversity. Here we investigated the radiation of sexually deceptive bee orchids (Ophrys). Based on a time-calibrated phylogeny and by means of ancestral character reconstruction and divergence time estimation, we estimated the tempo and mode of this radiation within a state-dependent evolutionary framework. It appears that, in the Pleistocene, the evolution of Ophrys was marked by episodes of rapid diversification coinciding with shifts to different pollinator types: from wasps to Eucera bees to Andrena and other bees. An abrupt increase in net diversification rate was detected in three clades. Among these, two phylogenetically distant lineages switched from Eucera to Andrena and other bees in a parallel fashion and at about the same time in their evolutionary history. Lack of early radiation associated with the evolution of the key innovation of sexual deception suggests that Ophrys diversification was mainly driven by subsequent ecological opportunities provided by the exploitation of novel pollinator groups, encompassing many bee species slightly differing in their sex pheromone communication systems, and by spatiotemporal fluctuations in the pollinator mosaic.
Collapse
Affiliation(s)
- Hendrik Breitkopf
- Department of Biology, University of Naples Federico II, Naples, Italy
- Institute of Biochemistry and Biology, Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Renske E Onstein
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| | - Donata Cafasso
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Philipp M Schlüter
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
35
|
Donoghue MJ, Sanderson MJ. Confluence, synnovation, and depauperons in plant diversification. THE NEW PHYTOLOGIST 2015; 207:260-274. [PMID: 25778694 DOI: 10.1111/nph.13367] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/14/2015] [Indexed: 05/02/2023]
Abstract
We review the empirical phylogenetic literature on plant diversification, highlighting challenges in separating the effects of speciation and extinction, in specifying diversification mechanisms, and in making convincing arguments. In recent discussions of context dependence, key opportunities and landscapes, and indirect effects and lag times, we see a distinct shift away from single-point/single-cause 'key innovation' hypotheses toward more nuanced explanations involving multiple interacting causal agents assembled step-wise through a tree. To help crystalize this emerging perspective we introduce the term 'synnovation' (a hybrid of 'synergy' and 'innovation') for an interacting combination of traits with a particular consequence ('key synnovation' in the case of increased diversification rate), and the term 'confluence' for the sequential coming together of a set of traits (innovations and synnovations), environmental changes, and geographic movements along the branches of a phylogenetic tree. We illustrate these concepts using the radiation of Bromeliaceae. We also highlight the generality of these ideas by considering how rate heterogeneity associated with a confluence relates to the existence of particularly species-poor lineages, or 'depauperons.' Many challenges are posed by this re-purposed research framework, including difficulties associated with partial taxon sampling, uncertainty in divergence time estimation, and extinction.
Collapse
Affiliation(s)
- Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520, USA
| | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
36
|
Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. THE NEW PHYTOLOGIST 2015; 207:437-453. [PMID: 25615647 DOI: 10.1111/nph.13264] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/21/2014] [Indexed: 05/03/2023]
Abstract
The establishment of modern terrestrial life is indissociable from angiosperm evolution. While available molecular clock estimates of angiosperm age range from the Paleozoic to the Late Cretaceous, the fossil record is consistent with angiosperm diversification in the Early Cretaceous. The time-frame of angiosperm evolution is here estimated using a sample representing 87% of families and sequences of five plastid and nuclear markers, implementing penalized likelihood and Bayesian relaxed clocks. A literature-based review of the palaeontological record yielded calibrations for 137 phylogenetic nodes. The angiosperm crown age was bound within a confidence interval calculated with a method that considers the fossil record of the group. An Early Cretaceous crown angiosperm age was estimated with high confidence. Magnoliidae, Monocotyledoneae and Eudicotyledoneae diversified synchronously 135-130 million yr ago (Ma); Pentapetalae is 126-121 Ma; and Rosidae (123-115 Ma) preceded Asteridae (119-110 Ma). Family stem ages are continuously distributed between c. 140 and 20 Ma. This time-frame documents an early phylogenetic proliferation that led to the establishment of major angiosperm lineages, and the origin of over half of extant families, in the Cretaceous. While substantial amounts of angiosperm morphological and functional diversity have deep evolutionary roots, extant species richness was probably acquired later.
Collapse
Affiliation(s)
- Susana Magallón
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sandra Gómez-Acevedo
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luna L Sánchez-Reyes
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
37
|
Tamma K, Ramakrishnan U. Higher speciation and lower extinction rates influence mammal diversity gradients in Asia. BMC Evol Biol 2015; 15:11. [PMID: 25648944 PMCID: PMC4333168 DOI: 10.1186/s12862-015-0289-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the patterns and correlates of mammal diversity gradients in Asia. In this study, we examine patterns of species distributions and phylogenetic diversity in Asia and investigate if the observed diversity patterns are associated with differences in diversification rates between the tropical and non-tropical regions. We used species distribution maps and phylogenetic trees to generate species and phylogenetic diversity measures for 1° × 1° cells across mainland Asia. We constructed lineage-through-time plots and estimated diversification shift-times to examine the temporal patterns of diversifications across orders. Finally, we tested if the observed gradients in Asia could be associated with geographical differences in diversification rates across the tropical and non-tropical biomes. We estimated speciation, extinction and dispersal rates across these two regions for mammals, both globally and for Asian mammals. RESULTS Our results demonstrate strong latitudinal and longitudinal gradients of species and phylogenetic diversity with Southeast Asia and the Himalayas showing highest diversity. Importantly, our results demonstrate that differences in diversification (speciation, extinction and dispersal) rates between the tropical and the non-tropical biomes influence the observed diversity gradients globally and in Asia. For the first time, we demonstrate that Asian tropics act as both cradles and museums of mammalian diversity. CONCLUSIONS Temporal and spatial variation in diversification rates across different lineages of mammals is an important correlate of species diversity gradients observed in Asia.
Collapse
Affiliation(s)
- Krishnapriya Tamma
- National Centre for Biological Sciences, TIFR, Bellary Road, Bangalore - 65, India.
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, TIFR, Bellary Road, Bangalore - 65, India.
| |
Collapse
|
38
|
Liu J, Yan HF, Newmaster SG, Pei N, Ragupathy S, Ge XJ. The use of DNA barcoding as a tool for the conservation biogeography of subtropical forests in China. DIVERS DISTRIB 2014. [DOI: 10.1111/ddi.12276] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Juan Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden; The Chinese Academy of Sciences; Guangzhou 510650 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden; The Chinese Academy of Sciences; Guangzhou 510650 China
| | - Steven G. Newmaster
- Centre for Biodiversity Genomics; Biodiversity Institute of Ontario (BIO); University of Guelph; Guelph ON N1G 2W1 Canada
| | - Nancai Pei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden; The Chinese Academy of Sciences; Guangzhou 510650 China
| | - Subramanyam Ragupathy
- Centre for Biodiversity Genomics; Biodiversity Institute of Ontario (BIO); University of Guelph; Guelph ON N1G 2W1 Canada
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden; The Chinese Academy of Sciences; Guangzhou 510650 China
| |
Collapse
|
39
|
Kostikova A, Salamin N, Pearman PB. THE ROLE OF CLIMATIC TOLERANCES AND SEED TRAITS IN REDUCED EXTINCTION RATES OF TEMPERATE POLYGONACEAE. Evolution 2014; 68:1856-70. [DOI: 10.1111/evo.12400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/25/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Anna Kostikova
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
- Swiss Institute of Bioinformatics; Quartier Sorge; 1015 Lausanne Switzerland
- Landscape Dynamics; Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| | - Nicolas Salamin
- Department of Ecology and Evolution; University of Lausanne; 1015 Lausanne Switzerland
- Swiss Institute of Bioinformatics; Quartier Sorge; 1015 Lausanne Switzerland
| | - Peter B. Pearman
- Landscape Dynamics; Swiss Federal Research Institute WSL; 8903 Birmensdorf Switzerland
| |
Collapse
|
40
|
Givnish TJ, Barfuss MH, Ee BV, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Sytsma KJ. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol Phylogenet Evol 2014; 71:55-78. [DOI: 10.1016/j.ympev.2013.10.010] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/18/2013] [Accepted: 10/11/2013] [Indexed: 11/28/2022]
|
41
|
Rolland J, Condamine FL, Jiguet F, Morlon H. Faster speciation and reduced extinction in the tropics contribute to the Mammalian latitudinal diversity gradient. PLoS Biol 2014; 12:e1001775. [PMID: 24492316 PMCID: PMC3904837 DOI: 10.1371/journal.pbio.1001775] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 12/11/2013] [Indexed: 02/01/2023] Open
Abstract
Jonathan Rolland and colleagues show that the gradient of increased mammalian diversity towards the tropics is driven by both faster speciation and reduced extinction. The increase in species richness from the poles to the tropics, referred to as the latitudinal diversity gradient, is one of the most ubiquitous biodiversity patterns in the natural world. Although understanding how rates of speciation and extinction vary with latitude is central to explaining this pattern, such analyses have been impeded by the difficulty of estimating diversification rates associated with specific geographic locations. Here, we use a powerful phylogenetic approach and a nearly complete phylogeny of mammals to estimate speciation, extinction, and dispersal rates associated with the tropical and temperate biomes. Overall, speciation rates are higher, and extinction rates lower, in the tropics than in temperate regions. The diversity of the eight most species-rich mammalian orders (covering 92% of all mammals) peaks in the tropics, except that of the Lagomorpha (hares, rabbits, and pikas) reaching a maxima in northern-temperate regions. Latitudinal patterns in diversification rates are strikingly consistent with these diversity patterns, with peaks in species richness associated with low extinction rates (Primates and Lagomorpha), high speciation rates (Diprotodontia, Artiodactyla, and Soricomorpha), or both (Chiroptera and Rodentia). Rates of range expansion were typically higher from the tropics to the temperate regions than in the other direction, supporting the “out of the tropics” hypothesis whereby species originate in the tropics and disperse into higher latitudes. Overall, these results suggest that differences in diversification rates have played a major role in shaping the modern latitudinal diversity gradient in mammals, and illustrate the usefulness of recently developed phylogenetic approaches for understanding this famous yet mysterious pattern. Why are there more species in the tropics? This question has fascinated ecologists and evolutionary biologists for decades, generating hundreds of hypotheses, yet basic questions remain: Are rates of speciation higher in the tropics? Are rates of extinction higher in temperate regions? Do the tropics act as a source of diversity for temperate regions? We estimated rates of speciation, extinction, and range expansion associated with mammals living in tropical and temperate regions, using an almost complete mammalian phylogeny. Contrary to what has been suggested before for this class of vertebrates, we found that diversification rates are strikingly consistent with diversity patterns, with latitudinal peaks in species richness being associated with high speciation rates, low extinction rates, or both, depending on the mammalian order (rodents, bats, primates, etc.). We also found evidence for an asymmetry in range expansion, with more expansion “out of” than “into” the tropics. Taken together, these results suggest that tropical regions are not only a reservoir of biodiversity, but also the main place where biodiversity is generated.
Collapse
Affiliation(s)
- Jonathan Rolland
- CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Palaiseau, France
- UMR 7204 MNHN–CNRS–UPMC Centre d'Ecologie et de Sciences de la Conservation, Museum National d'Histoire Naturelle, CP51, Paris, France
- * E-mail: (J.R.); (H.M.)
| | - Fabien L. Condamine
- CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Palaiseau, France
| | - Frederic Jiguet
- UMR 7204 MNHN–CNRS–UPMC Centre d'Ecologie et de Sciences de la Conservation, Museum National d'Histoire Naturelle, CP51, Paris, France
| | - Hélène Morlon
- CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique), Palaiseau, France
- * E-mail: (J.R.); (H.M.)
| |
Collapse
|
42
|
Guarnizo CE, Cannatella DC. Geographic determinants of gene flow in two sister species of tropical Andean frogs. J Hered 2013; 105:216-25. [PMID: 24336965 DOI: 10.1093/jhered/est092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Complex interactions between topographic heterogeneity, climatic and environmental gradients, and thermal niche conservatism are commonly assumed to indicate the degree of biotic diversification in montane regions. Our aim was to investigate factors that disrupt gene flow between populations and to determine if there is evidence of downslope asymmetric migration in highland frogs with wide elevational ranges and thermal niches. We determined the role of putative impediments to gene flow (as measured by least-cost path (LCP) distances, topographic complexity, and elevational range) in promoting genetic divergence between populations of 2 tropical Andean frog sister species (Dendropsophus luddeckei, N = 114; Dendropsophus labialis, N = 74) using causal modeling and multiple matrix regression. Although the effect of geographic features was species specific, elevational range and LCP distances had the strongest effect on gene flow, with mean effect sizes (Mantel r and regression coefficients β), between 5 and 10 times greater than topographic complexity. Even though causal modeling and multiple matrix regression produced congruent results, the latter provided more information on the contribution of each geographic variable. We found moderate support for downslope migration. We conclude that the climatic heterogeneity of the landscape, the elevational distance between populations, and the inability to colonize suboptimal habitats due to thermal niche conservatism influence the magnitude of gene flow. Asymmetric migration, however, seems to be influenced by life history traits.
Collapse
Affiliation(s)
- Carlos E Guarnizo
- the Department of Integrative Biology, University of Texas at Austin, 1 University Station, CO990, Austin, TX 78712
| | | |
Collapse
|
43
|
|
44
|
Joly S, Davies TJ, Archambault A, Bruneau A, Derry A, Kembel SW, Peres-Neto P, Vamosi J, Wheeler TA. Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Mol Ecol Resour 2013; 14:221-32. [DOI: 10.1111/1755-0998.12173] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 09/03/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Simon Joly
- Institut de recherche en biologie végétale; Département de sciences biologiques; Université de Montréal; 4101 Sherbrooke East Montréal Quebec, Canada H1X 2B2
- Montreal Botanical Garden; 4101 Sherbrooke East Montréal Quebec, Canada H1X 2B2
| | - T. Jonathan Davies
- Biology Department; McGill University; 1205 Dr Penfield Montréal Quebec, Canada H3A 1B1
| | - Annie Archambault
- Québec Centre for Biodiversity Science; 1205 Dr Penfield Montréal Quebec, Canada H3A 1B1
| | - Anne Bruneau
- Institut de recherche en biologie végétale; Département de sciences biologiques; Université de Montréal; 4101 Sherbrooke East Montréal Quebec, Canada H1X 2B2
| | - Alison Derry
- Département des sciences biologiques; Université du Québec à Montréal; 141 Avenue du Président-Kennedy Montréal Quebec, Canada H2X 1Y4
| | - Steven W. Kembel
- Département des sciences biologiques; Université du Québec à Montréal; 141 Avenue du Président-Kennedy Montréal Quebec, Canada H2X 1Y4
| | - Pedro Peres-Neto
- Département des sciences biologiques; Université du Québec à Montréal; 141 Avenue du Président-Kennedy Montréal Quebec, Canada H2X 1Y4
| | - Jana Vamosi
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary Alberta, Canada T2N 1N4
| | - Terry A. Wheeler
- Department of Natural Resources Sciences; McGill University; Macdonald Campus Ste. Anne de Bellevue Quebec, Canada H9X 3V9
| |
Collapse
|
45
|
Affiliation(s)
- Shane D. Wright
- School of Biological Sciences; University of Auckland; 22 Princes St; Auckland; 1010; New Zealand
| | - Klaus Rohde
- School of Environmental and Rural Sciences; University of New England; Elm Avenue; Armidale; NSW; 2351; Australia
| |
Collapse
|
46
|
Pyron RA, Wiens JJ. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc Biol Sci 2013; 280:20131622. [PMID: 24026818 DOI: 10.1098/rspb.2013.1622] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many groups show higher species richness in tropical regions but the underlying causes remain unclear. Despite many competing hypotheses to explain latitudinal diversity gradients, only three processes can directly change species richness across regions: speciation, extinction and dispersal. These processes can be addressed most powerfully using large-scale phylogenetic approaches, but most previous studies have focused on small groups and recent time scales, or did not separate speciation and extinction rates. We investigate the origins of high tropical diversity in amphibians, applying new phylogenetic comparative methods to a tree of 2871 species. Our results show that high tropical diversity is explained by higher speciation in the tropics, higher extinction in temperate regions and limited dispersal out of the tropics compared with colonization of the tropics from temperate regions. These patterns are strongly associated with climate-related variables such as temperature, precipitation and ecosystem energy. Results from models of diversity dependence in speciation rate suggest that temperate clades may have lower carrying capacities and may be more saturated (closer to carrying capacity) than tropical clades. Furthermore, we estimate strikingly low tropical extinction rates over geological time scales, in stark contrast to the dramatic losses of diversity occurring in tropical regions presently.
Collapse
Affiliation(s)
- R Alexander Pyron
- Department of Biological Sciences, The George Washington University, , 2023 G Street NW, Washington, DC 20052, USA, Department of Ecology and Evolutionary Biology, University of Arizona, , Tucson, AZ 85721-0088, USA
| | | |
Collapse
|
47
|
Abstract
Two conflicting hypotheses have been proposed to explain large-scale species diversity patterns and dynamics. The unbounded hypothesis proposes that regional diversity depends only on time and diversification rate and increases without limit. The bounded hypothesis proposes that ecological constraints place upper limits on regional diversity and that diversity is usually close to its limit. Recent evidence from the fossil record, phylogenetic analysis, biogeography, and phenotypic disparity during lineage diversification suggests that diversity is constrained by ecological processes but that it is rarely asymptotic. Niche space is often unfilled or can be more finely subdivided and still permit coexistence, and new niche space is often created before ecological limits are reached. Damped increases in diversity over time are the prevalent pattern, suggesting the need for a new 'damped increase hypothesis'. The damped increase hypothesis predicts that diversity generally increases through time but that its rate of increase is often slowed by ecological constraints. However, slowing due to niche limitation must be distinguished from other possible mechanisms creating similar patterns. These include sampling artifacts, the inability to detect extinctions or declines in clade diversity with some methods, the distorting effects of correlated speciation-extinction dynamics, the likelihood that opportunities for allopatric speciation will vary in space and time, and the role of undetected natural enemies in reducing host ranges and thus slowing speciation rates. The taxonomic scope of regional diversity studies must be broadened to include all ecologically similar species so that ecological constraints may be accurately inferred. The damped increase hypothesis suggests that information on evolutionary processes such as time-for-speciation and intrinsic diversification rates as well as ecological factors will be required to explain why regional diversity varies among times, places and taxa.
Collapse
Affiliation(s)
- Howard V Cornell
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA.
| |
Collapse
|
48
|
Soria-Carrasco V, Castresana J. Diversification rates and the latitudinal gradient of diversity in mammals. Proc Biol Sci 2012; 279:4148-55. [PMID: 22896648 DOI: 10.1098/rspb.2012.1393] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The latitudinal gradient of species richness has frequently been attributed to higher diversification rates of tropical groups. In order to test this hypothesis for mammals, we used a set of 232 genera taken from a mammalian supertree and, additionally, we reconstructed dated Bayesian phylogenetic trees of 100 genera. For each genus, diversification rate was estimated taking incomplete species sampling into account and latitude was assigned considering the heterogeneity in species distribution ranges. For both datasets, we found that the average diversification rate was similar among all latitudinal bands. Furthermore, when we used phylogenetically independent contrasts, we did not find any significant correlation between latitude and diversification parameters, including different estimates of speciation and extinction rates. Thus, other factors, such as the dynamics of dispersal through time, may be required to explain the latitudinal gradient of diversity in mammals.
Collapse
Affiliation(s)
- Víctor Soria-Carrasco
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Maritim de la Barceloneta 37, 08003 Barcelona, Spain
| | | |
Collapse
|
49
|
|
50
|
Jetz W, Fine PVA. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol 2012; 10:e1001292. [PMID: 22479151 PMCID: PMC3313913 DOI: 10.1371/journal.pbio.1001292] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 02/16/2012] [Indexed: 11/25/2022] Open
Abstract
A novel hierarchical framework integrates the effects of time, area, productivity, and temperature at their respective relevant scales and successfully predicts the latitudinal gradient in global vertebrate diversity. Broad-scale geographic gradients in species richness have now been extensively documented, but their historical underpinning is still not well understood. While the importance of productivity, temperature, and a scale dependence of the determinants of diversity is broadly acknowledged, we argue here that limitation to a single analysis scale and data pseudo-replication have impeded an integrated evolutionary and ecological understanding of diversity gradients. We develop and apply a hierarchical analysis framework for global diversity gradients that incorporates an explicit accounting of past environmental variation and provides an appropriate measurement of richness. Due to environmental niche conservatism, organisms generally reside in climatically defined bioregions, or “evolutionary arenas,” characterized by in situ speciation and extinction. These bioregions differ in age and their total productivity and have varied over time in area and energy available for diversification. We show that, consistently across the four major terrestrial vertebrate groups, current-day species richness of the world's main 32 bioregions is best explained by a model that integrates area and productivity over geological time together with temperature. Adding finer scale variation in energy availability as an ecological predictor of within-bioregional patterns of richness explains much of the remaining global variation in richness at the 110 km grain. These results highlight the separate evolutionary and ecological effects of energy availability and provide a first conceptual and empirical integration of the key drivers of broad-scale richness gradients. Avoiding the pseudo-replication that hampers the evolutionary interpretation of non-hierarchical macroecological analyses, our findings integrate evolutionary and ecological mechanisms at their most relevant scales and offer a new synthesis regarding global diversity gradients. Understanding what determines the distribution of biodiversity across the planet remains one of the critical challenges in biology and has gained particular urgency in the face of environmental change and accelerating species extinctions. Our study develops a novel analytical framework to jointly evaluate historical and contemporary environmental predictors of the latitudinal gradient in the diversity of terrestrial vertebrates. The number of vertebrate species is greater in warm, productive biomes, such as tropical forests, that have both a large size and a long evolutionary history. Using just a few key predictor variables—time, area, productivity, and temperature—we are now able to explain more than 80% of the variability in biodiversity among bioregions. By integrating each of these factors at both the regional and local scale in a hierarchical model, we are able to provide a consensus explanation for broad-scale diversity gradients that encompasses both ecological and evolutionary mechanisms.
Collapse
Affiliation(s)
- Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
| | | |
Collapse
|