1
|
Wang C, Yang Y, Xu X, Wang D, Shi X, Liu L, Deng Y, Li L, Zhang T. The quest for environmental analytical microbiology: absolute quantitative microbiome using cellular internal standards. MICROBIOME 2025; 13:26. [PMID: 39871306 PMCID: PMC11773863 DOI: 10.1186/s40168-024-02009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/17/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND High-throughput sequencing has revolutionized environmental microbiome research, providing both quantitative and qualitative insights into nucleic acid targets in the environment. The resulting microbial composition (community structure) data are essential for environmental analytical microbiology, enabling characterization of community dynamics and assessing microbial pollutants for the development of intervention strategies. However, the relative abundances derived from sequencing impede comparisons across samples and studies. RESULTS This review systematically summarizes various absolute quantification (AQ) methods and their applications to obtain the absolute abundance of microbial cells and genetic elements. By critically comparing the strengths and limitations of AQ methods, we advocate the use of cellular internal standard-based high-throughput sequencing as an appropriate AQ approach for studying environmental microbiome originated from samples of complex matrices and high heterogeneity. To minimize ambiguity and facilitate cross-study comparisons, we outline essential reporting elements for technical considerations, and provide a checklist as a reference for environmental microbiome research. CONCLUSIONS In summary, we propose absolute microbiome quantification using cellular internal standards for environmental analytical microbiology, and we anticipate that this approach will greatly benefit future studies. Video Abstract.
Collapse
Affiliation(s)
- Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yu Yang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Xianghui Shi
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China.
- School of Public Health, The University of Hong Kong, Hong Kong, China.
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Espinoza Miranda SS, Abbaszade G, Hess WR, Drescher K, Saliba AE, Zaburdaev V, Chai L, Dreisewerd K, Grünberger A, Westendorf C, Müller S, Mascher T. Resolving spatiotemporal dynamics in bacterial multicellular populations: approaches and challenges. Microbiol Mol Biol Rev 2025:e0013824. [PMID: 39853129 DOI: 10.1128/mmbr.00138-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
SUMMARYThe development of multicellularity represents a key evolutionary transition that is crucial for the emergence of complex life forms. Although multicellularity has traditionally been studied in eukaryotes, it originates in prokaryotes. Coordinated aggregation of individual cells within the confines of a colony results in emerging, higher-level functions that benefit the population as a whole. During colony differentiation, an almost infinite number of ecological and physiological population-forming forces are at work, creating complex, intricate colony structures with divergent functions. Understanding the assembly and dynamics of such populations requires resolving individual cells or cell groups within such macroscopic structures. Addressing how each cell contributes to the collective action requires pushing the resolution boundaries of key technologies that will be presented in this review. In particular, single-cell techniques provide powerful tools for studying bacterial multicellularity with unprecedented spatial and temporal resolution. These advancements include novel microscopic techniques, mass spectrometry imaging, flow cytometry, spatial transcriptomics, single-bacteria RNA sequencing, and the integration of spatiotemporal transcriptomics with microscopy, alongside advanced microfluidic cultivation systems. This review encourages exploring the synergistic potential of the new technologies in the study of bacterial multicellularity, with a particular focus on individuals in differentiated bacterial biofilms (colonies). It highlights how resolving population structures at the single-cell level and understanding their respective functions can elucidate the overarching functions of bacterial multicellular populations.
Collapse
Affiliation(s)
| | | | - Wolfgang R Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | | | - Antoine-Emmanuel Saliba
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Liraz Chai
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Alexander Grünberger
- Microsystems in Bioprocess Engineering (μBVT), Institute of Process Engineering in Life Sciences (BLT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Christian Westendorf
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Thorsten Mascher
- General Microbiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Canette A, Deschamps J, Briandet R. Characterization of Foodborne Pathogens in Biofilms: A Four-Dimensional Structural Dynamics Approach Using HCS-CLSM. Methods Mol Biol 2025; 2852:159-170. [PMID: 39235743 DOI: 10.1007/978-1-0716-4100-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The functional properties of biofilms are intimately related to their spatial architecture. Structural data are therefore of prime importance to dissect the complex social and survival strategies of biofilms and ultimately to improve their control. Confocal laser scanning microscopy (CLSM) is the most widespread microscopic tool to decipher biofilm structure, enabling noninvasive three-dimensional investigation of their dynamics down to the single-cell scale. The emergence of fully automated high content screening (HCS) systems, associated with large-scale image analysis, has radically amplified the flow of available biofilm structural data. In this contribution, we present a HCS-CLSM protocol used to analyze biofilm four-dimensional structural dynamics at high throughput. Meta-analysis of the quantitative variables extracted from HCS-CLSM will contribute to a better biological understanding of biofilm traits.
Collapse
Affiliation(s)
- Alexis Canette
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Sorbonne Université, CNRS, IBPS Institute, Paris, France
| | - Julien Deschamps
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
4
|
Nogueira CL, Arcanjo AF, Lima ME, Moraes B, da Silva RM, Gondim KC, Konnai S, Ramos I, Santos S, Filardy AD, Pinto KG, Vaz Junior IDS, Logullo C. Starvation Metabolism Adaptations in Tick Embryonic Cells BME26. Int J Mol Sci 2024; 26:87. [PMID: 39795947 PMCID: PMC11719990 DOI: 10.3390/ijms26010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Ticks are hematophagous ectoparasites that transmit pathogens and inflict significant economic losses on the cattle industry. Remarkably, they can survive extended periods of starvation in the absence of a host. The primary objective of this study was to investigate the metabolic adaptations that enable the tick Rhipicephalus microplus to endure starvation using the BME26 cell line as a model system. To simulate nutrient deprivation, cells were subjected to starvation conditions by replacing the L-15 culture medium with phosphate-buffered saline (PBS). Our findings show that these tick cells can endure experimental starvation for up to 48 h. The assessment of glycogen levels in starved cells shows a significant decrease, at both the 24 h and 48 h marks. Additionally, upregulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression, along with downregulation of hexokinase (HK) and pyruvate kinase (PK) gene expression, indicated that BME26 cells would prioritize the gluconeogenic pathway over the glycolytic pathway under starvation conditions. Moreover, the transcriptional levels of autophagy-related genes (ATG) were upregulated in response to starvation. Taken together, our findings suggest a potential role for autophagy in supplying substrates for the gluconeogenic pathway in nutrient-deprived tick cells. This work contributes to the understanding of metabolic regulation in R. microplus ticks and offers valuable insights for tick control strategies.
Collapse
Affiliation(s)
- Cintia Lopes Nogueira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (C.L.N.); (A.F.A.); (M.E.L.); (B.M.); (R.M.d.S.); (I.R.)
| | - Angélica F. Arcanjo
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (C.L.N.); (A.F.A.); (M.E.L.); (B.M.); (R.M.d.S.); (I.R.)
| | - Maria Elisa Lima
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (C.L.N.); (A.F.A.); (M.E.L.); (B.M.); (R.M.d.S.); (I.R.)
| | - Bruno Moraes
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (C.L.N.); (A.F.A.); (M.E.L.); (B.M.); (R.M.d.S.); (I.R.)
| | - Renato Martins da Silva
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (C.L.N.); (A.F.A.); (M.E.L.); (B.M.); (R.M.d.S.); (I.R.)
| | - Katia C. Gondim
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil; (K.C.G.); (S.S.)
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Hokkaido University, Sapporo 060-0810, Japan;
| | - Isabela Ramos
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (C.L.N.); (A.F.A.); (M.E.L.); (B.M.); (R.M.d.S.); (I.R.)
| | - Samara Santos
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil; (K.C.G.); (S.S.)
| | - Alessandra D’Almeida Filardy
- Laboratório de Imunologia Celular, Departamento de Imunologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil; (A.D.F.); (K.G.P.)
| | - Kamila Guimarães Pinto
- Laboratório de Imunologia Celular, Departamento de Imunologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil; (A.D.F.); (K.G.P.)
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91509-900, Brazil;
| | - Carlos Logullo
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (C.L.N.); (A.F.A.); (M.E.L.); (B.M.); (R.M.d.S.); (I.R.)
| |
Collapse
|
5
|
Agarwal H, Gurnani B, Pippal B, Jain N. Capturing the micro-communities: Insights into biogenesis and architecture of bacterial biofilms. BBA ADVANCES 2024; 7:100133. [PMID: 39839441 PMCID: PMC11750278 DOI: 10.1016/j.bbadva.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Biofilm is an assemblage of microorganisms embedded within the extracellular matrix that provides mechanical stability, nutrient absorption, antimicrobial resistance, cell-cell interactions, and defence against host immune system. Various biomolecules such as lipids, carbohydrates, protein polymers (amyloid), and eDNA are present in the matrix playing significant role in determining the distinctive properties of biofilm. The formation of biofilms contributes to resistance against antimicrobial therapy in most of the human infections and exacerbates existing diseases. Therefore, this field requires several state-of-the-art techniques to fully understand the 3-D organization of biofilms, their cell behaviour and responses to pharmaceutical treatments. Here, we explore the assembly and regulation of biofilm biogenesis in the context of matrix components and highlight the significance of high-resolution imaging and analysing techniques for monitoring complex biofilm architecture. Our review also emphasizes the novelty and advancements in techniques to visualise biofilm structure and composition, providing valuable insights to understand biofilm-related infections.
Collapse
Affiliation(s)
- Harshita Agarwal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Bharat Gurnani
- Centre of Excellence-AyurTech, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Bhumika Pippal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| |
Collapse
|
6
|
Del Rey YC, Kitzinger K, Lund MB, Schramm A, Meyer RL, Wagner M, Schlafer S. pH-FISH: coupled microscale analysis of microbial identity and acid-base metabolism in complex biofilm samples. MICROBIOME 2024; 12:266. [PMID: 39707459 DOI: 10.1186/s40168-024-01977-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Correlative structural and chemical imaging of biofilms allows for the combined analysis of microbial identity and metabolism at the microscale. Here, we developed pH-FISH, a method that combines pH ratiometry with fluorescence in situ hybridization (FISH) in structurally intact biofilms for the coupled investigation of microbial acid metabolism and biofilm composition. Careful biofilm handling and modified sample preparation procedures for FISH allowed preservation of the three-dimensional biofilm structure throughout all processing and imaging steps. We then employed pH-FISH to investigate the relationship between local biofilm pH and the distribution of acid-producing (streptococci) and acid-consuming (Veillonella spp.) bacteria in dental biofilms from healthy subjects and caries-active patients. RESULTS The relative abundance of streptococci correlated with low biofilm pH at the field-of-view level, while the opposite trend was observed for Veillonella spp. These results suggest that clusters of streptococci contribute to the formation of acidic pockets inside dental biofilms, whereas Veillonella spp. may have a protective role against biofilm acidification. CONCLUSIONS pH-FISH combines microscale mapping of biofilm pH in real time with structural imaging of the local microbial architecture, and is a powerful method to explore the interplay between biofilm composition and metabolism in complex biological systems. Video Abstract.
Collapse
Affiliation(s)
- Yumi Chokyu Del Rey
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark.
| | - Katharina Kitzinger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Marie Braad Lund
- Section for Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
| | - Rikke Louise Meyer
- Section for Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- The Comammox Research Platform, University of Vienna, Vienna, Austria
| | - Sebastian Schlafer
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark.
| |
Collapse
|
7
|
Nielsen SM, Johnsen KK, Hansen LBS, Rikvold PD, Møllebjerg A, Palmén LG, Durhuus T, Schlafer S, Meyer RL. Large-scale screening identifies enzyme combinations that remove in situ grown oral biofilm. Biofilm 2024; 8:100229. [PMID: 39830521 PMCID: PMC11740801 DOI: 10.1016/j.bioflm.2024.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 01/22/2025] Open
Abstract
Bacteria in the oral cavity are responsible for the development of dental diseases such as caries and periodontitis, but it is becoming increasingly clear that the oral microbiome also benefits human health. Many oral care products on the market are antimicrobial, killing a large part of the oral microbiome but without removing the disease-causing biofilm. Instead, non-biocidal matrix-degrading enzymes may be used to selectively remove biofilm without harming the overall microbiome. The challenge of using enzymes to degrade biofilms is to match the narrow specificity of enzymes with the large structural diversity of extracellular polymeric substances that hold the biofilm together. In this study, we therefore perform a large-scale screening of single and multi-enzyme formulations to identify combinations of enzymes that most effectively remove dental biofilm. We tested >400 different treatment modalities using 44 different enzymes in combinations with up to six enzymes in each formulation, on in vitro biofilms inoculated with human saliva. Mutanase was the only enzyme capable of removing biofilm on its own. Multi-enzyme formulations removed up to 69 % of the biofilm volume, and the most effective formulations all contained mutanase. We shortlisted 10 enzyme formulations to investigate their efficacy against biofilms formed on glass slabs on dental splints worn by 9 different test subjects. Three of the ten formulations removed more than 50 % of the biofilm volume. If optimal enzyme concentration and exposure time can be reached in vivo, these enzyme combinations have potential to be used in novel non-biocidal oral care products for dental biofilm control.
Collapse
Affiliation(s)
- Signe Maria Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Novonesis A/S, Biologiens Vej 2, 2800, Kgs. Lyngby, Denmark
| | - Karina Kambourakis Johnsen
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
| | | | - Pernille Dukanovic Rikvold
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
- Novonesis A/S, Biologiens Vej 2, 2800, Kgs. Lyngby, Denmark
| | - Andreas Møllebjerg
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Novonesis A/S, Biologiens Vej 2, 2800, Kgs. Lyngby, Denmark
| | | | - Thomas Durhuus
- Novonesis A/S, Biologiens Vej 2, 2800, Kgs. Lyngby, Denmark
| | - Sebastian Schlafer
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
- Department of Biology, Faculty of Natural Sciences, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Department of Biology, Faculty of Natural Sciences, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark
| |
Collapse
|
8
|
Dong PT, Shi W, He X, Borisy GG. Adhesive interactions within microbial consortia can be differentiated at the single-cell level through expansion microscopy. Proc Natl Acad Sci U S A 2024; 121:e2411617121. [PMID: 39565308 PMCID: PMC11621516 DOI: 10.1073/pnas.2411617121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Investigating microbe-microbe interactions at the single-cell level is critical to unraveling the ecology and dynamics of microbial communities. In many situations, microbes assemble themselves into densely packed multispecies biofilms. The density and complexity pose acute difficulties for visualizing individual cells and analyzing their interactions. Here, we address this problem through an unconventional application of expansion microscopy, which allows for the "decrowding" of individual bacterial cells within a multispecies community. Expansion microscopy generally has been carried out under isotropic expansion conditions and used as a resolution-enhancing method. In our variation of expansion microscopy, we carry out expansion under heterotropic conditions; that is, we expand the space between bacterial cells but not the space within individual cells. The separation of individual bacterial cells from each other reflects the competition between the expansion force pulling them apart and the adhesion force holding them together. We employed heterotropic expansion microscopy to study the relative strength of adhesion in model biofilm communities. These included mono- and dual-species Streptococcus biofilms and a three-species synthetic community (Fusobacterium nucleatum, Streptococcus mutans, and Streptococcus sanguinis) under conditions that facilitated interspecies coaggregation. Using adhesion mutants, we investigated the interplay between F. nucleatum outer membrane protein RadD and different Streptococcus species. We also examined the Schaalia-TM7 epibiont association. Quantitative proximity analysis was used to evaluate the separation of individual microbial members. Our study demonstrates that heterotropic expansion microscopy can "decrowd" dense biofilm communities, improve visualization of individual bacterial members, and enable analysis of microbe-microbe adhesive interactions at the single-cell level.
Collapse
Affiliation(s)
- Pu-Ting Dong
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Wenyuan Shi
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Xuesong He
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Gary G. Borisy
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| |
Collapse
|
9
|
Häcker D, Siebert K, Smith BJ, Köhler N, Riva A, Mahapatra A, Heimes H, Nie J, Metwaly A, Hölz H, Manz Q, De Zen F, Heetmeyer J, Socas K, Le Thi G, Meng C, Kleigrewe K, Pauling JK, Neuhaus K, List M, Pollard KS, Schwerd T, Haller D. Exclusive enteral nutrition initiates individual protective microbiome changes to induce remission in pediatric Crohn's disease. Cell Host Microbe 2024; 32:2019-2034.e8. [PMID: 39461337 DOI: 10.1016/j.chom.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/14/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024]
Abstract
Exclusive enteral nutrition (EEN) is a first-line therapy for pediatric Crohn's disease (CD), but protective mechanisms remain unknown. We established a prospective pediatric cohort to characterize the function of fecal microbiota and metabolite changes of treatment-naive CD patients in response to EEN (German Clinical Trials DRKS00013306). Integrated multi-omics analysis identified network clusters from individually variable microbiome profiles, with Lachnospiraceae and medium-chain fatty acids as protective features. Bioorthogonal non-canonical amino acid tagging selectively identified bacterial species in response to medium-chain fatty acids. Metagenomic analysis identified high strain-level dynamics in response to EEN. Functional changes in diet-exposed fecal microbiota were further validated using gut chemostat cultures and microbiota transfer into germ-free Il10-deficient mice. Dietary model conditions induced individual patient-specific strain signatures to prevent or cause inflammatory bowel disease (IBD)-like inflammation in gnotobiotic mice. Hence, we provide evidence that EEN therapy operates through explicit functional changes of temporally and individually variable microbiome profiles.
Collapse
Affiliation(s)
- Deborah Häcker
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technische Universität München, 85354 Freising, Germany; TUMCREATE, 1 CREATE way, #10-02 CREATE Tower, Singapore 138602, Singapore
| | - Kolja Siebert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital LMU, 80337 Munich, Germany
| | | | - Nikolai Köhler
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Alessandra Riva
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Aritra Mahapatra
- ZIEL Institute for Food & Health, Technische Universität München, 85354 Freising, Germany
| | - Helena Heimes
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Jiatong Nie
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Amira Metwaly
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Hannes Hölz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital LMU, 80337 Munich, Germany
| | - Quirin Manz
- Data Science in Systems Biology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Federica De Zen
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital LMU, 80337 Munich, Germany
| | - Jeannine Heetmeyer
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital LMU, 80337 Munich, Germany
| | - Katharina Socas
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital LMU, 80337 Munich, Germany
| | - Giang Le Thi
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital LMU, 80337 Munich, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Klaus Neuhaus
- ZIEL Institute for Food & Health, Technische Universität München, 85354 Freising, Germany
| | - Markus List
- Data Science in Systems Biology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany; Munich Data Science Institute (MDSI), Technical University of Munich, 85748 Garching, Germany
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital LMU, 80337 Munich, Germany.
| | - Dirk Haller
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technische Universität München, 85354 Freising, Germany; TUMCREATE, 1 CREATE way, #10-02 CREATE Tower, Singapore 138602, Singapore; ZIEL Institute for Food & Health, Technische Universität München, 85354 Freising, Germany.
| |
Collapse
|
10
|
Liu Y, Wang Y, Shi W, Wu N, Liu W, Francis F, Wang X. Enterobacter-infecting phages in nitrogen-deficient paddy soil impact nitrogen-fixation capacity and rice growth by shaping the soil microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177382. [PMID: 39505046 DOI: 10.1016/j.scitotenv.2024.177382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/03/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Bacteriophages ("phage") play important roles in nutrient cycling and ecology in environments by regulating soil microbial community structure. Here, metagenomic sequencing showed that a low relative abundance of nitrogen-fixing bacteria but high abundance of Enterobacter-infecting phages in paddy soil where rice plants showed nitrogen deficiency. From soil in the same field, we also isolated and identified a novel virulent phage (named here as Apdecimavirus NJ2) that infects several species of Enterobacter and characterized its impact on nitrogen fixation in the soil and in plants. It has the morphology of the Autographiviridae family, with a dsDNA genome of 39,605 bp, 47 predicted open reading frames and 52.64 % GC content. Based on genomic characteristics, comparative genomics and phylogenetic analysis, Apdecimavirus NJ2 should be a novel species in the genus Apdecimavirus, subfamily Studiervirinae. After natural or sterilized field soil was potted and inoculated with the phage, soil nitrogen-fixation capacity and rice growth were impaired, the abundance of Enterobacter decreased, along with the bacterial community composition and biodiversity changed compared with that of the unadded control paddy soil. Our work provides strong evidence that phages can affect the soil nitrogen cycle by changing the bacterial community. Controlling phages in the soil could be a useful strategy for improving soil nitrogen fixation.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Functional & Evolutionary Entomology, University of Liège, Gembloux Agro-BioTech, Passage des Déportés, 2, 5030 Gembloux, Belgium
| | - Yajiao Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Wenchong Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Frederic Francis
- Functional & Evolutionary Entomology, University of Liège, Gembloux Agro-BioTech, Passage des Déportés, 2, 5030 Gembloux, Belgium.
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Kohtz AJ, Petrosian N, Krukenberg V, Jay ZJ, Pilhofer M, Hatzenpichler R. Cultivation and visualization of a methanogen of the phylum Thermoproteota. Nature 2024; 632:1118-1123. [PMID: 39048824 DOI: 10.1038/s41586-024-07631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/30/2024] [Indexed: 07/27/2024]
Abstract
Methane is the second most abundant climate-active gas, and understanding its sources and sinks is an important endeavour in microbiology, biogeochemistry, and climate sciences1,2. For decades, it was thought that methanogenesis, the ability to conserve energy coupled to methane production, was taxonomically restricted to a metabolically specialized group of archaea, the Euryarchaeota1. The discovery of marker genes for anaerobic alkane cycling in metagenome-assembled genomes obtained from diverse habitats has led to the hypothesis that archaeal lineages outside the Euryarchaeota are also involved in methanogenesis3-6. Here we cultured Candidatus Methanosuratincola verstraetei strain LCB70, a member of the archaeal class Methanomethylicia (formerly Verstraetearchaeota) within the phylum Thermoproteota, from a terrestrial hot spring. Growth experiments combined with activity assays, stable isotope tracing, and genomic and transcriptomic analyses demonstrated that this thermophilic archaeon grows by means of methyl-reducing hydrogenotrophic methanogenesis. Cryo-electron tomography revealed that Ca. M. verstraetei are coccoid cells with archaella and chemoreceptor arrays, and that they can form intercellular bridges connecting two to three cells with continuous cytoplasm and S-layer. The wide environmental distribution of Ca. M. verstraetei suggests that they might play important and hitherto overlooked roles in carbon cycling within diverse anoxic habitats.
Collapse
Affiliation(s)
- Anthony J Kohtz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Nikolai Petrosian
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Viola Krukenberg
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Zackary J Jay
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
12
|
Sampara P, Lawson CE, Scarborough MJ, Ziels RM. Advancing environmental biotechnology with microbial community modeling rooted in functional 'omics. Curr Opin Biotechnol 2024; 88:103165. [PMID: 39033648 DOI: 10.1016/j.copbio.2024.103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024]
Abstract
Emerging biotechnologies that solve pressing environmental and climate emergencies will require harnessing the vast functional diversity of the underlying microbiomes driving such engineered processes. Modeling is a critical aspect of process engineering that informs system design as well as aids diagnostic optimization of performance. 'Conventional' bioprocess models assume homogenous biomass within functional guilds and thus fail to predict emergent properties of diverse microbial physiologies, such as product specificity and community interactions. Yet, recent advances in functional 'omics-based approaches can provide a 'lens' through which we can probe and measure in situ ecophysiologies of environmental microbiomes. Here, we overview microbial community modeling approaches that incorporate functional 'omics data, which we posit can advance our ability to design and control new environmental biotechnologies going forward.
Collapse
Affiliation(s)
- Pranav Sampara
- Department of Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher E Lawson
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Matthew J Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Ryan M Ziels
- Department of Civil Engineering, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
Castilla-Sedano AJ, Zapana-García J, Valdivia-Del Águila E, Padilla-Huamantinco PG, Guerra DG. Quantification of early biofilm growth in microtiter plates through a novel image analysis software. J Microbiol Methods 2024; 223:106979. [PMID: 38944284 DOI: 10.1016/j.mimet.2024.106979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Given the significant impact of biofilms on human health and material corrosion, research in this field urgently needs more accessible techniques to facilitate the testing of new control agents and general understanding of biofilm biology. Microtiter plates offer a convenient format for standardized evaluations, including high-throughput assays of alternative treatments and molecular modulators. This study introduces a novel Biofilm Analysis Software (BAS) for quantifying biofilms from microtiter plate images. We focused on early biofilm growth stages and compared BAS quantification to common techniques: direct turbidity measurement, intrinsic fluorescence detection linked to pyoverdine production, and standard crystal violet staining which enables image analysis and optical density measurement. We also assessed their sensitivity for detecting subtle growth effects caused by cyclic AMP and gentamicin. Our results show that BAS image analysis is at least as sensitive as the standard method of spectrophotometrically quantifying the crystal violet retained by biofilms. Furthermore, we demonstrated that bacteria adhered after short incubations (from 10 min to 4 h), isolated from planktonic populations by a simple rinse, can be monitored until their growth is detectable by intrinsic fluorescence, BAS analysis, or resolubilized crystal violet. These procedures are widely accessible for many laboratories, including those with limited resources, as they do not require a spectrophotometer or other specialized equipment.
Collapse
Affiliation(s)
- Anderson J Castilla-Sedano
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru
| | - José Zapana-García
- Biomedical Engineering Program PUCP-UPCH, Pontificia Universidad Católica del Perú, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Erika Valdivia-Del Águila
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru
| | - Pierre G Padilla-Huamantinco
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru
| | - Daniel G Guerra
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín De Porres, Lima 15102, Peru.
| |
Collapse
|
14
|
Dong PT, Shi W, He X, Borisy GG. Adhesive interactions within microbial consortia can be differentiated at the single-cell level through expansion microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600639. [PMID: 38979233 PMCID: PMC11230439 DOI: 10.1101/2024.06.25.600639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Investigating microbe-microbe interactions at the single-cell level is critical to unraveling the ecology and dynamics of microbial communities. In many situations, microbes assemble themselves into densely packed multi-species biofilms. The density and complexity pose acute difficulties for visualizing individual cells and analyzing their interactions. Here, we address this problem through an unconventional application of expansion microscopy, which allows for the 'decrowding' of individual bacterial cells within a multispecies community. Expansion microscopy generally has been carried out under isotropic expansion conditions and used as a resolution-enhancing method. In our variation of expansion microscopy, we carry out expansion under heterotropic conditions; that is, we expand the space between bacterial cells but not the space within individual cells. The separation of individual bacterial cells from each other reflects the competition between the expansion force pulling them apart and the adhesion force holding them together. We employed heterotropic expansion microscopy to study the relative strength of adhesion in model biofilm communities. These included mono and dual-species Streptococcus biofilms, and a three-species synthetic community (Fusobacterium nucleatum, Streptococcus mutans, and Streptococcus sanguinis) under conditions that facilitated interspecies coaggregation. Using adhesion mutants, we investigated the interplay between F. nucleatum outer membrane protein RadD and different Streptococcus species. We also examined the Schaalia-TM7 epibiont association. Quantitative proximity analysis was used to evaluate the separation of individual microbial members. Our study demonstrates that heterotropic expansion microscopy can 'decrowd' dense biofilm communities, improve visualization of individual bacterial members, and enable analysis of microbe-microbe adhesive interactions at the single-cell level.
Collapse
Affiliation(s)
- Pu-Ting Dong
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA 02142, USA
| | - Wenyuan Shi
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA 02142, USA
| | - Xuesong He
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA 02142, USA
| | - Gary G. Borisy
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA 02142, USA
| |
Collapse
|
15
|
Bjerg CSB, Poehlein A, Bömeke M, Himmelbach A, Schramm A, Brüggemann H. Increased biofilm formation in dual-strain compared to single-strain communities of Cutibacterium acnes. Sci Rep 2024; 14:14547. [PMID: 38914744 PMCID: PMC11196685 DOI: 10.1038/s41598-024-65348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Cutibacterium acnes is a known opportunistic pathogen in orthopedic implant-associated infections (OIAIs). The species of C. acnes comprises distinct phylotypes. Previous studies suggested that C. acnes can cause single- as well as multi-typic infections, i.e. infections caused by multiple strains of different phylotypes. However, it is not known if different C. acnes phylotypes are organized in a complex biofilm community, which could constitute a multicellular strategy to increase biofilm strength and persistency. Here, the interactions of two C. acnes strains belonging to phylotypes IB and II were determined in co-culture experiments. No adverse interactions between the strains were observed in liquid culture or on agar plates; instead, biofilm formation in both microtiter plates and on titanium discs was significantly increased when combining both strains. Fluorescence in situ hybridization showed that both strains co-occurred throughout the biofilm. Transcriptome analyses revealed strain-specific alterations of gene expression in biofilm-embedded cells compared to planktonic growth, in particular affecting genes involved in carbon and amino acid metabolism. Overall, our results provide first insights into the nature of dual-type biofilms of C. acnes, suggesting that strains belonging to different phylotypes can form biofilms together with additive effects. The findings might influence the perception of C. acnes OIAIs in terms of diagnosis and treatment.
Collapse
Affiliation(s)
- Cecilie Scavenius Brønnum Bjerg
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Mechthild Bömeke
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Schramm
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Holger Brüggemann
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
16
|
Ren Z, Li D, Zhang Z, Sun W, Liu G. Enhancing the relative abundance of comammox nitrospira in ammonia oxidizer community decreases N 2O emission in nitrification exponentially. CHEMOSPHERE 2024; 356:141883. [PMID: 38583528 DOI: 10.1016/j.chemosphere.2024.141883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Comammox Nitrospira and canonical ammonia-oxidizing bacteria (cAOB) generally coexist in activated sludge. In present study, the effect of comammox Nitrospira on N2O production during nitrification of activated sludge was investigated. Comammox Nitrospira and cAOB were separately enriched in two nitrifying reactors, with respective relative abundance of approximately 98% in ammonia oxidizer community. The N2O emission factor (EF) of nitrification in comammox Nitrospira dominated reactor was 0.35%, consistently lower than that (2.2%) in cAOB dominated reactor. When increasing the relative abundance of comammox Nitrospira in ammonia oxidizer community, the N2O EF of nitrification decreased exponentially, which suggested that comammox Nitrospira not only decreased N2O production directly but also might have reduced N2O yield by cAOB. When cAOB dominated the ammonia oxidizer community of sludge, decreasing pH to 6.3, lowering DO to less than 0.5 mg/L, and increasing nitrite concentration enhanced N2O EF dramatically. When comammox Nitrospira became the dominant ammonia oxidizer, however, the N2O EF correlated to nitrite insignificantly and a low DO of 0.2 mg/L and weakly acidic pH (6.3) decreased N2O EF by approximately 70% and 60%, respectively. These results imply that enhancing the relative abundance of comammox Nitrospira in sludge is an effective way to reducing N2O emissions and can also offset the promoting effects of acidic pH, low DO, and high nitrite concentration on N2O production during nitrification.
Collapse
Affiliation(s)
- Zhichang Ren
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou 510632, And Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Deyong Li
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou 510632, And Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Zhuang Zhang
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou 510632, And Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Guoqiang Liu
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou 510632, And Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
17
|
Knobloch S, Skirnisdóttir S, Dubois M, Mayolle L, Kolypczuk L, Leroi F, Leeper A, Passerini D, Marteinsson VÞ. The gut microbiome of farmed Arctic char ( Salvelinus alpinus) is shaped by feeding stage and nutrient presence. FEMS MICROBES 2024; 5:xtae011. [PMID: 38745980 PMCID: PMC11092275 DOI: 10.1093/femsmc/xtae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiome plays an important role in maintaining health and productivity of farmed fish. However, the functional role of most gut microorganisms remains unknown. Identifying the stable members of the gut microbiota and understanding their functional roles could aid in the selection of positive traits or act as a proxy for fish health in aquaculture. Here, we analyse the gut microbial community of farmed juvenile Arctic char (Salvelinus alpinus) and reconstruct the metabolic potential of its main symbionts. The gut microbiota of Arctic char undergoes a succession in community composition during the first weeks post-hatch, with a decrease in Shannon diversity and the establishment of three dominant bacterial taxa. The genome of the most abundant bacterium, a Mycoplasma sp., shows adaptation to rapid growth in the nutrient-rich gut environment. The second most abundant taxon, a Brevinema sp., has versatile metabolic potential, including genes involved in host mucin degradation and utilization. However, during periods of absent gut content, a Ruminococcaceae bacterium becomes dominant, possibly outgrowing all other bacteria through the production of secondary metabolites involved in quorum sensing and cross-inhibition while benefiting the host through short-chain fatty acid production. Whereas Mycoplasma is often present as a symbiont in farmed salmonids, we show that the Ruminococcaceae species is also detected in wild Arctic char, suggesting a close evolutionary relationship between the host and this symbiotic bacterium.
Collapse
Affiliation(s)
- Stephen Knobloch
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Department of Food Technology, University of Applied Sciences Fulda, Leipziger Strasse 123, 36037 Fulda, Germany
| | | | - Marianne Dubois
- ESBS/University of Strasbourg, 300 Bd Sébastien Brant, 67085 Strasbourg, France
| | - Lucie Mayolle
- University of Technology of Compiègne, Rue Roger Couttolenc, 60203 Compiègne, France
| | - Laetitia Kolypczuk
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Françoise Leroi
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Alexandra Leeper
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Arboretveien 6, 1430 Ås, Norway
- Iceland Ocean Cluster, Department of Research and Innovation, Grandagarður 16, 101 Reykjavík, Iceland
| | - Delphine Passerini
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Viggó Þ Marteinsson
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Sæmundargata 2, 101 Reykjavik, Iceland
| |
Collapse
|
18
|
Arêdes DS, Rios T, Carvalho-Kelly LF, Braz V, Araripe LO, Bruno RV, Meyer-Fernandes JR, Ramos I, Gondim KC. Deficiency of Brummer lipase disturbs lipid mobilization and locomotion, and impairs reproduction due to defects in the eggshell ultrastructure in the insect vector Rhodnius prolixus. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159442. [PMID: 38042331 DOI: 10.1016/j.bbalip.2023.159442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Rhodnius prolixus is a hematophagous insect, which feeds on large and infrequent blood meals, and is a vector of trypanosomatids that cause Chagas disease. After feeding, lipids derived from blood meal are stored in the fat body as triacylglycerol, which is recruited under conditions of energy demand by lipolysis, where the first step is catalyzed by the Brummer lipase (Bmm), whose orthologue in mammals is the adipose triglyceride lipase (ATGL). Here, we investigated the roles of Bmm in adult Rhodnius prolixus under starvation, and after feeding. Its gene (RhoprBmm) was expressed in all the analyzed insect organs, and its transcript levels in the fat body were not altered by nutritional status. RNAi-mediated knockdown of RhoprBmm caused triacylglycerol retention in the fat body during starvation, resulting in larger lipid droplets and lower ATP levels compared to control females. The silenced females showed decreased flight capacity and locomotor activity. When RhoprBmm knockdown occurred before the blood meal and the insects were fed, the females laid fewer eggs, which collapsed and showed low hatching rates. Their hemolymph had reduced diacylglycerol content and vitellogenin concentration. The chorion (eggshell) of their eggs had no difference in hydrocarbon amounts or in dityrosine crosslinking levels compared to control eggs. However, it showed ultrastructural defects. These results demonstrated that Bmm activity is important not only to guarantee lipid mobilization to maintain energy homeostasis during starvation, but also for the production of viable eggs after a blood meal, by somehow contributing to the right formation of the egg chorion.
Collapse
Affiliation(s)
- Daniela Saar Arêdes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamara Rios
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Valdir Braz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana O Araripe
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil
| | - Rafaela V Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem - INCT-BEB/CNPq, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Brazil.
| |
Collapse
|
19
|
Minero GA, Møllebjerg A, Thiesen C, Johansen M, Jørgensen N, Birkedal V, Otzen DE, Meyer R. Extracellular G-quadruplexes and Z-DNA protect biofilms from DNase I, and G-quadruplexes form a DNAzyme with peroxidase activity. Nucleic Acids Res 2024; 52:1575-1590. [PMID: 38296834 PMCID: PMC10939358 DOI: 10.1093/nar/gkae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Many bacteria form biofilms to protect themselves from predators or stressful environmental conditions. In the biofilm, bacteria are embedded in a protective extracellular matrix composed of polysaccharides, proteins and extracellular DNA (eDNA). eDNA most often is released from lysed bacteria or host mammalian cells, and it is the only matrix component most biofilms appear to have in common. However, little is known about the form DNA takes in the extracellular space, and how different non-canonical DNA structures such as Z-DNA or G-quadruplexes might contribute to its function in the biofilm. The aim of this study was to determine if non-canonical DNA structures form in eDNA-rich staphylococcal biofilms, and if these structures protect the biofilm from degradation by nucleases. We grew Staphylococcus epidermidis biofilms in laboratory media supplemented with hemin and NaCl to stabilize secondary DNA structures and visualized their location by immunolabelling and fluorescence microscopy. We furthermore visualized the macroscopic biofilm structure by optical coherence tomography. We developed assays to quantify degradation of Z-DNA and G-quadruplex DNA oligos by different nucleases, and subsequently investigated how these enzymes affected eDNA in the biofilms. Z-DNA and G-quadruplex DNA were abundant in the biofilm matrix, and were often present in a web-like structures. In vitro, the structures did not form in the absence of NaCl or mechanical shaking during biofilm growth, or in bacterial strains deficient in eDNA or exopolysaccharide production. We thus infer that eDNA and polysaccharides interact, leading to non-canonical DNA structures under mechanical stress when stabilized by salt. We also confirmed that G-quadruplex DNA and Z-DNA was present in biofilms from infected implants in a murine implant-associated osteomyelitis model. Mammalian DNase I lacked activity against Z-DNA and G-quadruplex DNA, while Micrococcal nuclease could degrade G-quadruplex DNA and S1 Aspergillus nuclease could degrade Z-DNA. Micrococcal nuclease, which originates from Staphylococcus aureus, may thus be key for dispersal of biofilm in staphylococci. In addition to its structural role, we show for the first time that the eDNA in biofilms forms a DNAzyme with peroxidase-like activity in the presence of hemin. While peroxidases are part of host defenses against pathogens, we now show that biofilms can possess intrinsic peroxidase activity in the extracellular matrix.
Collapse
Affiliation(s)
| | - Andreas Møllebjerg
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Celine Thiesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Mikkel Illemann Johansen
- Department Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens bvld 99, 8200 Aarhus N, Denmark
| | - Nis Pedersen Jørgensen
- Department Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens bvld 99, 8200 Aarhus N, Denmark
| | - Victoria Birkedal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
- Department of Biology, Aarhus University, Ny Munkegade 114, 8000 Aarhus, Denmark
| |
Collapse
|
20
|
Coves X, Mamat U, Conchillo-Solé O, Huedo P, Bravo M, Gómez AC, Krohn I, Streit WR, Schaible UE, Gibert I, Daura X, Yero D. The Mla system and its role in maintaining outer membrane barrier function in Stenotrophomonas maltophilia. Front Cell Infect Microbiol 2024; 14:1346565. [PMID: 38469346 PMCID: PMC10925693 DOI: 10.3389/fcimb.2024.1346565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Stenotrophomonas maltophilia are ubiquitous Gram-negative bacteria found in both natural and clinical environments. It is a remarkably adaptable species capable of thriving in various environments, thanks to the plasticity of its genome and a diverse array of genes that encode a wide range of functions. Among these functions, one notable trait is its remarkable ability to resist various antimicrobial agents, primarily through mechanisms that regulate the diffusion across cell membranes. We have investigated the Mla ABC transport system of S. maltophilia, which in other Gram-negative bacteria is known to transport phospholipids across the periplasm and is involved in maintaining outer membrane homeostasis. First, we structurally and functionally characterized the periplasmic substrate-binding protein MlaC, which determines the specificity of this system. The predicted structure of the S. maltophilia MlaC protein revealed a hydrophobic cavity of sufficient size to accommodate the phospholipids commonly found in this species. Moreover, recombinant MlaC produced heterologously demonstrated the ability to bind phospholipids. Gene knockout experiments in S. maltophilia K279a revealed that the Mla system is involved in baseline resistance to antimicrobial and antibiofilm agents, especially those with divalent-cation chelating activity. Co-culture experiments with Pseudomonas aeruginosa also showed a significant contribution of this system to the cooperation between both species in the formation of polymicrobial biofilms. As suggested for other Gram-negative pathogenic microorganisms, this system emerges as an appealing target for potential combined antimicrobial therapies.
Collapse
Affiliation(s)
- Xavier Coves
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Leibniz Research Alliance INFECTIONS, Borstel, Germany
| | - Oscar Conchillo-Solé
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Pol Huedo
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Marc Bravo
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Andromeda-Celeste Gómez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Ines Krohn
- Department of Microbiology and Biotechnology, University Institute of Plant Science and Microbiology, of Hamburg, Hamburg, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, University Institute of Plant Science and Microbiology, of Hamburg, Hamburg, Germany
| | - Ulrich E. Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Leibniz Research Alliance INFECTIONS, Borstel, Germany
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, Spain
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
21
|
Loewe MF, Doll-Nikutta K, Stiesch M, Schwestka-Polly R. Biofilm volume and acidification within initial biofilms formed in situ on buccally and palatally exposed bracket material. J Orofac Orthop 2024:10.1007/s00056-024-00515-4. [PMID: 38409443 DOI: 10.1007/s00056-024-00515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/22/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE Acidification by bacterial biofilms at the bracket/tooth interface is one of the most common problems in fixed orthodontic treatments, which can lead to white spot lesions (WSL) and caries. As lingual brackets were shown to exhibit reduced WSL formation clinically, the aim of this in situ study was to compare initial intraoral biofilm formation and acidification on bracket-like specimens placed buccally and palatally in the upper jaw as a possible cause for this observation. METHODS Intraoral biofilm was collected from splints equipped with buccally and palatally exposed test specimens, which were worn by 12 volunteers for a total of 48 h. The test specimens consisted of standard bracket material cylinders on top of a hydroxyapatite disc to represent the bracket/tooth interface. They were analyzed for three-dimensional biofilm volume and live/dead distribution by fluorescence staining and confocal laser scanning microscopy as well as for acidification by fluorescence-based pH ratiometry. RESULTS Similar general biofilm morphology with regard to volume and viability could be detected for buccally and palatally exposed specimens. For pH values, biofilms from both positions showed increased acidification at the bottom layer. Interestingly, the pH value at the top layers of the biofilms was slightly lower on palatally than on buccally exposed specimens, which may likely be due to anatomic conditions. CONCLUSION Based on the results of this study, initial intraoral biofilm formation and acidification is almost similar on the bracket material/biomimetic tooth interface when placed buccally or palatally in the upper jaw. As lingual brackets were shown to exhibit reduced WSL formation clinically, future studies should investigate further factors like bracket geometry.
Collapse
Affiliation(s)
- Micha Frederic Loewe
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany.
| | - Katharina Doll-Nikutta
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Rainer Schwestka-Polly
- Department of Orthodontics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
22
|
Del Rey YC, Schramm A, L. Meyer R, Lund MB, Schlafer S. Combined pH ratiometry and fluorescence lectin-binding analysis (pH-FLBA) for microscopy-based analyses of biofilm pH and matrix carbohydrates. Appl Environ Microbiol 2024; 90:e0200723. [PMID: 38265212 PMCID: PMC10880593 DOI: 10.1128/aem.02007-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024] Open
Abstract
Bacterial biofilms have a complex and heterogeneous three-dimensional architecture that is characterized by chemically and structurally distinct microenvironments. Confocal microscopy-based pH ratiometry and fluorescence lectin-binding analysis (FLBA) are well-established methods to characterize pH developments and the carbohydrate matrix architecture of biofilms at the microscale. Here, we developed a combined analysis, pH-FLBA, to concomitantly map biofilm pH and the distribution of matrix carbohydrates in bacterial biofilms while preserving the biofilm microarchitecture. As a proof of principle, the relationship between pH and the presence of galactose- and fucose-containing matrix components was investigated in dental biofilms grown with and without sucrose. The pH response to a sucrose challenge was monitored in different areas at the biofilm base using the ratiometric pH-sensitive dye C-SNARF-4. Thereafter, the fucose- and galactose-specific fluorescently labeled lectins Aleuria aurantia lectin (AAL) and Morus nigra agglutinin G (MNA-G) were used to visualize carbohydrate matrix components in the same biofilm areas and their immediate surroundings. Sucrose during growth significantly decreased biofilm pH (P < 0.05) and increased the amounts of both MNA-G- and AAL-targeted matrix carbohydrates (P < 0.05). Moreover, it modulated the biofilm composition towards a less diverse community dominated by streptococci, as determined by 16S rRNA gene sequencing. Altogether, these results suggest that the production of galactose- and fucose-containing matrix carbohydrates is related to streptococcal metabolism and, thereby, pH profiles in dental biofilms. In conclusion, pH-FLBA using lectins with different carbohydrate specificities is a useful method to investigate the association between biofilm pH and the complex carbohydrate architecture of bacterial biofilms.IMPORTANCEBiofilm pH is a key regulating factor in several biological and biochemical processes in environmental, industrial, and medical biofilms. At the microscale, microbial biofilms are characterized by steep pH gradients and an extracellular matrix rich in carbohydrate components with diffusion-modifying properties that contribute to bacterial acid-base metabolism. Here, we propose a combined analysis of pH ratiometry and fluorescence lectin-binding analysis, pH-FLBA, to concomitantly investigate the matrix architecture and pH developments in microbial biofilms, using complex saliva-derived biofilms as an example. Spatiotemporal changes in biofilm pH are monitored non-invasively over time by pH ratiometry, while FLBA with lectins of different carbohydrate specificities allows mapping the distribution of multiple relevant matrix components in the same biofilm areas. As the biofilm structure is preserved, pH-FLBA can be used to investigate the in situ relationship between the biofilm matrix architecture and biofilm pH in complex multispecies biofilms.
Collapse
Affiliation(s)
- Yumi C. Del Rey
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Rikke L. Meyer
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Marie Braad Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Sebastian Schlafer
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Yang N, Røder HL, Wicaksono WA, Wassermann B, Russel J, Li X, Nesme J, Berg G, Sørensen SJ, Burmølle M. Interspecific interactions facilitate keystone species in a multispecies biofilm that promotes plant growth. THE ISME JOURNAL 2024; 18:wrae012. [PMID: 38365935 PMCID: PMC10938371 DOI: 10.1093/ismejo/wrae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
Microorganisms colonizing plant roots co-exist in complex, spatially structured multispecies biofilm communities. However, little is known about microbial interactions and the underlying spatial organization within biofilm communities established on plant roots. Here, a well-established four-species biofilm model (Stenotrophomonas rhizophila, Paenibacillus amylolyticus, Microbacterium oxydans, and Xanthomonas retroflexus, termed as SPMX) was applied to Arabidopsis roots to study the impact of multispecies biofilm on plant growth and the community spatial dynamics on the roots. SPMX co-culture notably promoted root development and plant biomass. Co-cultured SPMX increased root colonization and formed multispecies biofilms, structurally different from those formed by monocultures. By combining 16S rRNA gene amplicon sequencing and fluorescence in situ hybridization with confocal laser scanning microscopy, we found that the composition and spatial organization of the four-species biofilm significantly changed over time. Monoculture P. amylolyticus colonized plant roots poorly, but its population and root colonization were highly enhanced when residing in the four-species biofilm. Exclusion of P. amylolyticus from the community reduced overall biofilm production and root colonization of the three species, resulting in the loss of the plant growth-promoting effects. Combined with spatial analysis, this led to identification of P. amylolyticus as a keystone species. Our findings highlight that weak root colonizers may benefit from mutualistic interactions in complex communities and hereby become important keystone species impacting community spatial organization and function. This work expands the knowledge on spatial organization uncovering interspecific interactions in multispecies biofilm communities on plant roots, beneficial for harnessing microbial mutualism promoting plant growth.
Collapse
Affiliation(s)
- Nan Yang
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Henriette L Røder
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
- Section for Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen 2100, Denmark
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz 8010, Austria
| | - Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Graz 8010, Austria
| | - Jakob Russel
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Xuanji Li
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz 8010, Austria
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
24
|
Kirilova M, Topalova Y, Velkova L, Dolashki A, Kaynarov D, Daskalova E, Zheleva N. Antibacterial Action of Protein Fraction Isolated from Rapana venosa Hemolymph against Escherichia coli NBIMCC 8785. Pharmaceuticals (Basel) 2024; 17:68. [PMID: 38256901 PMCID: PMC10821198 DOI: 10.3390/ph17010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Natural products and especially those from marine organisms are being intensively explored as an alternative to synthetic antibiotics. However, the exact mechanisms of their action are not yet well understood. The molecular masses of components in the hemolymph fraction with MW 50-100 kDa from Rapana venosa were determined using ImageQuant™ TL v8.2.0 software based on electrophoretic analysis. Mainly, three types of compounds with antibacterial potential were identified, namely proteins with MW at 50.230 kDa, 62.100 kDa and 93.088 kDa that were homologous to peroxidase-like protein, aplicyanin A and L-amino acid oxidase and functional units with MW 50 kDa from R. venous hemocyanin. Data for their antibacterial effect on Escherichia coli NBIMCC 8785 were obtained by CTC/DAPI-based fluorescent analysis (analysis based on the use of a functional fluorescence probe). The fluorescent analyses demonstrated that a 50% concentration of the fraction with MW 50-100 kDa was able to eliminate 99% of the live bacteria. The antimicrobial effect was detectable even at a 1% concentration of the active compounds. The bacteria in this case had reduced metabolic activity and a 24% decreased size. The fraction had superior action compared with another mollusc product-snail slime-which killed 60% of the E. coli NBIMCC 8785 cells at a 50% concentration and had no effect at a 1% concentration. The obtained results demonstrate the high potential of the fraction with MW 50-100 kDa from R. venosa to eliminate and suppress the development of Escherichia coli NBIMCC 8785 bacteria and could be applied as an appropriate component of therapeutics with the potential to replace antibiotics to avoid the development of antibiotic resistance.
Collapse
Affiliation(s)
- Mihaela Kirilova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (Y.T.)
- Center of Competence “Clean Technologies for Sustainable Environment—Water, Waste, Energy for Circular Economy”, 1000 Sofia, Bulgaria;
| | - Yana Topalova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (Y.T.)
- Center of Competence “Clean Technologies for Sustainable Environment—Water, Waste, Energy for Circular Economy”, 1000 Sofia, Bulgaria;
| | - Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.)
| | - Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.)
| | - Dimitar Kaynarov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.)
| | - Elmira Daskalova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (Y.T.)
| | - Nellie Zheleva
- Center of Competence “Clean Technologies for Sustainable Environment—Water, Waste, Energy for Circular Economy”, 1000 Sofia, Bulgaria;
| |
Collapse
|
25
|
Dukanovic Rikvold P, Skov Hansen LB, Meyer RL, Jørgensen MR, Tiwari MK, Schlafer S. The Effect of Enzymatic Treatment with Mutanase, Beta-Glucanase, and DNase on a Saliva-Derived Biofilm Model. Caries Res 2023; 58:68-76. [PMID: 38154453 PMCID: PMC10997270 DOI: 10.1159/000535980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023] Open
Abstract
INTRODUCTION The dental biofilm matrix is an important determinant of virulence for caries development and comprises a variety of extracellular polymeric substances that contribute to biofilm stability. Enzymes that break down matrix components may be a promising approach to caries control, and in light of the compositional complexity of the dental biofilm matrix, treatment with multiple enzymes may enhance the reduction of biofilm formation compared to single enzyme therapy. The present study investigated the effect of the three matrix-degrading enzymes mutanase, beta-glucanase, and DNase, applied separately or in combinations, on biofilm prevention and removal in a saliva-derived in vitro-grown model. METHODS Biofilms were treated during growth to assess biofilm prevention or after 24 h of growth to assess biofilm removal by the enzymes. Biofilms were quantified by crystal violet staining and impedance-based real-time cell analysis, and the biofilm structure was visualized by confocal microscopy and staining of extracellular DNA (eDNA) and polysaccharides. RESULTS The in vitro model was dominated by Streptococcus spp., as determined by 16S rRNA gene amplicon sequencing. All tested enzymes and combinations had a significant effect on biofilm prevention, with reductions of >90% for mutanase and all combinations including mutanase. Combined application of DNase and beta-glucanase resulted in an additive effect (81.0% ± 1.3% SD vs. 36.9% ± 21.9% SD and 48.2% ± 14.9% SD). For biofilm removal, significant reductions of up to 73.2% ± 5.5% SD were achieved for combinations including mutanase, whereas treatment with DNase had no effect. Glucans, but not eDNA decreased in abundance upon treatment with all three enzymes. CONCLUSION Multi-enzyme treatment is a promising approach to dental biofilm control that needs to be validated in more diverse biofilms.
Collapse
Affiliation(s)
- Pernille Dukanovic Rikvold
- Department of Dentistry and Oral Health, Section for Oral Ecology, Cariology, Faculty of Health, Aarhus University, Aarhus, Denmark
- Novozymes A/S, Lyngby, Denmark
| | | | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Aarhus, Denmark
| | | | | | - Sebastian Schlafer
- Department of Dentistry and Oral Health, Section for Oral Ecology, Cariology, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Petriglieri F, Kondrotaite Z, Singleton C, Nierychlo M, Dueholm MKD, Nielsen PH. A comprehensive overview of the Chloroflexota community in wastewater treatment plants worldwide. mSystems 2023; 8:e0066723. [PMID: 37992299 PMCID: PMC10746286 DOI: 10.1128/msystems.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023] Open
Abstract
IMPORTANCE Chloroflexota are often abundant members of the biomass in wastewater treatment plants (WWTPs) worldwide, typically with a filamentous morphology, forming the backbones of the activated sludge floc. However, their overgrowth can often cause operational issues connected to poor settling or foaming, impairing effluent quality and increasing operational costs. Despite their importance, few Chloroflexota genera have been characterized so far. Here, we present a comprehensive overview of Chloroflexota abundant in WWTPs worldwide and an in-depth characterization of their morphology, phylogeny, and ecophysiology, obtaining a broad understanding of their ecological role in activated sludge.
Collapse
Affiliation(s)
- Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Zivile Kondrotaite
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caitlin Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten K. D. Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H. Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
27
|
Riva A, Rasoulimehrabani H, Cruz-Rubio JM, Schnorr SL, von Baeckmann C, Inan D, Nikolov G, Herbold CW, Hausmann B, Pjevac P, Schintlmeister A, Spittler A, Palatinszky M, Kadunic A, Hieger N, Del Favero G, von Bergen M, Jehmlich N, Watzka M, Lee KS, Wiesenbauer J, Khadem S, Viernstein H, Stocker R, Wagner M, Kaiser C, Richter A, Kleitz F, Berry D. Identification of inulin-responsive bacteria in the gut microbiota via multi-modal activity-based sorting. Nat Commun 2023; 14:8210. [PMID: 38097563 PMCID: PMC10721620 DOI: 10.1038/s41467-023-43448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Prebiotics are defined as non-digestible dietary components that promote the growth of beneficial gut microorganisms. In many cases, however, this capability is not systematically evaluated. Here, we develop a methodology for determining prebiotic-responsive bacteria using the popular dietary supplement inulin. We first identify microbes with a capacity to bind inulin using mesoporous silica nanoparticles functionalized with inulin. 16S rRNA gene amplicon sequencing of sorted cells revealed that the ability to bind inulin was widespread in the microbiota. We further evaluate which taxa are metabolically stimulated by inulin and find that diverse taxa from the phyla Firmicutes and Actinobacteria respond to inulin, and several isolates of these taxa can degrade inulin. Incubation with another prebiotic, xylooligosaccharides (XOS), in contrast, shows a more robust bifidogenic effect. Interestingly, the Coriobacteriia Eggerthella lenta and Gordonibacter urolithinfaciens are indirectly stimulated by the inulin degradation process, expanding our knowledge of inulin-responsive bacteria.
Collapse
Affiliation(s)
- Alessandra Riva
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Chair of Nutrition and Immunology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Hamid Rasoulimehrabani
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - José Manuel Cruz-Rubio
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Stephanie L Schnorr
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Cornelia von Baeckmann
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Deniz Inan
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Georgi Nikolov
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry and Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Márton Palatinszky
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Aida Kadunic
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Norbert Hieger
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research, Department of Molecular Systems Biology, Leipzig, Germany
| | - Nico Jehmlich
- Helmholtz Centre for Environmental Research, Department of Molecular Systems Biology, Leipzig, Germany
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Kang Soo Lee
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Julia Wiesenbauer
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Sanaz Khadem
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Roman Stocker
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Elahinik A, Li L, Pabst M, Abbas B, Xevgenos D, van Loosdrecht MCM, Pronk M. Aerobic granular sludge phosphate removal using glucose. WATER RESEARCH 2023; 247:120776. [PMID: 37898002 DOI: 10.1016/j.watres.2023.120776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Enhanced biological phosphate removal and aerobic sludge granulation are commonly studied with fatty acids as substrate. Fermentative substrates such as glucose have received limited attention. In this work, glucose conversion by aerobic granular sludge and its impact on phosphate removal was studied. Long-term stable phosphate removal and successful granulation were achieved. Glucose was rapidly taken up (273 mg/gVSS/h) at the start of the anaerobic phase, while phosphate was released during the full anaerobic phase. Some lactate was produced during glucose consumption, which was anaerobically consumed once glucose was depleted. The phosphate release appeared to be directly proportional to the uptake of lactate. The ratio of phosphorus released to glucose carbon taken up over the full anaerobic phase was 0.25 Pmol/Cmol. Along with glucose and lactate uptake in the anaerobic phase, poly‑hydroxy-alkanoates and glycogen storage were observed. There was a linear correlation between glucose consumption and lactate formation. While lactate accounted for approximately 89 % of the observed products in the bulk liquid, minor quantities of formate (5 %), propionate (4 %), and acetate (3 %) were also detected (mass fraction). Formate was not consumed anaerobically. Quantitative fluorescence in-situ hybridization (qFISH) revealed that polyphosphate accumulating organisms (PAO) accounted for 61 ± 15 % of the total biovolume. Metagenome evaluation of the biomass indicated a high abundance of Micropruina and Ca. Accumulibacter in the system, which was in accordance with the microscopic observations and the protein mass fraction from metaproteome analysis. Anaerobic conversions were evaluated based on theoretical ATP balances to provide the substrate distribution amongst the dominant genera. This research shows that aerobic granular sludge technology can be applied to glucose-containing effluents and that glucose is a suitable substrate for achieving phosphate removal. The results also show that for fermentable substrates a microbial community consisting of fermentative organisms and PAO develop.
Collapse
Affiliation(s)
- Ali Elahinik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, the Netherlands.
| | - Linghang Li
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, the Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, the Netherlands
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, the Netherlands
| | - Dimitrios Xevgenos
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629HZ, the Netherlands; Royal HaskoningDHV, Laan 1914 no 35, Amersfoort 3800AL, the Netherlands
| |
Collapse
|
29
|
Schaible GA, Jay ZJ, Cliff J, Schulz F, Gauvin C, Goudeau D, Malmstrom RR, Emil Ruff S, Edgcomb V, Hatzenpichler R. Multicellular magnetotactic bacterial consortia are metabolically differentiated and not clonal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568837. [PMID: 38076927 PMCID: PMC10705294 DOI: 10.1101/2023.11.27.568837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing eight new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nano-scale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal non-canonical amino acid tagging (BONCAT) we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.
Collapse
Affiliation(s)
- George A. Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
| | - Zackary J. Jay
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - John Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - Colin Gauvin
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - Rex R. Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, CA, 94720
| | - S. Emil Ruff
- Ecosystems Center and Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543
| | | | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
30
|
Kostešić E, Mitrović M, Kajan K, Marković T, Hausmann B, Orlić S, Pjevac P. Microbial Diversity and Activity of Biofilms from Geothermal Springs in Croatia. MICROBIAL ECOLOGY 2023; 86:2305-2319. [PMID: 37209180 PMCID: PMC10640420 DOI: 10.1007/s00248-023-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Hot spring biofilms are stable, highly complex microbial structures. They form at dynamic redox and light gradients and are composed of microorganisms adapted to the extreme temperatures and fluctuating geochemical conditions of geothermal environments. In Croatia, a large number of poorly investigated geothermal springs host biofilm communities. Here, we investigated the microbial community composition of biofilms collected over several seasons at 12 geothermal springs and wells. We found biofilm microbial communities to be temporally stable and highly dominated by Cyanobacteria in all but one high-temperature sampling site (Bizovac well). Of the physiochemical parameters recorded, temperature had the strongest influence on biofilm microbial community composition. Besides Cyanobacteria, the biofilms were mainly inhabited by Chloroflexota, Gammaproteobacteria, and Bacteroidota. In a series of incubations with Cyanobacteria-dominated biofilms from Tuhelj spring and Chloroflexota- and Pseudomonadota-dominated biofilms from Bizovac well, we stimulated either chemoorganotrophic or chemolithotrophic community members, to determine the fraction of microorganisms dependent on organic carbon (in situ predominantly produced via photosynthesis) versus energy derived from geochemical redox gradients (here simulated by addition of thiosulfate). We found surprisingly similar levels of activity in response to all substrates in these two distinct biofilm communities, and observed microbial community composition and hot spring geochemistry to be poor predictors of microbial activity in the study systems.
Collapse
Affiliation(s)
- Ema Kostešić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maja Mitrović
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Katarina Kajan
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| | | | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Sandi Orlić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
31
|
Urasaki K, Li YY, Kubota K. A novel method for the whole-cell detection of environmental microorganisms using hemin and tyramide signal amplification (Hemin-TSA) with a desired fluorescent dye. Syst Appl Microbiol 2023; 46:126473. [PMID: 37977040 DOI: 10.1016/j.syapm.2023.126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
A method called hemin-tyramide signal amplification (Hemin-TSA) was developed for visualization of environmental microorganisms using hemin and tyramide signal amplification. In Hemin-TSA, hemin, which has peroxidase activity, is bound to microbial cells, and a desired fluorescent dye is deposited on the microbial cells by a hemin-catalyzed TSA reaction. The protocol was initially optimized in terms of hemin concentration, hemin binding time and repeated reaction times of TSA. Hemin-TSA showed a comparative or improved signal-to-noise ratio compared to DAPI staining. The shapes of fluorescent signals obtained from microbial cells were almost morphologically identical to those observed in phase contrast microscopy. Hemin-TSA staining provided more accurate cell counts than DAPI staining, especially for actively growing cells, for which two or three spotty DAPI signals were obtained from a single cell. In addition, microbial cells that were not detected by DAPI staining were detected by Hemin-TSA with fluorescein, which enabled us to avoid high non-specific fluorescence under UV excitation. The method developed in this study allows us to visually detect microbial cells in various environments with the characteristics of better cell morphological identification, improved enumeration accuracy and selectivity of fluorescent dyes.
Collapse
Affiliation(s)
- Kampachiro Urasaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
32
|
Rikvold PT, Kambourakis Johnsen K, Leonhardt D, Møllebjerg A, Nielsen SM, Skov Hansen LB, Meyer RL, Schlafer S. A New Device for In Situ Dental Biofilm Collection Additively Manufactured by Direct Metal Laser Sintering and Vat Photopolymerization. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1036-1045. [PMID: 37886402 PMCID: PMC10599433 DOI: 10.1089/3dp.2022.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Dental biofilms are complex medical biofilms that cause caries, the most prevalent disease of humankind. They are typically collected using handcrafted intraoral devices with mounted carriers for biofilm growth. As the geometry of handcrafted devices is not standardized, the shear forces acting on the biofilms and the access to salivary nutrients differ between carriers. The resulting variability in biofilm growth renders the comparison of different treatment modalities difficult. The aim of the present work was to design and validate an additively manufactured intraoral device with a dental bar produced by direct metal laser sintering and vat photopolymerized inserts with standardized geometry for the mounting of biofilm carriers. Additive manufacturing reduced the production time and cost, guaranteed an accurate fit of the devices and facilitated the handling of carriers without disturbing the biofilm. Biofilm growth was robust, with increasing thickness over time and moderate inter- and intraindividual variation (coefficients of variance 0.48-0.87). The biofilms showed the typical architecture and composition of dental biofilms, as evidenced by confocal microscopy and 16S rRNA gene sequencing. Deeper inserts offering increased protection from shear tended to increase the biofilm thickness, whereas prolonged exposure to sucrose during growth increased the biofilm volume but not the thickness. Ratiometric pH imaging revealed considerable pH variation between participants and also inside single biofilms. Intraoral devices for biofilm collection constitute a new application for medical additive manufacturing and offer the best possible basis for studying the influence of different treatment modalities on biofilm growth, composition, and virulence. The Clinical Trial Registration number is: 1-10-72-193-20.
Collapse
Affiliation(s)
- Pernille Thestrup Rikvold
- Section for Oral Ecology and Caries Control, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Karina Kambourakis Johnsen
- Section for Oral Ecology and Caries Control, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Dirk Leonhardt
- Central Laboratory, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Andreas Møllebjerg
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology, Aarhus University, Aarhus, Denmark
| | - Signe Maria Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology, Aarhus University, Aarhus, Denmark
| | | | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology, Aarhus University, Aarhus, Denmark
| | - Sebastian Schlafer
- Section for Oral Ecology and Caries Control, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
33
|
Vishwakarma V, Kandasamy J, Vigneswaran S. Surface Treatment of Polymer Membranes for Effective Biofouling Control. MEMBRANES 2023; 13:736. [PMID: 37623797 PMCID: PMC10456448 DOI: 10.3390/membranes13080736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Membrane biofouling is the consequence of the deposition of microorganisms on polymer membrane surfaces. Polymeric membranes have garnered more attention for filtering and purifying water because of their ease of handling, low cost, effortless surface modification, and mechanical, chemical, and thermal properties. The sizes of the pores in the membranes enable micro- and nanofiltration, ultrafiltration, and reverse osmosis. Commonly used polymers for water filter membranes are polyvinyl chloride (PVA), polyvinylidene fluoride (PVDF), polyamide (PA), polyethylene glycol (PEG), polyethersulfone (PES), polyimide (PI), polyacrylonitrile (PAN), polyvinyl alcohol (PA), poly (methacrylic acid) (PMAA), polyaniline nanoparticles (PANI), poly (arylene ether ketone) (PAEK), polyvinylidene fluoride polysulfone (PSF), poly (ether imide) (PEI), etc. However, these polymer membranes are often susceptible to biofouling because of inorganic, organic, and microbial fouling, which deteriorates the membranes and minimizes their lives, and increases operating costs. Biofouling infection on polymer membranes is responsible for many chronic diseases in humans. This contamination cannot be eliminated by periodic pre- or post-treatment processes using biocides and other chemicals. For this reason, it is imperative to modify polymer membranes by surface treatments to enhance their efficiency and longevity. The main objective of this manuscript is to discuss application-oriented approaches to control biofouling on polymer membranes using various surface treatment methods, including nanomaterials and fouling characterizations utilizing advanced microscopy and spectroscopy techniques.
Collapse
Affiliation(s)
- Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida 203201, India
| | - Jaya Kandasamy
- School of Civil and Environmental Engineering, University of Technology, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia;
| | - Saravanamuthu Vigneswaran
- School of Civil and Environmental Engineering, University of Technology, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia;
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, N-1432 Ås, Norway
| |
Collapse
|
34
|
Garrido-Amador P, Stortenbeker N, Wessels HJCT, Speth DR, Garcia-Heredia I, Kartal B. Enrichment and characterization of a nitric oxide-reducing microbial community in a continuous bioreactor. Nat Microbiol 2023; 8:1574-1586. [PMID: 37429908 PMCID: PMC10390337 DOI: 10.1038/s41564-023-01425-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/14/2023] [Indexed: 07/12/2023]
Abstract
Nitric oxide (NO) is a highly reactive and climate-active molecule and a key intermediate in the microbial nitrogen cycle. Despite its role in the evolution of denitrification and aerobic respiration, high redox potential and capacity to sustain microbial growth, our understanding of NO-reducing microorganisms remains limited due to the absence of NO-reducing microbial cultures obtained directly from the environment using NO as a substrate. Here, using a continuous bioreactor and a constant supply of NO as the sole electron acceptor, we enriched and characterized a microbial community dominated by two previously unknown microorganisms that grow at nanomolar NO concentrations and survive high amounts (>6 µM) of this toxic gas, reducing it to N2 with little to non-detectable production of the greenhouse gas nitrous oxide. These results provide insight into the physiology of NO-reducing microorganisms, which have pivotal roles in the control of climate-active gases, waste removal, and evolution of nitrate and oxygen respiration.
Collapse
Affiliation(s)
| | | | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daan R Speth
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Boran Kartal
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- School of Science, Constructor University, Bremen, Germany.
| |
Collapse
|
35
|
De Paula IF, Santos-Araujo S, Majerowicz D, Ramos I, Gondim KC. Knockdown of carnitine palmitoyltransferase I (CPT1) reduces fat body lipid mobilization and resistance to starvation in the insect vector Rhodnius prolixus. Front Physiol 2023; 14:1201670. [PMID: 37469565 PMCID: PMC10352773 DOI: 10.3389/fphys.2023.1201670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
The energy stored in fatty acids is essential for several critical activities of insects, such as embryogenesis, oviposition, and flight. Rhodnius prolixus is an obligatory hematophagous hemipteran and vector of Chagas disease, and it feeds infrequently on very large blood meals. As digestion slowly occurs, lipids are synthesized and accumulate in the fat body, mainly as triacylglycerol, in lipid droplets. Between feeding bouts, proper mobilization and oxidation of stored lipids are crucial for survival, and released fatty acids are oxidized by mitochondrial β-oxidation. Carnitine palmitoyl transferase I (CPT1) is the enzyme that catalyzes the first reaction of the carnitine shuttle, where the activated fatty acid, acyl-CoA, is converted to acyl-carnitine to be transported into the mitochondria. Here, we investigated the role of CPT1 in lipid metabolism and in resistance to starvation in Rhodnius prolixus. The expression of the CPT1 gene (RhoprCpt1) was determined in the organs of adult females on the fourth day after a blood meal, and the flight muscle showed higher expression levels than the ovary, fat body, and anterior and posterior midgut. RhoprCpt1 expression in the fat body dramatically decreased after feeding, and started to increase again 10 days later, but no changes were observed in the flight muscle. β-oxidation rates were determined in flight muscle and fat body homogenates with the use of 3H-palmitate, and in unfed females, they were higher in the flight muscle. In the fat body, lipid oxidation activity did not show any variation before or at different days after feeding, and was not affected by the presence of etomoxir or malonyl-CoA. We used RNAi and generated RhoprCPT1-deficient insects, which surprisingly did not show a decrease in measured 3H-palmitate oxidation rates. However, the RNAi-knockdown females presented increased amounts of triacylglycerol and larger lipid droplets in the fat body, but not in the flight muscle. When subjected to starvation, these insects had a shorter lifespan. These results indicated that the inhibition of RhoprCpt1 expression compromised lipid mobilization and affected resistance to starvation.
Collapse
Affiliation(s)
- Iron F. De Paula
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samara Santos-Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C. Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Mhade S, Kaushik KS. Tools of the Trade: Image Analysis Programs for Confocal Laser-Scanning Microscopy Studies of Biofilms and Considerations for Their Use by Experimental Researchers. ACS OMEGA 2023; 8:20163-20177. [PMID: 37332792 PMCID: PMC10268615 DOI: 10.1021/acsomega.2c07255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/11/2023] [Indexed: 06/20/2023]
Abstract
Confocal laser-scanning microscopy (CLSM) is the bedrock of the microscopic visualization of biofilms. Previous applications of CLSM in biofilm studies have largely focused on observations of bacterial or fungal elements of biofilms, often seen as aggregates or mats of cells. However, the field of biofilm research is moving beyond qualitative observations alone, toward the quantitative analysis of the structural and functional features of biofilms, across clinical, environmental, and laboratory conditions. In recent times, several image analysis programs have been developed to extract and quantify biofilm properties from confocal micrographs. These tools not only vary in their scope and relevance to the specific biofilm features under study but also with respect to the user interface, compatibility with operating systems, and raw image requirements. Understanding these considerations is important when selecting tools for quantitative biofilm analysis, including at the initial experimental stages of image acquisition. In this review, we provide an overview of image analysis programs for confocal micrographs of biofilms, with a focus on tool selection and image acquisition parameters that are relevant for experimental researchers to ensure reliability and compatibility with downstream image processing.
Collapse
Affiliation(s)
- Shreeya Mhade
- Department
of Biotechnology, Savitribai Phule Pune
University, Pune 411007, India
| | - Karishma S Kaushik
- Department
of Biotechnology, Savitribai Phule Pune
University, Pune 411007, India
| |
Collapse
|
37
|
Almeida-Oliveira F, Santos-Araujo S, Carvalho-Kelly LF, Macedo-Silva A, Meyer-Fernandes JR, Gondim KC, Majerowicz D. ATP synthase affects lipid metabolism in the kissing bug Rhodnius prolixus beyond its role in energy metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023:103956. [PMID: 37196906 DOI: 10.1016/j.ibmb.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
ATP synthase plays an essential role in mitochondrial metabolism, being responsible for the production of ATP in oxidative phosphorylation. However, recent results have shown that it may also be present in the cell membrane, involved in lipophorin binding to its receptors. Here, we used a functional genetics approach to investigate the roles of ATP synthase in lipid metabolism in the kissing bug Rhodnius prolixus. The genome of R. prolixus encodes five nucleotide-binding domain genes of the ATP synthase alpha and beta family, including the alpha and beta subunits of ATP synthase (RpATPSynA and RpATPSynB), and the catalytic and non-catalytic subunits of the vacuolar ATPase (RpVha68 and RpVha55). These genes were expressed in all analyzed organs, being their expression highest in the ovaries, fat body and flight muscle. Feeding did not regulate the expression of ATP synthases in the posterior midgut or fat body. Furthermore, ATP synthase is present in the fat body's mitochondrial and membrane fractions. RpATPSynB knockdown by RNAi impaired ovarian development and reduced egg-laying by approximately 85%. Furthermore, the lack of RpATPSynB increased the amount of triacylglycerol in the fat body due to increased de novo fatty acid synthesis and reduced transfer of lipids to lipophorin. RpATPSynA knockdown had similar effects, with altered ovarian development, reduced oviposition, and triacylglycerol accumulation in the fat body. However, ATP synthases knockdown had only a slight effect on the amount of ATP in the fat body. These results support the hypothesis that ATP synthase has a direct role in lipid metabolism and lipophorin physiology, which are not directly due to changes in energy metabolism.
Collapse
Affiliation(s)
| | - Samara Santos-Araujo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | | | - Alessa Macedo-Silva
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Brazil
| | | | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - David Majerowicz
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil; Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
38
|
Yotinov I, Belouhova M, Todorova Y, Schneider I, Topalova Y. Influence of the azo-dye amaranth on the trophic structure of activated sludge in a model experiment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27406-2. [PMID: 37171727 DOI: 10.1007/s11356-023-27406-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/30/2023] [Indexed: 05/13/2023]
Abstract
The textile industry generates significant amounts of wastewater containing high concentrations of azo dyes. An important point in the process of purification of azo dyes is their influence on the activated sludge (AS) in wastewater treatment plants. Azo dyes, such as amaranth, play the role of xenobiotics. This article seeks to answer the question of how organisms manage to respond to xenobiotics remains very important and open, i.e., how they will react to toxic conditions. The aim of this research was to study how these changes are expressed in terms of the different trophic levels of AS. In our experiment, it was found that the dominant trophic units are significantly changed due to the xenobiotic entering the system. The data reveal the significant development of the bacterial segment (genus Pseudomonas and azo-degrading bacteria) at times of large amaranth removal. In the most active phase of amaranth biodetoxification (48 h), the culturable bacteria of the genus Pseudomonas change by about 40%, while the azo-degrading bacteria change by about 2%. Fauna organisms have a sharp change in the dominant groups-from attached and crawling ciliates and testate amoebas to the mass development of small and large flagellates. This is of great importance because micro- and metafauna play an important role in the detoxification process by ingesting some of the xenobiotics. This role is expressed in the fact that after dying, macro-organisms release this xenobiotic in small portions so that it can then be effectively degraded by adapting to the amaranth biodegradation bacteria. In this study, it is clear that all these events lead to a decline in the quality of AS. But on the other hand, these allow AS to survive as a microbial community, and the fauna segment does not disappear completely.
Collapse
Affiliation(s)
- Ivaylo Yotinov
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8, Dragan Tzankov Blvd., 1164, Sofia, Bulgaria.
- Center of Competence "Clean Technologies for Sustainable Environment-Water, Waste, Energy for Circular Economy", 1000, Sofia, Bulgaria.
| | - Mihaela Belouhova
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8, Dragan Tzankov Blvd., 1164, Sofia, Bulgaria
- Center of Competence "Clean Technologies for Sustainable Environment-Water, Waste, Energy for Circular Economy", 1000, Sofia, Bulgaria
| | - Yovana Todorova
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8, Dragan Tzankov Blvd., 1164, Sofia, Bulgaria
- Center of Competence "Clean Technologies for Sustainable Environment-Water, Waste, Energy for Circular Economy", 1000, Sofia, Bulgaria
| | - Irina Schneider
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8, Dragan Tzankov Blvd., 1164, Sofia, Bulgaria
- Center of Competence "Clean Technologies for Sustainable Environment-Water, Waste, Energy for Circular Economy", 1000, Sofia, Bulgaria
| | - Yana Topalova
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8, Dragan Tzankov Blvd., 1164, Sofia, Bulgaria
- Center of Competence "Clean Technologies for Sustainable Environment-Water, Waste, Energy for Circular Economy", 1000, Sofia, Bulgaria
| |
Collapse
|
39
|
Braz V, Selim L, Gomes G, Costa ML, Mermelstein C, Gondim KC. Blood meal digestion and changes in lipid reserves are associated with the post-ecdysis development of the flight muscle and ovary in young adults of Rhodnius prolixus. JOURNAL OF INSECT PHYSIOLOGY 2023; 146:104492. [PMID: 36801397 DOI: 10.1016/j.jinsphys.2023.104492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Rhodnius prolixus is a hemimetabolous, hematophagous insect, and both nymphs and adults feed exclusively on blood. The blood feeding triggers the molting process and, after five nymphal instar stages, the insect reaches the winged adult form. After the final ecdysis, the young adult still has a lot of blood in the midgut and, thus, we have investigated the changes in protein and lipid contents that are observed in the insect organs as digestion continues after molting. Total midgut protein content decreased during the days after the ecdysis, and digestion was finished fifteen days later. Simultaneously, proteins and triacylglycerols present in the fat body were mobilized, and their contents decreased, whereas they increased in both the ovary and the flight muscle. In order to evaluate the activity of de novo lipogenesis of each organ, the fat body, ovary and flight muscle were incubated in the presence of radiolabeled acetate, and the fat body showed the highest efficiency rate (around 47%) to convert the taken up acetate into lipids. The levels of de novo lipid synthesis in the flight muscle and ovary were very low. When 3H-palmitate was injected into the young females, its incorporation by the flight muscle was higher than by the ovary or the fat body. In the flight muscle, the 3H-palmitate was similarly distributed amongst triacylglycerols, phospholipids, diacylglycerols and free fatty acids, while in the ovary and fat body it was mostly found in triacylglycerols and phospholipids. The flight muscle was not fully developed after the molt, and at day two no lipid droplets were observed. At day five, very small lipid droplets were present, and they increased in size up to day fifteen. The diameter of the muscle fibers also increased from day two to fifteen, as well as the internuclear distance, indicating that muscle hypertrophy occurred along these days. The lipid droplets from the fat body showed a different pattern, and their diameter decreased after day two, but started to increase again at day ten. The data presented herein describes the development of the flight muscle after the final ecdysis, and modifications that occur regarding lipid stores. We show that, after molting, substrates that are present in the midgut and fat body are mobilized and directed to the ovary and flight muscle, for the adults of R. prolixus to be ready to feed and reproduce.
Collapse
Affiliation(s)
- Valdir Braz
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lukas Selim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geyse Gomes
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, UFRJ Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manoel Luis Costa
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, UFRJ Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, UFRJ Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
40
|
Del Rey YC, Rikvold PD, Johnsen KK, Schlafer S. Clinical Trial Data on the Mechanical Removal of 14-Day-Old Dental Plaque Using Accelerated Micro-Droplets of Air and Water (Airfloss). DATA 2023. [DOI: 10.3390/data8040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Novel strategies to combat dental biofilms aim at reducing biofilm stability with the ultimate goal of facilitating mechanical cleaning. To test the stability of dental biofilms, they need to be subjected to a defined mechanical stress. Here, we employed an oral care device (Airfloss) that emits microbursts of compressed air and water to apply a defined mechanical shear to 14-day-old dental plaque in 20 healthy participants with no signs of oral diseases (clinical trial no. NCT05082103). Exclusion criteria included pregnant or nursing women, users of oral prostheses, retainers or orthodontic appliances, and recent antimicrobial or anti-inflammatory therapy. Plaque accumulation, before and after treatment, was assessed using fluorescence images of disclosed dental plaque on the central incisor, first premolar, and first molar in the third quadrant (120 images). For each tooth, the pre- and post-treatment plaque percentage index (PPI) and Turesky modification of the Quigley-Hein plaque index (TM-QHPI) were recorded. The mean TM-QHPI significantly decreased after treatment (p = 0.03; one-sample sign test), but no significant difference between the mean pre- and post-treatment PPI was observed (p = 0.09; one-sample t-test). These data are of value for researchers that seek to apply a defined mechanical shear to remove and/or disrupt dental biofilms.
Collapse
|
41
|
Del Rey YC, Rikvold PD, Johnsen KK, Schlafer S. A fast and reliable method for semi-automated planimetric quantification of dental plaque in clinical trials. J Clin Periodontol 2023; 50:331-338. [PMID: 36345833 DOI: 10.1111/jcpe.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
AIM To develop a simple and reproducible method for semi-automated planimetric quantification of dental plaque. MATERIALS AND METHODS Plaque from 20 healthy volunteers was disclosed using erythrosine, and fluorescence images of the first incisors, first premolars, and first molars were recorded after 1, 7, and 14 days of de novo plaque formation. The planimetric plaque index (PPI) was determined using a semi-automated threshold-based image segmentation algorithm and compared with manually determined PPI and the Turesky modification of the Quigley-Hein plaque index (TM-QHPI). The decrease of tooth autofluorescence in plaque-covered areas was quantified as an index of plaque thickness (TI). Data were analysed by analysis of variance (ANOVA) and Pearson correlations. RESULTS The high contrast between teeth, disclosed plaque, and soft tissues in fluorescence images allowed for a fast threshold-based image segmentation. Semi-automated PPI is strongly correlated with manual planimetry (r = 0.92; p < .001) and TM-QHPI recordings (r = 0.88; p < .001), and may exhibit a higher discriminatory power than TM-QHPI due to its continuous scale. TI values corresponded to optically perceived plaque thickness, and no differences were observed over time (p > .05, ANOVA). CONCLUSIONS The proposed semi-automated planimetric analysis based on fluorescence images is a simple and efficient method for dental plaque quantification in multiple images with reduced human input.
Collapse
Affiliation(s)
- Yumi Chokyu Del Rey
- Department of Dentistry and Oral Health, Section for Oral Ecology and Caries Control, Aarhus University, Aarhus, Denmark
| | - Pernille Dukanovic Rikvold
- Department of Dentistry and Oral Health, Section for Oral Ecology and Caries Control, Aarhus University, Aarhus, Denmark
| | - Karina Kambourakis Johnsen
- Department of Dentistry and Oral Health, Section for Oral Ecology and Caries Control, Aarhus University, Aarhus, Denmark
| | - Sebastian Schlafer
- Department of Dentistry and Oral Health, Section for Oral Ecology and Caries Control, Aarhus University, Aarhus, Denmark
| |
Collapse
|
42
|
Matute JD, Duan J, Flak MB, Griebel P, Tascon-Arcila JA, Doms S, Hanley T, Antanaviciute A, Gundrum J, Mark Welch JL, Sit B, Abtahi S, Fuhler GM, Grootjans J, Tran F, Stengel ST, White JR, Krupka N, Haller D, Clare S, Lawley TD, Kaser A, Simmons A, Glickman JN, Bry L, Rosenstiel P, Borisy G, Waldor MK, Baines JF, Turner JR, Blumberg RS. Intelectin-1 binds and alters the localization of the mucus barrier-modifying bacterium Akkermansia muciniphila. J Exp Med 2023; 220:e20211938. [PMID: 36413219 PMCID: PMC9683900 DOI: 10.1084/jem.20211938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/06/2022] [Accepted: 10/13/2022] [Indexed: 01/25/2023] Open
Abstract
Intelectin-1 (ITLN1) is a lectin secreted by intestinal epithelial cells (IECs) and upregulated in human ulcerative colitis (UC). We investigated how ITLN1 production is regulated in IECs and the biological effects of ITLN1 at the host-microbiota interface using mouse models. Our data show that ITLN1 upregulation in IECs from UC patients is a consequence of activating the unfolded protein response. Analysis of microbes coated by ITLN1 in vivo revealed a restricted subset of microorganisms, including the mucolytic bacterium Akkermansia muciniphila. Mice overexpressing intestinal ITLN1 exhibited decreased inner colonic mucus layer thickness and closer apposition of A. muciniphila to the epithelial cell surface, similar to alterations reported in UC. The changes in the inner mucus layer were microbiota and A. muciniphila dependent and associated with enhanced sensitivity to chemically induced and T cell-mediated colitis. We conclude that by determining the localization of a select group of bacteria to the mucus layer, ITLN1 modifies this critical barrier. Together, these findings may explain the impact of ITLN1 dysregulation on UC pathogenesis.
Collapse
Affiliation(s)
- Juan D. Matute
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jinzhi Duan
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Magdalena B. Flak
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Paul Griebel
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jose A. Tascon-Arcila
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Shauni Doms
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Thomas Hanley
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | - Brandon Sit
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA
- Department of Microbiology, Harvard Medical School, Boston, MA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Shabnam Abtahi
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Gwenny M. Fuhler
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Joep Grootjans
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology and Metabolism & Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stephanie T. Stengel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Niklas Krupka
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Dirk Haller
- Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, and Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jonathan N. Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA
- Department of Microbiology, Harvard Medical School, Boston, MA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - John F. Baines
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
43
|
Yung PYM, Tan SM. Targeted Enrichment of Low-Abundance and Uncharacterized Taxon Members in Complex Microbial Community with Primer-Free FISH Probes Designed from Next Generation Sequencing Dataset. Methods Mol Biol 2023; 2649:303-315. [PMID: 37258870 DOI: 10.1007/978-1-0716-3072-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Methods to obtain high-quality assembled genomic information of rare and unclassified member species in complex microbial communities remain a high priority in microbial ecology. Additionally, the supplementation of three-dimensional spatial information that highlights the morphology and spatial interaction would provide additional insights to its ecological role in the community. Fluorescent in-situ hybridization (FISH) coupling with fluorescence-activated cell sorting (FACS) is a powerful tool that enables the detection, visualization, and separation of low-abundance microbial members in samples containing complex microbial compositions. Here, we have described the workflow from designing the appropriate FISH probes from metagenomics or metatranscriptomics datasets to the preparation and treatment of samples to be used in FISH-FACS procedures.
Collapse
Affiliation(s)
- Pui Yi Maria Yung
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University (NTU), Singapore, Singapore
| | - Shi Ming Tan
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University (NTU), Singapore, Singapore
| |
Collapse
|
44
|
Cesaria M, Alfinito E, Arima V, Bianco M, Cataldo R. MEED: A novel robust contrast enhancement procedure yielding highly-convergent thresholding of biofilm images. Comput Biol Med 2022; 151:106217. [PMID: 36306585 DOI: 10.1016/j.compbiomed.2022.106217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/04/2022] [Accepted: 10/15/2022] [Indexed: 12/27/2022]
Abstract
Morphological and statistical investigation of biofilm images may be even more critical than the image acquisition itself, in particular in the presence of morphologically complex distributions, due to the unavoidable impact of the measurement technique too. Hence, digital image pre-processing is mandatory for reliable feature extraction and enhancement preliminary to segmentation. Also, pattern recognition in automated deep learning (both supervised and unsupervised) models often requires a preliminary effective contrast-enhancement. However, no universal consensus exists on the optimal contrast enhancement approach. This paper presents and discusses a new general, robust, reproducible, accurate and easy to implement contrast enhancement procedure, briefly named MEED-procedure, able to work on images with different bacterial coverages and biofilm structures, coming from different imaging instrumentations (herein stereomicroscope and transmission microscope). It exploits a proper succession of basic morphological operations (erosion and dilation) and a horizontal line structuring element, to minimize the impact on size and shape of the even finer bacterial features. It systematically enhances the objects of interest, without histogram stretching and/or undesirable artifacts yielded by common automated methods. The quality of the MEED-procedure is ascertained by segmentation tests which demonstrate its robustness regarding the determination of threshold and convergence of the thresholding algorithm. Extensive validation tests over a rich image database, comparison with the literature and comprehensive discussion of the conceptual background support the superiority of the MEED-procedure over the existing methods and demonstrate it is not a routine application of morphological operators.
Collapse
Affiliation(s)
- Maura Cesaria
- University of Salento-Department of Mathematics and Physics "Ennio De Giorgi"- c/o Campus Ecotekne - Lecce, Italy.
| | - Eleonora Alfinito
- University of Salento-Department of Mathematics and Physics "Ennio De Giorgi"- c/o Campus Ecotekne - Lecce, Italy
| | - Valentina Arima
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Monica Bianco
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Rosella Cataldo
- University of Salento-Department of Mathematics and Physics "Ennio De Giorgi"- c/o Campus Ecotekne - Lecce, Italy.
| |
Collapse
|
45
|
De La Fuente MJ, De la Iglesia R, Farias L, Glasner B, Torres-Rojas F, Muñoz D, Daims H, Lukumbuzya M, Vargas IT. Enhanced nitrogen and carbon removal in natural seawater by electrochemical enrichment in a bioelectrochemical reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116294. [PMID: 36261994 DOI: 10.1016/j.jenvman.2022.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Municipal and industrial wastewater discharges in coastal and marine environments are of major concern due to their high carbon and nitrogen loads and the resulted phenomenon of eutrophication. Bioelectrochemical reactors (BERs) for simultaneous nitrogen and carbon removal have gained attention owing to their cost efficiency and versatility, as well as the possibility of electrochemical enrich specific groups. This study presented a scalable two-chamber BERs using graphite granules as electrode material. BERs were inoculated and operated for 37 days using natural seawater with high concentrations of ammonium and acetate. The BERs demonstrated a maximum current density of 0.9 A m-3 and removal rates of 7.5 mg NH4+-N L-1 d-1 and 99.5 mg L-1 d-1 for total organic carbon (TOC). Removals observed for NH4+-N and TOC were 96.2% and 68.7%, respectively. The results of nutrient removal (i.e., ammonium, nitrate, nitrite and TOC) and microbial characterization (i.e., next-generation sequencing of the 16S rRNA gene and fluorescence in situ hybridization) showed that BERs operated with a poised cathode at -260 mV (vs. Ag/AgCl) significantly enriched nitrifying microorganisms in the anode and denitrifying microorganisms and planctomycetes in the cathode. Interestingly, the electrochemical enrichment did not increase the total number of microorganisms in the formed biofilms but controlled their composition. Thus, this work shows the first successful attempt to electrochemically enrich marine nitrifying and denitrifying microorganisms and presents a technique to accelerate the start-up process of BERs to remove dissolved inorganic nitrogen and total organic carbon from seawater.
Collapse
Affiliation(s)
- María José De La Fuente
- Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Pontificia Universidad Católica de Chile. Santiago, Chile; Marine Energy Research & Innovation Center (MERIC). Santiago, Chile
| | - Rodrigo De la Iglesia
- Marine Energy Research & Innovation Center (MERIC). Santiago, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile. Santiago, Chile
| | - Laura Farias
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanografía, Universidad de Concepción. Concepción, Chile; Centro de Ciencia del Clima y la Resiliencia (CR)2, Blanco Encalada, 2002, piso 4. Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile. Santiago, Chile
| | - Benjamin Glasner
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile. Santiago, Chile
| | - Felipe Torres-Rojas
- Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Pontificia Universidad Católica de Chile. Santiago, Chile
| | - Diana Muñoz
- Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Pontificia Universidad Católica de Chile. Santiago, Chile; CEDEUS, Centro de Desarrollo Urbano Sustentable, Santiago, Chile
| | - Holger Daims
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; University of Vienna, The Comammox Research Platform, Vienna, Austria
| | - Michael Lukumbuzya
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Pontificia Universidad Católica de Chile. Santiago, Chile; Marine Energy Research & Innovation Center (MERIC). Santiago, Chile; CEDEUS, Centro de Desarrollo Urbano Sustentable, Santiago, Chile.
| |
Collapse
|
46
|
Bayer N, Hausmann B, Pandey RV, Deckert F, Gail LM, Strobl J, Pjevac P, Krall C, Unterluggauer L, Redl A, Bachmayr V, Kleissl L, Nehr M, Kirkegaard R, Makristathis A, Watzenboeck ML, Nica R, Staud C, Hammerl L, Wohlfarth P, Ecker RC, Knapp S, Rabitsch W, Berry D, Stary G. Disturbances in microbial skin recolonization and cutaneous immune response following allogeneic stem cell transfer. Leukemia 2022; 36:2705-2714. [PMID: 36224329 DOI: 10.1038/s41375-022-01712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
The composition of the gut microbiome influences the clinical course after allogeneic hematopoietic stem cell transplantation (HSCT), but little is known about the relevance of skin microorganisms. In a single-center, observational study, we recruited a cohort of 50 patients before undergoing conditioning treatment and took both stool and skin samples up to one year after HSCT. We could confirm intestinal dysbiosis following HSCT and report that the skin microbiome is likewise perturbed in HSCT-recipients. Overall bacterial colonization of the skin was decreased after conditioning. Particularly patients that developed acute skin graft-versus-host disease (aGVHD) presented with an overabundance of Staphylococcus spp. In addition, a loss in alpha diversity was indicative of aGVHD development already before disease onset and correlated with disease severity. Further, co-localization of CD45+ leukocytes and staphylococci was observed in the skin of aGVHD patients even before disease development and paralleled with upregulated genes required for antigen-presentation in mononuclear phagocytes. Overall, our data reveal disturbances of the skin microbiome as well as cutaneous immune response in HSCT recipients with changes associated with cutaneous aGVHD.
Collapse
Affiliation(s)
- Nadine Bayer
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Ram Vinay Pandey
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Florian Deckert
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Laura-Marie Gail
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030, Vienna, Austria
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Christoph Krall
- Centre for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, 1090, Vienna, Austria
| | - Luisa Unterluggauer
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Anna Redl
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Victoria Bachmayr
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria
| | - Marion Nehr
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Rasmus Kirkegaard
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030, Vienna, Austria
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Athanasios Makristathis
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Martin L Watzenboeck
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Clement Staud
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Lukas Hammerl
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Philipp Wohlfarth
- Department of Internal Medicine I, Hematopoietic Stem Cell Transplantation Unit, Medical University of Vienna, 1090, Vienna, Austria
| | - Rupert C Ecker
- TissueGnostics GmbH, 1020, Vienna, Austria
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Sylvia Knapp
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Werner Rabitsch
- Department of Internal Medicine I, Hematopoietic Stem Cell Transplantation Unit, Medical University of Vienna, 1090, Vienna, Austria
| | - David Berry
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030, Vienna, Austria
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria.
| |
Collapse
|
47
|
Romeu MJ, Lima M, Gomes LC, de Jong ED, Morais J, Vasconcelos V, Pereira MFR, Soares OSGP, Sjollema J, Mergulhão FJ. The Use of 3D Optical Coherence Tomography to Analyze the Architecture of Cyanobacterial Biofilms Formed on a Carbon Nanotube Composite. Polymers (Basel) 2022; 14:polym14204410. [PMID: 36297988 PMCID: PMC9607013 DOI: 10.3390/polym14204410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The development of environmentally friendly antifouling strategies for marine applications is of paramount importance, and the fabrication of innovative nanocomposite coatings is a promising approach. Moreover, since Optical Coherence Tomography (OCT) is a powerful imaging technique in biofilm science, the improvement of its analytical power is required to better evaluate the biofilm structure under different scenarios. In this study, the effect of carbon nanotube (CNT)-modified surfaces in cyanobacterial biofilm development was assessed over a long-term assay under controlled hydrodynamic conditions. Their impact on the cyanobacterial biofilm architecture was evaluated by novel parameters obtained from three-dimensional (3D) OCT analysis, such as the contour coefficient, total biofilm volume, biovolume, volume of non-connected pores, and the average size of non-connected pores. The results showed that CNTs incorporated into a commercially used epoxy resin (CNT composite) had a higher antifouling effect at the biofilm maturation stage compared to pristine epoxy resin. Along with a delay in biofilm development, a decrease in biofilm wet weight, thickness, and biovolume was also achieved with the CNT composite compared to epoxy resin and glass (control surfaces). Additionally, biofilms developed on the CNT composite were smoother and presented a lower porosity and a strictly packed structure when compared with those formed on the control surfaces. The novel biofilm parameters obtained from 3D OCT imaging are extremely important when evaluating the biofilm architecture and behavior under different scenarios beyond marine applications.
Collapse
Affiliation(s)
- Maria J. Romeu
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marta Lima
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ed. D. de Jong
- Department of Biomedical Engineering, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - João Morais
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Vítor Vasconcelos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Manuel F. R. Pereira
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE–LCM—Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olívia S. G. P. Soares
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE–LCM—Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Jelmer Sjollema
- Department of Biomedical Engineering, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Filipe J. Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-225081668
| |
Collapse
|
48
|
Zhao J, Zheng M, Su Z, Liu T, Li J, Guo J, Yuan Z, Hu S. Selective Enrichment of Comammox Nitrospira in a Moving Bed Biofilm Reactor with Sufficient Oxygen Supply. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13338-13346. [PMID: 36047990 DOI: 10.1021/acs.est.2c03299] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The recent discovery of comammox (complete ammonia oxidation) Nitrospira has upended the long-held nitrification paradigm. Although comammox Nitrospira have been identified in wastewater treatment systems, the conditions for their dominance over canonical ammonia oxidizers remain unclear. Here, we report the dominance of comammox Nitrospira in a moving bed biofilm reactor (MBBR) fed with synthetic mainstream wastewater. Integrated 16S rRNA gene amplicon sequencing, fluorescence in situ hybridization (FISH), and metagenomic sequencing methods demonstrated the selective enrichment of comammox bacteria when the MBBR was operated at a dissolved oxygen (DO) concentration above 6 mg O2/L. The dominance of comammox Nitrospira over canonical ammonia oxidizers (i.e., Nitrosomonas) was attributed to the low residual ammonium concentration (0.02-0.52 mg N/L) formed in the high-DO MBBR. Two clade A comammox Nitrospira were identified, which are phylogenetically close to Candidatus Nitrospira nitrosa. Interestingly, cryosectioning-FISH showed these two comammox species spatially distributed on the surface of the biofilm. Moreover, the ammonia-oxidizing activity of comammox Nitrospira-dominated biofilms was susceptible to the oxygen supply, which dropped by half with the DO concentration decrease from 6 to 2 mg O2/L. These features collectively suggest a low apparent oxygen affinity for the comammox Nitrospira-dominated biofilms in the high-DO nitrifying MBBR.
Collapse
Affiliation(s)
- Jing Zhao
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Zicheng Su
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jie Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
49
|
Parker AE, Miller L, Adams J, Pettigrew C, Buckingham-Meyer K, Summers J, Christen A, Goeres D. Imaging and plate counting to quantify the effect of an antimicrobial: A case study of a photo-activated chlorine dioxide treatment. J Appl Microbiol 2022; 133:3413-3423. [PMID: 35973686 DOI: 10.1111/jam.15765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
AIM Assess removal versus kill efficacies of antimicrobial treatments against thick biofilms with statistical confidence. METHODS AND RESULTS A photo activated chlorine dioxide treatment (Photo ClO2 ) was tested in two independent experiments against thick (>100 μm) Pseuodmonas aeruginosa biofilms. Kill efficacy was assessed by viable plate counts. Removal efficacy was assessed by 3D confocal scanning laser microscope imaging (CSLM). Biovolumes were calculated using an image analysis approach that models the penetration limitation of the laser into thick biofilms using Beer's Law. Error bars are provided that account for the spatial correlation of the biofilm's surface. The responsiveness of the biovolumes and plate counts to the increasing contact time of Photo ClO2 were quite different, with a massive 7 log reduction in viable cells (95% CI: 6.2, 7.9]) but a more moderate 73% reduction in biovolume (95% CI: [60%, 100%]). Results are leveraged to quantitatively assess candidate CSLM experimental designs of thick biofilms . CONCLUSIONS Photo ClO2 kills but only partially removes the biofilm from the surface. To maximize statistical confidence in assessing removal, imaging experiments should use fewer pixels in each z-slice, and more importantly, at least 2 independent experiments even if there is only a single field of view in each experiment. SIGNIFICANCE AND IMPACT OF STUDY There is limited penetration depth when collecting 3D confocal images of thick biofilms. Removal can be assessed by optimally fitting Beer's Law to all of the intensities in a 3D image and by accounting for the spatial correlation of the biofilm's surface. For thick biofilms, other image analysis approaches are biased or do not provide error bars. We generate unbiased estimates of removal and assess candidate CSLM experimental designs of thick biofilms with different pixilations, numbers of fields of view and numbers of experiments using the included design tool.
Collapse
Affiliation(s)
- Albert E Parker
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.,Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA
| | - Lindsey Miller
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | | | | | | | - Jennifer Summers
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | | | - Darla Goeres
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| |
Collapse
|
50
|
Kristensen MF, Sørensen ES, Del Rey YC, Schlafer S. Prevention of Initial Bacterial Attachment by Osteopontin and Other Bioactive Milk Proteins. Biomedicines 2022; 10:biomedicines10081922. [PMID: 36009469 PMCID: PMC9405890 DOI: 10.3390/biomedicines10081922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
A considerable body of work has studied the involvement of osteopontin (OPN) in human physiology and pathology, but comparably little is known about the interaction of OPN with prokaryotic cells. Recently, bovine milk OPN has been proposed as a therapeutic agent to prevent the build-up of dental biofilms, which are responsible for the development of caries lesions. Bioactive milk proteins are among the most exciting resources for caries control, as they hamper bacterial attachment to teeth without affecting microbial homeostasis in the mouth. The present work investigated the ability of OPN to prevent the adhesion of three dental biofilm-forming bacteria to saliva-coated surfaces under shear-controlled flow conditions in comparison with the major milk proteins α-lactalbumin, β-lactoglobulin, αs1-casein, β-casein and κ-casein, as well as crude milk protein. OPN was the most effective single protein to reduce the adhesion of Actinomyces naeslundii, Lactobacillus paracasei subsp. paracasei and Streptococcus mitis. β-casein and crude milk protein also had a pronounced effect on all three species, which suggests binding to different microbial surface structures rather than the blocking of a specific bacterial adhesin. Bioactive milk proteins show potential to delay harmful biofilm formation on teeth and hence the onset of biofilm-related oral disease.
Collapse
Affiliation(s)
- Mathilde Frost Kristensen
- Department of Dentistry and Oral Health, Section for Oral Ecology and Caries Control, Aarhus University, 8000 Aarhus, Denmark
| | | | - Yumi Chokyu Del Rey
- Department of Dentistry and Oral Health, Section for Oral Ecology and Caries Control, Aarhus University, 8000 Aarhus, Denmark
| | - Sebastian Schlafer
- Department of Dentistry and Oral Health, Section for Oral Ecology and Caries Control, Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| |
Collapse
|