1
|
Karpov M, Strizhov N, Novikova L, Lobastova T, Khomutov S, Shutov A, Kazantsev A, Donova M. Pregnenolone and progesterone production from natural sterols using recombinant strain of Mycolicibacterium smegmatis mc 2 155 expressing mammalian steroidogenesis system. Microb Cell Fact 2024; 23:105. [PMID: 38594656 PMCID: PMC11005228 DOI: 10.1186/s12934-024-02385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Pregnenolone and progesterone are the life-important steroid hormones regulating essential vital functions in mammals, and widely used in different fields of medicine. Microbiological production of these compounds from sterols is based on the use of recombinant strains expressing the enzyme system cholesterol hydroxylase/C20-C22 lyase (CH/L) of mammalian steroidogenesis. However, the efficiency of the known recombinant strains is still low. New recombinant strains and combination approaches are now needed to produce these steroid hormones. RESULTS Based on Mycolicibacterium smegmatis, a recombinant strain was created that expresses the steroidogenesis system (CYP11A1, adrenodoxin reductase, adrenodoxin) of the bovine adrenal cortex. The recombinant strain transformed cholesterol and phytosterol to form progesterone among the metabolites. When 3-methoxymethyl ethers of sterols were applied as bioconversion substrates, the corresponding 3-ethers of pregnenolone and dehydroepiandrosterone (DHEA) were identified as major metabolites. Under optimized conditions, the recombinant strain produced 85.2 ± 4.7 mol % 3-methoxymethyl-pregnenolone within 48 h, while production of 3-substituted DHEA was not detected. After the 3-methoxymethyl function was deprotected by acid hydrolysis, crystalline pregnenolone was isolated in high purity (over 98%, w/w). The structures of steroids were confirmed using TLC, HPLC, MS and 1H- and 13C-NMR analyses. CONCLUSION The use of mycolicybacteria as a microbial platform for the expression of systems at the initial stage of mammalian steroidogenesis ensures the production of valuable steroid hormones-progesterone and pregnenolone from cholesterol. Selective production of pregnenolone from cholesterol is ensured by the use of 3-substituted cholesterol as a substrate and optimization of the conditions for its bioconversion. The results open the prospects for the generation of the new microbial biocatalysts capable of effectively producing value-added steroid hormones.
Collapse
Affiliation(s)
- Mikhail Karpov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia.
| | - Nicolai Strizhov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Ludmila Novikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119234, Russia
| | - Tatyana Lobastova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Sergey Khomutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Andrei Shutov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia
| | - Alexey Kazantsev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Marina Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Russia.
| |
Collapse
|
2
|
Hernández‐Fernández G, Acedos MG, García JL, Galán B. Identification of the aldolase responsible for the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one from natural sterols in Mycolicibacterium smegmatis. Microb Biotechnol 2024; 17:e14270. [PMID: 37154793 PMCID: PMC10832528 DOI: 10.1111/1751-7915.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Mycobacterial mutants blocked in ring degradation constructed to achieve C19 synthons production, also accumulate by-products such as C22 intermediates throughout an alternative pathway reducing the production yields and complicating the downstream purification processing of final products. In this work, we have identified the MSMEG_6561 gene, encoding an aldolase responsible for the transformation of 22-hydroxy-3-oxo-cholest-4-ene-24-carboxyl-CoA (22-OH-BCN-CoA) into the 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) precursor (20S)-3-oxopregn-4-ene-20-carboxaldehyde (3-OPA). The deletion of this gene increases the production yield of the C-19 steroidal synthon 4-androstene-3,17-dione (AD) from natural sterols, avoiding the production of 4-HBC as by-product and the drawbacks in the AD purification. The molar yield of AD production using the MS6039-5941-6561 triple mutant strain was checked in flasks and bioreactor improving very significantly compared with the previously described MS6039-5941 strain.
Collapse
Affiliation(s)
- Gabriel Hernández‐Fernández
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas (CSIC)MadridSpain
| | - Miguel G. Acedos
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas (CSIC)MadridSpain
| | - José L. García
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas (CSIC)MadridSpain
| | - Beatriz Galán
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas (CSIC)MadridSpain
| |
Collapse
|
3
|
Zhang Y, Xiao P, Pan D, Zhou X. New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in Mycolicibacterium and the Application of Fermentation Biotechnology in C-19 Steroid Production. Int J Mol Sci 2023; 24:ijms24065236. [PMID: 36982310 PMCID: PMC10049677 DOI: 10.3390/ijms24065236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD), and 9α-hydroxy-4-androstene-3,17-dione (9-OHAD), which belong to C-19 steroids, are critical steroid-based drug intermediates. The biotransformation of phytosterols into C-19 steroids by Mycolicibacterium cell factories is the core step in the synthesis of steroid-based drugs. The production performance of engineered mycolicibacterial strains has been effectively enhanced by sterol core metabolic modification. In recent years, research on the non-core metabolic pathway of steroids (NCMS) in mycolicibacterial strains has made significant progress. This review discusses the molecular mechanisms and metabolic modifications of NCMS for accelerating sterol uptake, regulating coenzyme I balance, promoting propionyl-CoA metabolism, reducing reactive oxygen species, and regulating energy metabolism. In addition, the recent applications of biotechnology in steroid intermediate production are summarized and compared, and the future development trend of NCMS research is discussed. This review provides powerful theoretical support for metabolic regulation in the biotransformation of phytosterols.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Peiyao Xiao
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Delong Pan
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
4
|
Yuan C, Ma Z, Li Y, Zhang J, Liu X, Han S, Du G, Shi J, Sun J, Zhang B. Production of 21-hydroxy-20-methyl-pregna-1,4-dien-3-one by modifying multiple genes in Mycolicibacterium. Appl Microbiol Biotechnol 2023; 107:1563-1574. [PMID: 36729227 DOI: 10.1007/s00253-023-12399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
C22 steroid drug intermediates are suitable for corticosteroids synthesis, and the production of C22 steroids is unsatisfactory due to the intricate steroid metabolism. Among the C22 steroids, 21-hydroxy-20-methyl-pregna-1,4-dien-3-one (1,4-HP) could be used for Δ1-steroid drug synthesis, such as prednisolone. Nevertheless, the production of 1,4-HP remains unsatisfactory. In this study, an ideal 1,4-HP producing strain was constructed. By the knockout of 3-ketosteroid-9-hydroxylase (KshA) genes and 17β-hydroxysteroid dehydrogenase (Hsd4A) gene, the steroid nucleus degradation and the accumulation of C19 steroids in Mycolicibacterium neoaurum were blocked. The mutant strain could transform phytosterols into 1,4-HP as the main product and 21-hydroxy-20-methyl-pregna-4-ene-3-one as a by-product. Subsequently, the purity of 1,4-HP improved to 95.2% by the enhancement of 3-ketosteroid-Δ1-dehydrogenase (KSTD) activity, and the production of 1,4-HP was improved by overexpressing NADH oxidase (NOX) and catalase (KATE) genes. Consequently, the yield of 1,4-HP achieved 10.5 g/L. The molar yield and the purity of 1,4-HP were optimal so far, and the production of 1,4-HP provides a new intermediate for the pharmaceutical steroid industry. KEY POINTS: • A third 3-ketosteroid-9-hydroxylase was identified in Mycolicibacterium neoaurum. • An 1,4-HP producer was constructed by KshA and Hsd4A deficiency. • The production of 1,4-HP was improved by KSTD, NOX, and KATE overexpression.
Collapse
Affiliation(s)
- Chenyang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiguo Ma
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixin Li
- Department of Biology, Waterville, ME, 04901, USA
| | - Jingxian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangcen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Suwan Han
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guilin Du
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junsong Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
The unusual convergence of steroid catabolic pathways in Mycobacterium abscessus. Proc Natl Acad Sci U S A 2022; 119:e2207505119. [PMID: 36161908 DOI: 10.1073/pnas.2207505119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium abscessus, an opportunistic pathogen responsible for pulmonary infections, contains genes predicted to encode two steroid catabolic pathways: a cholesterol catabolic pathway similar to that of Mycobacterium tuberculosis and a 4-androstenedione (4-AD) catabolic pathway. Consistent with this prediction, M. abscessus grew on both steroids. In contrast to M. tuberculosis, Rhodococcus jostii RHA1, and other Actinobacteria, the cholesterol and 4-AD catabolic gene clusters of the M. abscessus complex lack genes encoding HsaD, the meta-cleavage product (MCP) hydrolase. However, M. abscessus ATCC 19977 harbors two hsaD homologs elsewhere in its genome. Only one of the encoded enzymes detectably transformed steroid metabolites. Among tested substrates, HsaDMab and HsaDMtb of M. tuberculosis had highest substrate specificities for MCPs with partially degraded side chains thioesterified with coenzyme A (kcat/KM = 1.9 × 104 and 5.7 × 103 mM-1s-1, respectively). Consistent with a dual role in cholesterol and 4-AD catabolism, HsaDMab also transformed nonthioesterified substrates efficiently, and a ΔhsaD mutant of M. abscessus grew on neither steroid. Interestingly, both steroids prevented growth of the mutant on acetate. The ΔhsaD mutant of M. abscessus excreted cholesterol metabolites with a fully degraded side chain, while the corresponding RHA1 mutant excreted metabolites with partially degraded side chains. Finally, the ΔhsaD mutant was not viable in macrophages. Overall, our data establish that the cholesterol and 4-AD catabolic pathways of M. abscessus are unique in that they converge upstream of where this occurs in characterized steroid-catabolizing bacteria. The data further indicate that cholesterol is a substrate for intracellular bacteria and that cholesterol-dependent toxicity is not strictly dependent on coenzyme A sequestration.
Collapse
|
6
|
Yuan CY, Ma ZG, Zhang JX, Liu XC, Du GL, Sun JS, Shi JP, Zhang BG. Production of 9,21-dihydroxy-20-methyl-pregna-4-en-3-one from phytosterols in Mycobacterium neoaurum by modifying multiple genes and improving the intracellular environment. Microb Cell Fact 2021; 20:229. [PMID: 34949197 PMCID: PMC8705162 DOI: 10.1186/s12934-021-01717-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background Steroid drugs are essential for disease prevention and clinical treatment. However, due to intricated steroid structure, traditional chemical methods are rarely implemented into the whole synthetic process for generating steroid intermediates. Novel steroid drug precursors and their ideal bacterial strains for industrial production have yet to be developed. Among these, 9,21-dihydroxy-20-methyl-pregna-4-en-3-one (9-OH-4-HP) is a novel steroid drug precursor, suitable for the synthesis of corticosteroids. In this study, a combined strategy of blocking Δ1-dehydrogenation and the C19 pathway as well as improving the intracellular environment was investigated to construct an effective 9-OH-4-HP-producing strain. Results The Δ1-dehydrogenation-deficient strain of wild-type Mycobacterium neoaurum DSM 44074 produces 9-OH-4-HP with a molar yield of 4.8%. Hsd4A, encoding a β-hydroxyacyl-CoA dehydrogenase, and fadA5, encoding an acyl-CoA thiolase, were separately knocked out to block the C19 pathway in the Δ1-dehydrogenation-deficient strain. The two engineered strains were able to accumulate 0.59 g L−1 and 0.47 g L−1 9-OH-4-HP from 1 g L−1 phytosterols, respectively. Furthermore, hsd4A and fadA5 were knocked out simultaneously in the Δ1-dehydrogenation-deficient strain. The 9-OH-4-HP production from the Hsd4A and FadA5 deficient strain was 11.9% higher than that of the Hsd4A deficient strain and 40.4% higher than that of the strain with FadA5 deficiency strain, respectively. The purity of 9-OH-4-HP obtained from the Hsd4A and FadA5 deficient strain has reached 94.9%. Subsequently, the catalase katE from Mycobacterium neoaurum and an NADH oxidase, nox, from Bacillus subtilis were overexpressed to improve the intracellular environment, leading to a higher 9-OH-4-HP production. Ultimately, 9-OH-4-HP production reached 3.58 g L−1 from 5 g L−1 phytosterols, and the purity of 9-OH-4-HP improved to 97%. The final 9-OH-4-HP production strain showed the best molar yield of 85.5%, compared with the previous reported strain with 30% molar yield of 9-OH-4-HP. Conclusion KstD, Hsd4A, and FadA5 are key enzymes for phytosterol side-chain degradation in the C19 pathway. Double deletion of hsd4A and fadA5 contributes to the blockage of the C19 pathway. Improving the intracellular environment of Mycobacterium neoaurum during phytosterol bioconversion could accelerate the conversion process and enhance the productivity of target sterol derivatives. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01717-w.
Collapse
Affiliation(s)
- Chen-Yang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Guo Ma
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
| | - Jing-Xian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Cen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gui-Lin Du
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Song Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ji-Ping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bao-Guo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
8
|
López MC, Galán B, Carmona M, Navarro Llorens JM, Peretó J, Porcar M, Getino L, Olivera ER, Luengo JM, Castro L, García JL. Xerotolerance: A New Property in Exiguobacterium Genus. Microorganisms 2021; 9:2455. [PMID: 34946057 PMCID: PMC8706201 DOI: 10.3390/microorganisms9122455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
The highly xerotolerant bacterium classified as Exiguobacterium sp. Helios isolated from a solar panel in Spain showed a close relationship to Exiguobacterium sibiricum 255-15 isolated from Siberian permafrost. Xerotolerance has not been previously described as a characteristic of the extremely diverse Exiguobacterium genus, but both strains Helios and 255-15 showed higher xerotolerance than that described in the reference xerotolerant model strain Deinococcus radiodurans. Significant changes observed in the cell morphology after their desiccation suggests that the structure of cellular surface plays an important role in xerotolerance. Apart from its remarkable resistance to desiccation, Exiguobacterium sp. Helios strain shows several polyextremophilic characteristics that make it a promising chassis for biotechnological applications. Exiguobacterium sp. Helios cells produce nanoparticles of selenium in the presence of selenite linked to its resistance mechanism. Using the Lactobacillus plasmid pRCR12 that harbors a cherry marker, we have developed a transformation protocol for Exiguobacterium sp. Helios strain, being the first time that a bacterium of Exiguobacterium genus has been genetically modified. The comparison of Exiguobacterium sp. Helios and E. sibiricum 255-15 genomes revealed several interesting similarities and differences. Both strains contain a complete set of competence-related DNA transformation genes, suggesting that they might have natural competence, and an incomplete set of genes involved in sporulation; moreover, these strains not produce spores, suggesting that these genes might be involved in xerotolerance.
Collapse
Affiliation(s)
- María Castillo López
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.C.L.); (B.G.); (M.C.)
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain;
| | - Beatriz Galán
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.C.L.); (B.G.); (M.C.)
| | - Manuel Carmona
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.C.L.); (B.G.); (M.C.)
| | - Juana María Navarro Llorens
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain;
| | - Juli Peretó
- Program for Applied Systems Biology and Synthetic Biology, Instituto de Biología Integrativa de Sistemas (I2SYSBIO) (UV-CSIC), Carrer del Catedràtic Agustín Escardino Benlloch s/n, 46980 Paterna, Spain; (J.P.); (M.P.)
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100 Burjassot, Spain
| | - Manuel Porcar
- Program for Applied Systems Biology and Synthetic Biology, Instituto de Biología Integrativa de Sistemas (I2SYSBIO) (UV-CSIC), Carrer del Catedràtic Agustín Escardino Benlloch s/n, 46980 Paterna, Spain; (J.P.); (M.P.)
| | - Luis Getino
- Department of Molecular Biology, Facultades de Veterinaria y Biología, Universidad de León, 24007 León, Spain; (L.G.); (E.R.O.); (J.M.L.)
| | - Elías R. Olivera
- Department of Molecular Biology, Facultades de Veterinaria y Biología, Universidad de León, 24007 León, Spain; (L.G.); (E.R.O.); (J.M.L.)
| | - José M. Luengo
- Department of Molecular Biology, Facultades de Veterinaria y Biología, Universidad de León, 24007 León, Spain; (L.G.); (E.R.O.); (J.M.L.)
| | - Laura Castro
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, School of Experimental Sciences and Technology, Rey Juan Carlos University, 28933 Móstoles, Spain;
| | - José Luís García
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.C.L.); (B.G.); (M.C.)
- Program for Applied Systems Biology and Synthetic Biology, Instituto de Biología Integrativa de Sistemas (I2SYSBIO) (UV-CSIC), Carrer del Catedràtic Agustín Escardino Benlloch s/n, 46980 Paterna, Spain; (J.P.); (M.P.)
| |
Collapse
|
9
|
Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv 2021; 53:107860. [PMID: 34710554 DOI: 10.1016/j.biotechadv.2021.107860] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Steroid-based drugs have been developed as the second largest medical category in pharmaceutics. The well-established route of steroid industry includes two steps: the conversion of natural products with a steroid framework to steroid-based drug intermediates and the synthesis of varied steroid-based drugs from steroid-based drug intermediates. The biosynthesis of steroid-based drug intermediates from phytosterols by Mycolicibacterium cell factories bypasses the potential undersupply of diosgenin in the traditional steroid chemical industry. Moreover, the biosynthesis route shows advantages on multiple steroid-based drug intermediate products, more ecofriendly processes, and consecutive reactions carried out in one operation step and in one pot. Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD) and 9-hydroxyandrostra-4-ene-3,17-dione (9-OH-AD) are the representative steroid-based drug intermediates synthesized by mycolicibacteria. Other steroid metabolites of mycolicibacteria, like 4-androstene-17β-ol-3-one (TS), 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), 22-hydroxy-23,24-bisnorchol-1,4-diene-3-one (1,4-HBC), 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one (9-OH-HBC), 3aα-H-4α-(3'-propionic acid)-7aβ-methylhexahydro-1,5-indanedione (HIP) and 3aα-H-4α-(3'-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone-δ-lactone (HIL), also show values as steroid-based drug intermediates. To improve the bio-production efficiency of the steroid-based drug intermediates, mycolicibacterial strains and biotransformation processes have been continuously studied in the past decades. Many mycolicibacteria that accumulate steroid drug intermediates have been isolated, and subsequently optimized by conventional mutagenesis and genetic engineering. Especially, with the clarification of the mycolicibacterial steroid metabolic pathway and the developments on gene editing technologies, rational design is becoming an important measure for the construction and optimization of engineered mycolicibacteria strains that produce steroid-based drug intermediates. Hence, by reviewing researches in the past two decades, this article updates the overall process of steroid metabolism in mycolicibacteria and provides comprehensive schemes for the rational construction of mycolicibacterial strains that accumulate steroid-based drug intermediates. In addition, the special strategies for the bioconversion of highly hydrophobic steroid in aqueous media are discussed as well.
Collapse
|
10
|
Rosa TLSA, Marques MAM, DeBoard Z, Hutchins K, Silva CAA, Montague CR, Yuan T, Amaral JJ, Atella GC, Rosa PS, Mattos KA, VanderVen BC, Lahiri R, Sampson NS, Brennan PJ, Belisle JT, Pessolani MCV, Berrêdo-Pinho M. Reductive Power Generated by Mycobacterium leprae Through Cholesterol Oxidation Contributes to Lipid and ATP Synthesis. Front Cell Infect Microbiol 2021; 11:709972. [PMID: 34395315 PMCID: PMC8355898 DOI: 10.3389/fcimb.2021.709972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3β-hydroxysteroid dehydrogenase (3β-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3β-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3β-HSD activity with the 17β-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3β-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.
Collapse
Affiliation(s)
- Thabatta L S A Rosa
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Maria Angela M Marques
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Zachary DeBoard
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kelly Hutchins
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Carlos Adriano A Silva
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Christine R Montague
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| | - Tianao Yuan
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Julio J Amaral
- Laboratório de Química Biológica, Diretoria de Metrologia Aplicada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia S Rosa
- Divisão de Pesquisa e Ensino, Instituto Lauro de Souza Lima, Bauru, Brazil
| | - Katherine A Mattos
- Departmento de Controle de Qualidade, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Brian C VanderVen
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| | - Ramanuj Lahiri
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Programs, Baton Rouge, LA, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Patrick J Brennan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Maria Cristina V Pessolani
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Feller FM, Marke G, Drees SL, Wöhlbrand L, Rabus R, Philipp B. Substrate Inhibition of 5β-Δ 4-3-Ketosteroid Dehydrogenase in Sphingobium sp. Strain Chol11 Acts as Circuit Breaker During Growth With Toxic Bile Salts. Front Microbiol 2021; 12:655312. [PMID: 33868213 PMCID: PMC8044976 DOI: 10.3389/fmicb.2021.655312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
In contrast to many steroid hormones and cholesterol, mammalian bile salts are 5β-steroids, which leads to a bent structure of the steroid core. Bile salts are surface-active steroids excreted into the environment in large amounts, where they are subject to bacterial degradation. Bacterial steroid degradation is initiated by the oxidation of the A-ring leading to canonical Δ4-3-keto steroids with a double bond in the A-ring. For 5β-bile salts, this Δ4-double bond is introduced into 3-keto-bile salts by a 5β-Δ4-ketosteroid dehydrogenase (5β-Δ4-KSTD). With the Nov2c019 protein from bile-salt degrading Sphingobium sp. strain Chol11, a novel 5β-Δ4-KSTD for bile-salt degradation belonging to the Old Yellow Enzyme family was identified and named 5β-Δ4-KSTD1. By heterologous production in Escherichia coli, 5β-Δ4-KSTD function could be shown for 5β-Δ4-KSTD1 as well as the homolog CasH from bile-salt degrading Rhodococcus jostii RHA1. The deletion mutant of 5β-Δ4-kstd1 had a prolonged lag-phase with cholate as sole carbon source and, in accordance with the function of 5β-Δ4-KSTD1, showed delayed 3-ketocholate transformation. Purified 5β-Δ4-KSTD1 was specific for 5β-steroids in contrast to 5α-steroids and converted steroids with a variety of hydroxy groups regardless of the presence of a side chain. 5β-Δ4-KSTD1 showed a relatively low K m for 3-ketocholate, a very high specific activity and pronounced substrate inhibition. With respect to the toxicity of bile salts, these kinetic properties indicate that 5β-Δ4-KSTD1 can achieve fast detoxification of the detergent character as well as prevention of an overflow of the catabolic pathway in presence of increased bile-salt concentrations.
Collapse
Affiliation(s)
- Franziska M Feller
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Gina Marke
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Steffen L Drees
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Bodo Philipp
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME, Schmallenberg, Germany
| |
Collapse
|
12
|
Sun H, Yang J, He K, Wang YP, Song H. Enhancing production of 9α-hydroxy-androst-4-ene-3,17-dione (9-OHAD) from phytosterols by metabolic pathway engineering of mycobacteria. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Szulc-Kielbik I, Brzostek A, Gatkowska J, Kielbik M, Klink M. Determination of in vitro and in vivo immune response to recombinant cholesterol oxidase from Mycobacterium tuberculosis. Immunol Lett 2020; 228:103-111. [PMID: 33166528 DOI: 10.1016/j.imlet.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/02/2020] [Accepted: 11/04/2020] [Indexed: 01/10/2023]
Abstract
Cholesterol oxidase (ChoD) is an enzyme that is involved but is dispensable in the process of cholesterol degradation by Mycobacterium tuberculosis (Mtb). Interestingly, ChoD is a virulence factor of Mtb, and it strongly modulates the function of human macrophages in vitro, allowing the intracellular survival of bacteria. Here, we determined the immunogenic activity of recombinant ChoD from Mtb in a mouse model. We found that peritoneal exudate cells obtained from mice injected i.p. with ChoD but not those from mice injected with PBS responded in vitro with highly spontaneous, as well as phorbol 12-myristate 13-acetate (PMA)-stimulated, production of reactive oxygen species (ROS). However, ChoD significantly reduced the ROS response to PMA in re-stimulated cells in vitro. The cytokine secretion pattern in mice immunized s.c. with ChoD emulsified with incomplete Freund's adjuvant (IFA) showed evidence of Th2-induced or proinflammatory immune responses. The main cytokines detected in sera were interleukin (IL) 6 and 5, tumour necrosis factor α (TNF-α) and monocyte chemoattractant protein 1, while IL-2 and IL-12 as well as interferon γ were undetectable. Similarly, ChoD protein alone activated THP-1-derived macrophages to release proinflammatory IL-6, IL-8 and TNF-α, in vitro. Moreover, a statistically significant predominance of the IgG1 isotype over that of IgG2a in the sera of mice immunized with ChoD/IFA was observed. In conclusion, we demonstrated here that ChoD of Mtb is an active protein, which is able to induce the immune response both in vivo and in vitro.
Collapse
Affiliation(s)
| | - Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Justyna Gatkowska
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| |
Collapse
|
14
|
The Sterol Carrier Hydroxypropyl-β-Cyclodextrin Enhances the Metabolism of Phytosterols by Mycobacterium neoaurum. Appl Environ Microbiol 2020; 86:AEM.00441-20. [PMID: 32414803 DOI: 10.1128/aem.00441-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/13/2020] [Indexed: 01/23/2023] Open
Abstract
Androst-4-ene-3,17-dione (AD) and androst-1,4-diene-3,17-dione (ADD) are valuable steroid pharmaceutical intermediates obtained by soybean phytosterol biotransformation by Mycobacterium Cyclodextrins (CDs) are generally believed to be carriers for phytosterol delivery and can improve the production of AD and ADD due to their effects on steroid solubilization and alteration in cell wall permeability for steroids. To better understand the mechanisms of CD promotion, we performed proteomic quantification of the effects of hydroxypropyl-β-CD (HP-β-CD) on phytosterol metabolism in Mycobacterium neoaurum TCCC 11978 C2. Perturbations are observed in steroid catabolism and glucose metabolism by adding HP-β-CD in a phytosterol bioconversion system. AD and ADD, as metabolic products of phytosterol, are toxic to cells, with inhibited cell growth and biocatalytic activity. Treatment of mycobacteria with HP-β-CD relieves the inhibitory effect of AD(D) on the electron transfer chain and cell growth. These results demonstrate the positive relationship between HP-β-CD and phytosterol metabolism and give insight into the complex functions of CDs as mediators of the regulation of sterol metabolism.IMPORTANCE Phytosterols from soybean are low-cost by-products of soybean oil production and, owing to their good bioavailability in mycobacteria, are preferred as the substrates for steroid drug production via biotransformation by Mycobacterium However, the low level of production of steroid hormone drugs due to the low aqueous solubility (below 0.1 mmol/liter) of phytosterols limits the commercial use of sterol-transformed strains. To improve the bioconversion of steroids, cyclodextrins (CDs) are generally used as an effective carrier for the delivery of hydrophobic steroids to the bacterium. CDs improve the biotransformation of steroids due to their effects on steroid solubilization and alterations in cell wall permeability for steroids. However, studies have rarely reported the effects of CDs on cell metabolic pathways related to sterols. In this study, the effects of hydroxypropyl-β-CD (HP-β-CD) on the expression of enzymes related to steroid catabolic pathways in Mycobacterium neoaurum were systematically investigated. These findings will improve our understanding of the complex functions of CDs in the regulation of sterol metabolism and guide the application of CDs to sterol production.
Collapse
|
15
|
Mycobacterium tuberculosis Requires Cholesterol Oxidase to Disrupt TLR2 Signalling in Human Macrophages. Mediators Inflamm 2019; 2019:2373791. [PMID: 31871425 PMCID: PMC6913169 DOI: 10.1155/2019/2373791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/16/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
This study tested the hypothesis that Mycobacterium tuberculosis (Mtb) uses a cholesterol oxidase enzyme (ChoD) to suppress a toll-like receptor type 2- (TLR2-) dependent signalling pathway to modulate macrophages' immune response. We investigated the impact of Mtb possessing or lacking ChoD as well as TBChoD recombinant protein obtained from Mtb on the expression and activation of two key intracellular proteins involved in TLR2 signalling in human macrophages. Finally, the involvement of TLR2-related signalling proteins in an inflammatory/immunosuppressive response of macrophages to Mtb was evaluated. We demonstrate that wild-type Mtb but not the ∆choD mutant decreased the cytosolic IRAK4 and TRAF6 protein levels while strongly enhancing IRAK4 and TRAF6 mRNA levels in macrophages. Our data show that the TLR2 present on the surface of macrophages are involved in disturbing the signalling pathway by wild-type Mtb. Moreover, recombinant TBChoD effectively decreased the cytosolic level of TRAF6 and lowered the phosphorylation of IRAK4, which strongly confirm an involvement of cholesterol oxidase in affecting the TLR2-related pathway by Mtb. Wild-type Mtb induced an immunosuppressive response of macrophages in an IRAK4- and TRAF6-dependent manner as measured by interleukin 10 production. In conclusion, ChoD is a virulence factor that enables Mtb to disturb the TLR2-related signalling pathway in macrophages and modulate their response.
Collapse
|
16
|
Si D, Xiong Y, Yang Z, Zhang J, Ma L, Li J, Wang Y. Whole genome sequencing analysis of a dexamethasone-degrading Burkholderia strain CQ001. Medicine (Baltimore) 2019; 98:e16749. [PMID: 31415371 PMCID: PMC6831421 DOI: 10.1097/md.0000000000016749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study is to analyze the functional genes and metabolic pathways of dexamethasone degradation in Burkholderia through genome sequencing.A new Burkholderia sp. CQQ001 (B. CQ001) with dexamethasone degrading activity was isolated from the hospital wastewater and sequenced using Illumina Hiseq4000 combined with the third-generation sequencing technology. The genomes were assembled, annotated, and genomically mapped. Compared with six Burkholderia strains with typical features and four Burkholderia strains with special metabolic ability, the functional genes and metabolic pathways of dexamethasone degradation were analyzed and confirmed by RT-qPCR.Genome of B. CQ001 was 7,660,596 bp long with 6 ring chromosomes. The genes related to material metabolism accounted for 80.15%. These metabolism related genes could participate in 117 metabolic pathways and cover various microbial metabolic pathways in different environments and decomposition pathways of secondary metabolites, especially the degradation of aromatic compounds. The steroidal metabolic pathway containing 1 ABC transporter and 9 key metabolic enzymes related genes were scattered in the genome. Among them, the ABC transporter, KshA, and KshB increased significantly under the culture conditions of dexamethasone sodium phosphate as carbon source.B. CQ001 is a bacterium with strong metabolic function and rich metabolic pathways. It has the potential to degrade aromatics and other exogenous chemicals and contains genes for steroid metabolism. Our study enriches the genetic information of Burkholderia and provides information for the application of Burkholderia in bioremediation and steroid medicine production.
Collapse
Affiliation(s)
- Dan Si
- The Third People's Hospital of Suining, Suining,
| | - Yuxia Xiong
- Department of Pathogenic Biology, Basic Medical College, Chongqing Medical University,
| | - Zhibang Yang
- Department of Pathogenic Biology, Basic Medical College, Chongqing Medical University,
| | - Jin Zhang
- Department of Pathogenic Biology, Basic Medical College, Chongqing Medical University,
| | - Lianju Ma
- Pharmaceutical Experimental Teaching Center, Chongqing Medical University,
| | - Jinyang Li
- Class of 2016, Clinical Medicine, Chongqing Medical University,
| | - Yi Wang
- Department of Immunology, Basic Medical College, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
17
|
Olivera ER, Luengo JM. Steroids as Environmental Compounds Recalcitrant to Degradation: Genetic Mechanisms of Bacterial Biodegradation Pathways. Genes (Basel) 2019; 10:E512. [PMID: 31284586 PMCID: PMC6678751 DOI: 10.3390/genes10070512] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Steroids are perhydro-1,2-cyclopentanophenanthrene derivatives that are almost exclusively synthesised by eukaryotic organisms. Since the start of the Anthropocene, the presence of these molecules, as well as related synthetic compounds (ethinylestradiol, dexamethasone, and others), has increased in different habitats due to farm and municipal effluents and discharge from the pharmaceutical industry. In addition, the highly hydrophobic nature of these molecules, as well as the absence of functional groups, makes them highly resistant to biodegradation. However, some environmental bacteria are able to modify or mineralise these compounds. Although steroid-metabolising bacteria have been isolated since the beginning of the 20th century, the genetics and catabolic pathways used have only been characterised in model organisms in the last few decades. Here, the metabolic alternatives used by different bacteria to metabolise steroids (e.g., cholesterol, bile acids, testosterone, and other steroid hormones), as well as the organisation and conservation of the genes involved, are reviewed.
Collapse
Affiliation(s)
- Elías R Olivera
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain.
| | - José M Luengo
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain
| |
Collapse
|
18
|
Microenvironment of Mycobacterium smegmatis Culture to Induce Cholesterol Consumption Does Cell Wall Remodeling and Enables the Formation of Granuloma-Like Structures. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1871239. [PMID: 31119154 PMCID: PMC6500705 DOI: 10.1155/2019/1871239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/11/2019] [Accepted: 03/17/2019] [Indexed: 11/22/2022]
Abstract
Pathogenic species of mycobacteria are known to use the host cholesterol during lung infection as an alternative source of carbon and energy. Mycobacteria culture in minimal medium (MM) has been used as an in vitro experimental model to study the consumption of exogenous cholesterol. Once in MM, different species of mycobacteria start to consume the cholesterol and initiate transcriptional and metabolic adaptations, upregulating the enzymes of the methylcitrate cycle (MCC) and accumulating a variety of primary metabolites that are known to be important substrates for cell wall biosynthesis. We hypothesized that stressful pressure of cultures in MM is able to induce critical adaptation for the bacteria which win the infection. To identify important modifications in the biosynthesis of the cell wall, we cultured the fast-growing and nonpathogenic Mycobacterium smegmatis in MM supplemented with or without glycerol and/or cholesterol. Different from the culture in complete medium Middlebrook 7H9 broth, the bacteria when cultured in MM decreased growth and changed in the accumulation of cell wall molecules. However, the supplementation of MM with glycerol and/or cholesterol recovered the accumulation of phosphatidylinositol mannosides (PIMs) and other phospholipids but maintained growth deceleration. The biosynthesis of lipomannan (LM) and of lipoarabinomannan (LAM) was significantly modulated after culture in MM, independently of glycerol and/or cholesterol supplementation, where LM size was decreased (LM13-25KDa) and LAM increased (LAM37-100KDa), when compared these molecules after bacteria culture in complete medium (LM17-25KDa and LAM37-50KDa). These changes modified the cell surface hydrophobicity and susceptibility against H2O2. The infection of J774 macrophages with M. smegmatis, after culture in MM, induced the formation of granuloma-like structures, while supplementation with cholesterol induced the highest rate of formation of these structures. Taken together, our results identify critical changes in mycobacterial cell wall molecules after culture in MM that induces cholesterol accumulation, helping the mycobacteria to increase their capacity to form granuloma-like structures.
Collapse
|
19
|
Overexpression of cytochrome p450 125 in Mycobacterium: a rational strategy in the promotion of phytosterol biotransformation. ACTA ACUST UNITED AC 2018; 45:857-867. [DOI: 10.1007/s10295-018-2063-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
Abstract
Androst-4-ene-3, 17-dione (AD) and androst-1, 4-diene-3, 17-dione (ADD) are generally produced by the biotransformation of phytosterols in Mycobacterium. The AD (D) production increases when the strain has high NAD+/NADH ratio. To enhance the AD (D) production in Mycobacterium neoaurum TCCC 11978 (MNR M3), a rational strategy was developed through overexpression of a gene involved in the phytosterol degradation pathway; NAD+ was generated as well. Proteomic analysis of MNR cultured with and without phytosterols showed that the steroid C27-monooxygenase (Cyp125-3), which performs sequential oxidations of the sterol side chain at the C27 position and has the oxidative cofactor of NAD+ generated, played an important role in the phytosterol biotransformation process of MNR M3. To improve the productivity of AD (D), the cyp125-3 gene was overexpressed in MNR M3. The specific activity of Cyp125-3 in the recombinant strain MNR M3C3 was improved by 22% than that in MNR M3. The NAD+/NADH ratio in MNR M3C3 was 131% higher than that in the parent strain. During phytosterol biotransformation, the conversion of sterols increased from 84 to 96%, and the yield of AD (D) by MNR M3C3 was increased by approximately 18% for 96 h fermentation. This rational strain modification strategy may also be applied to develop strains with important application values for efficient production of cofactor-dependent metabolites.
Collapse
|
20
|
Bose T, Das C, Dutta A, Mahamkali V, Sadhu S, Mande SS. Understanding the role of interactions between host and Mycobacterium tuberculosis under hypoxic condition: an in silico approach. BMC Genomics 2018; 19:555. [PMID: 30053801 PMCID: PMC6064076 DOI: 10.1186/s12864-018-4947-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/19/2018] [Indexed: 01/17/2023] Open
Abstract
Background Mycobacterium tuberculosis infection in humans is often associated with extended period of latency. To adapt to the hostile hypoxic environment inside a macrophage, M. tuberculosis cells undergo several physiological and metabolic changes. Previous studies have mostly focused on inspecting individual facets of this complex process. In order to gain deeper insights into the infection process and to understand the coordination among different regulatory/ metabolic pathways in the pathogen, the current in silico study investigates three aspects, namely, (i) host-pathogen interactions (HPIs) between human and M. tuberculosis proteins, (ii) gene regulatory network pertaining to adaptation of M. tuberculosis to hypoxia and (iii) alterations in M. tuberculosis metabolism under hypoxic condition. Subsequently, cross-talks between these components have been probed to evaluate possible gene-regulatory events as well as HPIs which are likely to drive metabolic changes during pathogen’s adaptation to the intra-host hypoxic environment. Results The newly identified HPIs suggest the pathogen’s ability to subvert host mediated reactive oxygen intermediates/ reactive nitrogen intermediates (ROI/ RNI) stress as well as their potential role in modulating host cell cycle and cytoskeleton structure. The results also indicate a significantly pronounced effect of HPIs on hypoxic metabolism of M. tuberculosis. Findings from the current study underscore the necessity of investigating the infection process from a systems-level perspective incorporating different facets of intra-cellular survival of the pathogen. Conclusions The comprehensive host-pathogen interaction network, a Boolean model of M. tuberculosis H37Rv (Mtb) hypoxic gene-regulation, as well as a genome scale metabolic model of Mtb, built for this study are expected to be useful resources for future studies on tuberculosis infection. Electronic supplementary material The online version of this article (10.1186/s12864-018-4947-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tungadri Bose
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Limited, Pune, India.,Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Chandrani Das
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Limited, Pune, India.,Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirban Dutta
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Limited, Pune, India.
| | - Vishnuvardhan Mahamkali
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Limited, Pune, India.,Present Address: Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Sudipta Sadhu
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Limited, Pune, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Limited, Pune, India.
| |
Collapse
|
21
|
Engineered 3-Ketosteroid 9α-Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs. Appl Environ Microbiol 2018; 84:AEM.02777-17. [PMID: 29728384 DOI: 10.1128/aem.02777-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/27/2018] [Indexed: 02/04/2023] Open
Abstract
3-Ketosteroid 9α-hydroxylase (Ksh) consists of a terminal oxygenase (KshA) and a ferredoxin reductase and is indispensable in the cleavage of steroid nucleus in microorganisms. The activities of Kshs are crucial factors in determining the yield and distribution of products in the biotechnological transformation of sterols in industrial applications. In this study, two KshA homologues, KshA1N and KshA2N, were characterized and further engineered in a sterol-digesting strain, Mycobacterium neoaurum ATCC 25795, to construct androstenone-producing strains. kshA1 N is a member of the gene cluster encoding sterol catabolism enzymes, and its transcription exhibited a 4.7-fold increase under cholesterol induction. Furthermore, null mutation of kshA1 N led to the stable accumulation of androst-4-ene-3,17-dione (AD) and androst-1,4-diene-3,17-dione (ADD). We determined kshA2 N to be a redundant form of kshA1 N Through a combined modification of kshA1 N, kshA2 N, and other key genes involved in the metabolism of sterols, we constructed a high-yield ADD-producing strain that could produce 9.36 g liter-1 ADD from the transformation of 20 g liter-1 phytosterols in 168 h. Moreover, we improved a previously established 9α-hydroxy-AD-producing strain via the overexpression of a mutant KshA1N that had enhanced Ksh activity. Genetic engineering allowed the new strain to produce 11.7 g liter-1 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) from the transformation of 20.0 g liter-1 phytosterol in 120 h.IMPORTANCE Steroidal drugs are widely used for anti-inflammation, anti-tumor action, endocrine regulation, and fertility management, among other uses. The two main starting materials for the industrial synthesis of steroid drugs are phytosterol and diosgenin. The phytosterol processing is carried out by microbial transformation, which is thought to be superior to the diosgenin processing by chemical conversions, given its simple and environmentally friendly process. However, diosgenin has long been used as the primary starting material instead of phytosterol. This is in response to challenges in developing efficient microbial strains for industrial phytosterol transformation, which stem from complex metabolic processes that feature many currently unclear details. In this study, we identified two oxygenase homologues of 3-ketosteroid-9α-hydroxylase, KshA1N and KshA2N, in M. neoaurum and demonstrated their crucial role in determining the yield and variety of products from phytosterol transformation. This work has practical value in developing industrial strains for phytosterol biotransformation.
Collapse
|
22
|
Abstract
The study of the catabolic potential of microbial species isolated from different habitats has allowed the identification and characterization of bacteria able to assimilate bile acids and other steroids (e.g., testosterone and 4-androsten-3,17-dione). From soil samples, we have isolated several strains belonging to genus Pseudomonas that grow efficiently in chemical defined media containing some cyclopentane-perhydro-phenantrene derivatives as carbon sources. Genetic and biochemical studies performed with one of these bacteria (P. putida DOC21) allowed the identification of the genes and enzymes belonging to the 9,10-seco pathway, the route involved in the aerobic assimilation of steroids. In this manuscript, we describe the most relevant methods required for (1) isolation and characterization of these species; (2) determining the chromosomal location, nucleotide sequence, and functional analysis of the catabolic genes (or gene clusters) encoding the enzymes from this pathway; and (3) the tools employed to establish the role of some of the proteins that participate in this route.
Collapse
|
23
|
Fernández-Cabezón L, Galán B, García JL. Unravelling a new catabolic pathway of C-19 steroids in Mycobacterium smegmatis. Environ Microbiol 2018; 20:1815-1827. [PMID: 29611894 DOI: 10.1111/1462-2920.14114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/22/2018] [Indexed: 11/27/2022]
Abstract
In this work, we have characterized the C-19+ gene cluster (MSMEG_2851 to MSMEG_2901) of Mycobacterium smegmatis. By in silico analysis, we have identified the genes encoding enzymes involved in the modification of the A/B steroid rings during the catabolism of C-19 steroids in certain M. smegmatis mutants mapped in the PadR-like regulator (MSMEG_2868), that constitutively express the C-19+ gene cluster. By using gene complementation assays, resting-cell biotransformations and deletion mutants, we have characterized the most critical genes of the cluster, that is, kstD2, kstD3, kshA2, kshB2, hsaA2, hsaC2 and hsaD2. These results have allowed us to propose a new catabolic route named C-19+ pathway for the mineralization of C-19 steroids in M. smegmatis. Our data suggest that the deletion of the C-19+ gene cluster may be useful to engineer more robust and efficient M. smegmatis strains to produce C-19 steroids from sterols. Moreover, the new KshA2, KshB2, KstD2 and KstD3 isoenzymes may be useful to design new microbial cell factories for the 9α-hydroxylation and/or Δ1-dehydrogenation of 3-ketosteroids.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| |
Collapse
|
24
|
Su L, Shen Y, Zhang W, Gao T, Shang Z, Wang M. Cofactor engineering to regulate NAD +/NADH ratio with its application to phytosterols biotransformation. Microb Cell Fact 2017; 16:182. [PMID: 29084539 PMCID: PMC5663084 DOI: 10.1186/s12934-017-0796-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/24/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cofactor engineering is involved in the modification of enzymes related to nicotinamide adenine dinucleotides (NADH and NAD+) metabolism, which results in a significantly altered spectrum of metabolic products. Cofactor engineering plays an important role in metabolic engineering but is rarely reported in the sterols biotransformation process owing to its use of multi-catabolic enzymes, which promote multiple consecutive reactions. Androst-4-ene-3, 17-dione (AD) and androst-1, 4-diene-3, 17-dione (ADD) are important steroid medicine intermediates that are obtained via the nucleus oxidation and the side chain degradation of phytosterols by Mycobacterium. Given that the biotransformation from phytosterols to AD (D) is supposed to be a NAD+-dependent process, this work utilized cofactor engineering in Mycobacterium neoaurum and investigated the effect on cofactor and phytosterols metabolism. RESULTS Through the addition of the coenzyme precursor of nicotinic acid in the phytosterols fermentation system, the intracellular NAD+/NADH ratio and the AD (D) production of M. neoaurum TCCC 11978 (MNR M3) were higher than in the control. Moreover, the NADH: flavin oxidoreductase was identified and was supposed to exert a positive effect on cofactor regulation and phytosterols metabolism pathways via comparative proteomic profiling of MNR cultured with and without phytosterols. In addition, the NADH: flavin oxidoreductase and a water-forming NADH oxidase from Lactobacillus brevis, were successfully overexpressed and heterologously expressed in MNR M3 to improve the intracellular ratio of NAD+/NADH. After 96 h of cultivation, the expression of these two enzymes in MNR M3 resulted in the decrease in intracellular NADH level (by 51 and 67%, respectively) and the increase in NAD+/NADH ratio (by 113 and 192%, respectively). Phytosterols bioconversion revealed that the conversion ratio of engineered stains was ultimately improved by 58 and 147%, respectively. The highest AD (D) conversion ratio by MNR M3N2 was 94% in the conversion system with soybean oil as reaction media to promote the solubility of phytosterols. CONCLUSIONS The ratio of NAD+/NADH is an important factor for the transformation of phytosterols. Expression of NADH: flavin oxidoreductase and water-forming NADH oxidase in MNR improved AD (D) production. Besides the manipulation of key enzyme activities, which included in phytosterols degradation pathways, maintenance the balance of redox also played an important role in promoting steroid biotransformation. The recombinant MNR strain may be useful in industrial production.
Collapse
Affiliation(s)
- Liqiu Su
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
| | - Wenkai Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Tian Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Zhihua Shang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
25
|
|
26
|
Effect of methyl-β-cyclodextrin on gene expression in microbial conversion of phytosterol. Appl Microbiol Biotechnol 2017; 101:4659-4667. [DOI: 10.1007/s00253-017-8288-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 11/26/2022]
|
27
|
Fernández-Cabezón L, García-Fernández E, Galán B, García JL. Molecular characterization of a new gene cluster for steroid degradation in Mycobacterium smegmatis. Environ Microbiol 2017; 19:2546-2563. [PMID: 28217856 DOI: 10.1111/1462-2920.13704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/14/2017] [Indexed: 11/27/2022]
Abstract
The C-19 steroids 4-androstene-3,17-dione (AD), 1,4-androstadiene-3,17-dione (ADD) or 9α-hydroxy-4-androstene-3,17-dione (9OH-AD), which have been postulated as intermediates of the cholesterol catabolic pathway in Mycobacterium smegmatis, cannot be used as sole carbon and energy sources by this bacterium. Only the ΔkstR mutant which constitutively expresses the genes repressed by the KstR regulator can metabolize AD and ADD with severe difficulties but still cannot metabolize 9OH-AD, suggesting that these compounds are not true intermediates but side products of the cholesterol pathway. However, we have found that some M. smegmatis spontaneous mutants mapped in the PadR-like regulator (MSMEG_2868) can efficiently metabolize all C-19 steroids. We have demonstrated that the PadR mutants allow the expression of a gene cluster named C-19+ (MSMEG_2851 to MSMEG_2901) encoding steroid degrading enzymes, that are not expressed under standard culture conditions. The C-19+ cluster has apparently evolved independently from the upper cholesterol kstR-regulon, but both clusters converge on the lower cholesterol kstR2-regulon responsible for the metabolism of C and D steroid rings. Homologous C-19+ clusters have been found only in other actinobacteria that metabolize steroids, but remarkably it is absent in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Esther García-Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología. Consejo Superior de Investigaciones Científicas, Darwin 3, Madrid, 28049, Spain
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
28
|
Faletrov Y, Brzostek A, Plocinska R, Dziadek J, Rudaya E, Edimecheva I, Shkumatov V. Uptake and metabolism of fluorescent steroids by mycobacterial cells. Steroids 2017; 117:29-37. [PMID: 27718364 DOI: 10.1016/j.steroids.2016.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 11/26/2022]
Abstract
Fluorescent steroids BODIPY-cholesterol (BPCh) and 7-nitrobenzoxadiazole-4-amino-(NBD)-labeled 22-NBD-chelesterol (22NC) as well as synthesized 20-(NBD)-pregn-5-en-3β-ol (20NP) were found to undergo bioconversions by Mycobacterium tuberculosis H37Rv and M. smegmatis mc2 155. The major fluorescent products were determined to be 4-en-3-one derivatives of the compounds. Degradation of NBD fluorophore was also detected in the cases of 22NC and 20NP, but neither NBD degradation nor steroidal part modification were observed for the synthesized 3-(NBD)-cholestane. Mycobacterial 3β-hydroxysteroid dehydrogenases were concluded to be responsible for the formation of the 4-en-3-one derivatives. All the compounds tested were found to cause staining both membrane lipids and cytosolic lipid droplets when incubated with mycobacteria in different manner, demonstrating ability of the steroids to reside in the compartments. The findings reveal a potential of the compounds for monitoring of steroid interactions with mycobacteria and provide information for design of new probes for this purpose.
Collapse
Affiliation(s)
- Yaroslav Faletrov
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus; Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| | - Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | - Renata Plocinska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | - Elena Rudaya
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus; Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| | - Irina Edimecheva
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| | - Vladimir Shkumatov
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus; Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| |
Collapse
|
29
|
Galán B, Uhía I, García-Fernández E, Martínez I, Bahíllo E, de la Fuente JL, Barredo JL, Fernández-Cabezón L, García JL. Mycobacterium smegmatis is a suitable cell factory for the production of steroidic synthons. Microb Biotechnol 2016; 10:138-150. [PMID: 27804278 PMCID: PMC5270728 DOI: 10.1111/1751-7915.12429] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 01/05/2023] Open
Abstract
A number of pharmaceutical steroid synthons are currently produced through the microbial side-chain cleavage of natural sterols as an alternative to multi-step chemical synthesis. Industrially, these synthons have been usually produced through fermentative processes using environmental isolated microorganisms or their conventional mutants. Mycobacterium smegmatis mc2 155 is a model organism for tuberculosis studies which uses cholesterol as the sole carbon and energy source for growth, as other mycobacterial strains. Nevertheless, this property has not been exploited for the industrial production of steroidic synthons. Taking advantage of our knowledge on the cholesterol degradation pathway of M. smegmatis mc2 155 we have demonstrated that the MSMEG_6039 (kshB1) and MSMEG_5941 (kstD1) genes encoding a reductase component of the 3-ketosteroid 9α-hydroxylase (KshAB) and a ketosteroid Δ1 -dehydrogenase (KstD), respectively, are indispensable enzymes for the central metabolism of cholesterol. Therefore, we have constructed a MSMEG_6039 (kshB1) gene deletion mutant of M. smegmatis MS6039 that transforms efficiently natural sterols (e.g. cholesterol and phytosterols) into 1,4-androstadiene-3,17-dione. In addition, we have demonstrated that a double deletion mutant M. smegmatis MS6039-5941 [ΔMSMEG_6039 (ΔkshB1) and ΔMSMEG_5941 (ΔkstD1)] transforms natural sterols into 4-androstene-3,17-dione with high yields. These findings suggest that the catabolism of cholesterol in M. smegmatis mc2 155 is easy to handle and equally efficient for sterol transformation than other industrial strains, paving the way for valuating this strain as a suitable industrial cell factory to develop à la carte metabolic engineering strategies for the industrial production of pharmaceutical steroids.
Collapse
Affiliation(s)
- Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Iria Uhía
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain.,MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Esther García-Fernández
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Igor Martínez
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Esther Bahíllo
- Department of Biotechnology, Gadea Biopharma, Parque Tecnológico de León, Nicostrato Vela s/n, 24009, León, Spain
| | - Juan L de la Fuente
- Department of Biotechnology, Gadea Biopharma, Parque Tecnológico de León, Nicostrato Vela s/n, 24009, León, Spain
| | - José L Barredo
- Department of Biotechnology, Gadea Biopharma, Parque Tecnológico de León, Nicostrato Vela s/n, 24009, León, Spain
| | - Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|
30
|
Li Q, Ge F, Tan Y, Zhang G, Li W. Genome-Wide Transcriptome Profiling of Mycobacterium smegmatis MC² 155 Cultivated in Minimal Media Supplemented with Cholesterol, Androstenedione or Glycerol. Int J Mol Sci 2016; 17:E689. [PMID: 27164097 PMCID: PMC4881515 DOI: 10.3390/ijms17050689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/12/2016] [Accepted: 04/28/2016] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium smegmatis strain MC² 155 is an attractive model organism for the study of M. tuberculosis and other mycobacterial pathogens, as it can grow well using cholesterol as a carbon resource. However, its global transcriptomic response remains largely unrevealed. In this study, M. smegmatis MC² 155 cultivated in androstenedione, cholesterol and glycerol supplemented media were collected separately for a RNA-Sequencing study. The results showed that 6004, 6681 and 6348 genes were expressed in androstenedione, cholesterol and glycerol supplemented media, and 5891 genes were expressed in all three conditions, with 237 specially expressed in cholesterol added medium. A total of 1852 and 454 genes were significantly up-regulated by cholesterol compared with the other two supplements. Only occasional changes were observed in basic carbon and nitrogen metabolism, while almost all of the genes involved in cholesterol catabolism and mammalian cell entry (MCE) were up-regulated by cholesterol, but not by androstenedione. Eleven and 16 gene clusters were induced by cholesterol when compared with glycerol or androstenedione, respectively. This study provides a comprehensive analysis of the cholesterol responsive transcriptome of M. smegmatis. Our results indicated that cholesterol induced many more genes and increased the expression of the majority of genes involved in cholesterol degradation and MCE in M. smegmatis, while androstenedione did not have the same effect.
Collapse
Affiliation(s)
- Qun Li
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| | - Fanglan Ge
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| | - Yunya Tan
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| | - Guangxiang Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| | - Wei Li
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China.
| |
Collapse
|
31
|
Wrońska N, Brzostek A, Szewczyk R, Soboń A, Dziadek J, Lisowska K. The Role of fadD19 and echA19 in Sterol Side Chain Degradation by Mycobacterium smegmatis. Molecules 2016; 21:molecules21050598. [PMID: 27164074 PMCID: PMC6273163 DOI: 10.3390/molecules21050598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 11/23/2022] Open
Abstract
Mycobacteria are able to degrade natural sterols and use them as a source of carbon and energy. Several genes which play an important role in cholesterol ring degradation have been described in Mycobacterium smegmatis. However, there are limited data describing the molecular mechanism of the aliphatic side chain degradation by Mycobacterium spp. In this paper, we analyzed the role of the echA19 and fadD19 genes in the degradation process of the side chain of cholesterol and β-sitosterol. We demonstrated that the M. smegmatis fadD19 and echA19 genes are not essential for viability. FadD19 is required in the initial step of the biodegradation of C-24 branched sterol side chains in Mycobacterium smegmatis mc2155, but not those carrying a straight chain like cholesterol. Additionally, we have shown that echA19 is not essential in the degradation of either substrate. This is the first report, to our knowledge, on the molecular characterization of the genes playing an essential role in C-24 branched side chain sterol degradation in M. smegmatis mc2155.
Collapse
Affiliation(s)
- Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Street, 93-232 Lodz, Poland.
| | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Adrian Soboń
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Street, 93-232 Lodz, Poland.
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| |
Collapse
|
32
|
The Essential Role of Cholesterol Metabolism in the Intracellular Survival of Mycobacterium leprae Is Not Coupled to Central Carbon Metabolism and Energy Production. J Bacteriol 2015; 197:3698-707. [PMID: 26391209 PMCID: PMC4626898 DOI: 10.1128/jb.00625-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/05/2015] [Indexed: 01/13/2023] Open
Abstract
Mycobacterium leprae induces the formation of lipid droplets, which are recruited to pathogen-containing phagosomes in infected macrophages and Schwann cells. Cholesterol is among the lipids with increased abundance in M. leprae-infected cells, and intracellular survival relies on cholesterol accumulation. The present study investigated the capacity of M. leprae to acquire and metabolize cholesterol. In silico analyses showed that oxidation of cholesterol to cholest-4-en-3-one (cholestenone), the first step of cholesterol degradation catalyzed by the enzyme 3β-hydroxysteroid dehydrogenase (3β-HSD), is apparently the only portion of the cholesterol catabolic pathway seen in Mycobacterium tuberculosis preserved by M. leprae. Incubation of bacteria with radiolabeled cholesterol confirmed the in silico predictions. Radiorespirometry and lipid analyses performed after incubating M. leprae with [4-14C]cholesterol or [26-14C]cholesterol showed the inability of this pathogen to metabolize the sterol rings or the side chain of cholesterol as a source of energy and carbon. However, the bacteria avidly incorporated cholesterol and, as expected, converted it to cholestenone both in vitro and in vivo. Our data indicate that M. leprae has lost the capacity to degrade and utilize cholesterol as a nutritional source but retains the enzyme responsible for its oxidation to cholestenone. Thus, the essential role of cholesterol metabolism in the intracellular survival of M. leprae is uncoupled from central carbon metabolism and energy production. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. IMPORTANCE Our study focused on the obligate intracellular pathogen Mycobacterium leprae and its capacity to metabolize cholesterol. The data make an important contribution for those interested in understanding the mechanisms of mycobacterial pathogenesis, since they indicate that the essential role of cholesterol for M. leprae intracellular survival does not rely on its utilization as a nutritional source. Our findings reinforce the complexity of cholesterol's role in sustaining M. leprae infection. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies.
Collapse
|
33
|
Li W, Ge F, Zhang Q, Ren Y, Yuan J, He J, Li W, Chen G, Zhang G, Zhuang Y, Xu L. Identification of gene expression profiles in the actinomycete Gordonia neofelifaecis grown with different steroids. Genome 2015; 57:345-53. [PMID: 25264805 DOI: 10.1139/gen-2014-0030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gordonia neofelifaecis NRRL B-59395 was initially isolated from the fresh feces of a clouded leopard based on its ability to degrade cholesterol. The transcriptome profiles of G. neofelifaecis NRRL B-59395 grown with cholesterol, androstenedione (AD), and pyruvic acid were compared by RNA-Seq. The sterol catabolic genes are highly conserved in G. neofelifaecis, Rhodococcus jostii RHA1, and Mycobacterium tuberculosis. The RNA-Seq results indicated that the genes involved in the sterol side chain cleavage were exclusively induced by cholesterol, while the genes involved in the degradation of rings A/B and C/D were up-regulated by both cholesterol and AD. It appears that the induction mechanisms for the genes responsible for side chain cleavage and those for degradation of rings are different. There are approximately 21 genes encoding transporter proteins that are differentially expressed in cholesterol or AD compared with pyruvic acid. The genes camABCD and camM encode two systems that take up cholate, and they have been shown to be cholesterol- and AD-inducible. The potential biological functions of other differentially expressed genes are also discussed. These results will promote the functional characterization of the sterol catabolic genes and also provide important clues in understanding the mechanisms of their gene expression, and they may help us understand the mechanism underlying microbial cholesterol catabolism.
Collapse
Affiliation(s)
- Wenjing Li
- College of life Sciences, Sichuan Normal University, Chengdu 610101, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
García-Fernández J, Galán B, Medrano FJ, García JL. Characterization of the KstR2 regulator responsible of the lower cholesterol degradative pathway in Mycobacterium smegmatis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:155-163. [PMID: 25511435 DOI: 10.1111/1758-2229.12255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
The interaction of KstR2-dependent promoters of the divergon constituted by the MSMEG_6000-5999 and MSMEG_6001-6004 operons of Mycobacterium smegmatis which encode the genes involved in the lower cholesterol degradative pathway has been characterized. Footprint analyses have demonstrated experimentally for the first time that KstR2 specifically binds to an operator region of 29 nucleotides containing the palindromic sequence AAGCAAGNNCTTGCTT. This region overlaps with the -10 and -35 boxes of the putative P(6000) and P(6001) divergent promoters, suggesting that KstR2 represses their transcription by preventing the binding of the ribonucleic acid polymerase. A three-dimensional model of the KstR2 protein revealed a typical TetR-type regulator folding with two domains, a deoxyribonucleic acid (DNA)-binding N-terminal domain and a regulator-binding C-terminal domain composed by three and six helices respectively. KstR2 is an all alpha protein as confirmed by circular dichroism. We have determined that M. smegmatis is able to grow using sitolactone (HIL) as the only carbon source and that this compound induces the kstR2 regulon in vivo. HIL or its open form 5OH-HIP were unable to release in vitro the KstR2-DNA operator interaction, suggesting that 5OH-HIP-CoA or a further derivative would induce the lower cholesterol catabolic pathway.
Collapse
Affiliation(s)
- Julia García-Fernández
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Yeh CH, Kuo YS, Chang CM, Liu WH, Sheu ML, Meng M. Deletion of the gene encoding the reductase component of 3-ketosteroid 9α-hydroxylase in Rhodococcus equi USA-18 disrupts sterol catabolism, leading to the accumulation of 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid and 1,4-androstadiene-3,17-dione. Microb Cell Fact 2014; 13:130. [PMID: 25201011 PMCID: PMC4176589 DOI: 10.1186/s12934-014-0130-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/23/2014] [Indexed: 11/26/2022] Open
Abstract
The gene encoding the putative reductase component (KshB) of 3-ketosteroid 9α-hydroxylase was cloned from Rhodococcus equi USA-18, a cholesterol oxidase-producing strain formerly named Arthrobacter simplex USA-18, by PCR according to consensus amino acid motifs of several bacterial KshB subunits. Deletion of the gene in R. equi USA-18 by a PCR-targeted gene disruption method resulted in a mutant strain that could accumulate up to 0.58 mg/ml 1,4-androstadiene-3,17-dione (ADD) in the culture medium when 0.2% cholesterol was used as the carbon source, indicating the involvement of the deleted enzyme in 9α-hydroxylation of steroids. In addition, this mutant also accumulated 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (Δ1,4-BNC). Because both ADD and Δ1,4-BNC are important intermediates for the synthesis of steroid drugs, this mutant derived from R. equi USA-18 may deserve further investigation for its application potential.
Collapse
|
36
|
Gelzo M, Lamberti A, Spano G, Dello Russo A, Corso G, Masullo M. Sterol and steroid catabolites from cholesterol produced by the psychrophile Pseudoalteromonas haloplanktis. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:947-951. [PMID: 25230192 DOI: 10.1002/jms.3459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 07/18/2014] [Accepted: 08/03/2014] [Indexed: 06/03/2023]
Abstract
Pseudoalteromonas haloplanktis, a psychrotrophilic marine bacterium of biotechnological interest, shows anti-biofilm properties and is particularly relevant for cold storage of vacuum packed seafood. We focused our interest on the activation of cholesterol metabolism in this bacterium as the presence in its genome of a putative 3-ketosteroid-Δ(1) -dehydrogenase. This study reports GC-MS and LC-MS/MS profiles of sterols/steroids and their derivatives found in cell extracts of P. haloplanktis grown in a medium with a low content of cholesterol. Here, for the first time, we suggest that P. haloplanktis produces some intermediates of cholesterol catabolism, putatively identified as 24-hydroxycholest-1,4-dien-3-one-26-oic acid, chol-1,4-dien-3-one-24-oic acid, 26-hydroxycholest-4-en-3-one, and pregn-4-en-3-one-20-carboxylic acid, a finding already reported in other microorganisms. The presence of these compounds, also considered steroid precursors, produced by P. haloplanktis in vacuum packed seafood could be of interest for healthy of consumers, as well as, for biotechnological applications in pharmaceutical industry.
Collapse
Affiliation(s)
- Monica Gelzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Romero E, Gadda G. Alcohol oxidation by flavoenzymes. Biomol Concepts 2014; 5:299-318. [DOI: 10.1515/bmc-2014-0016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/05/2014] [Indexed: 12/26/2022] Open
Abstract
AbstractThis review article describes the occurrence, general properties, and substrate specificity of the flavoenzymes belonging to the glucose-methanol-choline oxidoreductase superfamily and the l-α-hydroxyacid dehydrogenase family. Most of these enzymes catalyze the oxidations of hydroxyl groups, yielding carbonyl moieties. Over the years, carbanion, hydride transfer, and radical mechanisms have been discussed for these enzymes, and the main experimental evidences supporting these mechanisms are presented here. Regardless of the chemical nature of the organic substrate (i.e., activated and non-activated alcohols), a hydride transfer mechanism appears to be the most plausible for the flavoenzymes acting on CH-OH groups. The reaction of most of these enzymes likely starts with proton abstraction from the substrate hydroxyl group by a conserved active site histidine. Among the different approaches carried out to determine the chemical mechanisms with physiological substrates, primary substrate and solvent deuterium kinetic isotope effect studies have provided the most unambiguous evidences. It is expected that the numerous studies reported for these enzymes over the years will be instrumental in devising efficient industrial biocatalysts and drugs.
Collapse
Affiliation(s)
- Elvira Romero
- 1Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | | |
Collapse
|
38
|
Bednarska K, Kielbik M, Sulowska Z, Dziadek J, Klink M. Cholesterol oxidase binds TLR2 and modulates functional responses of human macrophages. Mediators Inflamm 2014; 2014:498395. [PMID: 25120288 PMCID: PMC4121183 DOI: 10.1155/2014/498395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 01/07/2023] Open
Abstract
Cholesterol oxidase (ChoD) is considered to be an important virulence factor for Mycobacterium tuberculosis (Mtb), but its influence on macrophage activity is unknown. Here we used Nocardia erythropolis ChoD, which is very similar to the Mtb enzyme (70% identity at the amino-acid level), to evaluate the impact of bacterial ChoD on the activity of THP-1-derived macrophages in vitro. We found that ChoD decreased the surface expression of Toll-like receptor type 2 (TLR2) and complement receptor 3 (CR3) on these macrophages. Flow cytometry and confocal microscopy showed that ChoD competed with lipoteichoic acid for ligand binding sites on TLR2 but not on CR3, suggesting that ChoD signaling is mediated via TLR2. Binding of ChoD to the membrane of macrophages had diverse effects on the activity of macrophages, activating p38 mitogen activated kinase and stimulating production of a large amount of interleukin-10. Moreover, ChoD primed macrophages to enhance the production of reactive oxygen species in response to the phorbol myristate acetate, which was reduced by "switching off" TLR-derived signaling through interleukin-1 receptor-associated kinases 1 and 4 inhibition. Our study revealed that ChoD interacts directly with macrophages via TLR2 and influences the biological activity of macrophages during the development of the initial response to infection.
Collapse
Affiliation(s)
- Katarzyna Bednarska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Zofia Sulowska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Jaroslaw Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| |
Collapse
|
39
|
Dykstra CM, Giles HD, Banerjee S, Pavlostathis SG. Biotransformation of phytosterols under aerobic conditions. WATER RESEARCH 2014; 58:71-81. [PMID: 24747138 DOI: 10.1016/j.watres.2014.03.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Phytosterols are plant-derived sterols present in pulp and paper wastewater and have been implicated in the endocrine disruption of aquatic species. Bioassays were performed to assess the effect of an additional carbon source and/or solubilizing agent on the aerobic biotransformation of a mixture of three common phytosterols (β-sitosterol, stigmasterol and campesterol). The aerobic biotransformation of the phytosterol mixture by a mixed culture developed from a pulp and paper wastewater treatment system was examined under three separate conditions: with phytosterols as the sole added carbon source, with phytosterols and dextrin as an additional carbon source, and with phytosterols added with ethanol as an additional carbon source and solubilizing agent. Significant phytosterol removal was not observed in assays set up with phytosterol powder, either with or without an additional carbon source. In contrast, all three phytosterols were aerobically degraded when added as a dissolved solution in ethanol. Thus, under the experimental conditions of this study, the bioavailability of phytosterols was limited without the presence of a solubilizing agent. The total phytosterol removal rate was linear for the first six days before re-spiking, with a rate of 0.47 mg/L-d (R(2) = 0.998). After the second spiking, the total phytosterol removal rate was linear for seven days, with a rate of 0.32 mg/L-d (R(2) = 0.968). Following the 7th day, the phytosterol removal rate markedly accelerated, suggesting two different mechanisms are involved in phytosterol biotransformation, more likely related to the production of enzyme(s) involved in phytosterol degradation, induced under different cell growth conditions. β-sitosterol was preferentially degraded, as compared to stigmasterol and campesterol, although all three phytosterols fell below detection limits by the 24th day of incubation.
Collapse
Affiliation(s)
- Christy M Dykstra
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0512, USA
| | - Hamilton D Giles
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0512, USA
| | - Sujit Banerjee
- School of Chemical and Biomolecular Engineering, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th Street, N.W., Atlanta, GA 30318, USA
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0512, USA.
| |
Collapse
|
40
|
Wipperman MF, Sampson NS, Thomas ST. Pathogen roid rage: cholesterol utilization by Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:269-93. [PMID: 24611808 PMCID: PMC4255906 DOI: 10.3109/10409238.2014.895700] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ability of science and medicine to control the pathogen Mycobacterium tuberculosis (Mtb) requires an understanding of the complex host environment within which it resides. Pathological and biological evidence overwhelmingly demonstrate how the mammalian steroid cholesterol is present throughout the course of infection. Better understanding Mtb requires a more complete understanding of how it utilizes molecules like cholesterol in this environment to sustain the infection of the host. Cholesterol uptake, catabolism and broader utilization are important for maintenance of the pathogen in the host and it has been experimentally validated to contribute to virulence and pathogenesis. Cholesterol is catabolized by at least three distinct sub-pathways, two for the ring system and one for the side chain, yielding dozens of steroid intermediates with varying biochemical properties. Our ability to control this worldwide infectious agent requires a greater knowledge of how Mtb uses cholesterol to its advantage throughout the course of infection. Herein, the current state of knowledge of cholesterol metabolism by Mtb is reviewed from a biochemical perspective with a focus on the metabolic genes and pathways responsible for cholesterol steroid catabolism.
Collapse
Affiliation(s)
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400
| | | |
Collapse
|
41
|
García-Fernández E, Medrano FJ, Galán B, García JL. Deciphering the transcriptional regulation of cholesterol catabolic pathway in mycobacteria: identification of the inducer of KstR repressor. J Biol Chem 2014; 289:17576-88. [PMID: 24802756 PMCID: PMC4067193 DOI: 10.1074/jbc.m113.545715] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/02/2014] [Indexed: 11/06/2022] Open
Abstract
Cholesterol degradation plays a prominent role in Mycobacterium tuberculosis infection; therefore, to develop new tools to combat this disease, we need to decipher the components comprising and regulating the corresponding pathway. A TetR-like repressor (KstR) regulates the upper part of this complex catabolic pathway, but the induction mechanism remains unknown. Using a biophysical approach, we have discovered that the inducer molecule of KstR in M. smegmatis mc(2)155 is not cholesterol but 3-oxo-4-cholestenoic acid, one of the first metabolic intermediates. Binding this compound induces dramatic conformational changes in KstR that promote the KstR-DNA interaction to be released from the operator, retaining its dimeric state. Our findings suggest a regulatory model common to all cholesterol degrading bacteria in which the first steps of the pathway are critical to its mineralization and explain the high redundancy of the enzymes involved in these initial steps.
Collapse
Affiliation(s)
| | - Francisco Javier Medrano
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| | | | | |
Collapse
|
42
|
Barrientos Á, Merino E, Casabon I, Rodríguez J, Crowe AM, Holert J, Philipp B, Eltis LD, Olivera ER, Luengo JM. Functional analyses of three acyl-CoA synthetases involved in bile acid degradation in Pseudomonas putida DOC21. Environ Microbiol 2014; 17:47-63. [PMID: 24428272 DOI: 10.1111/1462-2920.12395] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/30/2013] [Accepted: 01/04/2014] [Indexed: 12/15/2022]
Abstract
Pseudomonas putida DOC21, a soil-dwelling proteobacterium, catabolizes a variety of steroids and bile acids. Transposon mutagenesis and bioinformatics analyses identified four clusters of steroid degradation (std) genes encoding a single catabolic pathway. The latter includes three predicted acyl-CoA synthetases encoded by stdA1, stdA2 and stdA3 respectively. The ΔstdA1 and ΔstdA2 deletion mutants were unable to assimilate cholate or other bile acids but grew well on testosterone or 4-androstene-3,17-dione (AD). In contrast, a ΔstdA3 mutant grew poorly in media containing either testosterone or AD. When cells were grown with succinate in the presence of cholate, ΔstdA1 accumulated Δ(1/4) -3-ketocholate and Δ(1,4) -3-ketocholate, whereas ΔstdA2 only accumulated 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC). When incubated with testosterone or bile acids, ΔstdA3 accumulated 3aα-H-4α(3'propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP) or the corresponding hydroxylated derivative. Biochemical analyses revealed that StdA1 converted cholate, 3-ketocholate, Δ(1/4) -3-ketocholate, and Δ(1,4) -3-ketocholate to their CoA thioesters, while StdA2 transformed DHOPDC to DHOPDC-CoA. In contrast, purified StdA3 catalysed the CoA thioesterification of HIP and its hydroxylated derivatives. Overall, StdA1, StdA2 and StdA3 are acyl-CoA synthetases required for the complete degradation of bile acids: StdA1 and StdA2 are involved in degrading the C-17 acyl chain, whereas StdA3 initiates degradation of the last two steroid rings. The study highlights differences in steroid catabolism between Proteobacteria and Actinobacteria.
Collapse
Affiliation(s)
- Álvaro Barrientos
- Departmento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gao J, Sampson NS. A GMC oxidoreductase homologue is required for acetylation of glycopeptidolipid in Mycobacterium smegmatis. Biochemistry 2014; 53:611-3. [PMID: 24444367 PMCID: PMC3985799 DOI: 10.1021/bi4015083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The Mycobacterium tuberculosis Rv3409c gene is
required for modulation of the Toll-like receptor 2 (TLR-2) signaling
response in infected macrophages. Although each is annotated as encoding
a cholesterol oxidase, neither Rv3409c nor its ortholog MSMEG1604 is required for the metabolism of cholesterol
in mycobacteria. Here we report that a unique lipid, L1334, accumulates
in a MSMEG1604 transposon mutant in the Mycobacterium smegmatis cell envelope. L1334 is a polar glycopeptidolipid that is hyperrhamnosylated
and in which the 6-deoxytalose moiety is not acetylated. The alteration
of L1334 acetylation is consistent with a reduced level of interference
with TLR-2 signaling in mutant infected macrophages.
Collapse
Affiliation(s)
- Jin Gao
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | | |
Collapse
|
44
|
Fernández de Las Heras L, Perera J, Navarro Llorens JM. Cholesterol to cholestenone oxidation by ChoG, the main extracellular cholesterol oxidase of Rhodococcus ruber strain Chol-4. J Steroid Biochem Mol Biol 2014; 139:33-44. [PMID: 24125733 DOI: 10.1016/j.jsbmb.2013.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 11/26/2022]
Abstract
The choG ORF of Rhodococcus ruber strain Chol-4 (referred from now as Chol-4) encodes a putative extracellular cholesterol oxidase. In the Chol-4 genome this ORF is located in a gene cluster that includes kstD3 and hsd4B, showing the same genomic context as that found in other Rhodococcus species. The putative ChoG protein is grouped into the class II of cholesterol oxidases, close to the Rhodococcus sp. CECT3014 ChoG homolog. The Chol-4 choG was cloned and expressed in a CECT3014 ΔchoG host strain in order to assess its ability to convert cholesterol into cholestenone. The RT-PCR analysis showed that choG gene was constitutively expressed in all the conditions assayed, but a higher induction could be inferred when cells were growing in the presence of cholesterol. A Chol-4 ΔchoG mutant strain was still able to grow in minimal medium supplemented with cholesterol, although at a slower rate. A comparative study of the removal of both cholesterol and cholestenone from the culture medium of either the wild type Chol-4 or its choG deletion mutant revealed a major role of ChoG in the extracellular production of cholestenone from cholesterol and, therefore, this enzyme may be related with the maintenance of a convenient supply of cholestenone for the succeeding steps of the catabolic pathway.
Collapse
|
45
|
Bragin EY, Shtratnikova VY, Dovbnya DV, Schelkunov MI, Pekov YA, Malakho SG, Egorova OV, Ivashina TV, Sokolov SL, Ashapkin VV, Donova MV. Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains. J Steroid Biochem Mol Biol 2013; 138:41-53. [PMID: 23474435 DOI: 10.1016/j.jsbmb.2013.02.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/28/2013] [Accepted: 02/24/2013] [Indexed: 11/27/2022]
Abstract
A comparative genome analysis of Mycobacterium spp. VKM Ac-1815D, 1816D and 1817D strains used for efficient production of key steroid intermediates (androst-4-ene-3,17-dione, AD, androsta-1,4-diene-3,17-dione, ADD, 9α-hydroxy androst-4-ene-3,17-dione, 9-OH-AD) from phytosterol has been carried out by deep sequencing. The assembled contig sequences were analyzed for the presence putative genes of steroid catabolism pathways. Since 3-ketosteroid-9α-hydroxylases (KSH) and 3-ketosteroid-Δ(1)-dehydrogenase (Δ(1) KSTD) play key role in steroid core oxidation, special attention was paid to the genes encoding these enzymes. At least three genes of Δ(1) KSTD (kstD), five genes of KSH subunit A (kshA), and one gene of KSH subunit B of 3-ketosteroid-9α-hydroxylases (kshB) have been found in Mycobacterium sp. VKM Ac-1817D. Strains of Mycobacterium spp. VKM Ac-1815D and 1816D were found to possess at least one kstD, one kshB and two kshA genes. The assembled genome sequence of Mycobacterium sp. VKM Ac-1817D differs from those of 1815D and 1816D strains, whereas these last two are nearly identical, differing by 13 single nucleotide substitutions (SNPs). One of these SNPs is located in the coding region of a kstD gene and corresponds to an amino acid substitution Lys (135) in 1816D for Ser (135) in 1815D. The findings may be useful for targeted genetic engineering of the biocatalysts for biotechnological application.
Collapse
Key Words
- 2,3-dehydroxyphenyl dioxygenase
- 2-enoyl acyl-CoA hydratase
- 2-hydroxypenta-2,4-dienoate hydratase
- 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione 4,5-dioxygenase
- 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione monooxygenase
- 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione monooxygenase subunit
- 3-ketosteroid-9α-hydroxylase
- 3-ketosteroid-Δ(1)-dehydrogenase
- 3β-hydroxysteroid-dehydrogenase
- 4,5:9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-diene-4-oate hydrolase
- 4-hydroxy-2-oxovalerate aldolase
- 9-OH-AD
- 9α-hydroxy androst-4-ene-3,17-dione
- AD
- ADD
- Androst-1,4-diene-3,17-dione
- Androst-4-ene-3,17-dione
- BWA
- Broadband-Wheeler Aligner
- CTAB
- ChoX
- ChoX(D,E)
- EchA19
- FAD
- FadA5
- FadD17
- FadD19
- FadE26
- FadE27
- FadE28
- Genome sequencing
- HSD
- HTH-type transcriptional repressor
- HsaA
- HsaAB
- HsaB
- HsaC
- HsaD
- HsaE
- HsaF
- HsaG
- Hsd4A
- Hsd4B
- KSH
- KshA
- KshB
- KstR
- KstR2
- Ltp2
- Ltp3
- Ltp4
- Mycobacterium
- ORFs
- PWM
- Phytosterol
- SNP
- Steroid bioconversion
- TesB
- YrbE4A
- YrbE4B
- acetaldehyde dehydrogenase
- acetyl-CoA acetyltransferase
- acyl-CoA dehydrogenase
- acyl-CoA synthetase
- acyl-CoA thioesterase II
- androst-4-ene-3,17-dione
- androsta-1,4-diene-3,17-dione
- base pair
- bp
- cetyl trimethyl ammonium bromide
- cholesterol oxidase
- enoyl-CoA hydratase
- flavin adenine dinucleotide
- hydroxysteroid dehydrogenase
- integral membrane protein
- lipid transfer protein 4 (keto acyl-CoA thiolase)
- lipid-transfer protein 2
- lipid-transfer protein 3 (acetyl-CoA acetyltransferase)
- open reading frames
- position weight matrix
- single nucleotide substitution
- subunit A of 3-ketosteroid-9α-hydroxylase
- subunit B of 3-ketosteroid-9α-hydroxylases
- Δ(1) KSTD
Collapse
Affiliation(s)
- E Yu Bragin
- Center of Innovations and Technologies "Biological Active Compounds and Their Applications", Russian Academy of Sciences, Moscow 119991, Russian Federation; G.K.Skryabin Institute of Biochemistry & Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Klink M, Brzezinska M, Szulc I, Brzostek A, Kielbik M, Sulowska Z, Dziadek J. Cholesterol oxidase is indispensable in the pathogenesis of Mycobacterium tuberculosis. PLoS One 2013; 8:e73333. [PMID: 24039915 PMCID: PMC3767793 DOI: 10.1371/journal.pone.0073333] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 07/28/2013] [Indexed: 11/24/2022] Open
Abstract
Despite considerable research effort, the molecular mechanisms of Mycobacterium tuberculosis (Mtb) virulence remain unclear. Cholesterol oxidase (ChoD), an extracellular enzyme capable of converting cholesterol to its 3-keto-4-ene derivative, cholestenone, has been proposed to play a role in the virulence of Mtb. Here, we verified the hypothesis that ChoD is capable of modifying the bactericidal and pro-inflammatory activity of human macrophages. We also sought to determine the contribution of complement receptor 3 (CR3)- and Toll-like receptor 2 (TLR2)-mediated signaling pathways in the development of macrophage responses to Mtb. We found that intracellular replication of an Mtb mutant lacking a functional choD gene (ΔchoD) was less efficient in macrophages than that of the wild-type strain. Blocking CR3 and TLR2 with monoclonal antibodies enhanced survival of ΔchoD inside macrophages. We also showed that, in contrast to wild-type Mtb, the ΔchoD strain induced nitric oxide production in macrophages, an action that depended on the TLR2, but not the CR3, signaling pathway. Both wild-type and mutant strains inhibited the production of reactive oxygen species (ROS), but the ΔchoD strain did so to a significantly lesser extent. Blocking TLR2-mediated signaling abolished the inhibitory effect of wild-type Mtb on ROS production by macrophages. Wild-type Mtb, but not the ΔchoD strain, decreased phorbol myristate acetate-induced phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which are involved in both TLR2- and CR3-mediated signaling pathways. Our finding also revealed that the production of interleukin 10 by macrophages was significantly lower in ΔchoD-infected macrophages than in wild-type Mtb-infected macrophages. However, tumor necrosis factor-α production by macrophages was the same after infection with mutant or wild-type strains. In summary, we demonstrate here that ChoD is required for Mtb interference with the TLR2-mediated signaling pathway and subsequent intracellular growth and survival of the pathogen in human macrophages.
Collapse
Affiliation(s)
- Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marta Brzezinska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Izabela Szulc
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Zofia Sulowska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jaroslaw Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
47
|
Improving the lethal effect of cpl-7, a pneumococcal phage lysozyme with broad bactericidal activity, by inverting the net charge of its cell wall-binding module. Antimicrob Agents Chemother 2013; 57:5355-65. [PMID: 23959317 DOI: 10.1128/aac.01372-13] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phage endolysins are murein hydrolases that break the bacterial cell wall to provoke lysis and release of phage progeny. Recently, these enzymes have also been recognized as powerful and specific antibacterial agents when added exogenously. In the pneumococcal system, most cell wall associated murein hydrolases reported so far depend on choline for activity, and Cpl-7 lysozyme constitutes a remarkable exception. Here, we report the improvement of the killing activity of the Cpl-7 endolysin by inversion of the sign of the charge of the cell wall-binding module (from -14.93 to +3.0 at neutral pH). The engineered variant, Cpl-7S, has 15 amino acid substitutions and an improved lytic activity against Streptococcus pneumoniae (including multiresistant strains), Streptococcus pyogenes, and other pathogens. Moreover, we have demonstrated that a single 25-μg dose of Cpl-7S significantly increased the survival rate of zebrafish embryos infected with S. pneumoniae or S. pyogenes, confirming the killing effect of Cpl-7S in vivo. Interestingly, Cpl-7S, in combination with 0.01% carvacrol (an essential oil), was also found to efficiently kill Gram-negative bacteria such as Escherichia coli and Pseudomonas putida, an effect not described previously. Our findings provide a strategy to improve the lytic activity of phage endolysins based on facilitating their pass through the negatively charged bacterial envelope, and thereby their interaction with the cell wall target, by modulating the net charge of the cell wall-binding modules.
Collapse
|
48
|
García-Fernández E, Frank DJ, Galán B, Kells PM, Podust LM, García JL, Ortiz de Montellano PR. A highly conserved mycobacterial cholesterol catabolic pathway. Environ Microbiol 2013; 15:2342-59. [PMID: 23489718 PMCID: PMC3706556 DOI: 10.1111/1462-2920.12108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/25/2013] [Accepted: 02/04/2013] [Indexed: 01/01/2023]
Abstract
Degradation of the cholesterol side-chain in Mycobacterium tuberculosis is initiated by two cytochromes P450, CYP125A1 and CYP142A1, that sequentially oxidize C26 to the alcohol, aldehyde and acid metabolites. Here we report characterization of the homologous enzymes CYP125A3 and CYP142A2 from Mycobacterium smegmatis mc(2) 155. Heterologously expressed, purified CYP125A3 and CYP142A2 bound cholesterol, 4-cholesten-3-one, and antifungal azole drugs. CYP125A3 or CYP142A2 reconstituted with spinach ferredoxin and ferredoxin reductase efficiently hydroxylated 4-cholesten-3-one to the C-26 alcohol and subsequently to the acid. The X-ray structures of both substrate-free CYP125A3 and CYP142A2 and of cholest-4-en-3-one-bound CYP142A2 reveal significant differences in the substrate binding sites compared with the homologous M. tuberculosis proteins. Deletion only of cyp125A3 causes a reduction of both the alcohol and acid metabolites and a strong induction of cyp142 at the mRNA and protein levels, indicating that CYP142A2 serves as a functionally redundant back up enzyme for CYP125A3. In contrast to M. tuberculosis, the M. smegmatis Δcyp125Δcyp142 double mutant retains its ability to grow on cholesterol albeit with a diminished capacity, indicating an additional level of redundancy within its genome.
Collapse
Affiliation(s)
- Esther García-Fernández
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Daniel J. Frank
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA USA
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Petrea M. Kells
- Department of Pathology and Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, CA USA
| | - Larissa M. Podust
- Department of Pathology and Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, CA USA
| | - José L. García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | |
Collapse
|
49
|
Brzostek A, Rumijowska-Galewicz A, Dziadek B, Wojcik EA, Dziadek J. ChoD and HsdD can be dispensable for cholesterol degradation in mycobacteria. J Steroid Biochem Mol Biol 2013; 134:1-7. [PMID: 23064392 DOI: 10.1016/j.jsbmb.2012.09.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 11/16/2022]
Abstract
Cholesterol degradation is achieved through a complex metabolic pathway that starts with the oxidation of the 17-alkyl side chain and the steroid ring system. In bacteria, the oxidation of the 3β-hydroxyl group and isomerization of the resulting cholest-5-en-3-one to cholest-4-en-3-one is catalyzed by hydroxysteroid dehydrogenase (HsdD) or cholesterol oxidase (ChoD). Genes encoding both enzymes were annotated in both fast and slow growing mycobacteria, however the enzymatic activity was confirmed for HsdD, exclusively. Here, we used homologous recombination to engineer multiple mutants, and directly show that both ChoD and HsdD are dispensable for cholesterol degradation in fast-growing Mycobacterium smegmatis mc(2)155 and slow-growing Mycobacterium tuberculosis H37Rv strains. The mutants deffective in the synthesis of ChoD, HsdD or both enzymes were able to grow in minimal media supplemented with cholesterol as a sole source of carbon and energy. Multiple mutants, defective in synthesis of ChoD, HsdD and ketosteroid dehydrogenase (KstD), showed attenuated growth in minimal medium supplemented with cholesterol and accumulated cholesterol degradation intermediates: androstendion (AD) and 9-hydroxy androstendion (9OHAD).
Collapse
Affiliation(s)
- Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | | | | | | |
Collapse
|
50
|
Yao K, Wang FQ, Zhang HC, Wei DZ. Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum. Metab Eng 2013; 15:75-87. [DOI: 10.1016/j.ymben.2012.10.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 09/14/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
|