1
|
Chen J, Cui Y, Xiao Q, Lin K, Wang B, Zhou J, Li X. Difference in microbial community structure along a gradient of crater altitude: insights from the Nushan volcano. Appl Environ Microbiol 2024; 90:e0075324. [PMID: 39028194 PMCID: PMC11337807 DOI: 10.1128/aem.00753-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The variation in the soil microbial community along the altitude gradient has been widely documented. However, the structure and function of the microbial communities distributed along the altitude gradient in the crater still need to be determined. We gathered soil specimens from different elevations within the Nushan volcano crater to bridge this knowledge gap. We investigated the microbial communities of bacteria and fungi in the soil. It is noteworthy that the microbial alpha diversity peaks in the middle of the crater. However, network analysis shows that bacterial (nodes 760 vs 613 vs 601) and fungal (nodes 328 vs 224 vs 400) communities are most stable at the bottom and top of the crater, respectively. Furthermore, the soil microbial network exhibited a decline, followed by an increase across varying altitudes. The core microorganisms displayed the highest correlation with pH and alkaline phosphatase (AP, as determined through redundancy analysis (RDA) and Mantel tests for correlation analysis. The fungal community has a higher number of core microorganisms, while the bacterial core microorganisms demonstrate greater susceptibility to environmental factors. In conclusion, we utilized Illumina sequencing techniques to assess the disparities in the structure and function of bacteria and fungi in the soil.IMPORTANCEThese findings serve as a foundation for future investigations on microbial communities present in volcanic soil.
Collapse
Affiliation(s)
- Jin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Ye Cui
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Qingchen Xiao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Keqin Lin
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Boyan Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Jing Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Xiao S, Gao J, Wang Q, Huang Z, Zhuang G. SOC bioavailability significantly correlated with the microbial activity mediated by size fractionation and soil morphology in agricultural ecosystems. ENVIRONMENT INTERNATIONAL 2024; 186:108588. [PMID: 38527397 DOI: 10.1016/j.envint.2024.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Despite the fact that physical and chemical processes have been widely proposed to explicate the stabilization mechanisms of soil organic carbon (SOC), thebioavailability of SOC linked to soil physical structure, microbial community structure, and functional genes remains poorly understood. This study aims to investigate the SOC division based on bioavailability differences formed by physical isolation, and to clarify the relationships of SOC bioavailability with soil elements, pore characteristics, and microbial activity. Results revealed that soil element abundances such as SOC, TN, and DOC ranked in the same order as the soil porosity as clay > silt ≥ coarse sand > fine sand in both top and sub soil. In contrast to silt and clay, which had reduced SOC bioavailability, fine sand and coarse sand had dramatically enhanced SOC bioavailability compared to the bulk soil. The bacterial and fungal community structure was significantly influenced by particle size, porosity, and soil elements. Copiotrophic bacteria and functional genes were more prevalent in fine sand than clay, which also contained more oligotrophic bacteria. The SOC bioavailability was positively correlated with abundances of functional genes, C degradation genes, and copiotrophic bacteria, but negatively correlated with abundances of soil elements, porosity, oligotrophic bacteria, and microbial biomass (p < 0.05). This indicated that the soil physical structure divided SOC into pools with varying levels of bioavailability, with sand fractions having more bioavailable organic carbon than finer fractions. Copiotrophic Proteobacteria and oligotrophic Acidobacteria, Firmicutes, and Gemmatimonadetes made up the majority of the bacteria linked to SOC mineralization. Additionally, the fungi Mortierellomycota and Mucoromycota, which are mostly involved in SOC mineralization, may have the potential for oligotrophic metabolism. Our results indicated that particle-size fractionation could influence the SOC bioavailability by restricting SOC accessibility and microbial activity, thus having a significant impact on sustaining soil organic carbon reserves in temperate agricultural ecosystems, and provided a new research direction for organic carbon stability.
Collapse
Affiliation(s)
- Shujie Xiao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiuying Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixuan Huang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101400, China; Sino-Danish Center for Education and Research, Beijing 101400, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Masigol H, Retter A, Pourmoghaddam MJ, Amini H, Taheri SR, Mostowfizadeh-Ghalamfarsa R, Kimiaei M, Grossart HP. Opening Pandora's Box: Neglected Biochemical Potential of Permafrost-Associated Fungal Communities in a Warming Climate. J Fungi (Basel) 2023; 10:20. [PMID: 38248928 PMCID: PMC10817676 DOI: 10.3390/jof10010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Permafrost, a vast storage reservoir of frozen organic matter, is rapidly thawing due to climate change, releasing previously preserved carbon into the environment. This phenomenon has significant consequences for microbial communities, including fungi, inhabiting permafrost-associated regions. In this review, we delve into the intricate interplay between permafrost thawing and fungal diversity and functionality with an emphasis on thermokarst lakes. We explore how the release of organic carbon from thawing permafrost alters the composition and activities of fungal communities, emphasizing the potential for shifts in taxonomic diversity and functional gene expression. We discuss the formation of thermokarst lakes, as an example of permafrost thaw-induced ecological disruptions and their impact on fungal communities. Furthermore, we analyze the repercussions of these changes, including effects on nutrient cycling, plant productivity, and greenhouse gas (GHG) emissions. By elucidating the multifaceted relationship between permafrost thaw and aquatic fungi, this review provides valuable insights into the ecological consequences of ongoing climate change in permafrost-affected regions.
Collapse
Affiliation(s)
- Hossein Masigol
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (A.R.); (H.A.); (S.R.T.)
| | - Alice Retter
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (A.R.); (H.A.); (S.R.T.)
| | | | - Hossein Amini
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (A.R.); (H.A.); (S.R.T.)
| | - Seyedeh Roksana Taheri
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (A.R.); (H.A.); (S.R.T.)
| | | | - Mahyar Kimiaei
- Department of Plant Protection, Isfahan (Khorsgan) Branch, Islamic Azad University, Isfahan 3999881551, Iran;
| | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (A.R.); (H.A.); (S.R.T.)
- Institute for Biochemistry and Biology, Potsdam University, 14469 Potsdam, Germany
| |
Collapse
|
4
|
Vagelas I, Reizopoulou A, Exadactylos A, Madesis P, Karapetsi L, Michail G. Stalactites Core Prospect as Environmental "Microbial Ark": The Actinomycetota Diversity Paradigm, First Reported from a Greek Cave. Pol J Microbiol 2023; 72:155-168. [PMID: 37314357 DOI: 10.33073/pjm-2023-016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/15/2023] [Indexed: 06/15/2023] Open
Abstract
Speleothems found in caves worldwide are considered the natural libraries of paleontology. Bacteria found in these ecosystems are generally limited to Proteobacteria and Actinomycetota, but rare microbiome and "Dark Matter" is generally under-investigated and often neglected. This research article discusses, for the first time to our knowledge, the diachronic diversity of Actinomycetota entrapped inside a cave stalactite. The planet's environmental microbial community profile of different eras can be stored in these refugia (speleothems). These speleothems could be an environmental "Microbial Ark" storing rare microbiome and "Dark Matter" bacterial communities evermore.
Collapse
Affiliation(s)
- Ioannis Vagelas
- 2Laboratory of Plant Pathology, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Angeliki Reizopoulou
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Athanasios Exadactylos
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Panagiotis Madesis
- 3Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Lefkothea Karapetsi
- 3Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
- 4Centre for Research and Technology (CERTH), Institute of Applied Biosciences (INAB), Thessaloniki, Greece
| | - George Michail
- 1Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| |
Collapse
|
5
|
Morgalev SY, Lim AG, Morgaleva TG, Morgalev YN, Manasypov RM, Kuzmina D, Shirokova LS, Orgogozo L, Loiko SV, Pokrovsky OS. Fractionation of organic C, nutrients, metals and bacteria in peat porewater and ice after freezing and thawing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:823-836. [PMID: 35904738 DOI: 10.1007/s11356-022-22219-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
To better understand freezing - thawing cycles operating in peat soils of permafrost landscapes, we experimentally modelled bi-directional freezing and thawing of peat collected from a discontinuous permafrost zone in western Siberia. We measured translocation of microorganisms and changes in porewater chemistry (pH, UV absorbance, dissolved organic carbon (DOC), and major and trace element concentrations) after thawing and two-way freezing of the three sections of 90-cm-long peat core. We demonstrate that bi-directional freezing and thawing of a peat core is capable of strongly modifying the vertical pattern of bacteria, DOC, nutrients, and trace element concentrations. Sizeable enrichment (a factor of 2 to 5) of DOC, macro- (P, K, Ca) and micro-nutrients (Ni, Mn, Co, Rb, B), and some low-mobile trace elements in several horizons of ice and peat porewater after freeze/thaw experiment may stem from physical disintegration of peat particles, leaching of peat constituents, and opening of isolated (non-connected) pores during freezing front migration. However, due to the appearance of multiple maxima of element concentration after a freeze-thaw event, the use of peat ice chemical composition as environmental archive for paleo-reconstructions is unwarranted.
Collapse
Affiliation(s)
- Sergey Yu Morgalev
- Centre "Biotest-Nano", Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia
| | - Artem G Lim
- BIO-GEO-CLIM Laboratory, Tomsk State University, 35 Lenina Pr, Tomsk, Russia
| | - Tamara G Morgaleva
- Centre "Biotest-Nano", Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia
| | - Yuri N Morgalev
- Centre "Biotest-Nano", Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia
| | - Rinat M Manasypov
- BIO-GEO-CLIM Laboratory, Tomsk State University, 35 Lenina Pr, Tomsk, Russia
| | - Daria Kuzmina
- BIO-GEO-CLIM Laboratory, Tomsk State University, 35 Lenina Pr, Tomsk, Russia
| | - Liudmila S Shirokova
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Nab Severnoi Dviny, 23, Russia
- Geosciences and Environment Toulouse, UMR 5563 CNRS, University of Toulouse, 14 Avenue Edouard Belin, 31400, Toulouse, France
| | - Laurent Orgogozo
- Geosciences and Environment Toulouse, UMR 5563 CNRS, University of Toulouse, 14 Avenue Edouard Belin, 31400, Toulouse, France
| | - Sergey V Loiko
- BIO-GEO-CLIM Laboratory, Tomsk State University, 35 Lenina Pr, Tomsk, Russia
| | - Oleg S Pokrovsky
- Geosciences and Environment Toulouse, UMR 5563 CNRS, University of Toulouse, 14 Avenue Edouard Belin, 31400, Toulouse, France.
| |
Collapse
|
6
|
Dieleman CM, Day NJ, Holloway JE, Baltzer J, Douglas TA, Turetsky MR. Carbon and nitrogen cycling dynamics following permafrost thaw in the Northwest Territories, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157288. [PMID: 35839897 DOI: 10.1016/j.scitotenv.2022.157288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Rapid climate warming across northern high latitudes is leading to permafrost thaw and ecosystem carbon release while simultaneously impacting other biogeochemical cycles including nitrogen. We used a two-year laboratory incubation study to quantify concomitant changes in carbon and nitrogen pool quantity and quality as drivers of potential CO2 production in thawed permafrost soils from eight soil cores collected across the southern Northwest Territories (NWT), Canada. These data were contextualized via in situ annual thaw depth measurements from 2015 to 2019 at 40 study sites that varied in burn history. We found with increasing time since experimental thaw the dissolved carbon and nitrogen pool quality significantly declined, indicating sustained microbial processing and selective immobilization across both pools. Piecewise structural equation modeling revealed CO2 trends were predominantly predicted by initial soil carbon content with minimal influence of dissolved phase carbon. Using these results, we provide a first-order estimate of potential near-surface permafrost soil losses of up to 80 g C m-2 over one year in southern NWT, exceeding regional historic mean primary productivity rates in some areas. Taken together, this research provides mechanistic knowledge needed to further constrain the permafrost‑carbon feedback and parameterize Earth system models, while building on empirical evidence that permafrost soils are at high risk of becoming weaker carbon sinks or even significant carbon sources under a changing climate.
Collapse
Affiliation(s)
- Catherine M Dieleman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada; School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada.
| | - Nicola J Day
- Biology Department, Wilfrid Laurier University, Waterloo, Ontario, Canada; School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jean E Holloway
- Department of Geography, Environment and Geomatics, University of Ottawa, Ontario, Canada
| | - Jennifer Baltzer
- Biology Department, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK, USA
| | - Merritt R Turetsky
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada; Institute of Arctic and Alpine Research, Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
7
|
Ernakovich JG, Barbato RA, Rich VI, Schädel C, Hewitt RE, Doherty SJ, Whalen E, Abbott BW, Barta J, Biasi C, Chabot CL, Hultman J, Knoblauch C, Vetter M, Leewis M, Liebner S, Mackelprang R, Onstott TC, Richter A, Schütte U, Siljanen HMP, Taş N, Timling I, Vishnivetskaya TA, Waldrop MP, Winkel M. Microbiome assembly in thawing permafrost and its feedbacks to climate. GLOBAL CHANGE BIOLOGY 2022; 28:5007-5026. [PMID: 35722720 PMCID: PMC9541943 DOI: 10.1111/gcb.16231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/24/2022] [Indexed: 05/15/2023]
Abstract
The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.
Collapse
Affiliation(s)
- Jessica G. Ernakovich
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
- Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute
| | - Robyn A. Barbato
- U.S. Army Cold Regions Research and Engineering LaboratoryHanoverNew HampshireUSA
| | - Virginia I. Rich
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute
- Microbiology DepartmentOhio State UniversityColumbusOhioUSA
- Byrd Polar and Climate Research CenterOhio State UniversityColombusOhioUSA
- Center of Microbiome ScienceOhio State UniversityColombusOhioUSA
| | - Christina Schädel
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Rebecca E. Hewitt
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of Environmental StudiesAmherst CollegeAmherstMassachusettsUSA
| | - Stacey J. Doherty
- Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
- U.S. Army Cold Regions Research and Engineering LaboratoryHanoverNew HampshireUSA
| | - Emily D. Whalen
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
| | - Benjamin W. Abbott
- Department of Plant and Wildlife SciencesBrigham Young UniversityProvoUtahUSA
| | - Jiri Barta
- Centre for Polar EcologyUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Christina Biasi
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Chris L. Chabot
- California State University NorthridgeNorthridgeCaliforniaUSA
| | | | - Christian Knoblauch
- Institute of Soil ScienceUniversität HamburgHamburgGermany
- Center for Earth System Research and SustainabilityUniversität HamburgHamburgGermany
| | - Maggie C. Y. Lau Vetter
- Department of GeosciencesPrinceton UniversityPrincetonNew JerseyUSA
- Laboratory of Extraterrestrial Ocean Systems (LEOS)Institute of Deep‐sea Science and EngineeringChinese Academy of SciencesSanyaChina
| | - Mary‐Cathrine Leewis
- U.S. Geological Survey, GeologyMinerals, Energy and Geophysics Science CenterMenlo ParkCaliforniaUSA
- Agriculture and Agri‐Food CanadaQuebec Research and Development CentreQuebecQuebecCanada
| | - Susanne Liebner
- GFZ German Research Centre for GeosciencesSection GeomicrobiologyPotsdamGermany
| | | | | | - Andreas Richter
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
- Austrian Polar Research InstituteViennaAustria
| | | | - Henri M. P. Siljanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Neslihan Taş
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | | - Tatiana A. Vishnivetskaya
- University of TennesseeKnoxvilleTennesseeUSA
- Institute of Physicochemical and Biological Problems of Soil SciencePushchinoRussia
| | - Mark P. Waldrop
- U.S. Geological Survey, GeologyMinerals, Energy and Geophysics Science CenterMenlo ParkCaliforniaUSA
| | - Matthias Winkel
- GFZ German Research Centre for GeosciencesInterface GeochemistryPotsdamGermany
- BfR Federal Institute for Risk AssessmentBerlinGermany
| |
Collapse
|
8
|
Pescador DS, Delgado-Baquerizo M, Fiore-Donno AM, Singh BK, Bonkowski M, Maestre FT. Ecological clusters of soil taxa within bipartite networks are highly sensitive to climatic conditions in global drylands. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210387. [PMID: 35757878 PMCID: PMC9234812 DOI: 10.1098/rstb.2021.0387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
Determining the influence of climate in driving the global distribution of soil microbial communities is fundamental to help predict potential shifts in soil food webs and ecosystem functioning under global change scenarios. Herein, we used a global survey including 80 dryland ecosystems from six continents, and found that the relative abundance of ecological clusters formed by taxa involved in bacteria-fungi and bacteria-cercozoa bipartite networks was highly sensitive to changes in temperature and aridity. Importantly, such a result was maintained when controlling for soil, geographical location and vegetation attributes, being pH and soil organic carbon important determinants of the relative abundance of the ecological clusters. We also identified potential global associations between important soil microbial taxa, which can be useful to support the conservation of terrestrial ecosystems under global change scenarios. Our results suggest that increases in temperature and aridity such as those forecasted for the next decades in drylands could potentially lead to drastic changes in the community composition of functionally important bipartite networks within soil food webs. This could have important but unknown implications for the provision of key ecosystem functions and associated services driven by the organisms forming these networks if other taxa cannot cope with them. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.
Collapse
Affiliation(s)
- David S. Pescador
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Anna Maria Fiore-Donno
- Department of Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Brajesh K. Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Michael Bonkowski
- Department of Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Fernando T. Maestre
- Instituto Multidisciplinar para el Estudio del Medio ‘Ramón Margalef’, Universidad de Alicante, San Vicente del Raspeig, Spain
- Departamento de Ecología, Universidad de Alicante, San Vicente del Raspeig, Spain
| |
Collapse
|
9
|
Xu Q, Du Z, Wang L, Xue K, Wei Z, Zhang G, Liu K, Lin J, Lin P, Chen T, Xiao C. The Role of Thermokarst Lake Expansion in Altering the Microbial Community and Methane Cycling in Beiluhe Basin on Tibetan Plateau. Microorganisms 2022; 10:1620. [PMID: 36014037 PMCID: PMC9412574 DOI: 10.3390/microorganisms10081620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most significant environmental changes across the Tibetan Plateau (TP) is the rapid lake expansion. The expansion of thermokarst lakes affects the global biogeochemical cycles and local climate regulation by rising levels, expanding area, and increasing water volumes. Meanwhile, microbial activity contributes greatly to the biogeochemical cycle of carbon in the thermokarst lakes, including organic matter decomposition, soil formation, and mineralization. However, the impact of lake expansion on distribution patterns of microbial communities and methane cycling, especially those of water and sediment under ice, remain unknown. This hinders our ability to assess the true impact of lake expansion on ecosystem services and our ability to accurately investigate greenhouse gas emissions and consumption in thermokarst lakes. Here, we explored the patterns of microorganisms and methane cycling by investigating sediment and water samples at an oriented direction of expansion occurred from four points under ice of a mature-developed thermokarst lake on TP. In addition, the methane concentration of each water layer was examined. Microbial diversity and network complexity were different in our shallow points (MS, SH) and deep points (CE, SH). There are differences of microbial community composition among four points, resulting in the decreased relative abundances of dominant phyla, such as Firmicutes in sediment, Proteobacteria in water, Thermoplasmatota in sediment and water, and increased relative abundance of Actinobacteriota with MS and SH points. Microbial community composition involved in methane cycling also shifted, such as increases in USCγ, Methylomonas, and Methylobacter, with higher relative abundance consistent with low dissolved methane concentration in MS and SH points. There was a strong correlation between changes in microbiota characteristics and changes in water and sediment environmental factors. Together, these results show that lake expansion has an important impact on microbial diversity and methane cycling.
Collapse
Affiliation(s)
- Qian Xu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiheng Du
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Wang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Kai Xue
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Wei
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiahui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Penglin Lin
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Cunde Xiao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Swapnil P, Marwal A, Kumar S. Multifarious Responses of Forest Soil Microbial Community Toward Climate Change. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02051-3. [PMID: 35657425 DOI: 10.1007/s00248-022-02051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Forest soils are a pressing subject of worldwide research owing to the several roles of forests such as carbon sinks. Currently, the living soil ecosystem has become dreadful as a consequence of several anthropogenic activities including climate change. Climate change continues to transform the living soil ecosystem as well as the soil microbiome of planet Earth. The majority of studies have aimed to decipher the role of forest soil bacteria and fungi to understand and predict the impact of climate change on soil microbiome community structure and their ecosystem in the environment. In forest soils, microorganisms live in diverse habitats with specific behavior, comprising bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are influenced by biotic interactions and nutrient accessibility. Soil microbiome also drives multiple crucial steps in the nutrient biogeochemical cycles (carbon, nitrogen, phosphorous, and sulfur cycles). Soil microbes help in the nitrogen cycle through nitrogen fixation during the nitrogen cycle and maintain the concentration of nitrogen in the atmosphere. Soil microorganisms in forest soils respond to various effects of climate change, for instance, global warming, elevated level of CO2, drought, anthropogenic nitrogen deposition, increased precipitation, and flood. As the major burning issue of the globe, researchers are facing the major challenges to study soil microbiome. This review sheds light on the current scenario of knowledge about the effect of climate change on living soil ecosystems in various climate-sensitive soil ecosystems and the consequences for vegetation-soil-climate feedbacks.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Adhishree Nagda
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Tushar Mehta
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Prashant Swapnil
- Department of Botany, School of Biological Science, Central University of Punjab, Bhatinda, Punjab, 151401, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
11
|
Zhang Y, Heal KV, Shi M, Chen W, Zhou C. Decreasing molecular diversity of soil dissolved organic matter related to microbial community along an alpine elevation gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151823. [PMID: 34808163 DOI: 10.1016/j.scitotenv.2021.151823] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Characterization of soil dissolved organic matter (DOM) and understanding of the interactions between soil microbial communities and DOM molecules along elevation gradients in alpine ecosystems are still limited. To unravel these interactions and how they change along alpine elevation gradients, we sampled topsoil in the Sygera Mountains (Tibet, China) at elevations between 3800 and 4600 m. The molecular characteristics of soil DOM were determined using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and soil microbial composition was identified by high-throughput sequencing. Among the seven components of DOM, the lignins/CRAM (carboxyl-rich alicyclic molecules)-like structure dominated at all elevations, followed by tannins, while the relative abundance of unstable substances, including lipids, aliphatic/protein, and carbohydrates, was lower. As elevation increased, the molecular diversity, degree of oxidation, aromaticity, and unsaturation of soil DOM decreased. The abundance and diversity of soil bacteria and fungi also generally decreased with elevation. Both bacteria and fungi play an important role in the degradation of DOM molecules, but bacteria appear to have greater degradation ability. Among them, Proteobacteria and Bacteroidetes mainly promote the degradation of lignins/CRAM-like structure molecules, while Basidiomycota mainly degrade more unstable substrates. Co-occurrence network analysis revealed complex correlations between specific microbial groups and DOM molecules. Our results suggest that more active cycling of soil DOM could occur in alpine ecosystems due to climate warming, as the result of increased vegetation productivity and litter input in response to rising temperature promoting the relative abundance of microbial groups capable of degrading lignins/CRAM-like structures in soil DOM.
Collapse
Affiliation(s)
- Yanlin Zhang
- Forestry College, Fujian Agriculture and Forestry University, National Positioning Observation Research Station of Red Earth Hilly Ecosystem in Changting, Fujian, 350002, Fujian Province, China
| | - Kate V Heal
- School of GeoSciences, The University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Mengjie Shi
- Forestry College, Fujian Agriculture and Forestry University, National Positioning Observation Research Station of Red Earth Hilly Ecosystem in Changting, Fujian, 350002, Fujian Province, China
| | - Wenxin Chen
- Forestry College, Fujian Agriculture and Forestry University, National Positioning Observation Research Station of Red Earth Hilly Ecosystem in Changting, Fujian, 350002, Fujian Province, China
| | - Chuifan Zhou
- Forestry College, Fujian Agriculture and Forestry University, National Positioning Observation Research Station of Red Earth Hilly Ecosystem in Changting, Fujian, 350002, Fujian Province, China.
| |
Collapse
|
12
|
Kim H, Kim M, Kim S, Lee YM, Shin SC. Characterization of antimicrobial resistance genes and virulence factor genes in an Arctic permafrost region revealed by metagenomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118634. [PMID: 34875269 DOI: 10.1016/j.envpol.2021.118634] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance genes (ARGs) and virulence factor genes (VFGs) constitute a serious threat to public health, and climate change has been predicted to affect the increase in bacterial pathogens harboring ARGs and VFGs. However, studies on bacterial pathogens and their ARGs and VFGs in permafrost region have received limited attention. In this study, a metagenomic approach was applied to a comprehensive survey to detect potential ARGs, VFGs, and pathogenic antibiotic resistant bacteria (PARB) carrying both ARGs and VFGs in the active layer and permafrost. Overall, 70 unique ARGs against 18 antimicrobial drug classes and 599 VFGs classified as 38 virulence factors were detected in the Arctic permafrost region. Eight genes with mobile genetic elements (MGEs) carrying ARGs were identified; most MGEs were classified as phages. In the metagenome-assembled genomes, the presence of 15 PARB was confirmed. The soil profile showed that the transcripts per million (TPM) values of ARGs and VFGs in the sub-soil horizon were significantly lower than those in the top soil horizon. Based on the TPM value of each gene, major ARGs, VFGs, and these genes in PARB from the Arctic permafrost region were identified and their distribution was confirmed. The major host bacteria for ARGs and VFGs and PARB were identified. A comparison of the percentage identity distribution of ARGs and VFGs to reference databases indicated that ARGs and VFGs in the Arctic soils differ from previously identified genes. Our results may help understand the characteristics and distribution of ARGs, VFGs, and these genes in PARB in the Arctic permafrost region. This findings suggest that the Arctic permafrost region may serve as potential reservoirs for ARGs, VFGs, and PARB. These genes could pose a new threat to human health if they are released by permafrost thawing owing to global warming and propagate to other regions.
Collapse
Affiliation(s)
- Heesoo Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Mincheol Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Yung Mi Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Seung Chul Shin
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| |
Collapse
|
13
|
Dong X, Liu C, Ma D, Wu Y, Man H, Wu X, Li M, Zang S. Organic Carbon Mineralization and Bacterial Community of Active Layer Soils Response to Short-Term Warming in the Great Hing'an Mountains of Northeast China. Front Microbiol 2022; 12:802213. [PMID: 35003032 PMCID: PMC8739994 DOI: 10.3389/fmicb.2021.802213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022] Open
Abstract
As a buffer layer for the energy and water exchange between atmosphere and permafrost, the active layer is sensitive to climate warming. Changes in the thermal state in active layer can alter soil organic carbon (SOC) dynamics. It is critical to identify the response of soil microbial communities to warming to better predict the regional carbon cycle under the background of global warming. Here, the active layer soils collected from a wetland-forest ecotone in the continuous permafrost region of Northeastern China were incubated at 5 and 15°C for 45 days. High-throughput sequencing of the 16S rRNA gene was used to examine the response of bacterial community structure to experimental warming. A total of 4148 OTUs were identified, which followed the order 15°C > 5°C > pre-incubated. Incubation temperature, soil layer and their interaction have significant effects on bacterial alpha diversity (Chao index). Bacterial communities under different temperature were clearly distinguished. Chloroflexi, Actinobacteria, Proteobacteria, and Acidobacteria accounted for more than 80% of the community abundance at the phylum level. Warming decreased the relative abundance of Chloroflexi and Acidobacteria, while Actinobacteria and Proteobacteria exhibited increasing trend. At family level, the abundance of norank_o__norank_c__AD3 and Ktedonobacteraceae decreased significantly with the increase of temperature, while Micrococcaccac increased. In addition, the amount of SOC mineralization were positively correlated with the relative abundances of most bacterial phyla and SOC content. SOC content was positively correlated with the relative abundance of most bacterial phyla. Results indicate that the SOC content was the primary explanatory variable and driver of microbial regulation for SOC mineralization. Our results provide a new perspective for understanding the microbial mechanisms that accelerates SOC decomposition under warming conditions in the forest-wetland ecotone of permafrost region.
Collapse
Affiliation(s)
- Xingfeng Dong
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Chao Liu
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Dalong Ma
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Yufei Wu
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Haoran Man
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Xiangwen Wu
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Miao Li
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, China
| |
Collapse
|
14
|
Wu X, Chauhan A, Layton AC, Lau Vetter MCY, Stackhouse BT, Williams DE, Whyte L, Pfiffner SM, Onstott TC, Vishnivetskaya TA. Comparative Metagenomics of the Active Layer and Permafrost from Low-Carbon Soil in the Canadian High Arctic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12683-12693. [PMID: 34472853 DOI: 10.1021/acs.est.1c00802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Approximately 87% of the Arctic consists of low-organic carbon mineral soil, but knowledge of microbial activity in low-carbon permafrost (PF) and active layer soils remains limited. This study investigated the taxonomic composition and genetic potential of microbial communities at contrasting depths of the active layer (5, 35, and 65 cm below surface, bls) and PF (80 cm bls). We showed microbial communities in PF to be taxonomically and functionally different from those in the active layer. 16S rRNA gene sequence analysis revealed higher biodiversity in the active layer than in PF, and biodiversity decreased significantly with depth. The reconstructed 91 metagenome-assembled genomes showed that PF was dominated by heterotrophic, fermenting Bacteroidota using nitrite as their main electron acceptor. Prevalent microbes identified in the active layer belonged to bacterial taxa, gaining energy via aerobic respiration. Gene abundance in metagenomes revealed enrichment of genes encoding the plant-derived polysaccharide degradation and metabolism of nitrate and sulfate in PF, whereas genes encoding methane/ammonia oxidation, cold-shock protein, and two-component systems were generally more abundant in the active layer, particularly at 5 cm bls. The results of this study deepen our understanding of the low-carbon Arctic soil microbiome and improve prediction of the impacts of thawing PF.
Collapse
Affiliation(s)
- Xiaofen Wu
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Archana Chauhan
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alice C Layton
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Maggie C Y Lau Vetter
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Brandon T Stackhouse
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel E Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Tatiana A Vishnivetskaya
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
15
|
Wang R, Wang M, Wang J, Lin Y. Habitats Are More Important Than Seasons in Shaping Soil Bacterial Communities on the Qinghai-Tibetan Plateau. Microorganisms 2021; 9:microorganisms9081595. [PMID: 34442674 PMCID: PMC8400953 DOI: 10.3390/microorganisms9081595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Both habitats and seasons can determine the dynamics of microbial communities, but the relative importance of different habitats and seasonal changes in shaping the soil bacterial community structures on a small spatial scale in permafrost areas remains controversial. In this study, we explored the relative effect of four typical alpine meadow habitats (swamp wetland, swamp meadow, meadow and mature meadow) versus seasons on soil bacterial communities based on samples from the Qinghai-Tibetan Plateau in four months (March, May, July and September). The results showed that habitats, rather than seasons explained more variation of soil bacterial composition and structure. Environmental cofactors explained the greatest proportion of bacterial variation observed and can help elucidate the driving force of seasonal changes and habitats on bacterial communities. Soil temperature played the most important role in shaping bacterial beta diversities, followed by soil total nitrogen and pH. A group of microbial biomarkers, used as indicators of different months, were identified using random forest modeling, and for which relative abundance was shaped by different environmental factors. Furthermore, seasonality in bacterial co-occurrence patterns was observed. The data showed that co-occurrence relationships changed over months. The inter-taxa connections in May and July were more pronounced than that in March and September. Bryobacter, a genus of subgroup_22 affiliated to Acidobacteria, and Pseudonocardia belonging to Actinobacteria were observed as the keystone taxa in different months in the network. These results demonstrate that the bacterial community was clustered according to the seasonal mechanism, whereas the co-occurrence relationships changed over months, which indicated complex bacterial dynamics in a permafrost grassland on the eastern edge of Qinghai-Tibetan.
Collapse
Affiliation(s)
- Rui Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; (R.W.); (J.W.)
| | - Miao Wang
- Party School of the Chengdu Committee of the Chinese Communist Party, Chengdu 610110, China;
| | - Jing Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; (R.W.); (J.W.)
| | - Yinghua Lin
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; (R.W.); (J.W.)
- Correspondence: ; Tel.: +86-13671160455
| |
Collapse
|
16
|
Bacterial Number and Genetic Diversity in a Permafrost Peatland (Western Siberia): Testing a Link with Organic Matter Quality and Elementary Composition of a Peat Soil Profile. DIVERSITY 2021. [DOI: 10.3390/d13070328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Permafrost peatlands, containing a sizable amount of soil organic carbon (OC), play a pivotal role in soil (peat) OC transformation into soluble and volatile forms and greatly contribute to overall natural CO2 and CH4 emissions to the atmosphere under ongoing permafrost thaw and soil OC degradation. Peat microorganisms are largely responsible for the processing of this OC, yet coupled studies of chemical and bacterial parameters in permafrost peatlands are rather limited and geographically biased. Towards testing the possible impact of peat and peat pore water chemical composition on microbial population and diversity, here we present results of a preliminary study of the western Siberia permafrost peatland discontinuous permafrost zone. The quantitative evaluation of microorganisms and determination of microbial diversity along a 100 cm thick peat soil column, which included thawed and frozen peat and bottom mineral horizon, was performed by RT-PCR and 16S rRNA gene-based metagenomic analysis, respectively. Bacteria (mainly Proteobacteria, Acidobacteria, Actinobacteria) strongly dominated the microbial diversity (99% sequences), with a negligible proportion of archaea (0.3–0.5%). There was a systematic evolution of main taxa according to depth, with a maximum of 65% (Acidobacteria) encountered in the active layer, or permafrost boundary (50–60 cm). We also measured C, N, nutrients and ~50 major and trace elements in peat (19 samples) as well as its pore water and dispersed ice (10 samples), sampled over the same core, and we analyzed organic matter quality in six organic and one mineral horizon of this core. Using multiparametric statistics (PCA), we tested the links between the total microbial number and 16S rRNA diversity and chemical composition of both the solid and fluid phase harboring the microorganisms. Under climate warming and permafrost thaw, one can expect a downward movement of the layer of maximal genetic diversity following the active layer thickening. Given a one to two orders of magnitude higher microbial number in the upper (thawed) layers compared to bottom (frozen) layers, an additional 50 cm of peat thawing in western Siberia may sizably increase the total microbial population and biodiversity of active cells.
Collapse
|
17
|
Chen Y, Liu F, Kang L, Zhang D, Kou D, Mao C, Qin S, Zhang Q, Yang Y. Large-scale evidence for microbial response and associated carbon release after permafrost thaw. GLOBAL CHANGE BIOLOGY 2021; 27:3218-3229. [PMID: 33336478 DOI: 10.1111/gcb.15487] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Permafrost thaw could trigger the release of greenhouse gases through microbial decomposition of the large quantities of carbon (C) stored within frozen soils. However, accurate evaluation of soil C emissions from thawing permafrost is still a big challenge, partly due to our inadequate understanding about the response of microbial communities and their linkage with soil C release upon permafrost thaw. Based on a large-scale permafrost sampling across 24 sites on the Tibetan Plateau, we employed meta-genomic technologies (GeoChip and Illumina MiSeq sequencing) to explore the impacts of permafrost thaw (permafrost samples were incubated for 11 days at 5°C) on microbial taxonomic and functional communities, and then conducted a laboratory incubation to investigate the linkage of microbial taxonomic and functional diversity with soil C release after permafrost thaw. We found that bacterial and fungal α diversity decreased, but functional gene diversity and the normalized relative abundance of C degradation genes increased after permafrost thaw, reflecting the rapid microbial response to permafrost thaw. Moreover, both the microbial taxonomic and functional community structures differed between the thawed permafrost and formerly frozen soils. Furthermore, soil C release rate over five month incubation was associated with microbial functional diversity and C degradation gene abundances. By contrast, neither microbial taxonomic diversity nor community structure exhibited any significant effects on soil C release over the incubation period. These findings demonstrate that permafrost thaw could accelerate C emissions by altering the function potentials of microbial communities rather than taxonomic diversity, highlighting the crucial role of microbial functional genes in mediating the responses of permafrost C cycle to climate warming.
Collapse
Affiliation(s)
- Yongliang Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Futing Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Luyao Kang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dan Kou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chao Mao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiwen Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Vishnivetskaya TA, Almatari AL, Spirina EV, Wu X, Williams DE, Pfiffner SM, Rivkina EM. Insights into community of photosynthetic microorganisms from permafrost. FEMS Microbiol Ecol 2021; 96:5979775. [PMID: 33181853 DOI: 10.1093/femsec/fiaa229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
This work integrates cultivation studies of Siberian permafrost and analyses of metagenomes from different locations in the Arctic with the aim of obtaining insights into the community of photosynthetic microorganisms in perennially frozen deposits. Cyanobacteria and microalgae have been described in Arctic aquatic and surface soil environments, but their diversity and ability to withstand harsh conditions within the permafrost are still largely unknown. Community structure of photosynthetic organisms in permafrost sediments was explored using Arctic metagenomes available through the MG-RAST. Sequences affiliated with cyanobacteria represented from 0.25 to 3.03% of total sequences, followed by sequences affiliated with Streptophyta (algae and vascular plants) 0.01-0.45% and Chlorophyta (green algae) 0.01-0.1%. Enrichment and cultivation approaches revealed that cyanobacteria and green algae survive in permafrost and they could be revived during prolonged incubation at low light intensity. Among photosynthetic microorganisms isolated from permafrost, the filamentous Oscillatoria-like cyanobacteria and unicellular green algae of the genus Chlorella were dominant. Our findings suggest that permafrost cyanobacteria and green algae are expected to be effective members of the re-assembled community after permafrost thawing and soil collapse.
Collapse
Affiliation(s)
- Tatiana A Vishnivetskaya
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1605, USA.,Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Institutskaya Street, Bldg. 2, Pushchino, Russia
| | - Abraham L Almatari
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1605, USA
| | - Elena V Spirina
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Institutskaya Street, Bldg. 2, Pushchino, Russia
| | - Xiaofen Wu
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1605, USA
| | - Daniel E Williams
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1605, USA
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1605, USA
| | - Elizaveta M Rivkina
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Institutskaya Street, Bldg. 2, Pushchino, Russia
| |
Collapse
|
19
|
Microbial Community Composition Correlates with Metal Sorption in an Ombrotrophic Boreal Bog: Implications for Radionuclide Retention. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microbial communities throughout the 6.5 m depth profile of a boreal ombrotrophic bog were characterized using amplicon sequencing of archaeal, fungal, and bacterial marker genes. Microbial populations and their relationship to oxic and anoxic batch sorption of radionuclides (using radioactive tracers of I, Se, Cs, Ni, and Ag) and the prevailing metal concentrations in the natural bog was investigated. The majority of the detected archaea belonged to the Crenarchaeota, Halobacterota, and Thermoplasmatota, whereas the fungal communities consisted of Ascomycota, Basidiomycota, and unclassified fungi. The bacterial communities consisted mostly of Acidobacteriota, Proteobacteria, and Chloroflexi. The occurrence of several microbial genera were found to statistically significantly correlate with metal concentrations as well as with Se, Cs, I, and Ag batch sorption data. We suggest that the metal concentrations of peat, gyttja, and clay layers affect the composition of the microbial populations in these nutrient-low conditions and that particularly parts of the bacterial and archaeal communities tolerate high concentrations of potentially toxic metals and may concurrently contribute to the total retention of metals and radionuclides in this ombrotrophic environment. In addition, the varying metal concentrations together with chemical, mineralogical, and physical factors may contribute to the shape of the total archaeal and bacterial populations and most probably shifts the populations for more metal resistant genera.
Collapse
|
20
|
Zhao Y, Li Y, Yang F. Critical review on soil phosphorus migration and transformation under freezing-thawing cycles and typical regulatory measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141614. [PMID: 32889455 DOI: 10.1016/j.scitotenv.2020.141614] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/25/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Freezing-thawing period plays an important role in the soil nutrient cycling. The frequency of freezing-thawing cycles (FTCs) can directly affect the supply of effective soil nutrients, further influences the growth and development of crops. Phosphorus is one of the essential nutrients for crop growth, and almost no compounds in gas form in nature, which is non-renewable resources. In modern agricultural production, phosphorus required by plants is mainly from the soil, but the utilization rate of phosphorus fertilizer in soil is generally only 10%-25%. Therefore, it is of great significance to study phosphorus migration and transformation behavior of soil in the non-growth period and related interfacial processes for improving the utilization efficiency of phosphorus fertilizer, increasing crop yield, reducing excessive application of phosphorus fertilizer, and subsiding environmental pollution. This paper systematically concludes key interfacial process of soil phosphorus in freezing-thawing soil system and relative mechanisms describing migration and transformation behavior of soil phosphorus. Besides, it summarizes the mediating effects of widely used soil conditioner on phosphorus cycling. The results show that freezing- thawing will destroy the structure of the soil, causing phosphorus to migrate along with runoff, soil water and heat movement. It also affects the types of microorganisms, the activity of microbial communities and the oxidation-reduction reaction of related minerals, making the phosphorus in soil from an unstable form to an active form. Biochar and humic substances can improve the physical and chemical properties of the soil, and have favorable effects on soil during freezing-thawing period. This review has important significance for the rational utilization of existing phosphorus resources, the maintenance of soil phosphorus cycle balance and the sustainable development of agriculture, meanwhile, has guiding significance for the reasonable utilization of agricultural wastes.
Collapse
Affiliation(s)
- Ying Zhao
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yuelei Li
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Fan Yang
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
21
|
Holm S, Walz J, Horn F, Yang S, Grigoriev MN, Wagner D, Knoblauch C, Liebner S. Methanogenic response to long-term permafrost thaw is determined by paleoenvironment. FEMS Microbiol Ecol 2020; 96:5729939. [PMID: 32031215 PMCID: PMC7046019 DOI: 10.1093/femsec/fiaa021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/06/2020] [Indexed: 01/04/2023] Open
Abstract
Methane production in thawing permafrost can be substantial, yet often evolves after long lag phases or is even lacking. A central question is to which extent the production of methane after permafrost thaw is determined by the initial methanogenic community. We quantified the production of methane relative to carbon dioxide (CO2) and enumerated methanogenic (mcrA) gene copies in long-term (2-7 years) anoxic incubations at 4 °C using interglacial and glacial permafrost samples of Holocene and Pleistocene, including Eemian, origin. Changes in archaeal community composition were determined by sequencing of the archaeal 16S rRNA gene. Long-term thaw stimulated methanogenesis where methanogens initially dominated the archaeal community. Deposits of interstadial and interglacial (Eemian) origin, formed under higher temperatures and precipitation, displayed the greatest response to thaw. At the end of the incubations, a substantial shift in methanogenic community composition and a relative increase in hydrogenotrophic methanogens had occurred except for Eemian deposits in which a high abundance of potential acetoclastic methanogens were present. This study shows that only anaerobic CO2 production but not methane production correlates significantly with carbon and nitrogen content and that the methanogenic response to permafrost thaw is mainly constrained by the paleoenvironmental conditions during soil formation.
Collapse
Affiliation(s)
- Stine Holm
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Josefine Walz
- Universität Hamburg, Institute of Soil Science, 20146 Hamburg, Germany.,Universität Hamburg, Center for Earth System Research and Sustainability, 20146 Germany
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Sizhong Yang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Mikhail N Grigoriev
- Russian Academy of Sciences, Siberian Branch, Melnikov Permafrost Institute, 677007 Yakutsk, Russia
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany.,Potsdam University, Institute of Geosciences, 14476 Potsdam, Germany
| | - Christian Knoblauch
- Universität Hamburg, Institute of Soil Science, 20146 Hamburg, Germany.,Universität Hamburg, Center for Earth System Research and Sustainability, 20146 Germany
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany.,Potsdam University, Institute of Biochemistry and Biology, 14476 Potsdam, Germany
| |
Collapse
|
22
|
Ogaki MB, Vieira R, Muniz MC, Zani CL, Alves TMA, Junior PAS, Murta SMF, Barbosa EC, Oliveira JG, Ceravolo IP, Pereira PO, Rosa CA, Rosa LH. Diversity, ecology, and bioprospecting of culturable fungi in lakes impacted by anthropogenic activities in Maritime Antarctica. Extremophiles 2020; 24:637-655. [PMID: 32533308 DOI: 10.1007/s00792-020-01183-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
Abstract
In this study, we accessed culturable fungal assemblages present in the sediments of three lakes potentially impacted anthropogenically in the Fildes Peninsula, King George Island, Antarctica and identified 63 taxa. Cladosporium sp. 2, Pseudeurotium hygrophilum, and Pseudogymnoascus verrucosus were recovered from the sampled sediments of all lakes. High concentrations of metals and the lowest fungal diversity indices were detected in the sediments of the Central Lake, which can be influenced by human activities due to their proximity to research stations to those of the other two lakes, which were far from the Antarctic stations. At least one type of biological activity was demonstrated by 40 fungal extracts. Among these, P. hygrophilum, P. verrucosus, Penicillium glabrum, and Penicillium solitum demonstrated strong trypanocidal, herbicidal, and antifungal activities. Our results suggest that an increase of the anthropogenic activities in the region might have affected the microbial diversity and composition. In addition, the fungal diversity in these lakes may be a useful model to study the effect of anthropogenic activities in Antarctica. We isolated a diverse group of fungal taxa from Antarctic lake sediments, which have the potential to produce novel compounds for the both the medical and agriculture sectors.
Collapse
Affiliation(s)
- Mayara B Ogaki
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Marcelo C Muniz
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Carlos L Zani
- Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brasil
| | - Tânia M A Alves
- Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brasil
| | | | | | | | | | | | | | - Carlos A Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Luiz H Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
| |
Collapse
|
23
|
Distribution Patterns of Microeukaryotic Community Between Sediment and Water of the Yellow River Estuary. Curr Microbiol 2020; 77:1496-1505. [PMID: 32239287 DOI: 10.1007/s00284-020-01958-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/21/2020] [Indexed: 10/24/2022]
Abstract
Water and sediment have always been closely tied in aquatic systems. However, little information regarding the full extent of microeukaryotic composition in both the two habitats did we know especially in estuaries. In the present study, the microeukaryotic abundance, diversity, composition, and their response to environmental factors between sediment and water in the Yellow River Estuary (YRE) were investigated. The microeukaryotic 18S rRNA gene abundance ranged from 1.03 × 106 to 5.48 × 107 copies/g dry for sediment, and 3.01 × 104 to 1.25 × 106 copies/mL for water. The distribution patterns of eukaryotic microorganisms could be clustered into two different branches. And the compositions of microeukaryotes in the two habitats were distinct obviously. Metazoa, Fungi, Streptophyta, Ochrophyta, Cercozoa, and Dinophyta were more abundant in sediment. The dominant phyla in water were Dinophyta, followed by Metazoa, Ochrophyta, Cryptophyta, Chloroplyta, Cercozoa, Fungi, Katablepharidophyta, Choanoflagellida, and Haptophyta. Interestingly, the eukaryotic microorganisms detected in sediment were much less sensitive to environmental variables compared with water. Furthermore, their potential co-occurrence networks in particular were also discovered in the present study. As such, we have provided baseline data to support further research on estuarine microeukaryotes in both sediment and water, which was useful for guiding the practical application of ecosystem management and biodiversity protection.
Collapse
|
24
|
Zhou L, Zhou Y, Yao X, Cai J, Liu X, Tang X, Zhang Y, Jang KS, Jeppesen E. Decreasing diversity of rare bacterial subcommunities relates to dissolved organic matter along permafrost thawing gradients. ENVIRONMENT INTERNATIONAL 2020; 134:105330. [PMID: 31759274 DOI: 10.1016/j.envint.2019.105330] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 05/28/2023]
Abstract
Dissolved organic matter (DOM) released from permafrost thaw greatly influences the biogeochemical cycles of, among others, downstream carbon, nitrogen and phosphorus cycles; yet, knowledge of the linkages between bacterial communities with permafrost DOM heterogeneity is limited. Here, we aim at unravelling the responses of bacterial diversities and metabolic profiles to DOM quantity and composition across permafrost thawing gradients by coupling an extensive field investigation with bio-incubation experiments. Richness, evenness and dissimilarities of the whole and rare communities decreased from thermokarst pits to headstreams and to downstream rivers. The assemblages of the abundant subcommunities were mainly determined by ecological drift-driven stochastic processes. Both the optical and the molecular composition of DOM were significantly related to the changes of the whole (rare) bacterial communities (Mantel's correlation > 0.5, p < 0.01). Diversity indices of the whole and rare communities decreased with decreasing relative abundance of tannins, condensed aromatics and more aromatic and oxidized lignins as well as with decreased dissolved organic carbon and intensities of all fluorescence components. Laboratory DOM bio-incubation experiments further confirmed microbial consumption of more aromatic and oxidized compounds as well as decreasing metabolic diversities in terms of microbial degradation and production along permafrost thawing gradients. Our findings suggest that changes in the sources of permafrost-derived DOM induced by global warming can have different influences on the diversity and metabolism of bacterial communities and thus on permafrost carbon climate feedbacks along permafrost thawing gradients.
Collapse
Affiliation(s)
- Lei Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiang Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Yao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Cai
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Shanghai Municipal Engineering Design Institute (Group) CO., LTD, Shanghai 200092, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kyoung-Soon Jang
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju 28119, South Korea
| | - Erik Jeppesen
- Department of Bioscience and Arctic Research Centre, Aarhus University, DK-8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research, Beijing 100190, China; Limnology Laboratory and EKOSAM, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
25
|
Sayed AM, Hassan MHA, Alhadrami HA, Hassan HM, Goodfellow M, Rateb ME. Extreme environments: microbiology leading to specialized metabolites. J Appl Microbiol 2019; 128:630-657. [PMID: 31310419 DOI: 10.1111/jam.14386] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022]
Abstract
The prevalence of multidrug-resistant microbial pathogens due to the continued misuse and overuse of antibiotics in agriculture and medicine is raising the prospect of a return to the preantibiotic days of medicine at the time of diminishing numbers of drug leads. The good news is that an increased understanding of the nature and extent of microbial diversity in natural habitats coupled with the application of new technologies in microbiology and chemistry is opening up new strategies in the search for new specialized products with therapeutic properties. This review explores the premise that harsh environmental conditions in extreme biomes, notably in deserts, permafrost soils and deep-sea sediments select for micro-organisms, especially actinobacteria, cyanobacteria and fungi, with the potential to synthesize new druggable molecules. There is evidence over the past decade that micro-organisms adapted to life in extreme habitats are a rich source of new specialized metabolites. Extreme habitats by their very nature tend to be fragile hence there is a need to conserve those known to be hot-spots of novel gifted micro-organisms needed to drive drug discovery campaigns and innovative biotechnology. This review also provides an overview of microbial-derived molecules and their biological activities focusing on the period from 2010 until 2018, over this time 186 novel structures were isolated from 129 representatives of microbial taxa recovered from extreme habitats.
Collapse
Affiliation(s)
- A M Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - M H A Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - H A Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Special Infectious Agent Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - H M Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.,Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - M Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - M E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
26
|
Tundra microbial community taxa and traits predict decomposition parameters of stable, old soil organic carbon. ISME JOURNAL 2019; 13:2901-2915. [PMID: 31384013 DOI: 10.1038/s41396-019-0485-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023]
Abstract
The susceptibility of soil organic carbon (SOC) in tundra to microbial decomposition under warmer climate scenarios potentially threatens a massive positive feedback to climate change, but the underlying mechanisms of stable SOC decomposition remain elusive. Herein, Alaskan tundra soils from three depths (a fibric O horizon with litter and course roots, an O horizon with decomposing litter and roots, and a mineral-organic mix, laying just above the permafrost) were incubated. Resulting respiration data were assimilated into a 3-pool model to derive decomposition kinetic parameters for fast, slow, and passive SOC pools. Bacterial, archaeal, and fungal taxa and microbial functional genes were profiled throughout the 3-year incubation. Correlation analyses and a Random Forest approach revealed associations between model parameters and microbial community profiles, taxa, and traits. There were more associations between the microbial community data and the SOC decomposition parameters of slow and passive SOC pools than those of the fast SOC pool. Also, microbial community profiles were better predictors of model parameters in deeper soils, which had higher mineral contents and relatively greater quantities of old SOC than in surface soils. Overall, our analyses revealed the functional potential of microbial communities to decompose tundra SOC through a suite of specialized genes and taxa. These results portray divergent strategies by which microbial communities access SOC pools across varying depths, lending mechanistic insights into the vulnerability of what is considered stable SOC in tundra regions.
Collapse
|
27
|
Schostag M, Priemé A, Jacquiod S, Russel J, Ekelund F, Jacobsen CS. Bacterial and protozoan dynamics upon thawing and freezing of an active layer permafrost soil. ISME JOURNAL 2019; 13:1345-1359. [PMID: 30692629 DOI: 10.1038/s41396-019-0351-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 11/09/2022]
Abstract
The active layer of soil overlaying permafrost in the Arctic is subjected to annual changes in temperature and soil chemistry, which we hypothesize to affect the overall soil microbial community. We investigated changes in soil microorganisms at different temperatures during warming and freezing of the active layer soil from Svalbard, Norway. Soil community data were obtained by direct shotgun sequencing of total extracted RNA. No changes in soil microbial communities were detected when warming from -10 to -2 °C or when freezing from -2 to -10 °C. In contrast, within a few days we observed changes when warming from -2 to +2 °C with a decrease in fungal rRNA and an increase in several OTUs belonging to Gemmatimonadetes, Bacteroidetes and Betaproteobacteria. Even more substantial changes occurred when incubating at 2 °C for 16 days, with declines in total fungal potential activity and decreases in oligotrophic members from Actinobacteria and Acidobacteria. Additionally, we detected an increase in transcriptome sequences of bacterial phyla Bacteriodetes, Firmicutes, Betaproteobacteria and Gammaproteobacteria-collectively presumed to be copiotrophic. Furthermore, we detected an increase in putative bacterivorous heterotrophic flagellates, likely due to predation upon the bacterial community via grazing. Although this grazing activity may explain relatively large changes in the bacterial community composition, no changes in total 16S rRNA gene copy number were observed and the total RNA level remained stable during the incubation. Together, these results are showing the first comprehensive ecological evaluation across prokaryotic and eukaryotic microbial communities on thawing and freezing of soil by application of the TotalRNA technique.
Collapse
Affiliation(s)
- Morten Schostag
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen, Copenhagen, Denmark.,Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Anders Priemé
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen, Copenhagen, Denmark.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Samuel Jacquiod
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.,INRA Dijon, UMR1347 Agroécologie, Dijon, France
| | - Jakob Russel
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Ekelund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Suhr Jacobsen
- Department of Geosciences and Natural Resource Management, Center for Permafrost, University of Copenhagen, Copenhagen, Denmark. .,Geological Survey of Denmark and Greenland, Copenhagen, Denmark. .,Department of Environmental Science, Aarhus University, Roskilde, Denmark.
| |
Collapse
|
28
|
Martinez MA, Woodcroft BJ, Ignacio Espinoza JC, Zayed AA, Singleton CM, Boyd JA, Li YF, Purvine S, Maughan H, Hodgkins SB, Anderson D, Sederholm M, Temperton B, Bolduc B, Saleska SR, Tyson GW, Rich VI, Saleska SR, Tyson GW, Rich VI. Discovery and ecogenomic context of a global Caldiserica-related phylum active in thawing permafrost, Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., comprising the four species Cryosericum septentrionale gen. nov. sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., Ca. C. terrychapinii sp. nov. Syst Appl Microbiol 2019; 42:54-66. [DOI: 10.1016/j.syapm.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
|
29
|
Malard LA, Pearce DA. Microbial diversity and biogeography in Arctic soils. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:611-625. [PMID: 30028082 DOI: 10.1111/1758-2229.12680] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Microorganisms dominate terrestrial environments in the polar regions and Arctic soils are known to harbour significant microbial diversity, far more diverse and numerous in the region than was once thought. Furthermore, the geographic distribution and structure of Arctic microbial communities remains elusive, despite their important roles in both biogeochemical cycling and in the generation and decomposition of climate active gases. Critically, Arctic soils are estimated to store over 1500 Pg of carbon and, thus, have the potential to generate positive feedback within the climate system. As the Arctic region is currently undergoing rapid change, the likelihood of faster release of greenhouse gases such as CO2 , CH4 and N2 O is increasing. Understanding the microbial communities in the region, in terms of their diversity, abundance and functional activity, is key to producing accurate models of greenhouse gas release. This review brings together existing data to determine what we know about microbial diversity and biogeography in Arctic soils.
Collapse
Affiliation(s)
- Lucie A Malard
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
| | - David A Pearce
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
| |
Collapse
|
30
|
Bottos EM, Kennedy DW, Romero EB, Fansler SJ, Brown JM, Bramer LM, Chu RK, Tfaily MM, Jansson JK, Stegen JC. Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol Ecol 2018; 94:5037918. [DOI: 10.1093/femsec/fiy110] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/13/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eric M Bottos
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - David W Kennedy
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Elvira B Romero
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Sarah J Fansler
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Joseph M Brown
- Computational Biology, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Lisa M Bramer
- National Security Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Malak M Tfaily
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| | - James C Stegen
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA
| |
Collapse
|
31
|
Stern N, Mejia J, He S, Yang Y, Ginder-Vogel M, Roden EE. Dual Role of Humic Substances As Electron Donor and Shuttle for Dissimilatory Iron Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5691-5699. [PMID: 29658273 PMCID: PMC6211804 DOI: 10.1021/acs.est.7b06574] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Dissimilatory iron-reducing bacteria (DIRB) are known to use humic substances (HS) as electron shuttles for dissimilatory iron reduction (DIR) by transferring electrons to HS-quinone moieties, which in turn rapidly reduce Fe(III) oxides. However, the potential for HS to serve as a source of organic carbon (OC) that can donate electrons for DIR is unknown. We studied whether humic acids (HA) and humins (HM) recovered from peat soil by sodium pyrophosphate extraction could serve as both electron shuttles and electron donors for DIR by freshwater sediment microorganisms. Both HA and HM served as electron shuttles in cultures amended with glucose. However, only HA served as an electron donor for DIR. Metagenomes from HA-containing cultures had an overrepresentation of genes involved in polysaccharide and to a lesser extent aromatic compound degradation, suggesting complex OC metabolism. Genomic searches for the porin-cytochrome complex involved in DIR resulted in matches to Ignavibacterium/Melioribacter, DIRB capable of polymeric OC metabolism. These results indicate that such taxa may have played a role in both DIR and decomposition of complex OC. Our results suggest that decomposition of HS coupled to DIR and other anaerobic pathways could play an important role in soil and sediment OC metabolism.
Collapse
Affiliation(s)
- Noah Stern
- Department of Civil and Environmental Engineering, Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jacqueline Mejia
- Department of Civil and Environmental Engineering, Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Shaomei He
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada-Reno, Reno, Nevada 89557, United States
| | - Matthew Ginder-Vogel
- Department of Civil and Environmental Engineering, Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eric E. Roden
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
32
|
Wei S, Cui H, Zhu Y, Lu Z, Pang S, Zhang S, Dong H, Su X. Shifts of methanogenic communities in response to permafrost thaw results in rising methane emissions and soil property changes. Extremophiles 2018; 22:447-459. [PMID: 29429010 DOI: 10.1007/s00792-018-1007-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/05/2018] [Indexed: 11/28/2022]
Abstract
Permafrost thaw can bring negative consequences in terms of ecosystems, resulting in permafrost collapse, waterlogging, thermokarst lake development, and species composition changes. Little is known about how permafrost thaw influences microbial community shifts and their activities. Here, we show that the dominant archaeal community shifts from Methanomicrobiales to Methanosarcinales in response to the permafrost thaw, and the increase in methane emission is found to be associated with the methanogenic archaea, which rapidly bloom with nearly tenfold increase in total number. The mcrA gene clone libraries analyses indicate that Methanocellales/Rice Cluster I was predominant both in the original permafrost and in the thawed permafrost. However, only species belonging to Methanosarcinales showed higher transcriptional activities in the thawed permafrost, indicating a shift of methanogens from hydrogenotrophic to partly acetoclastic methane-generating metabolic processes. In addition, data also show the soil texture and features change as a result of microbial reproduction and activity induced by this permafrost thaw. Those data indicate that microbial ecology under warming permafrost has potential impacts on ecosystem and methane emissions.
Collapse
Affiliation(s)
- Shiping Wei
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China. .,School of Marine Sciences, China University of Geosciences, Beijing, 100083, China.
| | - Hongpeng Cui
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Youhai Zhu
- Oil and Gas Survey, Geological Survey, Beijing, 100029, China
| | - Zhenquan Lu
- Oil and Gas Survey, Geological Survey, Beijing, 100029, China
| | - Shouji Pang
- Oil and Gas Survey, Geological Survey, Beijing, 100029, China
| | - Shuai Zhang
- Oil and Gas Survey, Geological Survey, Beijing, 100029, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Xin Su
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China. .,School of Marine Sciences, China University of Geosciences, Beijing, 100083, China.
| |
Collapse
|
33
|
Variations in bacterial and archaeal communities along depth profiles of Alaskan soil cores. Sci Rep 2018; 8:504. [PMID: 29323168 PMCID: PMC5765012 DOI: 10.1038/s41598-017-18777-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022] Open
Abstract
Understating the microbial communities and ecological processes that influence their structure in permafrost soils is crucial for predicting the consequences of climate change. In this study we investigated the bacterial and archaeal communities along depth profiles of four soil cores collected across Alaska. The bacterial and archaeal diversity (amplicon sequencing) overall decreased along the soil depth but the depth-wise pattern of their abundances (qPCR) varied by sites. The community structure of bacteria and archaea displayed site-specific pattern, with a greater role of soil geochemical characteristics rather than soil depth. In particular, we found significant positive correlations between methane trapped in cores and relative abundance of methanogenic archaeal genera, indicating a strong association between microbial activity and methane production in subsurface soils. We observed that bacterial phylogenetic community assembly tended to be more clustered in surface soils than in deeper soils. Analyses of phylogenetic community turnover among depth profiles across cores indicated that the relative influence of deterministic and stochastic processes was mainly determined by soil properties rather than depth. Overall, our findings emphasize that the vertical distributions of bacterial and archaeal communities in permafrost soils are to a large extent determined by the variation in site-specific soil properties.
Collapse
|
34
|
Pither J, Pickles BJ. The paleosymbiosis hypothesis: host plants can be colonised by root symbionts that have been inactive for centuries to millenia. FEMS Microbiol Ecol 2017; 93:3806672. [PMID: 28486678 DOI: 10.1093/femsec/fix061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/08/2017] [Indexed: 11/14/2022] Open
Abstract
Paleoecologists have speculated that post-glacial migration of tree species could have been facilitated by mycorrhizal symbionts surviving glaciation as resistant propagules belowground. The general premise of this idea, which we call the 'paleosymbiosis hypothesis', is that host plants can access and be colonised by fungal root symbionts that have been inactive for millennia. Here, we explore the plausibility of this hypothesis by synthesising relevant findings from a diverse literature. For example, the paleoecology literature provided evidence of modern roots penetrating paleosols containing ancient (>6000 years) fungal propagules, though these were of unknown condition. With respect to propagule longevity, the available evidence is of mixed quality, but includes convincing examples consistent with the paleosymbiosis hypothesis (i.e. >1000 years viable propagules). We describe symbiont traits and environmental conditions that should favour the development and preservation of an ancient propagule bank, and discuss the implications for our understanding of soil symbiont diversity and ecosystem functioning. We conclude that the paleosymbiosis hypothesis is plausible in locations where propagule deposition and preservation conditions are favourable (e.g. permafrost regions). We encourage future belowground research to consider and explore the potential temporal origins of root symbioses.
Collapse
Affiliation(s)
- Jason Pither
- Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, University of British Columbia, Okanagan campus, ASC 367, 3187 University Way, Kelowna, BC V1V 1V7, Canada
| | - Brian J Pickles
- School of Biological Sciences, University of Reading, Harborne Building, Whiteknights, Reading RG6 8AS, UK
| |
Collapse
|
35
|
Morgalev YN, Lushchaeva IV, Morgaleva TG, Kolesnichenko LG, Loiko SV, Krickov IV, Lim A, Raudina TV, Volkova II, Shirokova LS, Morgalev SY, Vorobyev SN, Kirpotin SN, Pokrovsky OS. Bacteria primarily metabolize at the active layer/permafrost border in the peat core from a permafrost region in western Siberia. Polar Biol 2017. [DOI: 10.1007/s00300-017-2088-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Stackhouse B, Lau MCY, Vishnivetskaya T, Burton N, Wang R, Southworth A, Whyte L, Onstott TC. Atmospheric CH 4 oxidation by Arctic permafrost and mineral cryosols as a function of water saturation and temperature. GEOBIOLOGY 2017; 15:94-111. [PMID: 27474434 DOI: 10.1111/gbi.12193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 05/09/2016] [Indexed: 06/06/2023]
Abstract
The response of methanotrophic bacteria capable of oxidizing atmospheric CH4 to climate warming is poorly understood, especially for those present in Arctic mineral cryosols. The atmospheric CH4 oxidation rates were measured in microcosms incubated at 4 °C and 10 °C along a 1-m depth profile and over a range of water saturation conditions for mineral cryosols containing type I and type II methanotrophs from Axel Heiberg Island (AHI), Nunavut, Canada. The cryosols exhibited net consumption of ~2 ppmv CH4 under all conditions, including during anaerobic incubations. Methane oxidation rates increased with temperature and decreased with increasing water saturation and depth, exhibiting the highest rates at 10 °C and 33% saturation at 5 cm depth (260 ± 60 pmol CH4 gdw-1 d-1 ). Extrapolation of the CH4 oxidation rates to the field yields net CH4 uptake fluxes ranging from 11 to 73 μmol CH4 m-2 d-1 , which are comparable to field measurements. Stable isotope mass balance indicates ~50% of the oxidized CH4 is incorporated into the biomass regardless of temperature or saturation. Future atmospheric CH4 uptake rates at AHI with increasing temperatures will be determined by the interplay of increasing CH4 oxidation rates vs. water saturation and the depth to the water table during summer thaw.
Collapse
Affiliation(s)
- B Stackhouse
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - M C Y Lau
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - T Vishnivetskaya
- The Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
| | - N Burton
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - R Wang
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - A Southworth
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - L Whyte
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - T C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| |
Collapse
|
37
|
Diversity and abundance of microbial eukaryotes in stream sediments from Svalbard. Polar Biol 2017; 40:1835-1843. [PMID: 32009726 PMCID: PMC6961512 DOI: 10.1007/s00300-017-2106-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 10/25/2022]
Abstract
Microbial eukaryotes are increasingly being recognised for their role in global biogeochemical cycles, yet very few studies have focussed on their distribution in high-latitude stream sediments, an important habitat which influences stream water nutrient chemistry. In this study, we present the first comparison of microbial eukaryotes from two different polar habitats by determining the abundance and taxonomic affiliation of 18S rRNA gene fragments recovered from four sediment samples in Svalbard: two from a glaciated catchment and two from an unglaciated permafrost-dominated catchment. Whilst there was no difference between the two catchments in terms of Rao's phylogenetic diversity (0.18±0.04, 1SD), the glaciated catchment samples had slightly higher richness (138-139) than the unglaciated catchment samples (67-106). At the phylum level, Ciliophora had the highest relative abundance in the samples from the glaciated catchment (32-63%), but only comprised 0-17% of the unglaciated catchment samples. Bacillariophyta was the most abundant phylum in one of the samples from the unglaciated catchment (43%) but phototrophic microbial eukaryotes only formed a minor component of the glaciated catchment samples (<2%), suggesting that in these environments the microbial eukaryotes are predominantly heterotrophic (chemotrophic). This is in contrast to previously published data from Robertson Glacier, Canada where the relative abundance of chlorophyta (phototrophs) in three samples was 48-57%. The contrast may be due to differences in glacial hydrology and/or geology, highlighting the variation in microbial eukaryote communities between nominally similar environments.
Collapse
|
38
|
Kamenova S, Bartley T, Bohan D, Boutain J, Colautti R, Domaizon I, Fontaine C, Lemainque A, Le Viol I, Mollot G, Perga ME, Ravigné V, Massol F. Invasions Toolkit. ADV ECOL RES 2017. [DOI: 10.1016/bs.aecr.2016.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Chen L, Liang J, Qin S, Liu L, Fang K, Xu Y, Ding J, Li F, Luo Y, Yang Y. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat Commun 2016; 7:13046. [PMID: 27703168 PMCID: PMC5059472 DOI: 10.1038/ncomms13046] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/30/2016] [Indexed: 11/09/2022] Open
Abstract
The sign and magnitude of permafrost carbon (C)-climate feedback are highly uncertain due to the limited understanding of the decomposability of thawing permafrost and relevant mechanistic controls over C release. Here, by combining aerobic incubation with biomarker analysis and a three-pool model, we reveal that C quality (represented by a higher amount of fast cycling C but a lower amount of recalcitrant C compounds) and normalized CO2-C release in permafrost deposits were similar or even higher than those in the active layer, demonstrating a high vulnerability of C in Tibetan upland permafrost. We also illustrate that C quality exerts the most control over CO2-C release from the active layer, whereas soil microbial abundance is more directly associated with CO2-C release after permafrost thaw. Taken together, our findings highlight the importance of incorporating microbial properties into Earth System Models when predicting permafrost C dynamics under a changing environment.
Collapse
Affiliation(s)
- Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Junyi Liang
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019-0245, USA
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Fang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Xu
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciecnces, Peking University, Beijing 100871, China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Jinzhi Ding
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqi Luo
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019-0245, USA
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
40
|
Rivera-Perez JI, Santiago-Rodriguez TM, Toranzos GA. Paleomicrobiology: a Snapshot of Ancient Microbes and Approaches to Forensic Microbiology. Microbiol Spectr 2016; 4:10.1128/microbiolspec.EMF-0006-2015. [PMID: 27726770 PMCID: PMC5287379 DOI: 10.1128/microbiolspec.emf-0006-2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 01/14/2023] Open
Abstract
Paleomicrobiology, or the study of ancient microorganisms, has raised both fascination and skepticism for many years. While paleomicrobiology is not a recent field, the application of emerging techniques, such as DNA sequencing, is proving essential and has provided novel information regarding the evolution of viruses, antibiotic resistance, saprophytes, and pathogens, as well as ancient health and disease status, cultural customs, ethnic diets, and historical events. In this review, we highlight the importance of studying ancient microbial DNA, its contributions to current knowledge, and the role that forensic paleomicrobiology has played in deciphering historical enigmas. We also discuss the emerging techniques used to study the microbial composition of ancient samples as well as major concerns that accompany ancient DNA analyses.
Collapse
|
41
|
Nikrad MP, Kerkhof LJ, Häggblom MM. The subzero microbiome: microbial activity in frozen and thawing soils. FEMS Microbiol Ecol 2016; 92:fiw081. [PMID: 27106051 DOI: 10.1093/femsec/fiw081] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 01/15/2023] Open
Abstract
Most of the Earth's biosphere is characterized by low temperatures (<5°C) and cold-adapted microorganisms are widespread. These psychrophiles have evolved a complex range of adaptations of all cellular constituents to counteract the potentially deleterious effects of low kinetic energy environments and the freezing of water. Microbial life continues into the subzero temperature range, and this activity contributes to carbon and nitrogen flux in and out of ecosystems, ultimately affecting global processes. Microbial responses to climate warming and, in particular, thawing of frozen soils are not yet well understood, although the threat of microbial contribution to positive feedback of carbon flux is substantial. To date, several studies have examined microbial community dynamics in frozen soils and permafrost due to changing environmental conditions, and some have undertaken the complicated task of characterizing microbial functional groups and how their activity changes with changing conditions, either in situ or by isolating and characterizing macromolecules. With increasing temperature and wetter conditions microbial activity of key microbes and subsequent efflux of greenhouse gases also increase. In this review, we aim to provide an overview of microbial activity in seasonally frozen soils and permafrost. With a more detailed understanding of the microbiological activities in these vulnerable soil ecosystems, we can begin to predict and model future expectations for carbon release and climate change.
Collapse
Affiliation(s)
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
42
|
Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau. Extremophiles 2016; 20:337-49. [DOI: 10.1007/s00792-016-0825-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
|
43
|
Hu W, Zhang Q, Tian T, Li D, Cheng G, Mu J, Wu Q, Niu F, Stegen JC, An L, Feng H. Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, China. PLoS One 2015; 10:e0145747. [PMID: 26699734 PMCID: PMC4689587 DOI: 10.1371/journal.pone.0145747] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/08/2015] [Indexed: 11/19/2022] Open
Abstract
Understanding the processes that influence the structure of biotic communities is one of the major ecological topics, and both stochastic and deterministic processes are expected to be at work simultaneously in most communities. Here, we investigated the vertical distribution patterns of bacterial communities in a 10-m-long soil core taken within permafrost of the Qinghai-Tibet Plateau. To get a better understanding of the forces that govern these patterns, we examined the diversity and structure of bacterial communities, and the change in community composition along the vertical distance (spatial turnover) from both taxonomic and phylogenetic perspectives. Measures of taxonomic and phylogenetic beta diversity revealed that bacterial community composition changed continuously along the soil core, and showed a vertical distance-decay relationship. Multiple stepwise regression analysis suggested that bacterial alpha diversity and phylogenetic structure were strongly correlated with soil conductivity and pH but weakly correlated with depth. There was evidence that deterministic and stochastic processes collectively drived bacterial vertically-structured pattern. Bacterial communities in five soil horizons (two originated from the active layer and three from permafrost) of the permafrost core were phylogenetically random, indicator of stochastic processes. However, we found a stronger effect of deterministic processes related to soil pH, conductivity, and organic carbon content that were structuring the bacterial communities. We therefore conclude that the vertical distribution of bacterial communities was governed primarily by deterministic ecological selection, although stochastic processes were also at work. Furthermore, the strong impact of environmental conditions (for example, soil physicochemical parameters and seasonal freeze-thaw cycles) on these communities underlines the sensitivity of permafrost microorganisms to climate change and potentially subsequent permafrost thaw.
Collapse
Affiliation(s)
- Weigang Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qi Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tian Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dingyao Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Gang Cheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jing Mu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qingbai Wu
- State Key Laboratory of Frozen Soil Engineering (SKLFSE), Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences, Lanzhou, China
| | - Fujun Niu
- State Key Laboratory of Frozen Soil Engineering (SKLFSE), Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences, Lanzhou, China
| | - James C. Stegen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States of America
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huyuan Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
44
|
Hill R, Saetnan ER, Scullion J, Gwynn-Jones D, Ostle N, Edwards A. Temporal and spatial influences incur reconfiguration of Arctic heathland soil bacterial community structure. Environ Microbiol 2015; 18:1942-53. [DOI: 10.1111/1462-2920.13017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Richard Hill
- Institute of Biological, Rural and Environmental Sciences; Cledwyn Building; Aberystwyth University; Aberystwyth SY23 3FG UK
- Interdisciplinary Centre for Environmental Microbiology; Aberystwyth University; Aberystwyth UK
| | - Eli R. Saetnan
- Institute of Biological, Rural and Environmental Sciences; Cledwyn Building; Aberystwyth University; Aberystwyth SY23 3FG UK
| | - John Scullion
- Institute of Biological, Rural and Environmental Sciences; Cledwyn Building; Aberystwyth University; Aberystwyth SY23 3FG UK
| | - Dylan Gwynn-Jones
- Institute of Biological, Rural and Environmental Sciences; Cledwyn Building; Aberystwyth University; Aberystwyth SY23 3FG UK
| | - Nick Ostle
- Plant and Soil Ecology Laboratory; Lancaster Environmental Centre; Lancaster University; Lancaster LA1 4YQ UK
| | - Arwyn Edwards
- Institute of Biological, Rural and Environmental Sciences; Cledwyn Building; Aberystwyth University; Aberystwyth SY23 3FG UK
- Interdisciplinary Centre for Environmental Microbiology; Aberystwyth University; Aberystwyth UK
| |
Collapse
|
45
|
Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry. PLoS One 2015; 10:e0130557. [PMID: 26068586 PMCID: PMC4467038 DOI: 10.1371/journal.pone.0130557] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/21/2015] [Indexed: 01/10/2023] Open
Abstract
Microbial degradation of soil organic matter (SOM) is a key process for terrestrial carbon cycling, although the molecular details of these transformations remain unclear. This study reports the application of ultrahigh resolution mass spectrometry to profile the molecular composition of SOM and its degradation during a simulated warming experiment. A soil sample, collected near Barrow, Alaska, USA, was subjected to a 40-day incubation under anoxic conditions and analyzed before and after the incubation to determine changes of SOM composition. A CHO index based on molecular C, H, and O data was utilized to codify SOM components according to their observed degradation potentials. Compounds with a CHO index score between -1 and 0 in a water-soluble fraction (WSF) demonstrated high degradation potential, with a highest shift of CHO index occurred in the N-containing group of compounds, while similar stoichiometries in a base-soluble fraction (BSF) did not. Additionally, compared with the classical H:C vs O:C van Krevelen diagram, CHO index allowed for direct visualization of the distribution of heteroatoms such as N in the identified SOM compounds. We demonstrate that CHO index is useful not only in characterizing arctic SOM at the molecular level but also enabling quantitative description of SOM degradation, thereby facilitating incorporation of the high resolution MS datasets to future mechanistic models of SOM degradation and prediction of greenhouse gas emissions.
Collapse
|
46
|
Lever MA, Torti A, Eickenbusch P, Michaud AB, Šantl-Temkiv T, Jørgensen BB. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Front Microbiol 2015; 6:476. [PMID: 26042110 PMCID: PMC4436928 DOI: 10.3389/fmicb.2015.00476] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/30/2015] [Indexed: 11/19/2022] Open
Abstract
A method for the extraction of nucleic acids from a wide range of environmental samples was developed. This method consists of several modules, which can be individually modified to maximize yields in extractions of DNA and RNA or separations of DNA pools. Modules were designed based on elaborate tests, in which permutations of all nucleic acid extraction steps were compared. The final modular protocol is suitable for extractions from igneous rock, air, water, and sediments. Sediments range from high-biomass, organic rich coastal samples to samples from the most oligotrophic region of the world's oceans and the deepest borehole ever studied by scientific ocean drilling. Extraction yields of DNA and RNA are higher than with widely used commercial kits, indicating an advantage to optimizing extraction procedures to match specific sample characteristics. The ability to separate soluble extracellular DNA pools without cell lysis from intracellular and particle-complexed DNA pools may enable new insights into the cycling and preservation of DNA in environmental samples in the future. A general protocol is outlined, along with recommendations for optimizing this general protocol for specific sample types and research goals.
Collapse
Affiliation(s)
- Mark A Lever
- Department of Bioscience, Center for Geomicrobiology, Aarhus University Aarhus, Denmark
| | - Andrea Torti
- Department of Bioscience, Center for Geomicrobiology, Aarhus University Aarhus, Denmark
| | | | - Alexander B Michaud
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Tina Šantl-Temkiv
- Microbiology Section, Department of Bioscience, Aarhus University Aarhus, Denmark ; Department of Physics and Astronomy, Stellar Astrophysics Centre, Aarhus University Aarhus, Denmark
| | - Bo Barker Jørgensen
- Department of Bioscience, Center for Geomicrobiology, Aarhus University Aarhus, Denmark
| |
Collapse
|
47
|
Coolen MJL, Orsi WD. The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Front Microbiol 2015; 6:197. [PMID: 25852660 PMCID: PMC4360760 DOI: 10.3389/fmicb.2015.00197] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw.
Collapse
Affiliation(s)
- Marco J. L. Coolen
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic InstitutionWoods Hole, MA, USA
- Western Australia Organic and Isotope Geochemistry Centre, Department of Chemistry, Curtin UniversityPerth, WA, Australia
| | - William D. Orsi
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic InstitutionWoods Hole, MA, USA
| |
Collapse
|
48
|
Shi Y, Xiang X, Shen C, Chu H, Neufeld JD, Walker VK, Grogan P. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities. Appl Environ Microbiol 2015; 81:492-501. [PMID: 25362064 PMCID: PMC4277566 DOI: 10.1128/aem.03229-14] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/28/2014] [Indexed: 11/20/2022] Open
Abstract
The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith's phylogenetic diversity, and the Shannon species-level index (H') were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith's phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure.
Collapse
Affiliation(s)
- Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China University of Chinese Academy of Sciences, Beijing, China
| | - Xingjia Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China University of Chinese Academy of Sciences, Beijing, China
| | - Congcong Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, West Waterloo, Ontario, Canada
| | - Virginia K Walker
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Paul Grogan
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
49
|
Deng J, Gu Y, Zhang J, Xue K, Qin Y, Yuan M, Yin H, He Z, Wu L, Schuur EAG, Tiedje JM, Zhou J. Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in
A
laska. Mol Ecol 2014; 24:222-34. [DOI: 10.1111/mec.13015] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/03/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Deng
- Department of Microbiology and Plant Biology Institute for Environmental Genomics University of Oklahoma Norman OK USA
| | - Yunfu Gu
- Department of Microbiology and Plant Biology Institute for Environmental Genomics University of Oklahoma Norman OK USA
- College of Resource and Environment Sichuan Agricultural University Chengdu Sichuan China
| | - Jin Zhang
- Department of Microbiology and Plant Biology Institute for Environmental Genomics University of Oklahoma Norman OK USA
| | - Kai Xue
- Department of Microbiology and Plant Biology Institute for Environmental Genomics University of Oklahoma Norman OK USA
| | - Yujia Qin
- Department of Microbiology and Plant Biology Institute for Environmental Genomics University of Oklahoma Norman OK USA
| | - Mengting Yuan
- Department of Microbiology and Plant Biology Institute for Environmental Genomics University of Oklahoma Norman OK USA
| | - Huaqun Yin
- Department of Microbiology and Plant Biology Institute for Environmental Genomics University of Oklahoma Norman OK USA
- School of Mineral Processing and Bioengineering Central South University Changsha Hunan China
| | - Zhili He
- Department of Microbiology and Plant Biology Institute for Environmental Genomics University of Oklahoma Norman OK USA
| | - Liyou Wu
- Department of Microbiology and Plant Biology Institute for Environmental Genomics University of Oklahoma Norman OK USA
| | | | - James M. Tiedje
- Center for Microbial Ecology Michigan State University East Lansing MI USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology Institute for Environmental Genomics University of Oklahoma Norman OK USA
- Earth Sciences Division Lawrence Berkeley National Laboratory Berkeley CA USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing China
| |
Collapse
|
50
|
Kim HM, Jung JY, Yergeau E, Hwang CY, Hinzman L, Nam S, Hong SG, Kim OS, Chun J, Lee YK. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska. FEMS Microbiol Ecol 2014; 89:465-75. [PMID: 24893754 PMCID: PMC4143960 DOI: 10.1111/1574-6941.12362] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 01/23/2023] Open
Abstract
The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0–10 cm to 10–20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen ( and ). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska.
Collapse
Affiliation(s)
- Hye Min Kim
- Korea Polar Research Institute, KIOST, Incheon, Korea; School of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|