1
|
Zhao Y, Duan J, van de Leemput J, Han Z. Cardiac neurons expressing a glucagon-like receptor mediate cardiac arrhythmia induced by high-fat diet in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.13.571403. [PMID: 40161619 PMCID: PMC11952361 DOI: 10.1101/2023.12.13.571403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cardiac arrhythmia leads to increased risks for stroke, heart failure, and cardiac arrest. Arrhythmic pathology is often rooted in the cardiac conduction system, but the mechanism is complex and not fully understood. For example, how metabolic diseases, like obesity and diabetes, increase the risk for cardiac arrhythmia. Glucagon regulates glucose production, mobilizes lipids from the fat body, and affects cardiac rate and rhythm, attributes of a likely key player. Drosophila is an established model to study metabolic diseases and cardiac arrhythmias. Since glucagon signaling is highly conserved, we used high-fat diet (HFD)-fed flies to study its effect on heart function. HFD led to increased heartbeat and an irregular rhythm. The HFD-fed flies showed increased levels of adipokinetic hormone (Akh), the functional equivalent to human glucagon. Both genetic reduction of Akh and eliminating the Akh producing cells (APC) rescued HFD-induced arrhythmia, whereas heart rhythm was normal in Akh receptor mutants ( AkhR null ). Furthermore, we discovered a pair of cardiac neurons that express high levels of Akh receptor. These are located near the posterior heart, make synaptic connections at the heart muscle, and regulate heart rhythm. Altogether, this Akh signaling pathway provides new understanding of the regulatory mechanisms between metabolic disease and cardiac arrhythmia. HIGHLIGHTS High-fat diet activates Akh (glucagon-like)-producing neurons near the esophagus in Drosophila Reducing Akh prevents high-fat diet-induced cardiac arrhythmia in fliesDiscovery of two neurons located at the posterior end of the heart that express the Akh receptor (AkhR) and innervate the heartEliminating one of the two AkhR-expressing cardiac neurons (ACN) results in cardiac arrhythmia, whereas the absence of functional AkhR prevents high-fat diet-induced cardiac arrhythmia in flies.
Collapse
|
2
|
Bahl V, Rifkind R, Waite E, Hamdan Z, May CL, Manduchi E, Voight BF, Lee MYY, Tigue M, Manuto N, Glaser B, Avrahami D, Kaestner KH. G6PC2 controls glucagon secretion by defining the set point for glucose in pancreatic α cells. Sci Transl Med 2025; 17:eadi6148. [PMID: 39742505 DOI: 10.1126/scitranslmed.adi6148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/09/2024] [Accepted: 11/11/2024] [Indexed: 01/03/2025]
Abstract
Elevated glucagon concentrations have been reported in patients with type 2 diabetes (T2D). A critical role for α cell-intrinsic mechanisms in regulating glucagon secretion was previously established through genetic manipulation of the glycolytic enzyme glucokinase (GCK) in mice. Genetic variation at the glucose-6-phosphatase catalytic subunit 2 (G6PC2) locus, encoding an enzyme that opposes GCK, has been reproducibly associated with fasting blood glucose and hemoglobin A1c. Here, we found that trait-associated variants in the G6PC2 promoter are located in open chromatin not just in β but also in α cells and documented allele-specific G6PC2 expression of linked variants in human α cells. Using α cell-specific gene ablation of G6pc2 in mice, we showed that this gene plays a critical role in controlling glucose suppression of amino acid-stimulated glucagon secretion independent of alterations in insulin output, islet hormone content, or islet morphology, findings that we confirmed in primary human α cells. Collectively, our data demonstrate that G6PC2 affects glycemic control via its action in α cells and possibly suggest that G6PC2 inhibitors might help control blood glucose through a bihormonal mechanism.
Collapse
Affiliation(s)
- Varun Bahl
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| | - Reut Rifkind
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Developmental Biology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Eric Waite
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| | - Zenab Hamdan
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Developmental Biology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Catherine Lee May
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| | - Elisabetta Manduchi
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| | - Benjamin F Voight
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle Y Y Lee
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| | - Mark Tigue
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Manuto
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Dana Avrahami
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Developmental Biology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Klaus H Kaestner
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Pancreas Analysis Program (RRID:SCR_016202); https://hpap.pmacs.upenn.edu
| |
Collapse
|
3
|
Huang P, Zhu Y, Qin J. Research advances in understanding crosstalk between organs and pancreatic β-cell dysfunction. Diabetes Obes Metab 2024; 26:4147-4164. [PMID: 39044309 DOI: 10.1111/dom.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Obesity has increased dramatically worldwide. Being overweight or obese can lead to various conditions, including dyslipidaemia, hypertension, glucose intolerance and metabolic syndrome (MetS), which may further lead to type 2 diabetes mellitus (T2DM). Previous studies have identified a link between β-cell dysfunction and the severity of MetS, with multiple organs and tissues affected. Identifying the associations between pancreatic β-cell dysfunction and organs is critical. Research has focused on the interaction between the liver, gut and pancreatic β-cells. However, the mechanisms and related core targets are still not perfectly elucidated. The aims of this review were to summarize the mechanisms of β-cell dysfunction and to explore the potential pathogenic pathways and targets that connect the liver, gut, adipose tissue, muscle, and brain to pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunling Zhu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Qin
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Onuma S, Kawai M. Circadian Regulatory Networks of Glucose Homeostasis and Its Disruption as a Potential Cause of Undernutrition. Endocrinology 2024; 165:bqae126. [PMID: 39276035 DOI: 10.1210/endocr/bqae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
The circadian clock system, an evolutionarily conserved mechanism, orchestrates diurnal rhythms in biological activities such as behavior and metabolism, aligning them with the earth's 24-hour light/dark cycle. This synchronization enables organisms to anticipate and adapt to predictable environmental changes, including nutrient availability. However, modern lifestyles characterized by irregular eating and sleeping habits disrupt this synchrony, leading to metabolic disorders such as obesity and metabolic syndrome, evidenced by higher obesity rates among shift workers. Conversely, circadian disturbances are also associated with reduced nutrient absorption and an increased risk of malnutrition in populations such as the critically ill or the elderly. The precise mechanisms of these disturbances in leading to either overnutrition or undernutrition is complex and not yet fully understood. Glucose, a crucial energy source, is closely linked to obesity when consumed excessively and to weight loss when intake is reduced, which suggests that circadian regulation of glucose metabolism is a key factor connecting circadian disturbances with nutritional outcomes. In this review, we describe how the biological clock in various tissues regulates glucose metabolism, with a primary focus on studies utilizing animal models. Additionally, we highlight current clinical evidence supporting the association between circadian disturbance and glucose metabolism, arguing that such disruption could predominantly contribute to undernutrition due to impaired efficient utilization of nutrients.
Collapse
Affiliation(s)
- Shinsuke Onuma
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, 594-1101, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masanobu Kawai
- Department of Molecular Genetics and Endocrinology, Research Institute, Osaka Women's and Children's Hospital, 594-1101, Osaka, Japan
- Department of Gastroenterology, Nutrition and Endocrinology, Osaka Women's and Children's Hospital, 594-1101, Osaka, Japan
| |
Collapse
|
5
|
Deli CK, Fatouros IG, Poulios A, Liakou CA, Draganidis D, Papanikolaou K, Rosvoglou A, Gatsas A, Georgakouli K, Tsimeas P, Jamurtas AZ. Gut Microbiota in the Progression of Type 2 Diabetes and the Potential Role of Exercise: A Critical Review. Life (Basel) 2024; 14:1016. [PMID: 39202758 PMCID: PMC11355287 DOI: 10.3390/life14081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Type 2 diabetes (T2D) is the predominant metabolic epidemic posing a major threat to global health. Growing evidence indicates that gut microbiota (GM) may critically influence the progression from normal glucose tolerance, to pre-diabetes, to T2D. On the other hand, regular exercise contributes to the prevention and/or treatment of the disease, and evidence suggests that a possible way regular exercise favorably affects T2D is by altering GM composition toward health-promoting bacteria. However, research regarding this potential effect of exercise-induced changes of GM on T2D and the associated mechanisms through which these effects are accomplished is limited. This review presents current data regarding the association of GM composition and T2D and the possible critical GM differentiation in the progression from normal glucose, to pre-diabetes, to T2D. Additionally, potential mechanisms through which GM may affect T2D are presented. The effect of exercise on GM composition and function on T2D progression is also discussed.
Collapse
Affiliation(s)
- Chariklia K. Deli
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Christina A. Liakou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Anastasia Rosvoglou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Gatsas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Kalliopi Georgakouli
- Department of Dietetics and Nutrition, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece;
| | - Panagiotis Tsimeas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| |
Collapse
|
6
|
Cao X, Chen L, Lu K, Yu T, Xia H, Wang S, Sun G, Liu P, Liao W. Egg white-derived peptides reduced blood glucose in high-fat-diet and low-dose streptozotocin-induced type 2 diabetic mice via regulating the hepatic gluconeogenic signaling and metabolic profile. Food Funct 2024; 15:7003-7016. [PMID: 38855929 DOI: 10.1039/d4fo00725e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Food proteins are considered an ideal source for the identification of bioactive peptides with the potential to intervene in nutrition-related chronic diseases such as cardiovascular disease, obesity, and diabetes. Egg white-derived peptides (EWPs) have been shown to improve glucose tolerance in insulin-resistant rats. However, underlying mechanisms are to be elucidated. Therefore, we hypothesized that EWP exerts a hypoglycemic effect by regulating hepatic glucose homeostasis. Our results showed that 7 weeks of EWP treatment reduced the fasting blood glucose in T2DM mice and the inhibition of the liver gluconeogenic pathway was involved in the mechanisms of actions. Using the untargeted metabolomics technique, we found that EWP treatment also altered the hepatic metabolic profile in T2DM mice, in which, the role of fatty acid esters of hydroxy fatty acids in mediating the hypoglycemic effect of EWPs might be pivotal.
Collapse
Affiliation(s)
- Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Liang Chen
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Kun Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Tingqing Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Ping Liu
- Department of Food Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, P.R. China
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| |
Collapse
|
7
|
Beitelshees AL, Streeten EA, Shahidzadeh Yazdi Z, Whitlatch HB, Mitchell BD, Shuldiner AR, Montasser ME, Taylor SI. Acute pharmacodynamic responses to sitagliptin: Drug-induced increase in early insulin secretion in oral glucose tolerance test. Clin Transl Sci 2024; 17:e13809. [PMID: 38700326 PMCID: PMC11067710 DOI: 10.1111/cts.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
DPP4 inhibitors are widely prescribed as treatments for type 2 diabetes. Because drug responses vary among individuals, we initiated investigations to identify genetic variants associated with the magnitude of drug responses. Sitagliptin (100 mg) was administered to 47 healthy volunteers. Several endpoints were measured to assess clinically relevant responses - including the effect of sitagliptin on glucose and insulin levels during an oral glucose tolerance test (OGTT). This pilot study confirmed that sitagliptin (100 mg) decreased the area under the curve for glucose during an OGTT (p = 0.0003). Furthermore, sitagliptin promoted insulin secretion during the early portion of the OGTT as reflected by an increase in the ratio of plasma insulin at 30 min divided by plasma insulin at 60 min (T30:T60) from mean ± SEM 0.87 ± 0.05 to 1.62 ± 0.36 mU/L (p = 0.04). The magnitude of sitagliptin's effect on insulin secretion (as judged by the increase in the T30:T60 ratio for insulin) was correlated with the magnitude of sitagliptin-induced increase in the area under the curve for intact plasma GLP1 levels during the first hour of the OGTT. This study confirmed previously reported sex differences in glucose and insulin levels during an OGTT. Specifically, females exhibited higher levels of glucose and insulin at the 90-180 min time points. However, we did not detect significant sex-associated differences in the magnitude of sitagliptin-induced changes in T30:T60 ratios for either glucose or insulin. In conclusion, T30:T60 ratios for insulin and glucose during an OGTT provide useful indices to assess pharmacodynamic responses to DPP4 inhibitors.
Collapse
Affiliation(s)
- Amber L. Beitelshees
- Division of Endocrinology, Diabetes, and Nutrition, Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Elizabeth A. Streeten
- Division of Endocrinology, Diabetes, and Nutrition, Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Zhinous Shahidzadeh Yazdi
- Division of Endocrinology, Diabetes, and Nutrition, Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Hilary B. Whitlatch
- Division of Endocrinology, Diabetes, and Nutrition, Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Braxton D. Mitchell
- Division of Endocrinology, Diabetes, and Nutrition, Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - May E. Montasser
- Division of Endocrinology, Diabetes, and Nutrition, Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Simeon I. Taylor
- Division of Endocrinology, Diabetes, and Nutrition, Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
8
|
Wang J, Wang D, Lu S, Hu Y, Ge Y, Qin X, Mo Y, Kan J, Li D, Zhang R, Liu Y, Zhang WS. Ceramide enhanced the hepatic glucagon response through regulation of CREB activity. Clin Nutr 2024; 43:366-378. [PMID: 38142481 DOI: 10.1016/j.clnu.2023.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND & AIMS Hyperglycemia is associated with lipid disorders in patients with diabetes. Ceramides are metabolites involved in sphingolipid metabolism that accumulate during lipid disorders and exert deleterious effects on glucose and lipid metabolism. However, the effects of ceramide on glucagon-mediated hepatic gluconeogenesis remain largely unknown. This study was designed to investigate the impact of ceramides on gluconeogenesis in the context of the hepatic glucagon response, with the aim of finding new pharmacological interventions for hyperglycemia in diabetes. METHODS Liquid chromatography-mass spectrometry was used to quantify ceramide content in the serum of patients with diabetes. Primary hepatocytes were isolated from male C57BL/6J mice to study the effects of ceramide on hepatic glucose production. Immunofluorescence staining was performed to view cAMP-responsive element-binding protein (CREB)- regulated transcription co-activator 2 (CRTC2) nuclear translocation in hepatocytes. Serine palmitoyl-transferase, long chain base subunit 2 (Sptlc2) knockdown mice were generated using an adeno-associated virus containing shRNA, and hepatic glucose production was assessed glucagon tolerance and pyruvate tolerance tests in mice fed a normal chow diet and high-fat diet. RESULTS Increased ceramide levels were observed in the serum of patients newly diagnosed with type 2 diabetes. De novo ceramide synthesis was activated in mice with metabolic disorders. Ceramide enhanced hepatic glucose production in primary hepatocytes. In contrast, genetic silencing of Sptlc2 prevented this process. Mechanistically, ceramides de-phosphorylate CRTC2 (Ser 171) and facilitate its translocation into the nucleus for CREB activation, thereby augmenting the hepatic glucagon response. Hepatic Sptlc2 silencing blocked ceramide generation in the liver and thus restrained the hepatic glucagon response in mice fed a normal chow diet and high-fat diet. CONCLUSIONS These data indicate that ceramide serves as an intracellular messenger that augments hepatic glucose production by regulating CRTC2/CREB activity in the context of the hepatic glucagon response, suggesting that CRTC2 phosphorylation might be a potential node for pharmacological interventions to restrain the hyperglycemic response during fasting in diabetes.
Collapse
Affiliation(s)
- Jizheng Wang
- Department of the Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China; Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Dan Wang
- Department of the Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China; Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shan Lu
- Maternity and Child Dept, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yifang Hu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yaoqi Ge
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiaoxuan Qin
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yanfei Mo
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jingbao Kan
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Dong Li
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Rihua Zhang
- Department of the Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Yun Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Wen-Song Zhang
- Department of the Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
9
|
Jain A, Vispute A, Dange A, Naskar A, Mondal A, Vivekanand B, Sharma B, Varade D, Shukla D, Bhatia G, Chaudhari H, Ram Babu K, Gavali O, Sorate S, Bhanushali S, Kothari V, Khandelwal V, Sharma A, Pawar R, Mayabhate M, Shahavi V, Rajput A, Jaiswal M. A Randomized, Double-Blind, Parallel-Group Phase III Trial Investigating the Glycemic Efficacy and Safety Profile of Fixed-Dose Combination Dapagliflozin and Linagliptin Over Linagliptin Monotherapy in Patients with Inadequately Controlled Type 2 Diabetes with Metformin. Diabetes Ther 2024; 15:215-227. [PMID: 37957465 PMCID: PMC10786755 DOI: 10.1007/s13300-023-01504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION The aim of the study was to evaluate the efficacy and safety of fixed-dose combination (FDC) of dapagliflozin (10 mg) and linagliptin (5 mg) in comparison to linagliptin 5 mg (Trajenta) in patients with insufficiently controlled type 2 diabetes mellitus (T2DM) on metformin monotherapy. METHODS The double-blind, randomized, multicentric, parallel-group phase III trial screened 287 adult patients with T2DM (age 18-65 years) from 16 sites across India. The recruited subjects were undergoing metformin monotherapy ≥ 1000 mg/day for at least 28 days. Patients with HbA1c of 7.5-10.5% (58-91 mmol/l) (n = 232) after 2 weeks of run-in period with linagliptin monotherapy and placebo dapagliflozin/linagliptin on metformin monotherapy were randomized (1:1) in parallel to once daily dapagliflozin/linagliptin 10/5 mg or linagliptin 5 mg for 16 weeks. Patients were stratified on the basis of HbA1c (≤ 9.0% and > 9.0%; ≤ 75 mmol/l and > 75 mmol/l)). A total of 225 subjects completed 16 weeks of treatment, 115 patients in the test group and 110 patients in the reference group. RESULTS Dapagliflozin/linagliptin (p = 0.0003) exhibited a greater change in HbA1c from baseline than linagliptin (p < 0.0001) in 16 weeks (mean reduction, - 1.28% vs - 0.83%). Test group showed a significant decrease in fasting plasma glucose (FPG), postprandial plasma glucose (PPG) and body weight compared to the reference group. The FDC was well tolerated with adverse events being more frequent in the reference group. No serious adverse events (SAEs) were reported in the study. CONCLUSION Dapagliflozin/linagliptin combination is a novel dipeptidyl peptidase 4 (DPP4)/sodium-glucose co-transporter 2 (SGLT2) inhibitor FDC approved in India for patients with T2DM. Potential limitations of this study are a small dose of dapagliflozin (10 mg) in the FDC, a short study duration (30 weeks) and a high minimum threshold for HbA1c (≤ 7.5%; ≤ 53 mmol/l). Results indicate the FDC to be a superior therapeutic option over linagliptin for patients with T2DM on metformin monotherapy. TRIAL REGISTRATION CTRI/2022/08/044563; 01/08/2022.
Collapse
Affiliation(s)
- Aditi Jain
- Deanery of Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
| | | | - Amol Dange
- Lifepoint Multispecialty Hospital, Pune, India
| | | | | | | | | | | | | | | | | | - K Ram Babu
- Department of Medicine, Visakha Institute of Medical Science, Vishakhapatnam, India
| | - Onkar Gavali
- Lokmanya Multispecialty and Accident Hospital, Nashik, India
| | - Sanket Sorate
- Sanjeevani Criticare and Research Center, Nashik, India
| | | | | | | | | | - Roshan Pawar
- Medical Department, Alkem Laboratories, Mumbai, India
| | | | | | | | | |
Collapse
|
10
|
Himuro M, Wakabayashi Y, Taguchi T, Katahira T, Suzuki L, Iida H, Ogihara T, Nishida Y, Sasaki S, Lynn FC, Hiraoka Y, Oshima S, Okamoto R, Fujitani Y, Watada H, Miyatsuka T. Novel time-resolved reporter mouse reveals spatial and transcriptional heterogeneity during alpha cell differentiation. Diabetologia 2024; 67:156-169. [PMID: 37870650 DOI: 10.1007/s00125-023-06028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-expressing pancreatic alpha cells have attracted much attention for their plasticity to transdifferentiate into insulin-producing beta cells; however, it remains unclear precisely when, and from where, alpha cells emerge and what regulates alpha cell fate. We therefore explored the spatial and transcriptional heterogeneity of alpha cell differentiation using a novel time-resolved reporter system. METHODS We established the mouse model, 'Gcg-Timer', in which newly generated alpha cells can be distinguished from more-differentiated cells by their fluorescence. Fluorescence imaging and transcriptome analysis were performed with Gcg-Timer mice during the embryonic and postnatal stages. RESULTS Fluorescence imaging and flow cytometry demonstrated that green fluorescence-dominant cells were present in Gcg-Timer mice at the embryonic and neonatal stages but not after 1 week of age, suggesting that alpha cell neogenesis occurs during embryogenesis and early neonatal stages under physiological conditions. Transcriptome analysis of Gcg-Timer embryos revealed that the mRNAs related to angiogenesis were enriched in newly generated alpha cells. Histological analysis revealed that some alpha cells arise close to the pancreatic ducts, whereas the others arise away from the ducts and adjacent to the blood vessels. Notably, when the glucagon signal was suppressed by genetic ablation or by chemicals, such as neutralising glucagon antibody, green-dominant cells emerged again in adult mice. CONCLUSIONS/INTERPRETATION Novel time-resolved analysis with Gcg-Timer reporter mice uncovered spatiotemporal features of alpha cell neogenesis that will enhance our understanding of cellular identity and plasticity within the islets. DATA AVAILABILITY Raw and processed RNA sequencing data for this study has been deposited in the Gene Expression Omnibus under accession number GSE229090.
Collapse
Affiliation(s)
- Miwa Himuro
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuka Wakabayashi
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomomi Taguchi
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takehiro Katahira
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Luka Suzuki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitoshi Iida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Ogihara
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nishida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shugo Sasaki
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Yuichi Hiraoka
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan.
| |
Collapse
|
11
|
Arefanian H, Koti L, Sindhu S, Ahmad R, Al Madhoun A, Al-Mulla F. Verapamil chronicles: advances from cardiovascular to pancreatic β-cell protection. Front Pharmacol 2023; 14:1322148. [PMID: 38089047 PMCID: PMC10711102 DOI: 10.3389/fphar.2023.1322148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2024] Open
Abstract
Verapamil is a well-known drug used for treating angina and hypertension. Emerging data from current clinical trials suggest that this calcium channel blocker has a potential benefit for pancreatic β-cells through the elevation and sustenance of C-peptide levels in patients with diabetes mellitus (DM). This is intriguing, given the fact that the current therapeutic options for DM are still limited to using insulin and incretins which, in fact, fail to address the underlying pathology of β-cell destruction and loss. Moreover, verapamil is widely available as an FDA-approved, cost-effective drug, supported also by its substantial efficacy and safety. However, the molecular mechanisms underlying the β-cell protective potentials of verapamil are yet to be fully elucidated. Although, verapamil reduces the expression of thioredoxin-interacting protein (TXNIP), a molecule which is involved in β-cell apoptosis and glucotoxicity-induced β-cell death, other signaling pathways are also modulated by verapamil. In this review, we revisit the historical avenues that lead to verapamil as a potential therapeutic agent for DM. Importantly, this review provides an update on the current known mechanisms of action of verapamil and also allude to the plausible mechanisms that could be implicated in its β-cell protective effects, based on our own research findings.
Collapse
Affiliation(s)
- Hossein Arefanian
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Lubaina Koti
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sardar Sindhu
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
12
|
Moss ND, Wells KL, Theis A, Kim YK, Spigelman AF, Liu X, MacDonald PE, Sussel L. Modulation of insulin secretion by RBFOX2-mediated alternative splicing. Nat Commun 2023; 14:7732. [PMID: 38007492 PMCID: PMC10676425 DOI: 10.1038/s41467-023-43605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023] Open
Abstract
Insulin secretion is a tightly regulated process that is vital for maintaining blood glucose homeostasis. Although the molecular components of insulin granule trafficking and secretion are well established, how they are regulated to rapidly fine-tune secretion in response to changing environmental conditions is not well characterized. Recent studies have determined that dysregulation of RNA-binding proteins (RBPs) and aberrant mRNA splicing occurs at the onset of diabetes. We demonstrate that the RBP, RBFOX2, is a critical regulator of insulin secretion through the alternative splicing of genes required for insulin granule docking and exocytosis. Conditional mutation of Rbfox2 in the mouse pancreas results in decreased insulin secretion and impaired blood glucose homeostasis. Consistent with defects in secretion, we observe reduced insulin granule docking and corresponding splicing defects in the SNARE complex components. These findings identify an additional mechanism for modulating insulin secretion in both healthy and dysfunctional pancreatic β cells.
Collapse
Affiliation(s)
- Nicole D Moss
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Theis
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yong-Kyung Kim
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xiong Liu
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
13
|
Huang W, Xie C, Wewer Albrechtsen NJ, Sang M, Sun Z, Jones KL, Horowitz M, Rayner CK, Wu T. Serum alanine transaminase is predictive of fasting and postprandial insulin and glucagon concentrations in type 2 diabetes. Peptides 2023; 169:171092. [PMID: 37673303 DOI: 10.1016/j.peptides.2023.171092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
The liver plays a key role in glucose homeostasis. Serum liver enzyme levels, including alanine transaminase (ALT), aspartate transaminase (AST) and gamma-glutamyl transferase (GGT), are reportedly predictive of the risk of type 2 diabetes (T2D). However, the link between the liver enzyme profile and metabolic derangements in T2D, particularly the secretion of both insulin and glucagon, is not clear. This study evaluated its relationships with glycemia, insulin and glucagon both during fasting and after an oral glucose load or a mixed meal in T2D. 15 healthy and 43 T2D subjects ingested a 75 g glucose drink. 86 T2D subjects consumed a mixed meal. Venous blood was sampled for measurements of blood glucose and plasma insulin, C-peptide and glucagon. Blood glucose, plasma insulin, C-peptide and glucagon concentrations, both fasting and after oral glucose, correlated directly with ALT, while fewer and weaker correlations were observed with GGT or AST. Subgroup analysis in T2D subjects ascertained that plasma insulin, C-peptide and glucagon concentrations after oral glucose were higher with increasing ALT. Similar findings were observed in the T2D subjects who received a mixed meal. In conclusion, serum liver enzyme profile, particularly ALT, reflects dysregulated fasting and nutrient-stimulated plasma insulin and glucagon concentrations in T2D.
Collapse
Affiliation(s)
- Weikun Huang
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
| | - Cong Xie
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
| | | | - Miaomiao Sang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| | - Karen L Jones
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Michael Horowitz
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Christopher K Rayner
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Tongzhi Wu
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia.
| |
Collapse
|
14
|
Beitelshees AL, Streeten EA, Yazdi ZS, Whitlatch HB, Mitchell BD, Shuldiner AR, Montasser ME, Taylor SI. Acute pharmacodynamic responses to sitagliptin: Drug-induced increase in early insulin secretion in oral glucose tolerance test. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.24.23296026. [PMID: 37808823 PMCID: PMC10557823 DOI: 10.1101/2023.09.24.23296026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Aim DPP4 inhibitors are widely prescribed as treatments for type 2 diabetes. Because drug responses vary among individuals, we initiated investigations to identify genetic variants associated with the magnitude of drug responses. Methods Sitagliptin (100 mg) was administered to 47 healthy volunteers. Several endpoints were measured to assess clinically relevant responses - including the effect of sitagliptin on glucose and insulin levels during an oral glucose tolerance test (OGTT). Results This pilot study confirmed that sitagliptin (100 mg) decreased the area under the curve for glucose during an OGTT (p=0.0003). Furthermore, sitagliptin promoted insulin secretion during the early portion of the OGTT as reflected by an increase in the ratio of plasma insulin at 30 min divided by plasma insulin at 60 min (T30:T60) from 0.87+/-0.05 to 1.62+/-0.36 mU/L (p=0.04). The magnitude of sitagliptin's effect on insulin secretion (as judged by the increase in the T30:T60 ratio for insulin) was correlated with the magnitude of sitagliptin-induced increase in the area under the curve for intact plasma GLP1 levels during the first hour of the OGTT. This study confirmed previously reported sex differences in glucose and insulin levels during an OGTT. Specifically, females exhibited higher levels of glucose and insulin at the 90-180 min time points. However, we did not detect significant sex-associated differences in the magnitude of sitagliptin-induced changes in T30:T60 ratios for either glucose or insulin. Conclusions T30:T60 ratios for insulin and glucose during an OGTT provide useful indices to assess pharmacodynamic responses to DPP4 inhibitors.
Collapse
Affiliation(s)
- Amber L. Beitelshees
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Elizabeth A. Streeten
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhinous Shahidzadeh Yazdi
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hilary B. Whitlatch
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Braxton D. Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alan R. Shuldiner
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - May E. Montasser
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Simeon I. Taylor
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Safarzad M, Jazi MS, Kiaei M, Asadi J. Lower serum zinc level is associated with higher fasting insulin in type 2 diabetes mellitus (T2DM) and relates with disturbed glucagon suppression response in male patients. Prim Care Diabetes 2023; 17:493-498. [PMID: 37391316 DOI: 10.1016/j.pcd.2023.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 07/02/2023]
Abstract
AIMS Zinc ion can play critical role in glycemic control in diabetes mellitus (DM), contributing to both insulin synthesis and secretion. In this study, we aimed to investigate the level of zinc in diabetic patients and its association with glycemic parameters, insulin, and glucagon level. METHODS 112 individuals (59 cases of type 2DM and 53 non-diabetic controls) were included in this study. Biochemical parameters (FBG, 2hpp, HbA1C), and zinc level in the serum were measured using colorimetric assays. Insulin and glucagon were measured by ELISA method. HOMA-IR, HOMA-B, reciprocal HOMA-B, and Quicki indices were calculated using appropriate formula. For further analysis, patients were divided into two groups: high (>135.5 μg/dl) and low (<135.5 μg/dl) zinc. Glucagon suppression was considered yes if 2hpp glucagon < fasting glucagon. RESULTS Our results showed that serum Zn level in type 2 DM patients was lower than control (P value=0.02). Patients with lower Zn had higher fasting insulin (P value=0.006) and higher β-cell activity index (HOMA-B, p value=0.02), however fasting glucagon and parameters of hyperglycemia (FBG, 2hpp, Hba1C) were not different. Moreover, insulin sensitivity and resistance indices (Quicki, HOMA-IR,1/HOMA-IR) showed non-significantly improved status in high Zn group. We found non-significant association between glucagon suppression and Zn level in both genders (N = 39, p value = 0.07), however, it was significant in males (N = 14, p value = 0.02). CONCLUSION Altogether, our results indicated reduced serum Zn in type 2DM can exacerbate hyperinsulinemia and glucagon suppression (only significant in the male), highlighting its importance in type 2DM control.
Collapse
Affiliation(s)
- Mahdieh Safarzad
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marie Saghaeian Jazi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohammadreza Kiaei
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
16
|
Riahi Y, Kogot-Levin A, Kadosh L, Agranovich B, Malka A, Assa M, Piran R, Avrahami D, Glaser B, Gottlieb E, Jackson F, Cerasi E, Bernal-Mizrachi E, Helman A, Leibowitz G. Hyperglucagonaemia in diabetes: altered amino acid metabolism triggers mTORC1 activation, which drives glucagon production. Diabetologia 2023; 66:1925-1942. [PMID: 37480416 DOI: 10.1007/s00125-023-05967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/07/2023] [Indexed: 07/24/2023]
Abstract
AIM/HYPOTHESIS Hyperglycaemia is associated with alpha cell dysfunction, leading to dysregulated glucagon secretion in type 1 and type 2 diabetes; however, the mechanisms involved are still elusive. The nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) plays a major role in the maintenance of alpha cell mass and function. We studied the regulation of alpha cell mTORC1 by nutrients and its role in the development of hyperglucagonaemia in diabetes. METHODS Alpha cell mTORC1 activity was assessed by immunostaining for phosphorylation of its downstream target, the ribosomal protein S6, and glucagon, followed by confocal microscopy on pancreatic sections and flow cytometry on dispersed human and mouse islets and the alpha cell line, αTC1-6. Metabolomics and metabolic flux were studied by 13C glucose labelling in 2.8 or 16.7 mmol/l glucose followed by LC-MS analysis. To study the role of mTORC1 in mediating hyperglucagonaemia in diabetes, we generated an inducible alpha cell-specific Rptor knockout in the Akita mouse model of diabetes and tested the effects on glucose tolerance by IPGTT and on glucagon secretion. RESULTS mTORC1 activity was increased in alpha cells from diabetic Akita mice in parallel to the development of hyperglycaemia and hyperglucagonaemia (two- to eightfold increase). Acute exposure of mouse and human islets to amino acids stimulated alpha cell mTORC1 (3.5-fold increase), whereas high glucose concentrations inhibited mTORC1 (1.4-fold decrease). The mTORC1 response to glucose was abolished in human and mouse diabetic alpha cells following prolonged islet exposure to high glucose levels, resulting in sustained activation of mTORC1, along with increased glucagon secretion. Metabolomics and metabolic flux analysis showed that exposure to high glucose levels enhanced glycolysis, glucose oxidation and the synthesis of glucose-derived amino acids. In addition, chronic exposure to high glucose levels increased the expression of Slc7a2 and Slc38a4, which encode amino acid transporters, as well as the levels of branched-chain amino acids and methionine cycle metabolites (~1.3-fold increase for both). Finally, conditional Rptor knockout in alpha cells from adult diabetic mice inhibited mTORC1, thereby inhibiting glucagon secretion (~sixfold decrease) and improving diabetes, despite persistent insulin deficiency. CONCLUSIONS/INTERPRETATION Alpha cell exposure to hyperglycaemia enhances amino acid synthesis and transport, resulting in sustained activation of mTORC1, thereby increasing glucagon secretion. mTORC1 therefore plays a major role in mediating alpha cell dysfunction in diabetes. DATA AVAILABILITY All sequencing data are available from the Gene Expression Omnibus (GEO) repository (accession no. GSE154126; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154126 ).
Collapse
Affiliation(s)
- Yael Riahi
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviram Kogot-Levin
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liat Kadosh
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bella Agranovich
- Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Assaf Malka
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Assa
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ron Piran
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dana Avrahami
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Developmental Biology and Cancer Research, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Glaser
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Gottlieb
- Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fields Jackson
- Department of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Erol Cerasi
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Aharon Helman
- Department of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel.
| | - Gil Leibowitz
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
17
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
18
|
Knuth ER, Foster HR, Jin E, Merrins MJ. Leucine suppresses glucagon secretion from pancreatic islets by directly modulating α-cell cAMP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551113. [PMID: 37577685 PMCID: PMC10418066 DOI: 10.1101/2023.07.31.551113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Objective Pancreatic islets are nutrient sensors that regulate organismal blood glucose homeostasis. Glucagon release from the pancreatic α-cell is important under fasted, fed, and hypoglycemic conditions, yet metabolic regulation of α-cells remains poorly understood. Here, we identified a previously unexplored role for physiological levels of leucine, which is classically regarded as a β-cell fuel, in the intrinsic regulation of α-cell glucagon release. Methods GcgCreERT:CAMPER and GcgCreERT:GCaMP6s mice were generated to perform dynamic, high-throughput functional measurements of α-cell cAMP and Ca2+ within the intact islet. Islet perifusion assays were used for simultaneous, time-resolved measurements of glucagon and insulin release from mouse and human islets. The effects of leucine were compared with glucose and the mitochondrial fuels 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH, non-metabolized leucine analog that activates glutamate dehydrogenase), α-ketoisocaproate (KIC, leucine metabolite), and methyl-succinate (complex II fuel). CYN154806 (Sstr2 antagonist), diazoxide (KATP activator, which prevents Ca2+-dependent exocytosis from α, β, and δ-cells), and dispersed α-cells were used to inhibit islet paracrine signaling and identify α-cell intrinsic effects. Results Mimicking the effect of glucose, leucine strongly suppressed amino acid-stimulated glucagon secretion. Mechanistically, leucine dose-dependently reduced α-cell cAMP at physiological concentrations, with an IC50 of 57, 440, and 1162 μM at 2, 6, and 10 mM glucose, without affecting α-cell Ca2+. Leucine also reduced α-cell cAMP in islets treated with Sstr2 antagonist or diazoxide, as well as dispersed α-cells, indicating an α-cell intrinsic effect. The effect of leucine was matched by KIC and the glutamate dehydrogenase activator BCH, but not methyl-succinate, indicating a dependence on mitochondrial anaplerosis. Glucose, which stimulates anaplerosis via pyruvate carboxylase, had the same suppressive effect on α-cell cAMP but with lower potency. Similarly to mouse islets, leucine suppressed glucagon secretion from human islets under hypoglycemic conditions. Conclusions These findings highlight an important role for physiological levels of leucine in the metabolic regulation of α-cell cAMP and glucagon secretion. Leucine functions primarily through an α-cell intrinsic effect that is dependent on glutamate dehydrogenase, in addition to the well-established α-cell regulation by β/δ-cell paracrine signaling. Our results suggest that mitochondrial anaplerosis-cataplerosis facilitates the glucagonostatic effect of both leucine and glucose, which cooperatively suppress α-cell tone by reducing cAMP.
Collapse
Affiliation(s)
- Emily R. Knuth
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah R. Foster
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erli Jin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| |
Collapse
|
19
|
Yang W, Liao W, Li X, Ai W, Pan Q, Shen Z, Jiang W, Guo S. Hepatic p38α MAPK controls gluconeogenesis via FOXO1 phosphorylation at S273 during glucagon signalling in mice. Diabetologia 2023:10.1007/s00125-023-05916-5. [PMID: 37202506 DOI: 10.1007/s00125-023-05916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/09/2023] [Indexed: 05/20/2023]
Abstract
AIMS/HYPOTHESIS Hyperglucagonaemia-stimulated hepatic glucose production (HGP) contributes to hyperglycaemia during type 2 diabetes. A better understanding of glucagon action is important to enable efficient therapies to be developed for the treatment of diabetes. Here, we aimed to investigate the role of p38 MAPK family members in glucagon-induced HGP and determine the underlying mechanisms by which p38 MAPK regulates glucagon action. METHODS p38α, β, γ and δ MAPK siRNAs were transfected into primary hepatocytes, followed by measurement of glucagon-induced HGP. Adeno-associated virus serotype 8 carrying p38α MAPK short hairpin RNA (shRNA) was injected into liver-specific Foxo1 knockout, liver-specific Irs1/Irs2 double knockout and Foxo1S273D knockin mice. Foxo1S273A knockin mice were fed a high-fat diet for 10 weeks. Pyruvate tolerance tests, glucose tolerance tests, glucagon tolerance tests and insulin tolerance tests were carried out in mice, liver gene expression profiles were analysed and serum triglyceride, insulin and cholesterol levels were measured. Phosphorylation of forkhead box protein O1 (FOXO1) by p38α MAPK in vitro was analysed by LC-MS. RESULTS We found that p38α MAPK, but not the other p38 isoforms, stimulates FOXO1-S273 phosphorylation and increases FOXO1 protein stability, promoting HGP in response to glucagon stimulation. In hepatocytes and mouse models, inhibition of p38α MAPK blocked FOXO1-S273 phosphorylation, decreased FOXO1 levels and significantly impaired glucagon- and fasting-induced HGP. However, the effect of p38α MAPK inhibition on HGP was abolished by FOXO1 deficiency or a Foxo1 point mutation at position 273 from serine to aspartic acid (Foxo1S273D) in both hepatocytes and mice. Moreover, an alanine mutation at position 273 (Foxo1S273A) decreased glucose production, improved glucose tolerance and increased insulin sensitivity in diet-induced obese mice. Finally, we found that glucagon activates p38α through exchange protein activated by cAMP 2 (EPAC2) signalling in hepatocytes. CONCLUSIONS/INTERPRETATION This study found that p38α MAPK stimulates FOXO1-S273 phosphorylation to mediate the action of glucagon on glucose homeostasis in both health and disease. The glucagon-induced EPAC2-p38α MAPK-pFOXO1-S273 signalling pathway is a potential therapeutic target for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Wanbao Yang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Wang Liao
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Xiaopeng Li
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Weiqi Ai
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Quan Pan
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Zheng Shen
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Wen Jiang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
20
|
Yavuz A, Aydin MA, Ugur K, Aydin S, Senol A, Baykus Y, Deniz R, Sahin İ, Yalcin MH, Gencer BT, Deniz YK, Ustebay S, Karagoz ZK, Emre E, Aydin S. Betatrophin, elabela, asprosin, glucagon and subfatin peptides in breast tissue, blood and milk in gestational diabetes. Biotech Histochem 2023; 98:243-254. [PMID: 36825397 DOI: 10.1080/10520295.2023.2176546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
We investigated the presence of asprosin (ASP), betatrophin, elabela (ELA), glucagon and subfatin (SUB) in the milk of mothers with gestational diabetes mellitus (GDM) and compared their levels with blood levels. We also investigated whether these peptides are synthesized by the breast. We investigated 12 volunteer mothers with GDM and 14 pregnant non-GDM control mothers. The peptides were measured using ELISA and their tissue localization was determined using immunohistochemistry. Breast milk contains ASP, betatrophin, ELA, glucagon and SUB. The amount of the peptides ranged from highest to the lowest in colostrum, transitional milk and mature milk. The amount of peptides in the milk was greater than for blood. The peptides, except for ELA, were increased in milk and blood by GDM. Betatrophin and ELA are synthesized in the connective tissue of the breast. ASP, glucagon and SUB are synthesized in the alveolar tissue of the breast. These peptides in breast milk may contribute to the development of the gastrointestinal tract of newborns and infants.
Collapse
Affiliation(s)
- Adem Yavuz
- Department of Obstetrics and Gynecology, Nigde Omer Halis Demir Research and Education Hospital, Nigde, Turkiye
| | - Mustafa Ata Aydin
- Medical Student, School of Medicine, Gazi University, Ankara, Turkiye
| | - Kader Ugur
- Department of Internal Medicine (Endocrinology and Metabolism Diseases), School of Medicine, Firat University, Elazig, Turkiye
| | - Suna Aydin
- Department of Cardiovascular Surgery, Fethi Sekin City Hospital, Elazig, Turkiye
- Department of Anatomy, School of Medicine, Firat University, Elazig, Turkiye
- Department of Histology and Embryology, School of Veterinary Medicine, Firat University, Elazig, Turkiye
| | - Arzu Senol
- Department of Enfection Disease, Fethi Sekin City Hospital, Elazig, Turkiye
| | - Yakup Baykus
- Department of Obstetrics and Gynecology, Bandirma 17 Eylul Univerity, Balikesir, Turkiye
| | - Rulin Deniz
- Department of Obstetrics and Gynecology, Bandirma 17 Eylul Univerity, Balikesir, Turkiye
| | - İbrahim Sahin
- Department of Medical Biochemistry and Clinical Biochemistry, (Firat Hormones Research Group), Medical School, Firat University, Elazig, Turkiye
- Department of Medical Biology, School of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkiye
| | - Mehmet Hanifi Yalcin
- Department of Histology and Embryology, School of Veterinary Medicine, Firat University, Elazig, Turkiye
| | - Berrin Tarakci Gencer
- Department of Histology and Embryology, School of Veterinary Medicine, Firat University, Elazig, Turkiye
| | - Yaprak Kandemir Deniz
- Department of Obstetrics and Gynecology, Antalya Medicalpark Hospital Complex, Antalya, Turkiye
| | - Sefer Ustebay
- Department of Pediatrics, Bandirma 17 Eylul Univerity, Balikesir, Turkiye
| | - Zuhal Karaca Karagoz
- Department of Internal Medicine (Endocrinology and Metabolism Diseases), Fethi Sekin City Hospital, Elazig, Turkiye
| | - Elif Emre
- Department of Anatomy, School of Medicine, Firat University, Elazig, Turkiye
| | - Suleyman Aydin
- Department of Medical Biochemistry and Clinical Biochemistry, (Firat Hormones Research Group), Medical School, Firat University, Elazig, Turkiye
| |
Collapse
|
21
|
Yang M, Pan M, Huang D, Liu J, Guo Y, Liu Y, Zhang W. Glucagon Promotes Gluconeogenesis through the GCGR/PKA/CREB/PGC-1α Pathway in Hepatocytes of the Japanese Flounder Paralichthys olivaceus. Cells 2023; 12:cells12071098. [PMID: 37048171 PMCID: PMC10093564 DOI: 10.3390/cells12071098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
In order to investigate the mechanism of glucagon regulation of gluconeogenesis, primary hepatocytes of the Japanese flounder (Paralichthys olivaceus) were incubated with synthesized glucagon, and methods based on inhibitors and gene overexpression were employed. The results indicated that glucagon promoted glucose production and increased the mRNA levels of glucagon receptor (gcgr), guanine nucleotide-binding protein Gs α subunit (gnas), adenylate cyclase 2 (adcy2), protein kinase A (pka), cAMP response element-binding protein 1 (creb1), peroxisome proliferator-activated receptor-γ coactivator 1α (pgc-1α), phosphoenolpyruvate carboxykinase 1 (pck1), and glucose-6-phosphatase (g6pc) in the hepatocytes. An inhibitor of GCGR decreased the mRNA expression of gcgr, gnas, adcy2, pka, creb1, pgc-1α, pck1, g6pc, the protein expression of phosphorylated CREB and PGC-1α, and glucose production. The overexpression of gcgr caused the opposite results. An inhibitor of PKA decreased the mRNA expression of pgc-1α, pck1, g6pc, the protein expression of phosphorylated-CREB, and glucose production in hepatocytes. A CREB-targeted inhibitor significantly decreased the stimulation by glucagon of the mRNA expression of creb1, pgc-1α, and gluconeogenic genes, and glucose production decreased accordingly. After incubating the hepatocytes with an inhibitor of PGC-1α, the glucagon-activated mRNA expression of pck1 and g6pc was significantly down-regulated. Together, these results demonstrate that glucagon promotes gluconeogenesis through the GCGR/PKA/CREB/PGC-1α pathway in the Japanese flounder.
Collapse
Affiliation(s)
- Mengxi Yang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yanlin Guo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yue Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
22
|
Lutz TA. Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus. Nat Rev Endocrinol 2023; 19:350-360. [PMID: 36941447 DOI: 10.1038/s41574-023-00818-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
Although no single animal model replicates all aspects of diabetes mellitus in humans, animal models are essential for the study of energy balance and metabolism control as well as to investigate the reasons for their imbalance that could eventually lead to overt metabolic diseases such as type 2 diabetes mellitus. The most frequently used animal models in diabetes mellitus research are small rodents that harbour spontaneous genetic mutations or that can be manipulated genetically or by other means to influence their nutrient metabolism and nutrient handling. Non-rodent species, including pigs, cats and dogs, are also useful models in diabetes mellitus research. This Review will outline the advantages and disadvantages of selected animal models of diabetes mellitus to build a basis for their most appropriate use in biomedical research.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.
| |
Collapse
|
23
|
Cui X, Feng J, Wei T, Zhang L, Lang S, Yang K, Yang J, Liu J, Sterr M, Lickert H, Wei R, Hong T. Pancreatic alpha cell glucagon-liver FGF21 axis regulates beta cell regeneration in a mouse model of type 2 diabetes. Diabetologia 2023; 66:535-550. [PMID: 36331598 PMCID: PMC9892158 DOI: 10.1007/s00125-022-05822-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
AIMS/HYPOTHESIS Glucagon receptor (GCGR) antagonism ameliorates hyperglycaemia and promotes beta cell regeneration in mouse models of type 2 diabetes. However, the underlying mechanisms remain unclear. The present study aimed to investigate the mechanism of beta cell regeneration induced by GCGR antagonism in mice. METHODS The db/db mice and high-fat diet (HFD)+streptozotocin (STZ)-induced mice with type 2 diabetes were treated with antagonistic GCGR monoclonal antibody (mAb), and the metabolic variables and islet cell quantification were evaluated. Plasma cytokine array and liver RNA sequencing data were used to screen possible mediators, including fibroblast growth factor 21 (FGF21). ELISA, quantitative RT-PCR and western blot were applied to verify FGF21 change. Blockage of FGF21 signalling by FGF21-neutralising antibody (nAb) was used to clarify whether FGF21 was involved in the effects of GCGR mAb on the expression of beta cell identity-related genes under plasma-conditional culture and hepatocyte co-culture conditions. FGF21 nAb-treated db/db mice, systemic Fgf21-knockout (Fgf21-/-) diabetic mice and hepatocyte-specific Fgf21-knockout (Fgf21Hep-/-) diabetic mice were used to reveal the involvement of FGF21 in beta cell regeneration. A BrdU tracing study was used to analyse beta cell proliferation in diabetic mice treated with GCGR mAb. RESULTS GCGR mAb treatment improved blood glucose control, and increased islet number (db/db 1.6±0.1 vs 0.8±0.1 per mm2, p<0.001; HFD+STZ 1.2±0.1 vs 0.5±0.1 per mm2, p<0.01) and area (db/db 2.5±0.2 vs 1.2±0.2%, p<0.001; HFD+STZ 1.0±0.1 vs 0.3±0.1%, p<0.01) in diabetic mice. The plasma cytokine array and liver RNA sequencing data showed that FGF21 levels in plasma and liver were upregulated by GCGR antagonism. The GCGR mAb induced upregulation of plasma FGF21 levels (db/db 661.5±40.0 vs 466.2±55.7 pg/ml, p<0.05; HFD+STZ 877.0±106.8 vs 445.5±54.0 pg/ml, p<0.05) and the liver levels of Fgf21 mRNA (db/db 3.2±0.5 vs 1.8±0.1, p<0.05; HFD+STZ 2.0±0.3 vs 1.0±0.2, p<0.05) and protein (db/db 2.0±0.2 vs 1.4±0.1, p<0.05; HFD+STZ 1.6±0.1 vs 1.0±0.1, p<0.01). Exposure to plasma or hepatocytes from the GCGR mAb-treated mice upregulated the mRNA levels of characteristic genes associated with beta cell identity in cultured mouse islets and a beta cell line, and blockage of FGF21 activity by an FGF21 nAb diminished this upregulation. Notably, the effects of increased beta cell number induced by GCGR mAb were attenuated in FGF21 nAb-treated db/db mice, Fgf21-/- diabetic mice and Fgf21Hep-/- diabetic mice. Moreover, GCGR mAb treatment enhanced beta cell proliferation in the two groups of diabetic mice, and this effect was weakened in Fgf21-/- and Fgf21Hep-/- mice. CONCLUSIONS/INTERPRETATION Our findings demonstrate that liver-derived FGF21 is involved in the GCGR antagonism-induced beta cell regeneration in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Xiaona Cui
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Jin Feng
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Linxi Zhang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China
| | - Junling Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China.
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China.
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China.
- Clinical Stem Research Cell Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
24
|
Kapadia B, Behera S, Kumar ST, Shah T, Edwin RK, Babu PP, Chakrabarti P, Parsa KV, Misra P. PIMT regulates hepatic gluconeogenesis in mice. iScience 2023; 26:106120. [PMID: 36866247 PMCID: PMC9972567 DOI: 10.1016/j.isci.2023.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The physiological and metabolic functions of PIMT/TGS1, a third-generation transcriptional apparatus protein, in glucose homeostasis sustenance are unclear. Here, we observed that the expression of PIMT was upregulated in the livers of short-term fasted and obese mice. Lentiviruses expressing Tgs1-specific shRNA or cDNA were injected into wild-type mice. Gene expression, hepatic glucose output, glucose tolerance, and insulin sensitivity were evaluated in mice and primary hepatocytes. Genetic modulation of PIMT exerted a direct positive impact on the gluconeogenic gene expression program and hepatic glucose output. Molecular studies utilizing cultured cells, in vivo models, genetic manipulation, and PKA pharmacological inhibition establish that PKA regulates PIMT at post-transcriptional/translational and post-translational levels. PKA enhanced 3'UTR-mediated translation of TGS1 mRNA and phosphorylated PIMT at Ser656, increasing Ep300-mediated gluconeogenic transcriptional activity. The PKA-PIMT-Ep300 signaling module and associated PIMT regulation may serve as a key driver of gluconeogenesis, positioning PIMT as a critical hepatic glucose sensor.
Collapse
Affiliation(s)
- Bandish Kapadia
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad, TG 500046, India
| | - Soma Behera
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad, TG 500046, India
| | - Sireesh T. Kumar
- Department of Biotechnology, University of Hyderabad, Hyderabad 500046, India
| | - Tapan Shah
- Department of Biochemistry, Saurashtra University, Rajkot 360005, India
| | - Rebecca Kristina Edwin
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad, TG 500046, India
| | | | | | - Kishore V.L. Parsa
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad, TG 500046, India,Corresponding author
| | - Parimal Misra
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad, TG 500046, India,Corresponding author
| |
Collapse
|
25
|
Viloria K, Nasteska D, Ast J, Hasib A, Cuozzo F, Heising S, Briant LJB, Hewison M, Hodson DJ. GC-Globulin/Vitamin D-Binding Protein Is Required for Pancreatic α-Cell Adaptation to Metabolic Stress. Diabetes 2023; 72:275-289. [PMID: 36445949 DOI: 10.2337/db22-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
Abstract
GC-globulin (GC), or vitamin D-binding protein, is a multifunctional protein involved in the transport of circulating vitamin 25(OH)D and fatty acids, as well as actin scavenging. In the pancreatic islets, the gene encoding GC, GC/Gc, is highly localized to glucagon-secreting α-cells. Despite this, the role of GC in α-cell function is poorly understood. We previously showed that GC is essential for α-cell morphology, electrical activity, and glucagon secretion. We now show that loss of GC exacerbates α-cell failure during metabolic stress. High-fat diet-fed GC-/- mice have basal hyperglucagonemia, which is associated with decreased α-cell size, impaired glucagon secretion and Ca2+ fluxes, and changes in glucose-dependent F-actin remodelling. Impairments in glucagon secretion can be rescued using exogenous GC to replenish α-cell GC levels, increase glucagon granule area, and restore the F-actin cytoskeleton. Lastly, GC levels decrease in α-cells of donors with type 2 diabetes, which is associated with changes in α-cell mass, morphology, and glucagon expression. Together, these data demonstrate an important role for GC in α-cell adaptation to metabolic stress.
Collapse
Affiliation(s)
- Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Julia Ast
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Annie Hasib
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Federica Cuozzo
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Silke Heising
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Martin Hewison
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| |
Collapse
|
26
|
Ou K, Zhang S, Song J, Fang L, Xia S, Huang J, Wang Q, Wang C. Prenatal EGCG consumption causes obesity and perturbs glucose homeostasis in adult mice. J Nutr Biochem 2023; 111:109179. [PMID: 36223832 DOI: 10.1016/j.jnutbio.2022.109179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
Abstract
Epigallocatechin gallate (EGCG) has a wide consumption for its health advantages. The current study investigates the effects of prenatal EGCG administration on glucose metabolism and obesity in adulthood. Pregnant C57BL/6J mice were supplemented with EGCG in drinking water (3 µg/mL) for 16 d. Abdominal obesity was observed in both male and female adult mice, which was associated with the upregulation of adipose-specific genes, including C/ebpα and Srebf1 (Srebf1 only in males), and the downregulation of genes related to lipolysis, such as Acox1, Atgl and Pdk4 (only in males) in visceral adipose tissue. Elevated fasting glucose levels and hyperinsulinemia were observed in adult males, while females exhibit lower glucose level in glucose tolerance test, which might be due to reduced glucagon levels. Though hepatic expression of the insulin receptor signaling pathway was upregulated in males and was not altered in females, prenatal treatment with EGCG downregulated the expression of this signaling pathway in the skeletal muscle of adult mice, which was further demonstrated in primary human skeletal muscle cells treated with EGCG. The methylation levels in promotor of genes related to the insulin receptor signaling were matched with their transcription in mice, while the expression of acetylated histones was downregulated in human skeletal muscle cells. These results suggest that EGCG consumption during pregnancy should be a risk factor for the disruption of glucose homeostasis in adulthood.
Collapse
Affiliation(s)
- Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Shenli Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Jialin Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Siyu Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Jie Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Qin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
| |
Collapse
|
27
|
Study of relationship between glucagon level, glycemic status, and β-cell function in newly diagnosed T2DM patients, treated with insulin. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
28
|
Diamanti K, Cavalli M, Pereira MJ, Pan G, Castillejo-López C, Kumar C, Mundt F, Komorowski J, Deshmukh AS, Mann M, Korsgren O, Eriksson JW, Wadelius C. Organ-specific metabolic pathways distinguish prediabetes, type 2 diabetes, and normal tissues. Cell Rep Med 2022; 3:100763. [PMID: 36198307 PMCID: PMC9589007 DOI: 10.1016/j.xcrm.2022.100763] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
Environmental and genetic factors cause defects in pancreatic islets driving type 2 diabetes (T2D) together with the progression of multi-tissue insulin resistance. Mass spectrometry proteomics on samples from five key metabolic tissues of a cross-sectional cohort of 43 multi-organ donors provides deep coverage of their proteomes. Enrichment analysis of Gene Ontology terms provides a tissue-specific map of altered biological processes across healthy, prediabetes (PD), and T2D subjects. We find widespread alterations in several relevant biological pathways, including increase in hemostasis in pancreatic islets of PD, increase in the complement cascade in liver and pancreatic islets of PD, and elevation in cholesterol biosynthesis in liver of T2D. Our findings point to inflammatory, immune, and vascular alterations in pancreatic islets in PD that are hypotheses to be tested for potential contributions to hormonal perturbations such as impaired insulin and increased glucagon production. This multi-tissue proteomic map suggests tissue-specific metabolic dysregulations in T2D.
Collapse
Affiliation(s)
- Klev Diamanti
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marco Cavalli
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Gang Pan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Casimiro Castillejo-López
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Chanchal Kumar
- Translational Science & Experimental Medicine, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Karolinska Institutet/AstraZeneca Integrated CardioMetabolic Center (KI/AZ ICMC), Department of Medicine, Novum, Huddinge, Sweden
| | - Filip Mundt
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Jan Komorowski
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden; Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland; Washington National Primate Research Center, Seattle, WA, USA; Swedish Collegium for Advanced Study, Uppsala, Sweden
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Department of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Claes Wadelius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
29
|
Oh JH, Han YE, Bao YR, Kang CW, Koo J, Ku CR, Cho YH, Lee EJ. Olfactory marker protein regulation of glucagon secretion in hyperglycemia. Exp Mol Med 2022; 54:1502-1510. [PMID: 36104518 PMCID: PMC9534918 DOI: 10.1038/s12276-022-00843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
The olfactory marker protein (OMP), which is also expressed in nonolfactory tissues, plays a role in regulating the kinetics and termination of olfactory transduction. Thus, we hypothesized that OMP may play a similar role in modulating the secretion of hormones involved in Ca2+ and cAMP signaling, such as glucagon. In the present study, we confirmed nonolfactory α-cell-specific OMP expression in human and mouse pancreatic islets as well as in the murine α-cell line αTC1.9. Glucagon and OMP expression increased under hyperglycemic conditions. Omp knockdown in hyperglycemic αTC1.9 cells using small-interfering RNA (siRNA) reduced the responses to glucagon release and the related signaling pathways compared with the si-negative control. The OMPlox/lox;GCGcre/w mice expressed basal glucagon levels similar to those in the wild-type OMPlox/lox mice but showed resistance against streptozotocin-induced hyperglycemia. The ectopic olfactory signaling events in pancreatic α-cells suggest that olfactory receptor pathways could be therapeutic targets for reducing excessive glucagon levels.
Collapse
Affiliation(s)
- Ju Hun Oh
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Ye Eon Han
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Ya Ru Bao
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Chan Woo Kang
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu, 42988, South Korea
| | - Cheol Ryong Ku
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon Hee Cho
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| | - Eun Jig Lee
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea.
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
30
|
Cao J, Zheng R, Chang X, Zhao Y, Zhang D, Gao M, Yin Z, Jiang C, Zhang J. Cyclocarya paliurus triterpenoids suppress hepatic gluconeogenesis via AMPK-mediated cAMP/PKA/CREB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154175. [PMID: 35609386 DOI: 10.1016/j.phymed.2022.154175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 05/06/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Abnormal enhancement of hepatic gluconeogenesis is a vital mechanism of the pathogenesis of Type 2 diabetes mellitus (T2DM); thus, its suppression may present an efficient therapeutic strategy for T2DM. Cyclocarya paliurus (CP), a plant species native to China, has been reported to have anti-hyperglycemia activity. Our previous studies have revealed that Cyclocarya paliurus triterpenic acids (CPT) exert the favorable glucose-lowering activity, but the regulatory effect of CPT on hepatic gluconeogenesis is still unclarified. PURPOSE This study aimed to investigate the potential role and mechanism of CPT in gluconeogenesis. STUDY DESIGN In this study, the ameliorative effect and underlying mechanism of CPT on gluconeogenesis were investigated: high-fat diet and streptozotocin-induced T2DM mice and glucagon-challenged mouse primary hepatocytes. METHODS T2DM model mice with or without oral administration of CPT for 4 weeks were monitored for body weight, glucose and lipid metabolism. Hematoxylin and eosin staining was used to observe liver lipid deposition. Real-time PCR assays were performed to examine the mRNA expression of glucose-6-phosphate (G6Pase), and phosphoenolpyruvate carboxykinase (PEPCK), two key enzymes involved in liver gluconeogenesis. Western blotting was used to determine AMP-dependent protein kinase (AMPK) expression and induction of the glucagon signaling pathway. The possible mechanism of CPT on liver gluconeogenesis was further explored in glucagon-induced mouse primary hepatocytes. RESULTS In vivo and in vitro experiments revealed that CPT treatment significantly reduced fasting blood glucose, total cholesterol and triglyceride levels, and improved insulin resistance. Furthermore, CPT could obviously decreased the mRNA and protein expression of G6Pase and PEPCK, the cyclic AMP content, the phosphorylation level of protein kinase A and cyclic AMP response element-binding protein. But CPT promoted the phosphorylation of AMP-dependent protein kinase (AMPK) and activation of phosphodiesterase 4B. Mechanistically, intervention with Compound C (an AMPK inhibitor) partially blocked the suppressive effect of CPT on hepatic gluconeogenesis. CONCLUSION These findings suggested that CPT may inhibit hepatic gluconeogenesis against T2DM by activating AMPK.
Collapse
Affiliation(s)
- Jingjing Cao
- Department of Endocrinology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Rendong Zheng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xiaoyan Chang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Yuanyuan Zhao
- Department of Endocrinology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China
| | - Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Zhiqi Yin
- Department of TCMs Pharmaceuticals, School of TCM & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Jian Zhang
- Department of Endocrinology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
31
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
32
|
Ogunkunle EO, Donohue MJ, Steyer DJ, Adeoye DI, Eaton WJ, Roper MG. Small molecules released from islets of Langerhans determined by liquid chromatography - mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2100-2107. [PMID: 35567801 PMCID: PMC9159447 DOI: 10.1039/d2ay00402j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/15/2022] [Indexed: 05/04/2023]
Abstract
Islets of Langerhans are the endocrine tissue within the pancreas that secrete hormones for maintenance of blood glucose homeostasis. A variety of small molecules including classical neurotransmitters are also released from islets. While the roles of most of these small molecules are unknown, some have been hypothesized to play a critical role in islet physiology. To better understand their role on islet function, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to separate and quantify 39 small molecules released from islets. Benzoyl chloride derivatization of analyte molecules was used to impart retention and facilitate electrospray ionization efficiency. Separation was achieved on a 2.1 × 150 mm column packed with 2.7 μm core-shell C18 particles. Calibration curves showed excellent linearity between the concentration and analyte response, with relative standard deviations of the analyte responses below 15% and limits of detection from 0.01-40 nM. The method was applied to examine small molecules released from murine and human islets of Langerhans after static incubation and perfusion with glucose. Results showed a decrease in secretion rates with increasing glucose concentration for most of the analytes. Secretion rates were found to be higher in human islets compared to their murine counterpart. This method will be useful in understanding the roles of small molecules in biological systems.
Collapse
Affiliation(s)
- Emmanuel O Ogunkunle
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Matthew J Donohue
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Daniel J Steyer
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Damilola I Adeoye
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Wesley J Eaton
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Michael G Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| |
Collapse
|
33
|
Rodgers RL. Glucagon, cyclic AMP, and hepatic glucose mobilization: A half‐century of uncertainty. Physiol Rep 2022; 10:e15263. [PMID: 35569125 PMCID: PMC9107925 DOI: 10.14814/phy2.15263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
For at least 50 years, the prevailing view has been that the adenylate cyclase (AC)/cyclic AMP (cAMP)/protein kinase A pathway is the predominant signal mediating the hepatic glucose‐mobilizing actions of glucagon. A wealth of evidence, however, supports the alternative, that the operative signal most of the time is the phospholipase C (PLC)/inositol‐phosphate (IP3)/calcium/calmodulin pathway. The evidence can be summarized as follows: (1) The consensus threshold glucagon concentration for activating AC ex vivo is 100 pM, but the statistical hepatic portal plasma glucagon concentration range, measured by RIA, is between 28 and 60 pM; (2) Within that physiological concentration range, glucagon stimulates the PLC/IP3 pathway and robustly increases glucose output without affecting the AC/cAMP pathway; (3) Activation of a latent, amplified AC/cAMP pathway at concentrations below 60 pM is very unlikely; and (4) Activation of the PLC/IP3 pathway at physiological concentrations produces intracellular effects that are similar to those produced by activation of the AC/cAMP pathway at concentrations above 100 pM, including elevated intracellular calcium and altered activities and expressions of key enzymes involved in glycogenolysis, gluconeogenesis, and glycogen synthesis. Under metabolically stressful conditions, as in the early neonate or exercising adult, plasma glucagon concentrations often exceed 100 pM, recruiting the AC/cAMP pathway and enhancing the activation of PLC/IP3 pathway to boost glucose output, adaptively meeting the elevated systemic glucose demand. Whether the AC/cAMP pathway is consistently activated in starvation or diabetes is not clear. Because the importance of glucagon in the pathogenesis of diabetes is becoming increasingly evident, it is even more urgent now to resolve lingering uncertainties and definitively establish glucagon’s true mechanism of glycemia regulation in health and disease.
Collapse
Affiliation(s)
- Robert L. Rodgers
- Department of Biomedical and Pharmaceutical Sciences College of Pharmacy University of Rhode Island Kingston Rhode Island USA
| |
Collapse
|
34
|
Acetyl-CoA-carboxylase 1 (ACC1) plays a critical role in glucagon secretion. Commun Biol 2022; 5:238. [PMID: 35304577 PMCID: PMC8933412 DOI: 10.1038/s42003-022-03170-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
Dysregulated glucagon secretion from pancreatic alpha-cells is a key feature of type-1 and type-2 diabetes (T1D and T2D), yet our mechanistic understanding of alpha-cell function is underdeveloped relative to insulin-secreting beta-cells. Here we show that the enzyme acetyl-CoA-carboxylase 1 (ACC1), which couples glucose metabolism to lipogenesis, plays a key role in the regulation of glucagon secretion. Pharmacological inhibition of ACC1 in mouse islets or αTC9 cells impaired glucagon secretion at low glucose (1 mmol/l). Likewise, deletion of ACC1 in alpha-cells in mice reduced glucagon secretion at low glucose in isolated islets, and in response to fasting or insulin-induced hypoglycaemia in vivo. Electrophysiological recordings identified impaired KATP channel activity and P/Q- and L-type calcium currents in alpha-cells lacking ACC1, explaining the loss of glucose-sensing. ACC-dependent alterations in S-acylation of the KATP channel subunit, Kir6.2, were identified by acyl-biotin exchange assays. Histological analysis identified that loss of ACC1 caused a reduction in alpha-cell area of the pancreas, glucagon content and individual alpha-cell size, further impairing secretory capacity. Loss of ACC1 also reduced the release of glucagon-like peptide 1 (GLP-1) in primary gastrointestinal crypts. Together, these data reveal a role for the ACC1-coupled pathway in proglucagon-expressing nutrient-responsive endocrine cell function and systemic glucose homeostasis.
Collapse
|
35
|
Wagner R, Eckstein SS, Fritsche L, Prystupa K, Hörber S, Häring HU, Birkenfeld AL, Peter A, Fritsche A, Heni M. Postprandial Dynamics of Proglucagon Cleavage Products and Their Relation to Metabolic Health. Front Endocrinol (Lausanne) 2022; 13:892677. [PMID: 35872982 PMCID: PMC9297683 DOI: 10.3389/fendo.2022.892677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION While oral glucose ingestion typically leads to a decrease in circulating glucagon levels, a substantial number of persons display stable or rising glucagon concentrations when assessed by radioimmunoassay (RIA). However, these assays show cross-reactivity to other proglucagon cleavage products. Recently, more specific assays became available, therefore we systematically assessed glucagon and other proglucagon cleavage products and their relation to metabolic health. RESEARCH DESIGN AND METHODS We used samples from 52 oral glucose tolerance tests (OGTT) that were randomly selected from persons with different categories of glucose tolerance in an extensively phenotyped study cohort. RESULTS Glucagon concentrations quantified with RIA were non-suppressed at 2 hours of the OGTT in 36% of the samples. Non-suppressors showed lower fasting glucagon levels compared to suppressors (p=0.011). Similar to RIA measurements, ELISA-derived fasting glucagon was lower in non-suppressors (p<0.001). Glucagon 1-61 as well as glicentin and GLP-1 kinetics were significantly different between suppressors and non-suppressors (p=0.004, p=0.002, p=0.008 respectively) with higher concentrations of all three hormones in non-suppressors. Levels of insulin, C-peptide, and free fatty acids were comparable between groups. Non-suppressors were leaner and had lower plasma glucose concentrations (p=0.03 and p=0.047, respectively). Despite comparable liver fat content and insulin sensitivity (p≥0.3), they had lower 2-hour post-challenge glucose (p=0.01). CONCLUSIONS Glucagon 1-61, glicentin and GLP-1 partially account for RIA-derived glucagon measurements due to cross-reactivity of the assay. However, this contribution is small, since the investigated proglucagon cleavage products contribute less than 10% to the variation in RIA measured glucagon. Altered glucagon levels and higher post-challenge incretins are associated with a healthier metabolic phenotype.
Collapse
Affiliation(s)
- Robert Wagner
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Sabine S. Eckstein
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Katsiaryna Prystupa
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sebastian Hörber
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas L. Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
- *Correspondence: Martin Heni,
| |
Collapse
|
36
|
Pydi SP, Barella LF, Zhu L, Meister J, Rossi M, Wess J. β-Arrestins as Important Regulators of Glucose and Energy Homeostasis. Annu Rev Physiol 2021; 84:17-40. [PMID: 34705480 DOI: 10.1146/annurev-physiol-060721-092948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
β-Arrestin-1 and -2 (also known as arrestin-2 and -3, respectively) are ubiquitously expressed cytoplasmic proteins that dampen signaling through G protein-coupled receptors. However, β-arrestins can also act as signaling molecules in their own right. To investigate the potential metabolic roles of the two β-arrestins in modulating glucose and energy homeostasis, recent studies analyzed mutant mice that lacked or overexpressed β-arrestin-1 and/or -2 in distinct, metabolically important cell types. Metabolic analysis of these mutant mice clearly demonstrated that both β-arrestins play key roles in regulating the function of most of these cell types, resulting in striking changes in whole-body glucose and/or energy homeostasis. These studies also revealed that β-arrestin-1 and -2, though structurally closely related, clearly differ in their metabolic roles under physiological and pathophysiological conditions. These new findings should guide the development of novel drugs for the treatment of various metabolic disorders, including type 2 diabetes and obesity. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA; .,Current affiliation: Department of Biological Sciences and Bioengineering, The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, India
| | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| |
Collapse
|
37
|
The Effects of Photobiomodulation on Bone Defect Repairing in a Diabetic Rat Model. Int J Mol Sci 2021; 22:ijms222011026. [PMID: 34681687 PMCID: PMC8541159 DOI: 10.3390/ijms222011026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study is to examine the prospective therapeutic effects of photobiomodulation on the healing of bone defects in diabetic mellitus (DM) using rat models to provide basic knowledge of photobiomodulation therapy (PBMT) during bone defect repair. For in vitro study, an Alizzarin red stain assay was used to evaluate the effect of PBMT on osteogenic differentiation. For in vivo study, micro-computed tomography (microCT) scan, H&E and IHC stain analysis were used to investigate the effect of PBMT on the healing of the experimental calvarial defect (3 mm in diameter) of a diabetic rat model. For in vitro study, the high glucose groups showed lower osteogenic differentiation in both irradiated and non-irradiated with PBMT when compared to the control groups. With the PBMT, all groups (control, osmotic control and high glucose) showed higher osteogenic differentiation when compared to the non-irradiated groups. For in vivo study, the hyperglycemic group showed significantly lower bone regeneration when compared to the control group. With the PBMT, the volume of bone regeneration was increasing and back to the similar level of the control group. The treatment of PBMT in 660 nm could improve the bone defect healing on a diabetic rat calvarial defect model.
Collapse
|
38
|
Gao Y, Li X, Huang Y, Chen J, Qiu M. Bitter Melon and Diabetes Mellitus. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ya Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| | - Xian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| | - Yanjie Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| | - Jianchao Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| |
Collapse
|
39
|
Martínez MS, Manzano A, Olivar LC, Nava M, Salazar J, D’Marco L, Ortiz R, Chacín M, Guerrero-Wyss M, Cabrera de Bravo M, Cano C, Bermúdez V, Angarita L. The Role of the α Cell in the Pathogenesis of Diabetes: A World beyond the Mirror. Int J Mol Sci 2021; 22:9504. [PMID: 34502413 PMCID: PMC8431704 DOI: 10.3390/ijms22179504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is one of the most prevalent chronic metabolic disorders, and insulin has been placed at the epicentre of its pathophysiological basis. However, the involvement of impaired alpha (α) cell function has been recognized as playing an essential role in several diseases, since hyperglucagonemia has been evidenced in both Type 1 and T2DM. This phenomenon has been attributed to intra-islet defects, like modifications in pancreatic α cell mass or dysfunction in glucagon's secretion. Emerging evidence has shown that chronic hyperglycaemia provokes changes in the Langerhans' islets cytoarchitecture, including α cell hyperplasia, pancreatic beta (β) cell dedifferentiation into glucagon-positive producing cells, and loss of paracrine and endocrine regulation due to β cell mass loss. Other abnormalities like α cell insulin resistance, sensor machinery dysfunction, or paradoxical ATP-sensitive potassium channels (KATP) opening have also been linked to glucagon hypersecretion. Recent clinical trials in phases 1 or 2 have shown new molecules with glucagon-antagonist properties with considerable effectiveness and acceptable safety profiles. Glucagon-like peptide-1 (GLP-1) agonists and Dipeptidyl Peptidase-4 inhibitors (DPP-4 inhibitors) have been shown to decrease glucagon secretion in T2DM, and their possible therapeutic role in T1DM means they are attractive as an insulin-adjuvant therapy.
Collapse
Affiliation(s)
- María Sofía Martínez
- MedStar Health Internal Medicine, Georgetown University Affiliated, Baltimore, MD 21218-2829, USA;
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Luis Carlos Olivar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Luis D’Marco
- Department of Nephrology, Hospital Clinico Universitario de Valencia, INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Rina Ortiz
- Facultad de Medicina, Universidad Católica de Cuenca, Ciudad de Cuenca, Azuay 010105, Ecuador;
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia; (M.C.); (V.B.)
| | - Marion Guerrero-Wyss
- Escuela de Nutrición y Dietética, Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Valdivia 5090000, Chile;
| | | | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia; (M.C.); (V.B.)
| | - Lisse Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Sede Concepción 4260000, Chile
| |
Collapse
|
40
|
Reed J, Bain S, Kanamarlapudi V. A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives. Diabetes Metab Syndr Obes 2021; 14:3567-3602. [PMID: 34413662 PMCID: PMC8369920 DOI: 10.2147/dmso.s319895] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D), which has currently become a global pandemic, is a metabolic disease largely characterised by impaired insulin secretion and action. Significant progress has been made in understanding T2D aetiology and pathogenesis, which is discussed in this review. Extrapancreatic pathology is also summarised, which demonstrates the highly multifactorial nature of T2D. Glucagon-like peptide (GLP)-1 is an incretin hormone responsible for augmenting insulin secretion from pancreatic beta-cells during the postprandial period. Given that native GLP-1 has a very short half-life, GLP-1 mimetics with a much longer half-life have been developed, which are currently an effective treatment option for T2D by enhancing insulin secretion in patients. Interestingly, there is continual emerging evidence that these therapies alleviate some of the post-diagnosis complications of T2D. Additionally, these therapies have been shown to induce weight loss in patients, suggesting they could be an alternative to bariatric surgery, a procedure associated with numerous complications. Current GLP-1-based therapies all act as orthosteric agonists for the GLP-1 receptor (GLP-1R). Interestingly, it has emerged that GLP-1R also has allosteric binding sites and agonists have been developed for these sites to test their therapeutic potential. Recent studies have also demonstrated the potential of bi- and tri-agonists, which target multiple hormonal receptors including GLP-1R, to more effectively treat T2D. Improved understanding of T2D aetiology/pathogenesis, coupled with the further elucidation of both GLP-1 activity/targets and GLP-1R mechanisms of activation via different agonists, will likely provide better insight into the therapeutic potential of GLP-1-based therapies to treat T2D.
Collapse
Affiliation(s)
- Josh Reed
- Institute of Life Science 1, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen Bain
- Institute of Life Science 1, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
41
|
Kumpatla S, Parveen R, Murugan P, Juttada U, Devarajan A, Viswanathan V. Hyperglucagonemia and impaired insulin sensitivity are associated with development of prediabetes and type 2 diabetes - A study from South India. Diabetes Metab Syndr 2021; 15:102199. [PMID: 34265492 DOI: 10.1016/j.dsx.2021.102199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Glucagon levels and glucagon suppression in response to oral glucose load has not been elucidated at different stages of glucose intolerance in India. METHODS A total of 81 subjects underwent OGTT and were classified into three groups as having normal glucose tolerance (NGT) (n = 23), prediabetes (PreDM) (n = 33), newly diagnosed diabetes (NDM) (n = 25). Insulin and glucagon at fasting, 30 and 120 min was measured by ELISA. HOMA-IR, measures of insulin sensitivity, early, late and overall glucagon suppression during OGTT was calculated. RESULTS Plasma glucagon levels were higher at all-time points in the PreDM and NDM groups. Fasting glucagon levels were higher than post glucose load glucagon in all groups. There was a significant difference in the fasting(p = 0.001), 30 min(p = 0.004) and 120 min(p = 0.032) glucagon between the groups. HOMA-IR increased and insulin sensitivity decreased with worsening of glucose intolerance(p < 0.0001). The groups did not differ in terms of early glucagon suppression(p = 0.094). NDM group suppressed glucagon more than NGT from 30 to 120 min after glucose intake. CONCLUSION This study demonstrated higher fasting glucagon levels. Prediabetes and newly diagnosed diabetes individuals had higher glucagon levels, high insulin resistance and lower insulin sensitivity. Hyperglucagonemia may contribute to type 2 diabetes.
Collapse
Affiliation(s)
- Satyavani Kumpatla
- Department of Biochemistry, M.V. Hospital for Diabetes and Prof. M. Viswanathan Diabetes Research Centre (WHO Collaborating Centre for Research, Education and Training in Diabetes) (IDF Centre for Excellence in Diabetes Care), Royapuram, Chennai, Tamil Nadu, India
| | - Rizwana Parveen
- Department of Primary Prevention of Diabetes, M.V. Hospital for Diabetes and Prof. M. Viswanathan Diabetes Research Centre (WHO Collaborating Centre for Research, Education and Training in Diabetes) (IDF Centre for Excellence in Diabetes Care), Royapuram, Chennai, Tamil Nadu, India
| | - Premalatha Murugan
- Department of Primary Prevention of Diabetes, M.V. Hospital for Diabetes and Prof. M. Viswanathan Diabetes Research Centre (WHO Collaborating Centre for Research, Education and Training in Diabetes) (IDF Centre for Excellence in Diabetes Care), Royapuram, Chennai, Tamil Nadu, India
| | - Udyama Juttada
- Departments of Genetics, M.V. Hospital for Diabetes and Prof. M. Viswanathan Diabetes Research Centre (WHO Collaborating Centre for Research, Education and Training in Diabetes) (IDF Centre for Excellence in Diabetes Care), Royapuram, Chennai, Tamil Nadu, India
| | - Arutselvi Devarajan
- Department of Epidemiology, M.V. Hospital for Diabetes and Prof. M. Viswanathan Diabetes Research Centre (WHO Collaborating Centre for Research, Education and Training in Diabetes) (IDF Centre for Excellence in Diabetes Care), Royapuram, Chennai, Tamil Nadu, India
| | - Vijay Viswanathan
- Department of Diabetology, M.V. Hospital for Diabetes and Prof. M. Viswanathan Diabetes Research Center (WHO Collaborating Center for Research Education and Training in Diabetes) (IDF Centre for Excellence in Diabetes Care), Royapuram, Chennai, Tamil Nadu, India.
| |
Collapse
|
42
|
Guo J, Zhang Y, Li B, Wang C. In utero exposure to phenanthrene induced islet cell dysfunction in adult mice: Sex differences in the effects and potential causes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145295. [PMID: 33513515 DOI: 10.1016/j.scitotenv.2021.145295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Epidemiological studies show that the burden of polycyclic aromatic hydrocarbons in human body is associated with the occurrence of insulin resistance and diabetes. In the present study, pregnant mice were exposed to phenanthrene (Phe) at doses of 0, 60 and 600 μg/kg body weight of by gavage once every 3 days. The female F1 mice at 120 days of age showed no change in their fasting glucose levels (FGLs) but exhibited significantly decreased homeostasis model assessment (HOMA) β-cell (49% and 43%) and significantly downregulated pancreatic proinsulin gene (ins2) transcription. The downregulation of transcription factors, such as PDX1, PAX4 and FGF21, indicated impaired development and function of β-cells. The significantly reduced α-cell mass in 60 and 600 μg/kg groups, and the significantly downregulated expression of proglucagon gene gcg and ARX in the 600 μg/kg group suggested that the development and function of α-cells had been impacted. The males exhibited significantly increased FGLs (1.14- and 1.15-fold) in Phe exposed treatments and significantly elevated HOMA β-cell (3.15-fold) in the 600 μg/kg group. Upregulated ins2 transcription and FGF21 protein in male mice prenatally exposed to 600 μg/kg Phe suggested that these animals appeared compensatory enhancement in β-cell function. The reduced serum estradiol levels and downregulated pancreatic estrogen receptor α and β were responsible for the dysfunction of β-cells in the females. In the males, the significantly elevated androgen levels in the 600 μg/kg group might be related to the upregulated ins2 transcription, and the increased expression of pancreatic FGF21 further demonstrated the enhancement of β-cell potential. The results will be helpful for assessing the risk of developing diabetes in adulthood after prenatal exposure to phenanthrene.
Collapse
Affiliation(s)
- Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Bingshui Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
43
|
Takatani T, Shirakawa J, Shibue K, Gupta MK, Kim H, Lu S, Hu J, White MF, Kennedy RT, Kulkarni RN. Insulin receptor substrate 1, but not IRS2, plays a dominant role in regulating pancreatic alpha cell function in mice. J Biol Chem 2021; 296:100646. [PMID: 33839150 PMCID: PMC8131928 DOI: 10.1016/j.jbc.2021.100646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022] Open
Abstract
Dysregulated glucagon secretion deteriorates glycemic control in type 1 and type 2 diabetes. Although insulin is known to regulate glucagon secretion via its cognate receptor (insulin receptor, INSR) in pancreatic alpha cells, the role of downstream proteins and signaling pathways underlying insulin's activities are not fully defined. Using in vivo (knockout) and in vitro (knockdown) studies targeting insulin receptor substrate (IRS) proteins, we compared the relative roles of IRS1 and IRS2 in regulating alpha cell function. Alpha cell-specific IRS1-knockout mice exhibited glucose intolerance and inappropriate glucagon suppression during glucose tolerance tests. In contrast, alpha cell-specific IRS2-knockout animals manifested normal glucose tolerance and suppression of glucagon secretion after glucose administration. Alpha cell lines with stable IRS1 knockdown could not repress glucagon mRNA expression and exhibited a reduction in phosphorylation of AKT Ser/Thr kinase (AKT, at Ser-473 and Thr-308). AlphaIRS1KD cells also displayed suppressed global protein translation, including reduced glucagon expression, impaired cytoplasmic Ca2+ response, and mitochondrial dysfunction. This was supported by the identification of novel IRS1-specific downstream target genes, Trpc3 and Cartpt, that are associated with glucagon regulation in alpha cells. These results provide evidence that IRS1, rather than IRS2, is a dominant regulator of pancreatic alpha cell function.
Collapse
Affiliation(s)
- Tomozumi Takatani
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Kimitaka Shibue
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Manoj K Gupta
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Cell Therapy Translational Engine (CTTE), Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Hyunki Kim
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shusheng Lu
- Departments of Chemistry and Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiang Hu
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Morris F White
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert T Kennedy
- Departments of Chemistry and Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
44
|
Viloria K, Hewison M, Hodson DJ. Vitamin D binding protein/GC-globulin: a novel regulator of alpha cell function and glucagon secretion. J Physiol 2021; 600:1119-1133. [PMID: 33719063 DOI: 10.1113/jp280890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
The contribution of glucagon to type 1 and type 2 diabetes has long been known, but the underlying defects in alpha cell function are not well-described. During both disease states, alpha cells respond inappropriately to stimuli, leading to dysregulated glucagon secretion, impaired glucose tolerance and hypoglycaemia. The mechanisms involved in this dysfunction are complex, but possibly include changes in alpha cell glucose-sensing, alpha cell de-differentiation, paracrine feedback, as well as alpha cell mass. However, the molecular underpinnings of alpha cell failure are still poorly understood. Recent transcriptomic analyses have identified vitamin D binding protein (DBP), encoded by GC/Gc, as an alpha cell signature gene. DBP is highly localized to the liver and alpha cells and is virtually absent from other tissues and cell types under non-pathological conditions. While the vitamin D transportation role of DBP is well characterized in the liver and circulation, its function in alpha cells remains more enigmatic. Recent work reveals that loss of DBP leads to smaller and hyperplastic alpha cells, which secrete less glucagon in response to low glucose concentration, despite vitamin D sufficiency. Alpha cells lacking DBP display impaired Ca2+ fluxes and Na+ conductance, as well as changes in glucagon granule distribution. Underlying these defects is an increase in the ratio of cytoskeletal F-actin to G-actin, highlighting a novel intracellular actin scavenging role for DBP in islets.
Collapse
Affiliation(s)
- Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Martin Hewison
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| |
Collapse
|
45
|
Meister J, Wang L, Pydi SP, Wess J. Chemogenetic approaches to identify metabolically important GPCR signaling pathways: Therapeutic implications. J Neurochem 2021; 158:603-620. [PMID: 33540469 DOI: 10.1111/jnc.15314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
DREADDs (Designer Receptors Exclusively Activated by a Designer Drug) are designer G protein-coupled receptors (GPCRs) that are widely used in the neuroscience field to modulate neuronal activity. In this review, we will focus on DREADD studies carried out with genetically engineered mice aimed at elucidating signaling pathways important for maintaining proper glucose and energy homeostasis. The availability of muscarinic receptor-based DREADDs endowed with selectivity for one of the four major classes of heterotrimeric G proteins (Gs , Gi , Gq , and G12 ) has been instrumental in dissecting the physiological and pathophysiological roles of distinct G protein signaling pathways in metabolically important cell types. The novel insights gained from this work should inform the development of novel classes of drugs useful for the treatment of several metabolic disorders including type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Lei Wang
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| |
Collapse
|
46
|
Pydi SP, Barella LF, Meister J, Wess J. Key Metabolic Functions of β-Arrestins: Studies with Novel Mouse Models. Trends Endocrinol Metab 2021; 32:118-129. [PMID: 33358450 PMCID: PMC7855863 DOI: 10.1016/j.tem.2020.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
β-Arrestin-1 and -2 are intracellular proteins that are able to inhibit signaling via G protein-coupled receptors (GPCRs). However, both proteins can also modulate cellular functions in a G protein-independent fashion. During the past few years, studies with mutant mice selectivity lacking β-arrestin-1 and/or -2 in metabolically important cell types have led to novel insights into the mechanisms through which β-arrestins regulate key metabolic processes in vivo, including whole-body glucose and energy homeostasis. The novel information gained from these studies should inform the development of novel drugs, including β-arrestin- or G protein-biased GPCR ligands, that could prove useful for the therapy of several important pathophysiological conditions, including type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
47
|
Essawy A, Jo S, Beetch M, Lockridge A, Gustafson E, Alejandro EU. O-linked N-acetylglucosamine transferase (OGT) regulates pancreatic α-cell function in mice. J Biol Chem 2021; 296:100297. [PMID: 33460647 PMCID: PMC7949098 DOI: 10.1016/j.jbc.2021.100297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/06/2023] Open
Abstract
The nutrient sensor O-GlcNAc transferase (OGT) catalyzes posttranslational addition of O-GlcNAc onto target proteins, influencing signaling pathways in response to cellular nutrient levels. OGT is highly expressed in pancreatic glucagon-secreting cells (α-cells), which secrete glucagon in response to hypoglycemia. The objective of this study was to determine whether OGT is necessary for the regulation of α-cell mass and function in vivo. We utilized genetic manipulation to produce two α-cell specific OGT-knockout models: a constitutive glucagon-Cre (αOGTKO) and an inducible glucagon-Cre (i-αOGTKO), which effectively delete OGT in α-cells. Using approaches including immunoblotting, immunofluorescent imaging, and metabolic phenotyping in vivo, we provide the first insight on the role of O-GlcNAcylation in α-cell mass and function. αOGTKO mice demonstrated normal glucose tolerance and insulin sensitivity but displayed significantly lower glucagon levels during both fed and fasted states. αOGTKO mice exhibited significantly lower α-cell glucagon content and α-cell mass at 6 months of age. In fasting, αOGTKO mice showed impaired pyruvate stimulated gluconeogenesis in vivo and reduced glucagon secretion in vitro. i-αOGTKO mice showed similarly reduced blood glucagon levels, defective in vitro glucagon secretion, and normal α-cell mass. Interestingly, both αOGTKO and i-αOGTKO mice had no deficiency in maintaining blood glucose homeostasis under fed or fasting conditions, despite impairment in α-cell mass and function, and glucagon content. In conclusion, these studies provide a first look at the role of OGT signaling in the α-cell, its effect on α-cell mass, and its importance in regulating glucagon secretion in hypoglycemic conditions.
Collapse
Affiliation(s)
- Ahmad Essawy
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Megan Beetch
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Amber Lockridge
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Eric Gustafson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
48
|
Svendsen B, Holst JJ. Paracrine regulation of somatostatin secretion by insulin and glucagon in mouse pancreatic islets. Diabetologia 2021; 64:142-151. [PMID: 33043402 DOI: 10.1007/s00125-020-05288-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/26/2020] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS The endocrine pancreas comprises the islets of Langerhans, primarily consisting of beta cells, alpha cells and delta cells responsible for secretion of insulin, glucagon and somatostatin, respectively. A certain level of intra-islet communication is thought to exist, where the individual hormones may reach the other islet cells and regulate their secretion. Glucagon has been demonstrated to importantly regulate insulin secretion, while somatostatin powerfully inhibits both insulin and glucagon secretion. In this study we investigated how secretion of somatostatin is regulated by paracrine signalling from glucagon and insulin. METHODS Somatostatin secretion was measured from perfused mouse pancreases isolated from wild-type as well as diphtheria toxin-induced alpha cell knockdown, and global glucagon receptor knockout (Gcgr-/-) mice. We studied the effects of varying glucose concentrations together with infusions of arginine, glucagon, insulin and somatostatin, as well as infusions of antagonists of insulin, somatostatin and glucagon-like peptide 1 (GLP-1) receptors. RESULTS A tonic inhibitory role of somatostatin was demonstrated with infusion of somatostatin receptor antagonists, which significantly increased glucagon secretion at low and high glucose, whereas insulin secretion was only increased at high glucose levels. Infusion of glucagon dose-dependently increased somatostatin secretion approximately twofold in control mice. Exogenous glucagon had no effect on somatostatin secretion in Gcgr-/- mice, and a reduced effect when combined with the GLP-1 receptor antagonist exendin 9-39. Diphtheria toxin-induced knockdown of glucagon producing cells led to reduced somatostatin secretion in response to 12 mmol/l glucose and arginine infusions. In Gcgr-/- mice (where glucagon levels are dramatically increased) overall somatostatin secretion was increased. However, infusion of exendin 9-39 in Gcgr-/- mice completely abolished somatostatin secretion in response to glucose and arginine. Neither insulin nor an insulin receptor antagonist (S961) had any effect on somatostatin secretion. CONCLUSIONS/INTERPRETATION Our findings demonstrate that somatostatin and glucagon secretion are linked in a reciprocal feedback cycle with somatostatin inhibiting glucagon secretion at low and high glucose levels, and glucagon stimulating somatostatin secretion via the glucagon and GLP-1 receptors. Graphical abstract.
Collapse
Affiliation(s)
- Berit Svendsen
- NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens J Holst
- NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
49
|
Guo H, Ma C, Wu X, Pan C. Functional Status of Pancreatic α and β Cells in Type 2 Diabetes Mellitus Patients with Different Plasma Triglyceride Levels: A Retrospective Analysis. Int J Endocrinol 2021; 2021:9976067. [PMID: 34457002 PMCID: PMC8387189 DOI: 10.1155/2021/9976067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To investigate the functional status of pancreatic α and β cells in Type 2 diabetes mellitus (T2DM) patients with different plasma triglyceride (TG) levels. TG levels can be prognostic markers for T2DM. METHODS A total of 328 patients with T2DM were divided into three groups according to different TG levels: the TGL group: TG < 1.7 mmol/L; TGM group: 1.7 mmol/L ≤ TG < 2.3 mmol/L; and TGH group: TG ≥ 2.3 mmol/L. An oral glucose tolerance test (OGTT), insulin release test, and glucagon release test were performed in each patient. The changes of glucagon, glucagon/insulin ratio, early insulin secretion index (ΔI 30/ΔG 30), and area under the insulin curve (AUCI) were compared among each group. Also, the correlations between glucagon and pancreatic β-cell function, glycosylated hemoglobin (HbA1c), and other indices were analyzed. RESULTS With the increase of TG, the fasting and postprandial glucagon levels, the glucagon/insulin ratio, and the area under the glucagon curve (AUCG) presented an increasing trend. The homeostasis model assessment of insulin resistance (HOMA-IR) of the TGH group was significantly increased compared to the TGL and TGM groups. In addition to the increase in TG levels, the insulin sensitivity index (ISI), homeostasis model assessment for β-cell function index (HOMA-β), ΔI 30/ΔG 30, and AUCI displayed a reducing trend. Glucagon was negatively correlated with ΔI 30/ΔG 30, high-density lipoprotein (HDL), HOMA-β, body mass index (BMI), ISI, and AUCI (P < 0.05) and positively correlated with fasting blood glucose (FPG), AUCG, HOMA-IR, HbA1c, duration, TG, low-density lipoprotein (LDL), and total cholesterol (TC) (P < 0.05). CONCLUSION Hypertriglyceridemia aggravated the dysfunction of pancreatic α and β cells. A reasonable control of the TG level makes it easier for blood glucose to reach the standard.
Collapse
Affiliation(s)
- Hang Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chunlei Ma
- Department of Urology, Tianjin 4th Center Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin 300140, China
| | - Xiaoming Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Congqing Pan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
50
|
González-Vélez V, Piron A, Dupont G. Calcium Oscillations in Pancreatic α-cells Rely on Noise and ATP-Driven Changes in Membrane Electrical Activity. Front Physiol 2020; 11:602844. [PMID: 33281631 PMCID: PMC7705205 DOI: 10.3389/fphys.2020.602844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
In pancreatic α-cells, intracellular Ca2+ ([Ca2+]i) acts as a trigger for secretion of glucagon, a hormone that plays a key role in blood glucose homeostasis. Intracellular Ca2+ dynamics in these cells are governed by the electrical activity of voltage-gated ion channels, among which ATP-sensitive K+ (KATP) channels play a crucial role. In the majority of α-cells, the global Ca2+ response to lowering external glucose occurs in the form of oscillations that are much slower than electrical activity. These Ca2+ oscillations are highly variable as far as inter-spike intervals, shapes and amplitudes are concerned. Such observations suggest that Ca2+ dynamics in α-cells are much influenced by noise. Actually, each Ca2+ increase corresponds to multiple cycles of opening/closing of voltage gated Ca2+ channels that abruptly become silent, before the occurrence of another burst of activity a few tens of seconds later. The mechanism responsible for this intermittent activity is currently unknown. In this work, we used computational modeling to investigate the mechanism of cytosolic Ca2+ oscillations in α-cells. Given the limited population of KATP channels in this cell type, we hypothesized that the stochastic activity of these channels could play a key role in the sporadic character of the action potentials. To test this assumption, we extended a previously proposed model of the α-cells electrical activity (Diderichsen and Göpel, 2006) to take Ca2+ dynamics into account. Including molecular noise on the basis of a Langevin type description as well as realistic dynamics of opening and closing of KATP channels, we found that stochasticity at the level of the activity of this channel is on its own not able to produce Ca2+ oscillations with a time scale of a few tens of seconds. However, when taking into account the intimate relation between Ca2+ and ATP changes together with the intrinsic noise at the level of the KATP channels, simulations displayed Ca2+ oscillations that are compatible with experimental observations. We analyzed the detailed mechanism and used computational simulations to identify the factors that can affect Ca2+ oscillations in α-cells.
Collapse
Affiliation(s)
- Virginia González-Vélez
- Department Basic Sciences, Universidad Autónoma Metropolitana-Azcapotzalco, CDMX, Mèxico, Mexico
| | - Anthony Piron
- ULB Center for Diabetes Research, Faculté de Médecine, Université libre de Bruxelles (ULB), Brussels, Belgium.,Interuniversity Institute of Bioinformatics (IB2), Brussels, Belgium
| | - Geneviève Dupont
- Interuniversity Institute of Bioinformatics (IB2), Brussels, Belgium.,Unit of Theoretical Chronobiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|