1
|
Abu Aqel Y, Alnesf A, Aigha II, Islam Z, Kolatkar PR, Teo A, Abdelalim EM. Glucokinase (GCK) in diabetes: from molecular mechanisms to disease pathogenesis. Cell Mol Biol Lett 2024; 29:120. [PMID: 39245718 PMCID: PMC11382428 DOI: 10.1186/s11658-024-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Glucokinase (GCK), a key enzyme in glucose metabolism, plays a central role in glucose sensing and insulin secretion in pancreatic β-cells, as well as glycogen synthesis in the liver. Mutations in the GCK gene have been associated with various monogenic diabetes (MD) disorders, including permanent neonatal diabetes mellitus (PNDM) and maturity-onset diabetes of the young (MODY), highlighting its importance in maintaining glucose homeostasis. Additionally, GCK gain-of-function mutations lead to a rare congenital form of hyperinsulinism known as hyperinsulinemic hypoglycemia (HH), characterized by increased enzymatic activity and increased glucose sensitivity in pancreatic β-cells. This review offers a comprehensive exploration of the critical role played by the GCK gene in diabetes development, shedding light on its expression patterns, regulatory mechanisms, and diverse forms of associated monogenic disorders. Structural and mechanistic insights into GCK's involvement in glucose metabolism are discussed, emphasizing its significance in insulin secretion and glycogen synthesis. Animal models have provided valuable insights into the physiological consequences of GCK mutations, although challenges remain in accurately recapitulating human disease phenotypes. In addition, the potential of human pluripotent stem cell (hPSC) technology in overcoming current model limitations is discussed, offering a promising avenue for studying GCK-related diseases at the molecular level. Ultimately, a deeper understanding of GCK's multifaceted role in glucose metabolism and its dysregulation in disease states holds implications for developing targeted therapeutic interventions for diabetes and related disorders.
Collapse
Affiliation(s)
- Yasmin Abu Aqel
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Aldana Alnesf
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| | - Idil I Aigha
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Adrian Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Singapore
- Department of Biochemistry and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme (PM TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Essam M Abdelalim
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
2
|
Wang K, Shi M, Luk AOY, Kong APS, Ma RCW, Li C, Chen L, Chow E, Chan JCN. Impaired GK-GKRP interaction rather than direct GK activation worsens lipid profiles and contributes to long-term complications: a Mendelian randomization study. Cardiovasc Diabetol 2024; 23:228. [PMID: 38951793 PMCID: PMC11218184 DOI: 10.1186/s12933-024-02321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Glucokinase (GK) plays a key role in glucose metabolism. In the liver, GK is regulated by GK regulatory protein (GKRP) with nuclear sequestration at low plasma glucose level. Some GK activators (GKAs) disrupt GK-GKRP interaction which increases hepatic cytoplasmic GK level. Excess hepatic GK activity may exceed the capacity of glycogen synthesis with excess triglyceride formation. It remains uncertain whether hypertriglyceridemia associated with some GKAs in previous clinical trials was due to direct GK activation or impaired GK-GKRP interaction. METHODS Using publicly available genome-wide association study summary statistics, we selected independent genetic variants of GCKR and GCK associated with fasting plasma glucose (FPG) as instrumental variables, to mimic the effects of impaired GK-GKRP interaction and direct GK activation, respectively. We applied two-sample Mendelian Randomization (MR) framework to assess their causal associations with lipid-related traits, risks of metabolic dysfunction-associated steatotic liver disease (MASLD) and cardiovascular diseases. We verified these findings in one-sample MR analysis using individual-level statistics from the Hong Kong Diabetes Register (HKDR). RESULTS Genetically-proxied impaired GK-GKRP interaction increased plasma triglycerides, low-density lipoprotein cholesterol and apolipoprotein B levels with increased odds ratio (OR) of 14.6 (95% CI 4.57-46.4) per 1 mmol/L lower FPG for MASLD and OR of 2.92 (95% CI 1.78-4.81) for coronary artery disease (CAD). Genetically-proxied GK activation was associated with decreased risk of CAD (OR 0.69, 95% CI 0.54-0.88) and not with dyslipidemia. One-sample MR validation in HKDR showed consistent results. CONCLUSIONS Impaired GK-GKRP interaction, rather than direct GK activation, may worsen lipid profiles and increase risks of MASLD and CAD. Development of future GKAs should avoid interfering with GK-GKRP interaction.
Collapse
Affiliation(s)
- Ke Wang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Hua Medicine (Shanghai) Co., Ltd., Shanghai, China
| | - Mai Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
| | - Andrea O Y Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
| | - Alice P S Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
| | - Changhong Li
- Hua Medicine (Shanghai) Co., Ltd., Shanghai, China
| | - Li Chen
- Hua Medicine (Shanghai) Co., Ltd., Shanghai, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
3
|
Li C, Juliana CA, Yuan Y, Li M, Lu M, Chen P, Boodhansingh KE, Doliba NM, Bhatti TR, Adzick NS, Stanley CA, De León DD. Phenotypic Characterization of Congenital Hyperinsulinism Due to Novel Activating Glucokinase Mutations. Diabetes 2023; 72:1809-1819. [PMID: 37725835 PMCID: PMC10658072 DOI: 10.2337/db23-0465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
The importance of glucokinase (GK) in the regulation of insulin secretion has been highlighted by the phenotypes of individuals with activating and inactivating mutations in the glucokinase gene (GCK). Here we report 10 individuals with congenital hyperinsulinism (HI) caused by eight unique activating mutations of GCK. Six are novel and located near previously identified activating mutations sites. The first recognized episode of hypoglycemia in these patients occurred between birth and 24 years, and the severity of the phenotype was also variable. Mutant enzymes were expressed and purified for enzyme kinetics in vitro. Mutant enzymes had low glucose half-saturation concentration values and an increased enzyme activity index compared with wild-type GK. We performed functional evaluation of islets from the pancreata of three children with GCK-HI who required pancreatectomy. Basal insulin secretion in perifused GCK-HI islets was normal, and the response to glyburide was preserved. However, the threshold for glucose-stimulated insulin secretion in perifused glucokinase hyperinsulinism (GCK-HI) islets was decreased, and glucagon secretion was greatly suppressed. Our evaluation of novel GCK disease-associated mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. ARTICLE HIGHLIGHTS Our evaluation of six novel and two previously published activating GCK mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. These studies provide insights into the pathophysiology of GCK-hyperinsulinism and the dual role of glucokinase in β-cells and α-cells to regulate glucose homeostasis.
Collapse
Affiliation(s)
- Changhong Li
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Nanjing AscendRare Pharmaceutical Technology Co., Nanjing, China
| | - Christine A. Juliana
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Yue Yuan
- Nanjing AscendRare Pharmaceutical Technology Co., Nanjing, China
| | - Ming Li
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Lu
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Pan Chen
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kara E. Boodhansingh
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nicolai M. Doliba
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Tricia R. Bhatti
- Department of Pathology, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - N. Scott Adzick
- Department of Surgery, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Charles A. Stanley
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Diva D. De León
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Ashcroft FM, Lloyd M, Haythorne EA. Glucokinase activity in diabetes: too much of a good thing? Trends Endocrinol Metab 2023; 34:119-130. [PMID: 36586779 DOI: 10.1016/j.tem.2022.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes (T2D) is a global health problem characterised by chronic hyperglycaemia due to inadequate insulin secretion. Because glucose must be metabolised to stimulate insulin release it was initially argued that drugs that stimulate glucokinase (the first enzyme in glucose metabolism) would enhance insulin secretion in diabetes. However, in the long term, glucokinase activators have been largely disappointing. Recent studies show it is hyperactivation of glucose metabolism, not glucose itself, that underlies the progressive decline in beta-cell function in diabetes. This perspective discusses if glucokinase activators exacerbate this decline (by promoting glucose metabolism) and, counterintuitively, if glucokinase inhibitors might be a better therapeutic strategy for preserving beta-cell function in T2D.
Collapse
Affiliation(s)
- Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, UK.
| | - Matthew Lloyd
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford, OX1 3PT, UK
| | | |
Collapse
|
5
|
Younis H, Ha SE, Jorgensen BG, Verma A, Ro S. Maturity-Onset Diabetes of the Young: Mutations, Physiological Consequences, and Treatment Options. J Pers Med 2022; 12:jpm12111762. [PMID: 36573710 PMCID: PMC9697644 DOI: 10.3390/jpm12111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 02/01/2023] Open
Abstract
Maturity-Onset Diabetes of the Young (MODY) is a rare form of diabetes which affects between 1% and 5% of diagnosed diabetes cases. Clinical characterizations of MODY include onset of diabetes at an early age (before the age of 30), autosomal dominant inheritance pattern, impaired glucose-induced secretion of insulin, and hyperglycemia. Presently, 14 MODY subtypes have been identified. Within these subtypes are several mutations which contribute to the different MODY phenotypes. Despite the identification of these 14 subtypes, MODY is often misdiagnosed as type 1 or type 2 diabetes mellitus due to an overlap in clinical features, high cost and limited availability of genetic testing, and unfamiliarity with MODY outside of the medical profession. The primary aim of this review is to investigate the genetic characterization of the MODY subtypes. Additionally, this review will elucidate the link between the genetics, function, and clinical manifestations of MODY in each of the 14 subtypes. In providing this knowledge, we hope to assist in the accurate diagnosis of MODY patients and, subsequently, in ensuring they receive appropriate treatment.
Collapse
Affiliation(s)
- Hazar Younis
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Brian G. Jorgensen
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Arushi Verma
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
- RosVivo Therapeutics, Applied Research Facility, Reno, NV 89557, USA
- Correspondence:
| |
Collapse
|
6
|
Hyperinsulinism. ENDOCRINES 2022. [DOI: 10.3390/endocrines3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Congenital or monogenic hyperinsulinism (HI) is a group of rare genetic disorders characterized by dysregulated insulin secretion and is the most common cause of persistent hypoglycemia in children. Knowledge of normal glucose homeostasis allows for a better understanding of the underlying pathophysiology of hyperinsulinemic hypoglycemia, facilitating timely diagnosis and management. The goal of management is to prevent cerebral insults secondary to hypoglycemia, which can result in poor neurologic outcomes and intellectual disability. Responsiveness to diazoxide, the first-line pharmacologic therapy for persistent hypoglycemia, is also the first step to distinguishing the different genotypic causes of monogenic hyperinsulinism. Early genetic testing becomes necessary when monogenic HI is strongly considered. Knowledge of specific gene mutations allows the determination of a clinical prognosis and definite therapeutic options, such as identifying those with focal forms of hyperinsulinism, who may attain a complete cure through surgical removal of specific affected parts of the pancreas. However, the lack of identifiable cause in a considerable number of patients identified with HI suggests there may be other genetic loci that are yet to be discovered. Furthermore, continued research is needed to explore new forms of therapy, particularly in severe, diazoxide-nonresponsive cases.
Collapse
|
7
|
Langer S, Waterstradt R, Hillebrand G, Santer R, Baltrusch S. The novel GCK variant p.Val455Leu associated with hyperinsulinism is susceptible to allosteric activation and is conducive to weight gain and the development of diabetes. Diabetologia 2021; 64:2687-2700. [PMID: 34532767 PMCID: PMC8563668 DOI: 10.1007/s00125-021-05553-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS The mammalian enzyme glucokinase (GK), expressed predominantly in liver and pancreas, plays an essential role in carbohydrate metabolism. Monogenic GK disorders emphasise the role of GK in determining the blood glucose set point. METHODS A family with congenital hyperinsulinism (CHI) was examined for GCK gene variants by Sanger sequencing. A combined approach, involving kinetic analysis (also using GK activators and inhibitors), intracellular translocation assays, insulin secretion measurements and structural modelling, was used to investigate the novel variant compared with known variants. RESULTS We report on the novel gain-of-function GCK variant p.Val455Leu (V455L), inherited as an autosomal dominant trait in a German family with CHI and concomitant obesity (fasting blood glucose 2.1 mmol/l, BMI 45.0 kg/m2, HOMA-IR 1.5 in an adult female family member); one male family member developed type 2 diabetes until age 35 years (with fasting glucose 2.8-3.7 mmol/l, BMI 38.9 kg/m2, HOMA-IR 4.6). Kinetic characterisation of the V455L variant revealed a significant increase in glucose affinity (glucose concentration at which reaction rate is half its maximum rate [S0.5]: mutant 2.4 ± 0.3 mmol/l vs wild-type 7.6 ± 1.0 mmol/l), accompanied by a distinct additive susceptibility to both the endogenous activator fructose 2,6-bisphosphatase and the synthetic allosteric activator RO-28-1675. The effect of RO-28-1675 was more pronounced when compared with the previously known GK variants V455M and V455E. Binding to the inhibitor glucokinase regulatory protein was unimpaired for V455L and V455E but was reduced for V455M, whereas mannoheptulose inhibited all GK variants and the wild-type enzyme. Structural analyses suggested a role for residue 455 in rearrangements between the inactive and active conformations of GK and also in allosteric activation. Comparison with V455M and V455E and an overview of activating GK variants provided a context for the novel sequence aberration in terms of altered GK enzyme characteristics caused by single amino acid changes. CONCLUSION/INTERPRETATION We provide new knowledge on the structure-function relationship of GK, with special emphasis on enzyme activation, potentially yielding fresh strategic insights into breaking the vicious circle of fluctuating blood glucose levels and the attendant risk of long-lasting metabolic changes in both CHI and type 2 diabetes.
Collapse
Affiliation(s)
- Sara Langer
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Georg Hillebrand
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
- Department of Pediatrics, Medical Center Itzehoe, Itzehoe, Germany
| | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany.
- Department Life, Light & Matter, University of Rostock, Rostock, Germany.
| |
Collapse
|
8
|
Maiorana A, Caviglia S, Greco B, Alfieri P, Cumbo F, Campana C, Bernabei SM, Cusmai R, Mosca A, Dionisi-Vici C. Ketogenic diet as elective treatment in patients with drug-unresponsive hyperinsulinemic hypoglycemia caused by glucokinase mutations. Orphanet J Rare Dis 2021; 16:424. [PMID: 34635134 PMCID: PMC8507241 DOI: 10.1186/s13023-021-02045-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Hyperinsulinemic hypoglycemia (HI) is the most frequent cause of recurrent hypoglycemia in children. Despite diagnostic and therapeutic advances, it remains an important cause of morbidity, leading to neurological complications, such as psychomotor retardation and epilepsy. Patients with diffuse drug-unresponsive HI manifest neurological impairment and neurobehavioral problems, even though surgically treated with a near-total pancreatectomy. Based on the analogies between HI and GLUT1 deficiency, both presenting with neuroglycopenia and lack of alternative cerebral energy sources, we administered a ketogenic diet (KD) in three drug-unresponsive GCK-HI patients with the aim of preserving neurodevelopment and avoiding the need of a near-total pancreatectomy. They presented recurrent symptomatic hypoglycemia, intellectual disability and refractory epilepsy. Patients were treated with classical KD for 79, 27 and 18 months, respectively. Results All patients became asymptomatic in a few days and showed an important improvement of the alert state. Epilepsy disappeared and no appearance of novel hypoglycemic lesions was detected with a brain MRI. Cognitive and adaptive abilities rapidly improved and normalized. IQ rose significantly from 81 to 111 (p = 0.04) in patient 1, from 82 vs 95 (p = 0.04) in patient 2, from 60 to 90 (p = 0.04) in patient 3. Conclusions We demonstrated the safety and efficacy of KD in the treatment of drug-unresponsive GCK-HI at a short and long-term. The neuroprotective effects of KD determined the recovery from epilepsy and intellectual disabilities and averted the need of a near-total pancreatectomy. All patients and their families reported an improvement of physical and psychosocial well-being, with a substantial improvement of their quality of life. These results might change the course and the quality of life of these patients and their families, having a relevant impact on human lives. Therefore, KD might be considered the elective treatment in unresponsive forms of GCK-HI. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02045-3.
Collapse
Affiliation(s)
- Arianna Maiorana
- Division of Metabolism, Department of Pediatric Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Stefania Caviglia
- Psychology Clinic Unit, Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Benedetta Greco
- Psychology Clinic Unit, Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Paolo Alfieri
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Francesca Cumbo
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Carmen Campana
- Division of Metabolism, Department of Pediatric Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Silvia Maria Bernabei
- Division of Artificial Nutrition, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Raffaella Cusmai
- Neurology Unit, Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Antonella Mosca
- Department of Hepatology, Gastroenterology and Nutrition, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatric Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
9
|
Hyperinsulinemic Hypoglycemia in Three Generations of a Family with Glucokinase Activating Mutation, c.295T>C (p.Trp99Arg). Genes (Basel) 2021; 12:genes12101566. [PMID: 34680961 PMCID: PMC8535713 DOI: 10.3390/genes12101566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Familial Hyperinsulinemic Hypoglycemia (FHH) is a very rare disease with heterogeneous clinical manifestations. There are only a few reports of heterozygous activating mutations of glucokinase (GCK) attributable to FHH, with no reports describing effects in the course in pregnancy with affected mother/affected child. A large kindred with FHH and GCK:c.295T>C (p.Trp99Arg) pathogenic variant was identified in which four family members from three generations were affected. The clinical follow up in one clinical center lasted up to 30 years, with different times of diagnosis ranging from neonate period to adulthood. The severity of hypoglycemia was mild/severe and fasting was the trigger for hypoglycemia. Response to diazoxide varied from good, in the neonate, to moderate/poor, in childhood/adulthood; however, this was biased by poor compliance. Treatment with somatostatin analogues was discontinued due to side effects. Over time, patients developed clinical adaptation to very low glucose levels. During pregnancy, episodes of severe hypoglycemia in the first trimester were observed, which responded very well to steroids. The clinical course of the GCK:c.295T>C (p.Trp99Arg) mutation varied in the same family, with the development of clinical adaptation to very low glucose levels over time. Treatment with steroids might prevent hypoglycemia during pregnancy in an affected mother.
Collapse
|
10
|
Hyperinsulinemic hypoglycemia, clinical considerations and a case report of a novel GCK mutation. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY CASE REPORTS 2021. [DOI: 10.1016/j.jecr.2021.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
12
|
Haris B, Saraswathi S, Hussain K. Somatostatin analogues for the treatment of hyperinsulinaemic hypoglycaemia. Ther Adv Endocrinol Metab 2020; 11:2042018820965068. [PMID: 33329885 PMCID: PMC7720331 DOI: 10.1177/2042018820965068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/11/2020] [Indexed: 01/10/2023] Open
Abstract
Hyperinsulinaemic hypoglycaemia (HH) is a biochemical finding of low blood glucose levels due to the dysregulation of insulin secretion from pancreatic β-cells. Under normal physiological conditions, glucose metabolism is coupled to β-cell insulin secretion so that blood glucose levels are maintained within the physiological range of 3.5-5.5 mmol/L. However, in HH this coupling of glucose metabolism to insulin secretion is perturbed so that insulin secretion becomes unregulated. HH typically occurs in the neonatal, infancy and childhood periods and can be due to many different causes. Adults can also present with HH but the causes in adults tend to be different. Somatostatin (SST) is a peptide hormone that is released by the delta cells (δ-cells) in the pancreas. It binds to G protein-coupled SST receptors to regulate a variety of location-specific and selective functions such as hormone inhibition, neurotransmission and cell proliferation. SST plays a potent role in the regulation of both insulin and glucagon secretion in response to changes in glucose levels by negative feedback mechanism. The half-life of SST is only 1-3 min due to quick degradation by peptidases in plasma and tissues. Thus, a direct continuous intravenous or subcutaneous infusion is required to achieve the therapeutic effect. These limitations prompted the discovery of SST analogues such as octreotide and lanreotide, which have longer half-lives and therefore can be administered as injections. SST analogues are used to treat different forms of HH in children and adults and therapeutic effect is achieved by suppressing insulin secretion from pancreatic β-cells by complex mechanisms. These treatments are associated with several side effects, especially in the newborn period, with necrotizing enterocolitis being the most serious side effect and hence SS analogues should be used with extreme caution in this age group.
Collapse
Affiliation(s)
- Basma Haris
- Department of Paediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar
| | - Saras Saraswathi
- Department of Paediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar
| | - Khalid Hussain
- Professor of Paediatrics, Weill Cornell Medicine-Qatar, Division Chief – Endocrinology, Department of Paediatric Medicine, Division of Endocrinology, Sidra Medicine, OPC, C6-340 |PO Box 26999, Al Luqta Street, Education City North Campus, Doha, Qatar
| |
Collapse
|
13
|
Hulín J, Škopková M, Valkovičová T, Mikulajová S, Rosoľanková M, Papcun P, Gašperíková D, Staník J. Clinical implications of the glucokinase impaired function - GCK MODY today. Physiol Res 2020; 69:995-1011. [PMID: 33129248 DOI: 10.33549/physiolres.934487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Heterozygous inactivating mutations of the glucokinase (GCK) gene are causing GCK-MODY, one of the most common forms of the Maturity Onset Diabetes of the Young (MODY). GCK-MODY is characterized by fasting hyperglycemia without apparent worsening with aging and low risk for chronic vascular complications. Despite the mild clinical course, GCK-MODY could be misdiagnosed as type 1 or type 2 diabetes. In the diagnostic process, the clinical suspicion is often based on the clinical diagnostic criteria for GCK-MODY and should be confirmed by DNA analysis. However, there are several issues in the clinical and also in genetic part that could complicate the diagnostic process. Most of the people with GCK-MODY do not require any pharmacotherapy. The exception are pregnant women with a fetus which did not inherit GCK mutation from the mother. Such a child has accelerated growth, and has increased risk for diabetic foetopathy. In this situation the mother should be treated with substitutional doses of insulin. Therefore, distinguishing GCK-MODY from gestational diabetes in pregnancy is very important. For this purpose, special clinical diagnostic criteria for clinical identification of GCK-MODY in pregnancy are used. This review updates information on GCK-MODY and discusses several currently not solved problems in the clinical diagnostic process, genetics, and treatment of this type of monogenic diabetes.
Collapse
Affiliation(s)
- J Hulín
- Department of Pediatrics, Medical Faculty of the Comenius University, Bratislava, Slovakia.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Worth C, Yau D, Salomon Estebanez M, O'Shea E, Cosgrove K, Dunne M, Banerjee I. Complexities in the medical management of hypoglycaemia due to congenital hyperinsulinism. Clin Endocrinol (Oxf) 2020; 92:387-395. [PMID: 31917867 DOI: 10.1111/cen.14152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 12/12/2022]
Abstract
Congenital Hyperinsulinism (CHI) is a rare disease of hypoglycaemia but is the most common form of recurrent and severe hypoglycaemia causing brain injury and neurodisability in children. The management of CHI is complex due to the limited choice of medications, all with a limited therapeutic window, often lacking efficacy and associated with serious side effects. The therapeutic strategy in CHI is to recognize and treat hypoglycaemia promptly, thereby optimizing long-term neurological outcomes; this should be achieved through individualized treatment plans that deliver glycaemic stability while minimizing side effects. Further, such a strategy should consider the likelihood of reduction in disease severity over time, with dose adjustments and medication withdrawal as indicated to optimize both safety and tolerability. The option for pancreatic surgery should also be considered in specific circumstances as appropriate for the patient's best long-term interests.
Collapse
Affiliation(s)
- Christopher Worth
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| | - Daphne Yau
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
- Department of Pediatrics, Division of Endocrinology, Jim Pattison Children's Hospital, Saskatoon, SK, Canada
| | - Maria Salomon Estebanez
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| | - Elaine O'Shea
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| | - Karen Cosgrove
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mark Dunne
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Whitticar NB, Nunemaker CS. Reducing Glucokinase Activity to Enhance Insulin Secretion: A Counterintuitive Theory to Preserve Cellular Function and Glucose Homeostasis. Front Endocrinol (Lausanne) 2020; 11:378. [PMID: 32582035 PMCID: PMC7296051 DOI: 10.3389/fendo.2020.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pancreatic beta-cells are the only cells in the body that can synthesize and secrete insulin. Through the process of glucose-stimulated insulin secretion, beta-cells release insulin into circulation, stimulating GLUT4-dependent glucose uptake into peripheral tissue. Insulin is normally secreted in pulses that promote signaling at the liver. Long before type 2 diabetes is diagnosed, beta-cells become oversensitive to glucose, causing impaired pulsatility and overstimulation in fasting levels of glucose. The resulting hypersecretion of insulin can cause poor insulin signaling and clearance at the liver, leading to hyperinsulinemia and insulin resistance. Continued overactivity can eventually lead to beta-cell exhaustion and failure at which point type 2 diabetes begins. To prevent or reverse the negative effects of overstimulation, beta-cell activity can be reduced. Clinical studies have revealed the potential of beta-cell rest to reverse new cases of diabetes, but treatments lack durable benefits. In this perspective, we propose an intervention that reduces overactive glucokinase activity in the beta-cell. Glucokinase is known as the glucose sensor of the beta-cell due to its high control over insulin secretion. Therefore, glycolytic overactivity may be responsible for hyperinsulinemia early in the disease and can be reduced to restore normal stimulus-secretion coupling. We have previously reported that reducing glucokinase activity in prediabetic mouse islets can restore pulsatility and enhance insulin secretion. Building on this counterintuitive finding, we review the importance of pulsatile insulin secretion and highlight how normalizing glucose sensing in the beta cell during prediabetic hyperinsulinemia may restore pulsatility and improve glucose homeostasis.
Collapse
Affiliation(s)
- Nicholas B. Whitticar
- Translational Biomedical Sciences Program, Graduate College, Ohio University, Athens, OH, United States
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Craig S. Nunemaker
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- *Correspondence: Craig S. Nunemaker
| |
Collapse
|
16
|
Rosenfeld E, Ganguly A, De León DD. Congenital hyperinsulinism disorders: Genetic and clinical characteristics. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2019; 181:682-692. [PMID: 31414570 PMCID: PMC7229866 DOI: 10.1002/ajmg.c.31737] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/13/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022]
Abstract
Congenital hyperinsulinism (HI) is the most frequent cause of persistent hypoglycemia in infants and children. Delays in diagnosis and initiation of appropriate treatment contribute to a high risk of neurocognitive impairment. HI represents a heterogeneous group of disorders characterized by dysregulated insulin secretion by the pancreatic beta cells, which in utero, may result in somatic overgrowth. There are at least nine known monogenic forms of HI as well as several syndromic forms. Molecular diagnosis allows for prediction of responsiveness to medical treatment and likelihood of surgically-curable focal hyperinsulinism. Timely genetic mutation analysis has thus become standard of care. However, despite significant advances in our understanding of the molecular basis of this disorder, the number of patients without an identified genetic diagnosis remains high, suggesting that there are likely additional genetic loci that have yet to be discovered.
Collapse
Affiliation(s)
- Elizabeth Rosenfeld
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Arupa Ganguly
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Diva D. De León
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Boodhansingh KE, Kandasamy B, Mitteer L, Givler S, De Leon DD, Shyng S, Ganguly A, Stanley CA. Novel dominant K ATP channel mutations in infants with congenital hyperinsulinism: Validation by in vitro expression studies and in vivo carrier phenotyping. Am J Med Genet A 2019; 179:2214-2227. [PMID: 31464105 PMCID: PMC6852436 DOI: 10.1002/ajmg.a.61335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/02/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022]
Abstract
Inactivating mutations in the genes encoding the two subunits of the pancreatic beta-cell KATP channel, ABCC8 and KCNJ11, are the most common finding in children with congenital hyperinsulinism (HI). Interpreting novel missense variants in these genes is problematic, because they can be either dominant or recessive mutations, benign polymorphisms, or diabetes mutations. This report describes six novel missense variants in ABCC8 and KCNJ11 that were identified in 11 probands with congenital HI. One of the three ABCC8 mutations (p.Ala1458Thr) and all three KCNJ11 mutations were associated with responsiveness to diazoxide. Sixteen family members carried the ABCC8 or KCNJ11 mutations; only two had hypoglycemia detected at birth and four others reported symptoms of hypoglycemia. Phenotype testing of seven adult mutation carriers revealed abnormal protein-induced hypoglycemia in all; fasting hypoketotic hypoglycemia was demonstrated in four of the seven. All of six mutations were confirmed to cause dominant pathogenic defects based on in vitro expression studies in COSm6 cells demonstrating normal trafficking, but reduced responses to MgADP and diazoxide. These results indicate a combination of in vitro and in vivo phenotype tests can be used to differentiate dominant from recessive KATP channel HI mutations and personalize management of children with congenital HI.
Collapse
Affiliation(s)
- Kara E. Boodhansingh
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Balamurugan Kandasamy
- Department of Biochemistry and Molecular BiologyOregon Health & Science UniversityPortlandOregon
| | - Lauren Mitteer
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Stephanie Givler
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Diva D. De Leon
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Show‐Ling Shyng
- Department of Biochemistry and Molecular BiologyOregon Health & Science UniversityPortlandOregon
| | - Arupa Ganguly
- Department of GeneticsThe Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Charles A. Stanley
- Division of Endocrinology and DiabetesThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
| |
Collapse
|
18
|
Ping F, Wang Z, Xiao X. Clinical and enzymatic phenotypes in congenital hyperinsulinemic hypoglycemia due to glucokinase-activating mutations: A report of two cases and a brief overview of the literature. J Diabetes Investig 2019; 10:1454-1462. [PMID: 31094068 PMCID: PMC6825936 DOI: 10.1111/jdi.13072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 04/10/2019] [Accepted: 04/26/2019] [Indexed: 01/06/2023] Open
Abstract
AIMS/INTRODUCTION The principal aim of this study was to investigate the clinical, genetic and functional characteristics of two cases of congenital hyperinsulinism (CHI) caused by glucokinase (GCK) mutations in young patients. MATERIALS AND METHODS Novel mutations were detected by CHI next-generation sequencing, and the kinetic parameters and thermal stability of recombinant wild-type and mutant glucokinase were determined in vitro. In addition, 18 naturally occurring GCK-CHI mutations reported previously were also summarized. RESULTS A de novo mutation (M197V) was found in a 17-year-old male with an epilepsy history, whereas an autosomal dominant mutation (K90R) was found in a 20-year-old female with inherited asymptomatic hypoglycemia. Kinetic analysis showed increased enzyme activity for both mutants (RAI 4.7 for M197V and 1.6 for K90R) and enhanced thermal stability for the M197V mutant. However, of all the GCK-CHI mutants, the increase in enzyme activity (RAI between 1.6 and 130) did not correlate strongly with the severity of hypoglycemia. The de novo group (7/19) showed distinctive phenotypes from the autosomal dominant group (12/19), such as a higher proportion of diazoxide unresponsiveness (28.6% vs 0%), a higher incidence of macrosomia (85.7% vs 40%) and a rarer incidence of adulthood onset (0% vs 25%). CONCLUSIONS The clinical phenotypes of GCK-CHIs were highly heterogeneous. We have identified two novel GCK-CHI mutations in young patients and investigated their pathogenicity by enzyme kinetic analysis, which expanded the spectrum of this rare disease.
Collapse
Affiliation(s)
- Fan Ping
- NHC Key Laboratory of EndocrinologyDepartment of EndocrinologyPeking Union Medical College HospitalChinese Academy of Medical Science and Peking UnionBeijingChina
| | - Zhixin Wang
- Department of EndocrinologyBeijing Jishuitan HospitalBeijingChina
| | - Xinhua Xiao
- NHC Key Laboratory of EndocrinologyDepartment of EndocrinologyPeking Union Medical College HospitalChinese Academy of Medical Science and Peking UnionBeijingChina
| |
Collapse
|
19
|
Langer S, Hofmeister-Brix A, Waterstradt R, Baltrusch S. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase and small chemical activators affect enzyme activity of activating glucokinase mutants by distinct mechanisms. Biochem Pharmacol 2019; 168:149-161. [PMID: 31254492 DOI: 10.1016/j.bcp.2019.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 11/17/2022]
Abstract
Glucokinase (GK), a monomeric glucose-phosphorylating enzyme characterised by high structural flexibility, acts as a glucose sensor in pancreatic beta cells and liver. Pharmaceutical efforts to control the enzyme are hampered by an incomplete understanding of GK regulation. We investigated GK characteristics of wild-type and activating S64Y and G68V mutant proteins in the presence of various combinations of the synthetic activators RO-28-1675 and compound A, the endogenous activator fructose-2,6-bisphosphatase (FBPase-2), and the inhibitor mannoheptulose. S64Y impedes formation of a turn structure that is characteristic for the inactive enzyme conformation, and complex formation with compound A induces collision with the large domain. G68V evokes close contact of connecting region I and helix α13 with RO-28-1675 and compound A. Both mutants showed higher activity than the wild-type at low glucose and were susceptible to further activation by FBPase-2 and RO-28-1675, alone and additively. G68V was less active than S64Y, but was activatable by compound A. In contrast, compound A inhibited S64Y, and this effect was even more pronounced in combination with mannoheptulose. Mutant and wild-type GK showed comparable thermal stability and intracellular lifetimes. A GK-6-phosphofructo-2-kinase (PFK-2)/FBPase-2 complex predicted by in silico protein-protein docking demonstrated possible binding of the FBPase-2 domain near the active site of GK. In summary, activating mutations within the allosteric site of GK do not preclude binding of chemical activators (GKAs), but can alter their action into inhibition. Our postulated GK-PFK-2/FBPase-2 complex represents the endogenous principle of activation by substrate channelling which permits binding of other small molecules and proteins.
Collapse
Affiliation(s)
- Sara Langer
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, 18057 Rostock, Germany
| | - Anke Hofmeister-Brix
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, 18057 Rostock, Germany; Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, 18057 Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, 18057 Rostock, Germany; Department Life, Light & Matter, University of Rostock, Germany.
| |
Collapse
|
20
|
Lu B, Tonne JM, Munoz-Gomez M, Ikeda Y. Hyperinsulinemic hypoglycemia subtype glucokinase V91L mutant induces necrosis in β-cells via ATP depletion. Biochem Biophys Rep 2019; 17:108-113. [PMID: 30623114 PMCID: PMC6304456 DOI: 10.1016/j.bbrep.2018.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 12/24/2022] Open
Abstract
Hyperinsulinemic hypoglycemia subtype glucokinase (GCK-HH) is caused by an activating mutation in glucokinase (GCK) and has been shown to increase β-cell death. However, the mechanism of β-cell death in GCK-HH remains poorly understood. Here, we expressed the GCK-HH V91L GCK mutant in INS-1 832/13 cells to determine the effect of the mutation on β-cell viability and the mechanisms of β-cell death. We showed that expression of the V91L GCK mutant in INS-1 832/13 cells resulted in a rapid glucose concentration-dependent loss of cell viability. At 11 mM D-glucose, INS-1 832/13 cells expressing V91L GCK showed increased cell permeability without significant increases in Annexin V staining or caspase 3/7 activation, indicating that these cells are primarily undergoing cell death via necrosis. Over-expression of SV40 large T antigen, which inhibits the p53 pathway, did not affect the V91L GCK-induced cell death. We also found that non-phosphorylatable L-glucose did not induce rapid cell death. Of note, glucose phosphorylation coincided with a 90% loss of intracellular ATP content. Thus, our data suggest that the GCK V91L mutant induces rapid necrosis in INS-1 cells through accelerated glucose phosphorylation, ATP depletion, and increased cell permeability. V91L glucokinase mutant induces glucose-dependent death in rat INS-1 832/13 cells. Glucose induces necrosis in INS-1 832/13 cells expressing V91L glucokinase mutant. V91L glucokinase mutant depletes adenosine triphosphate in INS-1 832/13 cells.
Collapse
Affiliation(s)
- Brian Lu
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.,Virology and Gene Therapy Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Jason M Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.,Virology and Gene Therapy Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| |
Collapse
|
21
|
Banerjee I, Salomon‐Estebanez M, Shah P, Nicholson J, Cosgrove KE, Dunne MJ. Therapies and outcomes of congenital hyperinsulinism-induced hypoglycaemia. Diabet Med 2019; 36:9-21. [PMID: 30246418 PMCID: PMC6585719 DOI: 10.1111/dme.13823] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2018] [Indexed: 12/01/2022]
Abstract
Congenital hyperinsulinism is a rare disease, but is the most frequent cause of persistent and severe hypoglycaemia in early childhood. Hypoglycaemia caused by excessive and dysregulated insulin secretion (hyperinsulinism) from disordered pancreatic β cells can often lead to irreversible brain damage with lifelong neurodisability. Although congenital hyperinsulinism has a genetic cause in a significant proportion (40%) of children, often being the result of mutations in the genes encoding the KATP channel (ABCC8 and KCNJ11), not all children have severe and persistent forms of the disease. In approximately half of those without a genetic mutation, hyperinsulinism may resolve, although timescales are unpredictable. From a histopathology perspective, congenital hyperinsulinism is broadly grouped into diffuse and focal forms, with surgical lesionectomy being the preferred choice of treatment in the latter. In contrast, in diffuse congenital hyperinsulinism, medical treatment is the best option if conservative management is safe and effective. In such cases, children receiving treatment with drugs, such as diazoxide and octreotide, should be monitored for side effects and for signs of reduction in disease severity. If hypoglycaemia is not safely managed by medical therapy, subtotal pancreatectomy may be required; however, persistent hypoglycaemia may continue after surgery and diabetes is an inevitable consequence in later life. It is important to recognize the negative cognitive impact of early-life hypoglycaemia which affects half of all children with congenital hyperinsulinism. Treatment options should be individualized to the child/young person with congenital hyperinsulinism, with full discussion regarding efficacy, side effects, outcomes and later life impact.
Collapse
Affiliation(s)
- I. Banerjee
- Department of Paediatric EndocrinologyRoyal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - M. Salomon‐Estebanez
- Department of Paediatric EndocrinologyRoyal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - P. Shah
- Endocrinology DepartmentGreat Ormond Street Hospital for ChildrenNHS Foundation TrustLondonUK
| | - J. Nicholson
- Paediatric Psychosocial DepartmentRoyal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
| | - K. E. Cosgrove
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - M. J. Dunne
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
22
|
Shah P, Rahman SA, Demirbilek H, Güemes M, Hussain K. Hyperinsulinaemic hypoglycaemia in children and adults. Lancet Diabetes Endocrinol 2017; 5:729-742. [PMID: 27915035 DOI: 10.1016/s2213-8587(16)30323-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/16/2016] [Accepted: 09/28/2016] [Indexed: 02/08/2023]
Abstract
Pancreatic β cells are functionally programmed to release insulin in response to changes in plasma glucose concentration. Insulin secretion is precisely regulated so that, under normal physiological conditions, fasting plasma glucose concentrations are kept within a narrow range of 3·5-5·5 mmol/L. In hyperinsulinaemic hypoglycaemia, insulin secretion becomes dysregulated (ie, uncoupled from glucose metabolism) so that insulin secretion persists in the presence of low plasma glucose concentrations. Hyperinsulinaemic hypoglycaemia is the most common cause of severe and persistent hypoglycaemia in neonates and children. At a molecular level, mutations in nine different genes can lead to the dysregulation of insulin secretion and cause this disorder. In adults, hyperinsulinaemic hypoglycaemia accounts for 0·5-5·0% of cases of hypoglycaemia and can be due either to β-cell tumours (insulinomas) or β-cell hyperplasia. Rapid diagnosis and prompt management of hyperinsulinaemic hypoglycaemia is essential to avoid hypoglycaemic brain injury, especially in the vulnerable neonatal and childhood periods. Advances in the field of hyperinsulinaemic hypoglycaemia include use of rapid molecular genetic testing for the disease, application of novel imaging techniques (6-[fluoride-18]fluoro-levodopa [18F-DOPA] PET-CT and glucagon-like peptide 1 (GLP-1) receptor imaging), and development of novel medical treatments (eg, long-acting octreotide formulations, mTOR inhibitors, and GLP-1 receptor antagonists) and surgical therapies (eg, laparoscopic surgery).
Collapse
Affiliation(s)
- Pratik Shah
- Genetics and Genomic Medicine Programme, University College London (UCL) Institute of Child Health, London, UK; Endocrinology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sofia A Rahman
- Genetics and Genomic Medicine Programme, University College London (UCL) Institute of Child Health, London, UK
| | - Huseyin Demirbilek
- Department of Paediatric Endocrinology, Hacettepe University, Ankara, Turkey
| | - Maria Güemes
- Genetics and Genomic Medicine Programme, University College London (UCL) Institute of Child Health, London, UK; Endocrinology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Khalid Hussain
- Department of Pediatric Medicine, Sidra Medical & Research Center, Outpatient Clinic, Doha, Qatar.
| |
Collapse
|
23
|
Martínez R, Gutierrez-Nogués Á, Fernández-Ramos C, Velayos T, Vela A, Navas MÁ, Castaño L. Heterogeneity in phenotype of hyperinsulinism caused by activating glucokinase mutations: a novel mutation and its functional characterization. Clin Endocrinol (Oxf) 2017; 86:778-783. [PMID: 28247534 DOI: 10.1111/cen.13318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/12/2016] [Accepted: 02/23/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mutations in the GCK gene lead to different forms of glucokinase (GCK)-disease, activating mutations cause hyperinsulinaemic hypoglycaemia while inactivating mutations cause monogenic diabetes. Hyperinsulinism (HI) is a heterogeneous condition with a significant genetic component. The major causes are channelopathies, the other forms are rare and being caused by mutations in genes such as GCK. OBJECTIVE To describe the clinical and genetic presentation of four families with activating GCK mutations, and to explore the pathogenicity of the novel mutation identified through functional studies. RESULTS Four cases of HI with mutations in GCK were identified. These include one novel mutation (p.Trp99Cys). Functional analysis of the purified mutant fusion protein glutathione-S-transferase (GST)-GCK-p.Trp99Cys demonstrated that p.Trp99Cys is an activating mutation as it induces a higher affinity for glucose and increases the relative activity index more than 11 times. Moreover, the thermal stability of the mutant protein was similar to that of its wild type. All patients were responsive to diazoxide treatment. One of the mutations arose de novo, and two were dominantly inherited, although only one of them from an HI affected parent. The age of presentation in our cases varied widely from the neonatal period to adulthood. CONCLUSION The clinical phenotype of the GCK activating mutation carriers was heterogeneous, the severity of symptoms and age at presentation varied markedly between affected individuals, even within the same family. The novel activating GCK mutation (p.Trp99Cys) has a strong activating effect in vitro although it has been identified in one case of a milder and late-onset form of HI.
Collapse
Affiliation(s)
- Rosa Martínez
- Endocrinology and Diabetes Research Group, BioCruces Health Research Institute, UPV-EHU, CIBERDEM, CIBERER, Cruces University Hospital, Barakaldo, Spain
| | - Ángel Gutierrez-Nogués
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, CIBERDEM and Hospital Clínico San Carlos Health Research Institute, Complutense University of Madrid, Madrid, Spain
| | - Concepción Fernández-Ramos
- Pediatric Endocrinology Section, BioCruces Health Research Institute, UPV/EHU, Basurto University Hospital, Bilbao, Spain
| | - Teresa Velayos
- Endocrinology and Diabetes Research Group, BioCruces Health Research Institute, UPV-EHU, CIBERDEM, CIBERER, Cruces University Hospital, Barakaldo, Spain
| | - Amaia Vela
- Pediatric Endocrinology Section, BioCruces Health Research Institute, UPV/EHU, Cruces University Hospital, CIBERDEM, CIBERER, Barakaldo, Bizkaia, Spain
| | - María-Ángeles Navas
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, CIBERDEM and Hospital Clínico San Carlos Health Research Institute, Complutense University of Madrid, Madrid, Spain
| | - Luis Castaño
- Endocrinology and Diabetes Research Group, BioCruces Health Research Institute, UPV-EHU, CIBERDEM, CIBERER, Cruces University Hospital, Barakaldo, Spain
| |
Collapse
|
24
|
Abstract
Cooperativity in human glucokinase (GCK), the body's primary glucose sensor and a major determinant of glucose homeostatic diseases, is fundamentally different from textbook models of allostery because GCK is monomeric and contains only one glucose-binding site. Prior work has demonstrated that millisecond timescale order-disorder transitions within the enzyme's small domain govern cooperativity. Here, using limited proteolysis, we map the site of disorder in unliganded GCK to a 30-residue active-site loop that closes upon glucose binding. Positional randomization of the loop, coupled with genetic selection in a glucokinase-deficient bacterium, uncovers a hyperactive GCK variant with substantially reduced cooperativity. Biochemical and structural analysis of this loop variant and GCK variants associated with hyperinsulinemic hypoglycemia reveal two distinct mechanisms of enzyme activation. In α-type activation, glucose affinity is increased, the proteolytic susceptibility of the active site loop is suppressed and the (1)H-(13)C heteronuclear multiple quantum coherence (HMQC) spectrum of (13)C-Ile-labeled enzyme resembles the glucose-bound state. In β-type activation, glucose affinity is largely unchanged, proteolytic susceptibility of the loop is enhanced, and the (1)H-(13)C HMQC spectrum reveals no perturbation in ensemble structure. Leveraging both activation mechanisms, we engineer a fully noncooperative GCK variant, whose functional properties are indistinguishable from other hexokinase isozymes, and which displays a 100-fold increase in catalytic efficiency over wild-type GCK. This work elucidates specific structural features responsible for generating allostery in a monomeric enzyme and suggests a general strategy for engineering cooperativity into proteins that lack the structural framework typical of traditional allosteric systems.
Collapse
|
25
|
Abstract
In hyperinsulinemic hypoglycemia (HH) there is dysregulation of insulin secretion from pancreatic β-cells. Insulin secretion becomes inappropriate for the level of blood glucose leading to severe hypoglycemia. HH is associated with a high risk of brain injury because insulin inhibits lipolysis and ketogenesis thus preventing the generation of alternative brain substrates (such as ketone bodies). Hence HH must be diagnosed as soon as possible and the management instituted appropriately to prevent brain damage. This article reviews the mechanisms of glucose physiology in the newborn, the mechanisms of insulin secretion, the etiologic types of HH, and its management.
Collapse
Affiliation(s)
- Maria Güemes
- Developmental Endocrinology Research Group, Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Khalid Hussain
- Developmental Endocrinology Research Group, Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
26
|
Roženková K, Güemes M, Shah P, Hussain K. The Diagnosis and Management of Hyperinsulinaemic Hypoglycaemia. J Clin Res Pediatr Endocrinol 2015; 7:86-97. [PMID: 26316429 PMCID: PMC4563192 DOI: 10.4274/jcrpe.1891] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Insulin secretion from pancreatic β-cells is tightly regulated to keep fasting blood glucose concentrations within the normal range (3.5-5.5 mmol/L). Hyperinsulinaemic hypoglycaemia (HH) is a heterozygous condition in which insulin secretion becomes unregulated and its production persists despite low blood glucose levels. It is the most common cause of severe and persistent hypoglycaemia in neonates and children. The most severe and permanent forms are due to congenital hyperinsulinism (CHI). Recent advances in genetics have linked CHI to mutations in 9 genes that play a key role in regulating insulin secretion (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A and HNF1A). Histologically, CHI can be divided into 3 types; diffuse, focal and atypical. Given the biochemical nature of HH (non-ketotic), a delay in the diagnosis and management can result in irreversible brain damage. Therefore, it is essential to diagnose and treat HH promptly. Advances in molecular genetics, imaging methods (18F-DOPA PET-CT), medical therapy and surgical approach (laparoscopic surgery) have completely changed the management and improved the outcome of these children. This review provides an overview of the genetic and molecular mechanisms leading to development of HH in children. The article summarizes the current diagnostic methods and management strategies for the different types of CHI.
Collapse
Affiliation(s)
| | | | | | - Khalid Hussain
- Great Ormond Street Hospital for Children, UCL Institute of Child Health, Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, London, UK Phone: +44 2079052128 E-mail:
| |
Collapse
|
27
|
De Ceuninck F, Kargar C, Charton Y, Goldstein S, Perron-Sierra F, Ilic C, Caliez A, Rolin JO, Sadlo M, Harley E, Vinson C, Ktorza A. S 50131 and S 51434, two novel small molecule glucokinase activators, lack chronic efficacy despite potent acute antihyperglycaemic activity in diabetic mice. Br J Pharmacol 2015; 169:999-1010. [PMID: 23488540 DOI: 10.1111/bph.12172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/13/2013] [Accepted: 03/01/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Small molecule glucokinase activators (GKAs) have been associated with potent antidiabetic efficacy and hepatic steatosis in rodents. This study reports the discovery of S 50131 and S 51434, two novel GKAs with an original scaffold and an atypical pharmacological profile. EXPERIMENTAL APPROACH Activity of the compounds was assessed in vitro by measuring activation of recombinant glucokinase, stimulation of glycogen synthesis in rat hepatocytes and increased insulin secretion from rat pancreatic islets of Langerhans. Efficacy and safety in vivo were evaluated after oral administration in db/db mice by measuring glycaemia, HbA1c and dyslipidaemia-associated events. KEY RESULTS S 50131 and S 51434 activated GK and stimulated glycogen synthesis in hepatocytes and insulin secretion from pancreatic islets. Unexpectedly, while both compounds effectively lowered glycaemia after acute oral administration, they did not decrease HbA1c after a 4-week treatment in db/db mice. This lack of antidiabetic efficacy was associated with increased plasma free fatty acids (FFAs), contrasting with the effect of GKA50 and N00236460, two GKAs with sustained HbA1c lowering activity but neutral regarding plasma FFAs. S 50131, but not S 51434, also induced hepatic steatosis, as did GKA50 and N00236460. However, a shorter, 4-day treatment resulted in increased hepatic triglycerides without changing the plasma FFA levels, demonstrating dynamic alterations in the lipid profile over time. CONCLUSIONS AND IMPLICATIONS In addition to confirming the occurrence of dyslipidaemia with GKAs, these findings provide new insights into understanding how such compounds may sustain or lose efficacy over time.
Collapse
Affiliation(s)
- Frédéric De Ceuninck
- Department of Metabolic Diseases, Institut de Recherches Servier, Suresnes, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Del Roio Liberatore R, Ramos PM, Guerra G, Manna TD, Silva IN, Martinelli CE. Clinical and molecular data from 61 Brazilian cases of Congenital Hyperinsulinemic Hypoglycemia. Diabetol Metab Syndr 2015; 7:5. [PMID: 25972930 PMCID: PMC4429972 DOI: 10.1186/1758-5996-7-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/14/2015] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To study the clinical and molecular characteristics of a sample of Brazilian patients with Congenital Hyperinsulinemic Hypoglycemia (CHH). METHODS Electronic message was sent to members from Endocrinology Department- Brazilian Society of Pediatrics requesting clinical data for all cases of CHH. A whole blood sample from living patients was requested for DNA extraction followed by a search for mutations of the genes ABCC8, KCNJ11, GCK, GLUD1, HADH, SLC16A1 and HNF4A. RESULTS Of the 61 patients evaluated, 36 (59%) were boys, and only 16 (26%) were born by normal delivery. Gestational age ranged from 32 to 41 weeks (mean = 37 weeks and 6 days). Birth weight ranged from 1590 to 5250 g (mean = 3430 g). Macrossomia occurred in 14 cases (28%). Age at diagnosis ranged from 1 to 1080 days (mean = 75 days). DNA for molecular analysis was obtained from 53 of the 61 patients. Molecular changes in the ABCC8 gene were detected in 15 (28%) of these 53 cases, and mutations in the KCNJ11 gene were detected in 6 (11%). Mutations in the GLUD1 gene were detected in 9 cases (17%) of the total series. Mutations of the GCK gene in heterozygosis were detected in 3 cases. No mutations were detected in the sequencing of genes HADH, SLC16A1 and HNF4A. CONCLUSION The present study conducted in Brazil permitted the collaborative compilation of an important number of CHH cases and showed that the present clinical and molecular data are similar to those of published global series.
Collapse
Affiliation(s)
- Raphael Del Roio Liberatore
- />Ribeirão Preto Medical School, University of São Paulo, Rua Elzira Sammarco Palma, 400/43, Ribeirão Preto, SP Brazil
| | - Priscila Manzini Ramos
- />Ribeirão Preto Medical School, University of São Paulo, Rua Elzira Sammarco Palma, 400/43, Ribeirão Preto, SP Brazil
| | - Gil Guerra
- />Department of Pediatrics, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Thais Della Manna
- />Pediatric Endocrine Unit, Instituto da Criança-Hospital das Clínicas, Universidade de São Paulo (USP), São Paulo, SP Brazil
| | - Ivani Novato Silva
- />Pediatrics Department, Medical School/ Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Eduardo Martinelli
- />Ribeirão Preto Medical School, University of São Paulo, Rua Elzira Sammarco Palma, 400/43, Ribeirão Preto, SP Brazil
| |
Collapse
|
29
|
Challis BG, Harris J, Sleigh A, Isaac I, Orme SM, Seevaratnam N, Dhatariya K, Simpson HL, Semple RK. Familial adult onset hyperinsulinism due to an activating glucokinase mutation: implications for pharmacological glucokinase activation. Clin Endocrinol (Oxf) 2014; 81:855-61. [PMID: 24890200 PMCID: PMC4735948 DOI: 10.1111/cen.12517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/11/2014] [Accepted: 05/27/2014] [Indexed: 01/13/2023]
Abstract
CONTEXT Glucokinase (GCK) phosphorylates and thereby "traps" glucose in cells, thus serving as a gatekeeper for cellular glucose metabolism, particularly in hepatocytes and pancreatic beta cells. In humans, activating GCK mutations cause familial hyperinsulinaemic hypoglycaemia (GCK-HH), leading to keen interest in the potential of small-molecule glucokinase activators (GKAs) as treatments for diabetes mellitus. Many such agents have been developed; however, observation of side effects including hypertriglyceridaemia and hepatic steatosis has delayed their clinical development. OBJECTIVE To describe the clinical presentation and metabolic profiles of affected family members in a kindred with familial hyperinsulinism of adult presentation due to a known activating mutation in GCK. DESIGN Clinical, biochemical and metabolic assessment, and GCK sequencing in affected family members. RESULTS In the 60-year-old female proband, hyperinsulinaemic hypoglycaemia (blood glucose 2·1 mmol/mol, insulin 18 pm) was confirmed following 34 h of fasting; however, abdominal computed tomography (CT), pancreatic MRI, endoscopic ultrasound, octreotide scintigraphy and selective arterial calcium stimulation failed to localize an insulinoma. A prolonged OGTT revealed fasting hypoglycaemia that was exacerbated after glucose challenge, consistent with dysregulated glucose-stimulated insulin release. A heterozygous activating mutation, p.Val389Leu, in the glucokinase gene (GCK) was found in the proband and four other family members. Of these, two had been investigated elsewhere for recurrent hypoglycaemia in adulthood, while the other two adult relatives were asymptomatic despite profound hypoglycaemia. All three of the available family members with the p.Val389Leu mutation had normal serum lipid profiles, normal rates of fasting hepatic de novo lipogenesis and had hepatic triglyceride levels commensurate with their degree of adiposity. CONCLUSION Activating GCK mutations may present in late adulthood with hyperinsulinaemic hypoglycaemia and should be considered even in older patients being investigated for insulinoma. Normal circulating lipids, rates of hepatic de novo lipogenesis and appropriate hepatic triglyceride content for degree of adiposity in the patients we describe suggest that even lifelong GCK activation in isolation is insufficient to produce fatty liver and metabolic dyslipidaemia.
Collapse
Affiliation(s)
- Benjamin G Challis
- University of Cambridge Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shammas C, Neocleous V, Phelan MM, Lian LY, Skordis N, Phylactou LA. A report of 2 new cases of MODY2 and review of the literature: implications in the search for type 2 diabetes drugs. Metabolism 2013; 62:1535-42. [PMID: 23890519 DOI: 10.1016/j.metabol.2013.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
Glucokinase (GCK) acts as a glucose sensor and stimulates the release of insulin from pancreatic β-cells and any GCK gene mutations can lead to different forms of diabetes, such as GCK-monogenic diabetes of the young type 2 (MODY2), permanent neonatal diabetes and congenital hyperinsulinism. Many MODY2 causing mutations display a variation in the degree of severity, ranging from mild dietary-restricted forms to more detrimental presentation requiring insulin replacement. The present study reviews known and two novel GCK mutations in terms of molecular perturbation of the GCK atomic structure but also emphasizes the inactivating and activating properties of the GCK as treatment for T2DM. In silico analysis demonstrated that the newly discovered mutation p.Arg447Pro causes structural conformational changes that lead to the destabilization of the functional properties of the protein resulting in the reduction of glucose and MgATP2- affinity. The novel p.Glu440Stop nonsense mutation on the other hand inactivates the cytoplasmic enzymatic activity of the protein as it is responsible for the loss of the C-terminal end of the polypeptide that includes vital glucose-releasing residues. Based on the in silico models of existing structural data we identified several classes of GCK mutations and discuss their relation to disease outcome. GCK has a central role in controlling body glucose homeostasis and therefore is considered an outstanding drug target for developing new antidiabetic therapies using small molecular activators (GKAs). This study emphasizes the importance in understanding how inactivating and activating GCK mutations affect the mechanistic properties of this glucose sensor. Such information can become the basis for drug discovery of therapeutic compounds and the treatment of T2DM by targeting the GCK allosteric activator site.
Collapse
Affiliation(s)
- Christos Shammas
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | | | | | | | | | | |
Collapse
|
31
|
De Ceuninck F, Kargar C, Ilic C, Caliez A, Rolin JO, Umbdenstock T, Vinson C, Combettes M, de Fanti B, Harley E, Sadlo M, Lefèvre AL, Broux O, Wierzbicki M, Fourquez JM, Perron-Sierra F, Kotschy A, Ktorza A. Small molecule glucokinase activators disturb lipid homeostasis and induce fatty liver in rodents: a warning for therapeutic applications in humans. Br J Pharmacol 2013; 168:339-53. [PMID: 22925001 DOI: 10.1111/j.1476-5381.2012.02184.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/23/2012] [Accepted: 08/03/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Small-molecule glucokinase activators (GKAs) are currently being investigated as therapeutic options for the treatment of type 2 diabetes (T2D). Because liver overexpression of glucokinase is thought to be associated with altered lipid profiles, this study aimed at assessing the potential lipogenic risks linked to oral GKA administration. EXPERIMENTAL APPROACH Nine GKA candidates were qualified for their ability to activate recombinant glucokinase and to stimulate glycogen synthesis in rat hepatocytes and insulin secretion in rat INS-1E cells. In vivo activity was monitored by plasma glucose and HbA1c measurements after oral administration in rodents. Risk-associated effects were assessed by measuring hepatic and plasma triglycerides and free fatty acids, as well as plasma aminotransferases, and alkaline phosphatase. KEY RESULTS GKAs, while efficiently decreasing glycaemia in acute conditions and HbA1c levels after chronic administration in hyperglycemic db/db mice, were potent inducers of hepatic steatosis. This adverse outcome appeared as soon as 4 days after daily oral administration at pharmacological doses and was not transient. GKA treatment similarly increased hepatic triglycerides in diabetic and normoglycaemic rats, together with a pattern of metabolic phenotypes including different combinations of increased plasma triglycerides, free fatty acids, alanine and aspartyl aminotransferases, and alkaline phosphatase. GKAs belonging to three distinct structural families induced hepatic steatosis in db/db mice, arguing in favour of a target-mediated, rather than a chemical class-mediated, effect. CONCLUSION AND IMPLICATIONS Given the risks associated with fatty liver disease in the general population and furthermore in patients with T2D, these findings represent a serious warning for the use of GKAs in humans. LINKED ARTICLE This article is commented on by Rees and Gloyn, pp. 335-338 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.02201.x.
Collapse
Affiliation(s)
- Frédéric De Ceuninck
- Division of Metabolic Diseases, Institut de Recherches Servier, Suresnes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Larion M, Salinas RK, Bruschweiler-Li L, Miller BG, Brüschweiler R. Order-disorder transitions govern kinetic cooperativity and allostery of monomeric human glucokinase. PLoS Biol 2012; 10:e1001452. [PMID: 23271955 PMCID: PMC3525530 DOI: 10.1371/journal.pbio.1001452] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022] Open
Abstract
Analysis of the functional dynamics of human glucokinase reveals that a slow order-disorder transition governs monomeric kinetic cooperativity in response to glucose concentrations. Glucokinase (GCK) catalyzes the rate-limiting step of glucose catabolism in the pancreas, where it functions as the body's principal glucose sensor. GCK dysfunction leads to several potentially fatal diseases including maturity–onset diabetes of the young type II (MODY-II) and persistent hypoglycemic hyperinsulinemia of infancy (PHHI). GCK maintains glucose homeostasis by displaying a sigmoidal kinetic response to increasing blood glucose levels. This positive cooperativity is unique because the enzyme functions exclusively as a monomer and possesses only a single glucose binding site. Despite nearly a half century of research, the mechanistic basis for GCK's homotropic allostery remains unresolved. Here we explain GCK cooperativity in terms of large-scale, glucose-mediated disorder–order transitions using 17 isotopically labeled isoleucine methyl groups and three tryptophan side chains as sensitive nuclear magnetic resonance (NMR) probes. We find that the small domain of unliganded GCK is intrinsically disordered and samples a broad conformational ensemble. We also demonstrate that small-molecule diabetes therapeutic agents and hyperinsulinemia-associated GCK mutations share a strikingly similar activation mechanism, characterized by a population shift toward a more narrow, well-ordered ensemble resembling the glucose-bound conformation. Our results support a model in which GCK generates its cooperative kinetic response at low glucose concentrations by using a millisecond disorder–order cycle of the small domain as a “time-delay loop,” which is bypassed at high glucose concentrations, providing a unique mechanism to allosterically regulate the activity of human GCK under physiological conditions. Glucokinase is a key metabolic enzyme that functions as the body's principal glucose sensor. Glucokinase regulates the rate at which insulin is secreted by the pancreas by using a unique but poorly understood cooperative kinetic response to increasing glucose concentrations. The physiological importance of this enzyme is underlined by the fact that mutations in the glucokinase gene lead to maturity-onset diabetes of the young type II (MODY II), permanent neonatal diabetes mellitus (PNDM), and hypoglycemic hyperinsulinemia of infancy (HI). In this study, we use cutting-edge high-resolution nuclear magnetic resonance methods to understand how the kinetic properties of glucokinase contribute to glucose homeostasis. We also seek to understand how a class of recently discovered small-molecule drugs, which hold promise as therapeutics for type 2 diabetes, function to enhance glucokinase activity. Our results suggest that glucokinase samples a range of conformational states in the absence of glucose. However, in the presence of glucose or a small-molecule activator, the enzyme population shifts towards a more narrow, well-structured ensemble of states. Our findings provide a new model for glucokinase cooperative kinetics, which relies on a slow order–disorder transition in response to glucose concentrations. These results also reveal a universal mechanism of glucokinase activation, which may inform the development of new antidiabetic agents.
Collapse
Affiliation(s)
- Mioara Larion
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Roberto Kopke Salinas
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| | - Lei Bruschweiler-Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| | - Brian G. Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (BGM); (RB)
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (BGM); (RB)
| |
Collapse
|
33
|
Senniappan S, Shanti B, James C, Hussain K. Hyperinsulinaemic hypoglycaemia: genetic mechanisms, diagnosis and management. J Inherit Metab Dis 2012; 35:589-601. [PMID: 22231386 DOI: 10.1007/s10545-011-9441-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/06/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
Hyperinsulinaemic hypoglycaemia (HH) is due to the unregulated secretion of insulin from pancreatic β-cells. A rapid diagnosis and appropriate management of these patients is essential to prevent the potentially associated complications like epilepsy, cerebral palsy and neurological impairment. The molecular basis of HH involves defects in key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, HNF4A and UCP2) which regulate insulin secretion. The most severe forms of HH are due to loss of function mutations in ABCC8/KCNJ11 which encode the SUR1 and KIR6.2 components respectively of the pancreatic β-cell K(ATP) channel. At a histological level there are two major forms (diffuse and focal) each with a different genetic aetiology. The diffuse form is inherited in an autosomal recessive (or dominant) manner whereas the focal form is sporadic in inheritance and is localised to a small region of the pancreas. The focal form can now be accurately localised pre-operatively using a specialised positron emission tomography scan with the isotope Fluroine-18L-3, 4-dihydroxyphenyalanine (18F-DOPA-PET). Focal lesionectomy can provide cure from the hypoglycaemia. However the diffuse form is managed medically or by near total pancreatectomy (with high risk of diabetes mellitus). Recent advances in molecular genetics, imaging with 18F-DOPA-PET/CT and novel surgical techniques have changed the clinical approach to patients with HH.
Collapse
Affiliation(s)
- Senthil Senniappan
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Trust WC1N 3JH and Institute of Child Health, University College London, London, WC1N 1EH, UK
| | | | | | | |
Collapse
|
34
|
Identification and functional characterisation of novel glucokinase mutations causing maturity-onset diabetes of the young in Slovakia. PLoS One 2012; 7:e34541. [PMID: 22493702 PMCID: PMC3321013 DOI: 10.1371/journal.pone.0034541] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/01/2012] [Indexed: 11/19/2022] Open
Abstract
Heterozygous glucokinase (GCK) mutations cause a subtype of maturity-onset diabetes of the young (GCK-MODY). Over 600 GCK mutations have been reported of which ∼65% are missense. In many cases co-segregation has not been established and despite the importance of functional studies in ascribing pathogenicity for missense variants these have only been performed for <10% of mutations. The aim of this study was to determine the minimum prevalence of GCK-MODY amongst diabetic subjects in Slovakia by sequencing GCK in 100 Slovakian probands with a phenotype consistent with GCK-MODY and to explore the pathogenicity of identified variants through family and functional studies. Twenty-two mutations were identified in 36 families (17 missense) of which 7 (I110N, V200A, N204D, G258R, F419S, c.580-2A>C, c.1113-1114delGC) were novel. Parental DNA was available for 22 probands (covering 14/22 mutations) and co-segregation established in all cases. Bioinformatic analysis predicted all missense mutations to be damaging. Nine (I110N, V200A, N204D, G223S, G258R, F419S, V244G, L315H, I436N) mutations were functionally evaluated. Basic kinetic analysis explained pathogenicity for 7 mutants which showed reduced glucokinase activity with relative activity indices (RAI) between 0.6 to <0.001 compared to wild-type GCK (1.0). For the remaining 2 mutants additional molecular mechanisms were investigated. Differences in glucokinase regulatory protein (GKRP) -mediated-inhibition of GCK were observed for both L315H & I436N when compared to wild type (IC(50) 14.6±0.1 mM & 20.3±1.6 mM vs.13.3±0.1 mM respectively [p<0.03]). Protein instability as assessed by thermal lability studies demonstrated that both L315H and I436N show marked thermal instability compared to wild-type GCK (RAI at 55°C 8.8±0.8% & 3.1±0.4% vs. 42.5±3.9% respectively [p<0.001]). The minimum prevalence of GCK-MODY amongst Slovakian patients with diabetes was 0.03%. In conclusion, we have identified 22 GCK mutations in 36 Slovakian probands and demonstrate that combining family, bioinformatic and functional studies can aid the interpretation of variants identified by molecular diagnostic screening.
Collapse
|
35
|
Larion M, Miller BG. Homotropic allosteric regulation in monomeric mammalian glucokinase. Arch Biochem Biophys 2012; 519:103-11. [PMID: 22107947 PMCID: PMC3294010 DOI: 10.1016/j.abb.2011.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022]
Abstract
Glucokinase catalyzes the ATP-dependent phosphorylation of glucose, a chemical transformation that represents the rate-limiting step of glycolytic metabolism in the liver and pancreas. Glucokinase is a central regulator of glucose homeostasis as evidenced by its association with two disease states, maturity onset diabetes of the young (MODY) and persistent hyperinsulinemia of infancy (PHHI). Mammalian glucokinase is subject to homotropic allosteric regulation by glucose-the steady-state velocity of glucose-6-phosphate production is not hyperbolic, but instead displays a sigmoidal response to increasing glucose concentrations. The positive cooperativity displayed by glucokinase is intriguing since the enzyme functions as a monomer under physiological conditions and contains only a single binding site for glucose. Despite the existence of several models of kinetic cooperativity in monomeric enzymes, a consensus has yet to be reached regarding the mechanism of allosteric regulation in glucokinase. Experimental evidence collected over the last 45 years by a number of investigators supports a link between cooperativity and slow conformational reorganizations of the glucokinase scaffold. In this review, we summarize advances in our understanding of glucokinase allosteric regulation resulting from recent X-ray crystallographic, pre-equilibrium kinetic and high-resolution nuclear magnetic resonance investigations. We conclude with a brief discussion of unanswered questions regarding the mechanistic basis of kinetic cooperativity in mammalian glucokinase.
Collapse
Affiliation(s)
- Mioara Larion
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | | |
Collapse
|
36
|
Liberatore Junior RDR, Martinelli Junior CE. [Hypoglycemia hypersinsulinemic of infancy]. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2011; 55:177-83. [PMID: 21655865 DOI: 10.1590/s0004-27302011000300001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2001] [Accepted: 04/18/2011] [Indexed: 11/21/2022]
Abstract
The hypoglycemia hyperinsulinemic of the infancy (HHI) is an emergency in the neonatal period. After a short period of fast the avid brain runs out of its main energy substrate. The authors overhaul the diagnosis of HH, not only in the neonatal period, but also in the late infant and in the adolescence. The aspects of the molecular alterations found in these cases, as well like the description of the main mutations are also approached.
Collapse
Affiliation(s)
- Raphael Del Roio Liberatore Junior
- Serviço de Endocrinologia Pediátrica, Departamento de Pediatria e Cirurgia Pediátrica, Faculdade de Medicina de São José do Rio Preto, SP, Brasil.
| | | |
Collapse
|
37
|
Beer NL, van de Bunt M, Colclough K, Lukacs C, Arundel P, Chik CL, Grimsby J, Ellard S, Gloyn AL. Discovery of a novel site regulating glucokinase activity following characterization of a new mutation causing hyperinsulinemic hypoglycemia in humans. J Biol Chem 2011; 286:19118-26. [PMID: 21454522 DOI: 10.1074/jbc.m111.223362] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type 2 diabetes is a global problem, and current ineffective therapeutic strategies pave the way for novel treatments like small molecular activators targeting glucokinase (GCK). GCK activity is fundamental to beta cell and hepatocyte glucose metabolism, and heterozygous activating and inactivating GCK mutations cause hyperinsulinemic hypoglycemia (HH) and maturity onset diabetes of the young (MODY) respectively. Over 600 naturally occurring inactivating mutations have been reported, whereas only 13 activating mutations are documented to date. We report two novel GCK HH mutations (V389L and T103S) at residues where MODY mutations also occur (V389D and T103I). Using recombinant proteins with in vitro assays, we demonstrated that both HH mutants had a greater relative activity index than wild type (6.0 for V389L, 8.4 for T103S, and 1.0 for wild type). This was driven by an increased affinity for glucose (S(0.5), 3.3 ± 0.1 and 3.5 ± 0.1 mm, respectively) versus wild type (7.5 ± 0.1 mm). Correspondingly, the V389D and T103I MODY mutants had markedly reduced relative activity indexes (<0.1). T103I had an altered affinity for glucose (S(0.5), 24.9 ± 0.6 mm), whereas V389D also exhibited a reduced affinity for ATP and decreased catalysis rate (S(0.5), 78.6 ± 4.5 mm; ATP(K(m)), 1.5 ± 0.1 mm; K(cat), 10.3 ± 1.1s(-1)) compared with wild type (ATP(K(m)), 0.4 ± <0.1; K(cat), 62.9 ± 1.2). Both Thr-103 mutants showed reduced inhibition by the endogenous hepatic inhibitor glucokinase regulatory protein. Molecular modeling demonstrated that Thr-103 maps to the allosteric activator site, whereas Val-389 is located remotely to this position and all other previously reported activating mutations, highlighting α-helix 11 as a novel region regulating GCK activity. Our data suggest that pharmacological manipulation of GCK activity at locations distal from the allosteric activator site is possible.
Collapse
Affiliation(s)
- Nicola L Beer
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
A genetic diagnosis is now possible for approximately 45%-55% of patients with hyperinsulinemic hypoglycemia. Understanding the genetic etiology of the disease in these patients is clinically important because a genetic diagnosis will provide information on prognosis, recurrence risk, and importantly may also guide clinical management. The aim of this review is to provide an outline of the 7 different molecular mechanisms underlying this heterogeneous disease and to demonstrate that the clinical phenotype can act as a useful guide when prioritizing the order of genetic testing.
Collapse
Affiliation(s)
- Sarah E Flanagan
- Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, United Kingdom
| | | | | |
Collapse
|
39
|
Hussain K. Mutations in pancreatic ß-cell Glucokinase as a cause of hyperinsulinaemic hypoglycaemia and neonatal diabetes mellitus. Rev Endocr Metab Disord 2010; 11:179-83. [PMID: 20878480 DOI: 10.1007/s11154-010-9147-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucokinase is a key enzyme involved in regulating insulin secretion from the pancreatic ß-cell. The unique role of glucokinase in human glucose physiology is illustrated by the fact that genetic mutations in glucokinase can either cause hyperglycaemia or hypoglycaemia. Heterozygous inactivating mutations in glucokinase cause maturity-onset diabetes of the young (MODY), homozygous inactivating in glucokinase mutations result in permanent neonatal diabetes whereas heterozygous activating glucokinase mutations cause hyperinsulinaemic hypoglycaemia.
Collapse
Affiliation(s)
- Khalid Hussain
- Clinical and Molecular Genetics Unit, The Developmental Endocrinology Research Group, Institute of Child Health, Hospital for Children NHS Trust, University College London, Great Ormond Street, London, UK.
| |
Collapse
|
40
|
Kassem S, Bhandari S, Rodríguez-Bada P, Motaghedi R, Heyman M, García-Gimeno MA, Cobo-Vuilleumier N, Sanz P, Maclaren NK, Rahier J, Glaser B, Cuesta-Muñoz AL. Large islets, beta-cell proliferation, and a glucokinase mutation. N Engl J Med 2010; 362:1348-50. [PMID: 20375417 DOI: 10.1056/nejmc0909845] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanné-Chantelot C, Ellard S, Gloyn AL. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 2010; 30:1512-26. [PMID: 19790256 DOI: 10.1002/humu.21110] [Citation(s) in RCA: 339] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucokinase is a key regulatory enzyme in the pancreatic beta-cell. It plays a crucial role in the regulation of insulin secretion and has been termed the glucose sensor in pancreatic beta-cells. Given its central role in the regulation of insulin release it is understandable that mutations in the gene encoding glucokinase (GCK) can cause both hyper- and hypoglycemia. Heterozygous inactivating mutations in GCK cause maturity-onset diabetes of the young (MODY) subtype glucokinase (GCK), characterized by mild fasting hyperglycemia, which is present at birth but often only detected later in life during screening for other purposes. Homozygous inactivating GCK mutations result in a more severe phenotype presenting at birth as permanent neonatal diabetes mellitus (PNDM). A growing number of heterozygous activating GCK mutations that cause hypoglycemia have also been reported. A total of 620 mutations in the GCK gene have been described in a total of 1,441 families. There are no common mutations, and the mutations are distributed throughout the gene. The majority of activating mutations cluster in a discrete region of the protein termed the allosteric activator site. The identification of a GCK mutation in patients with both hyper- and hypoglycemia has implications for the clinical course and clinical management of their disorder.
Collapse
Affiliation(s)
- Kara K Osbak
- Diabetes Research Laboratories, Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
42
|
Sayed S, Langdon DR, Odili S, Chen P, Buettger C, Schiffman AB, Suchi M, Taub R, Grimsby J, Matschinsky FM, Stanley CA. Extremes of clinical and enzymatic phenotypes in children with hyperinsulinism caused by glucokinase activating mutations. Diabetes 2009; 58:1419-27. [PMID: 19336674 PMCID: PMC2682682 DOI: 10.2337/db08-1792] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Heterozygous activating mutations of glucokinase have been reported to cause hypoglycemia attributable to hyperinsulinism in a limited number of families. We report three children with de novo glucokinase hyperinsulinism mutations who displayed a spectrum of clinical phenotypes corresponding to marked differences in enzyme kinetics. RESEARCH DESIGN AND METHODS Mutations were directly sequenced, and mutants were expressed as glutathionyl S-transferase-glucokinase fusion proteins. Kinetic analysis of the enzymes included determinations of stability, activity index, the response to glucokinase activator drug, and the effect of glucokinase regulatory protein. RESULTS Child 1 had an ins454A mutation, child 2 a W99L mutation, and child 3 an M197I mutation. Diazoxide treatment was effective in child 3 but ineffective in child 1 and only partially effective in child 2. Expression of the mutant glucokinase ins454A, W99L, and M197I enzymes revealed a continuum of high relative activity indexes in the three children (26, 8.9, and 3.1, respectively; wild type = 1.0). Allosteric responses to inhibition by glucokinase regulatory protein and activation by the drug RO0281675 were impaired by the ins454A but unaffected by the M197I mutation. Estimated thresholds for glucose-stimulated insulin release were more severely reduced by the ins454A than the M197I mutation and intermediate in the W99L mutation (1.1, 3.5, and 2.2 mmol/l, respectively; wild type = 5.0 mmol/l). CONCLUSIONS These results confirm the potency of glucokinase as the pancreatic beta-cell glucose sensor, and they demonstrate that responsiveness to diazoxide varies with genotype in glucokinase hyperinsulinism resulting in hypoglycemia, which can be more difficult to control than previously believed.
Collapse
Affiliation(s)
- Samir Sayed
- Clinical Translational Research Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David R. Langdon
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stella Odili
- Diabetes and Endocrinology Research Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Pan Chen
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Carol Buettger
- Diabetes and Endocrinology Research Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Alisa B. Schiffman
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mariko Suchi
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Pathology, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Rebecca Taub
- Department of Metabolic Diseases, Roche, Nutley, New Jersey
| | - Joseph Grimsby
- Department of Metabolic Diseases, Roche, Nutley, New Jersey
| | - Franz M. Matschinsky
- Diabetes and Endocrinology Research Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Department of Biochemistry and Biophysics, the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Charles A. Stanley
- Clinical Translational Research Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Corresponding author: Charles A. Stanley,
| |
Collapse
|
43
|
Abstract
Glucokinase, a unique isoform of the hexokinase enzymes, which are known to phosphorylate D-glucose and other hexoses, was identified during the past three to four decades as a new, promising drug target for type 2 diabetes. Glucokinase serves as a glucose sensor of the insulin-producing pancreatic islet beta-cells, controls the conversion of glucose to glycogen in the liver and regulates hepatic glucose production. Guided by this fundamental knowledge, several glucokinase activators are now being developed, and have so far been shown to lower blood glucose in several animal models of type 2 diabetes and in initial trials in humans with the disease. Here, the scientific basis and current status of this new approach to diabetes therapy are discussed.
Collapse
|
44
|
Abstract
The glucokinase (GCK) gene was one of the first candidate genes to be identified as a human “diabetes gene". Subsequently, important advances were made in understanding the impact of GCK in the regulation of glucose metabolism. Structure elucidation by crystallography provided insight into the kinetic properties of GCK. Protein interaction partners of GCK were discovered. Gene expression studies revealed new facets of the tissue distribution of GCK, including in the brain, and its regulation by insulin in the liver. Metabolic control analysis coupled to gene overexpression and knockout experiments highlighted the unique impact of GCK as a regulator of glucose metabolism. Human GCK mutants were studied biochemically to understand disease mechanisms. Drug development programs identified small molecule activators of GCK as potential antidiabetics. These advances are summarized here, with the aim of offering an integrated view of the role of GCK in the molecular physiology and medicine of glucose homeostasis.
Collapse
Affiliation(s)
- P B Iynedjian
- Department of Cell Physiolgy and Metabolism, University of Geneva School of Medicine, CMU 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
45
|
Christesen HBT, Tribble ND, Molven A, Siddiqui J, Sandal T, Brusgaard K, Ellard S, Njølstad PR, Alm J, Brock Jacobsen B, Hussain K, Gloyn AL. Activating glucokinase (GCK) mutations as a cause of medically responsive congenital hyperinsulinism: prevalence in children and characterisation of a novel GCK mutation. Eur J Endocrinol 2008; 159:27-34. [PMID: 18450771 DOI: 10.1530/eje-08-0203] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Activating glucokinase (GCK) mutations are a rarely reported cause of congenital hyperinsulinism (CHI), but the prevalence of GCK mutations is not known. METHODS From a pooled cohort of 201 non-syndromic children with CHI from three European referral centres (Denmark, n=141; Norway, n=26; UK, n=34), 108 children had no K(ATP)-channel (ABCC8/KCNJ11) gene abnormalities and were screened for GCK mutations. Novel GCK mutations were kinetically characterised. RESULTS In five patients, four heterozygous GCK mutations (S64Y, T65I, W99R and A456V) were identified, out of which S64Y was novel. Two of the mutations arose de novo, three were dominantly inherited. All the five patients were medically responsive. In the combined Danish and Norwegian cohort, the prevalence of GCK-CHI was estimated to be 1.2% (2/167, 95% confidence interval (CI) 0-2.8%) of all the CHI patients. In the three centre combined cohort of 72 medically responsive children without K(ATP)-channel mutations, the prevalence estimate was 6.9% (5/72, 95% CI 1.1-12.8%). All activating GCK mutations mapped to the allosteric activator site. The novel S64Y mutation resulted in an increased affinity for the substrate glucose (S(0.5) 1.49+/-0.08 and 7.39+/-0.05 mmol/l in mutant and wild-type proteins respectively), extrapolating to a relative activity index of approximately 22 compared with the wild type. CONCLUSION In the largest study performed to date on GCK in children with CHI, GCK mutations were found only in medically responsive children who were negative for ABCC8 and KCNJ11 mutations. The estimated prevalence (approximately 7%) suggests that screening for activating GCK mutations is warranted in those patients.
Collapse
Affiliation(s)
- Henrik B T Christesen
- HC Andersen Children's Hospital, Odense University Hospital, DK-5000 Odense C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Christesen HBT, Brusgaard K, Beck Nielsen H, Brock Jacobsen B. Non-insulinoma persistent hyperinsulinaemic hypoglycaemia caused by an activating glucokinase mutation: hypoglycaemia unawareness and attacks. Clin Endocrinol (Oxf) 2008; 68:747-55. [PMID: 18208578 DOI: 10.1111/j.1365-2265.2008.03184.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Adult-onset non-insulinoma persistent hyperinsulinaemic hypoglycaemia (NI-PHH) and the variant NI-pancreatogenous hypoglycaemia syndrome (NIPHS) are genetically unexplained diseases, without reports of hypoglycaemia unawareness or familial inheritance. DESIGN AND PATIENTS In a prospective 8-year follow-up, a boy (i) with NI-PHH since age 14 years, his mother (ii), the mother's brother (iii) and his daughter (iv) were studied. RESULTS Patient (i) was characterized by especially postprandial hypoglycaemia down to 1.6 mmol/l and pronounced variability in diazoxide need with obesity; (ii) had asymptomatic blood glucose down to 2.9 mmol/l, but a severe hypoglycaemic postprandial attack after a slimming diet; (iii) had moderate hypoglycaemic symptoms since childhood and need of frequent eating; and (iv) was asymptomatic until a hypoglycaemic accident in the age of 24. After a slimming diet, symptomatic fasting, but especially postprandial hypoglycaemia occurred (blood glucose 1.9 mmol/l after 19 h fasting; 1.6 mmol/l 3.5 h after OGTT). By CT-scan/endoscopic ultrasound in three of the individuals, insulinoma could not be detected. In all four individuals, an activating glucokinase (GCK) mutation A456V was found. No mutations were found in the ABCC8 or KCNJ11 genes. The patients responded to treatment with diazoxide or octreotide long acting release. CONCLUSION This is the first report to highlight a genetic cause to adult-onset NI-PHH/NIPHS. The activating GCK mutation was dominantly inherited, but only after year-long follow-up and investigations, other family members were diagnosed symptomatic. Hypoglycaemia unawareness seems to be a prominent feature, but hypoglycaemic attacks occur after slimming, especially postprandially. PHH-GCK was medical responsive.
Collapse
|
47
|
Molnes J, Bjørkhaug L, Søvik O, Njølstad PR, Flatmark T. Catalytic activation of human glucokinase by substrate binding - residue contacts involved in the binding of D-glucose to the super-open form and conformational transitions. FEBS J 2008; 275:2467-81. [DOI: 10.1111/j.1742-4658.2008.06391.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|