1
|
Xu T, Pan X, Mi J. Fiber anatomy and histological characteristics of the innervation of the triangular fibrocartilage complex. Surg Radiol Anat 2024:10.1007/s00276-024-03443-5. [PMID: 39495274 DOI: 10.1007/s00276-024-03443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/22/2024] [Indexed: 11/05/2024]
Abstract
PURPOSE To evaluate the precise origin of sensory nerves through gross anatomical study of the TFCC, synthesized alongside imaging and histological techniques. METHOD Six cadaveric forearm specimens were obtained to map the course and branches of the ulnar nerve through macrodissection. Immunohistochemical staining targeting PGP 9.5 and type IV collagen was performed on frozen TFCC sections to visualize nerve fibers microscopically. Computed tomography, magnetic resonance imaging, and arthrography findings were also reviewed. RESULTS At the macroscopic level, the articular branches supplying the TFCC originated predominantly from the dorsal branch of the ulnar nerve. Microscopic analysis revealed positive PGP 9.5 expression and discernible neural marker expression, signifying fine nerve fiber ingrowth within the TFCC. Imaging modalities aided the diagnosis of TFCC lesions. The dorsal cutaneous branch of the ulnar nerve, medial cutaneous nerve of the forearm, and volar sensory branch of the ulnar nerve emerged as the principal nerves innervating the TFCC. CONCLUSIONS This study provides anatomical evidence that the TFCC receives innervation from branches of the ulnar nerve and contains sensory nerve fibers. These findings enhance understanding of potential neuropathic pain mechanisms in TFCC injuries and offer insights to guide surgical interventions. Further investigations are warranted to elucidate the clinical implications.
Collapse
Affiliation(s)
- Tonglong Xu
- Medical College, Soochow University, Suzhou, China
- Wuxi 9th People's Hospital Affiliated to Soochow University, Liangxi Road, No.999, Binhu District, Wuxi, Jiangsu, China
| | - Xiaoyun Pan
- Wuxi 9th People's Hospital Affiliated to Soochow University, Liangxi Road, No.999, Binhu District, Wuxi, Jiangsu, China
| | - Jingyi Mi
- Medical College, Soochow University, Suzhou, China.
- Wuxi 9th People's Hospital Affiliated to Soochow University, Liangxi Road, No.999, Binhu District, Wuxi, Jiangsu, China.
| |
Collapse
|
2
|
Rutter-Locher Z, Kirkham BW, Bannister K, Bennett DL, Buckley CD, Taams LS, Denk F. An interdisciplinary perspective on peripheral drivers of pain in rheumatoid arthritis. Nat Rev Rheumatol 2024; 20:671-682. [PMID: 39242949 DOI: 10.1038/s41584-024-01155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
Pain is one of the most debilitating symptoms of rheumatoid arthritis (RA), and yet remains poorly understood, especially when pain occurs in the absence of synovitis. Without active inflammation, experts most often attribute joint pain to central nervous system dysfunction. However, advances in the past 5 years in both immunology and neuroscience research suggest that chronic pain in RA is also driven by a variety of abnormal interactions between peripheral neurons and mediators produced by resident cells in the local joint environment. In this Review, we discuss these novel insights from an interdisciplinary neuro-immune perspective. We outline a potential working model for the peripheral drivers of pain in RA, which includes autoantibodies, resident immune and mesenchymal cells and their interactions with different subtypes of peripheral sensory neurons. We also offer suggestions for how future collaborative research could be designed to accelerate analgesic drug development.
Collapse
Affiliation(s)
- Zoe Rutter-Locher
- Department of Rheumatology, Guy's Hospital, London, UK
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Kirsty Bannister
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London, London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Leonie S Taams
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| | - Franziska Denk
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London, London, UK.
| |
Collapse
|
3
|
O’Brien J, Niehaus P, Chang K, Remark J, Barrett J, Dasgupta A, Adenegan M, Salimian M, Kevas Y, Chandrasekaran K, Kristian T, Chellappan R, Rubin S, Kiemen A, Lu CPJ, Russell JW, Ho CY. Skin keratinocyte-derived SIRT1 and BDNF modulate mechanical allodynia in mouse models of diabetic neuropathy. Brain 2024; 147:3471-3486. [PMID: 38554393 PMCID: PMC11449144 DOI: 10.1093/brain/awae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical allodynia. The role of skin mechanoreceptors in the development of mechanical allodynia is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aβ axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin-keratinocyte specific BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.
Collapse
Affiliation(s)
- Jennifer O’Brien
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peter Niehaus
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, National Taiwan University, Taipei, 100, Taiwan
| | - Juliana Remark
- Hansjörg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Joy Barrett
- Hansjörg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Abhishikta Dasgupta
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Morayo Adenegan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Mohammad Salimian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Tibor Kristian
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21021, USA
| | - Rajeshwari Chellappan
- Department of Pathology, University of Alabama Birmingham, Birmingham, AL 35233, USA
| | - Samuel Rubin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemistry, College of William and Mary, Williamsburg, VA 23187, USA
| | - Ashley Kiemen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Catherine Pei-Ju Lu
- Hansjörg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Cheng-Ying Ho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Morado-Urbina CE, Kato J, Sandor K, Vazquez-Mora JA, Ängeby Möller K, Simon N, Salcido J, Martinez-Martinez A, Munoz-Islas E, Jimenez-Andrade JM, Svensson CI. Sex-dependent effects of the targeted NGF mutation (R100E) on pain behavior, joint inflammation, and bone erosion in mice. Pain 2024:00006396-990000000-00716. [PMID: 39324959 DOI: 10.1097/j.pain.0000000000003343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/07/2024] [Indexed: 09/27/2024]
Abstract
ABSTRACT Nerve growth factor (NGF)-R100E is a mutated form of human recombinant NGF that reduces the binding of NGF to its p75NTR receptor while retaining its affinity toward the TrkA receptor. Here, we used human wild type NGF and NGF-R100E knock-in mice to investigate the effects of this NGF mutation on inflammation-induced pain-related behaviors and bone loss. The hNGF-R100E mutation did not alter the nerve fiber density in the sciatic nerve, ankle joint synovium, and skin of naïve mice. Withdrawal responses to mechanical, thermal, and cold stimuli before and after joint inflammation induced by intra-articular injection of complete Freund adjuvant (CFA) were similar between human recombinant nerve growth factor-wild type and hNGF-R100E male and female mice while weight bearing and gait analysis revealed significant differences. Intriguingly, hNGF-R100E male and female mice showed only mild changes, indicating lower degrees of deep joint-related pain compared to their wild type counterparts. Furthermore, micro-CT analysis demonstrated that hNGF-R100E female mice, but not males, were protected from CFA-induced bone loss, and mRNA analysis showed a different gene regulation indicating a sex-dependent relationship between NGF, inflammation, and bone loss. In conclusion, our study reveals that the hNGF-R100E mutation renders mice insensitive to inflammation-induced impact on joint loading and gait while preserving the development of the peripheral nociceptive neurons and sensitivity to punctate stimulation of the skin. Notably, the mutation uncovers a sex-dependent relationship between NGF and inflammation-induced bone loss. These findings offer valuable insights into NGF as a target for pain management and the interplay between NGF and bone architecture.
Collapse
Affiliation(s)
- Carlos E Morado-Urbina
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Jungo Kato
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Juan Antonio Vazquez-Mora
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Kristina Ängeby Möller
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Jaira Salcido
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, México
| | - Arisai Martinez-Martinez
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, México
| | - Enriqueta Munoz-Islas
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, México
| | | | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
5
|
Burgess J, Marshall A, Rapteas L, Hamill KJ, Marshall A, Malik RA, Frank B, Alam U. Automated immunohistochemistry of intra-epidermal nerve fibres in skin biopsies: A proof-of-concept study. J Peripher Nerv Syst 2024; 29:329-338. [PMID: 39164223 DOI: 10.1111/jns.12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
AIMS To develop a standardised, automated protocol for detecting protein gene product 9.5 (PGP9.5) positive intra-epidermal nerve fibres (IENFs) in skin biopsies, transitioning from the established manual technique to an automated platform. This automated method, although currently intended for research applications, may improve the accessibility of this diagnostic test for small fibre neuropathy in clinical settings. METHODS Skin biopsies (n = 274) from 100 participants (fibromyalgia syndrome n = 62; idiopathic small fibre neuropathy: n = 16; healthy volunteers: n = 22) were processed using an automated immunohistochemistry platform. IENF quantification was performed by blinded examiners, with reliability assessed via a two-way mixed-effects model to evaluate inter- and intra-observer variability. RESULTS The automated staining system reproduced intra-epidermal nerve fibre density (IENFD) counts consistent with free-floating sections (mean ± standard deviation: free-floating: 5.6 ± 3.4 fibres/mm; automated: 5.9 ± 3.2 fibres/mm). A median difference of 0.3 with a lower bound 95% Confidence Interval (CI) at -0.00005 established non-inferiority against a margin of -0.4 (p = .08). Specifically, the inter-class correlation coefficient (class denotes consistency in measured observations) was 99% (95% CI: 0.9-1), indicating excellent agreement between free-floating and automated methods. The inter- and intra-class coefficient between examiners were both 99% (95% CI: 0.9-0.1) for IENFD, demonstrating high reliability using sections stained using the automated method. INTERPRETATION Automated immunohistochemistry provides high-throughput reliable and reproducible intra-epidermal nerve fibre quantification. This method, although currently proof-of-concept, for research use only, may be more widely deployed in histopathology laboratories to increase the adoption of IENFD assessment for the diagnosis of peripheral neuropathies.
Collapse
Affiliation(s)
- Jamie Burgess
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Anne Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Leandros Rapteas
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Kevin J Hamill
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | | | | | - Uazman Alam
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, UK
| |
Collapse
|
6
|
Anderson S, Cavaletti G, Hood LJ, Polydefkis M, Herrmann DN, Rance G, King B, McMichael AJ, Senna MM, Kim BS, Napatalung L, Wolk R, Zwillich SH, Schaefer G, Gong Y, Sisson M, Posner HB. A phase 2a study investigating the effects of ritlecitinib on brainstem auditory evoked potentials and intraepidermal nerve fiber histology in adults with alopecia areata. Pharmacol Res Perspect 2024; 12:e1204. [PMID: 38969959 PMCID: PMC11226387 DOI: 10.1002/prp2.1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 07/07/2024] Open
Abstract
Reversible axonal swelling and brainstem auditory evoked potential (BAEP) changes were observed in standard chronic (9-month) toxicology studies in dogs treated with ritlecitinib, an oral Janus kinase 3/tyrosine kinase expressed in hepatocellular carcinoma family kinase inhibitor, at exposures higher than the approved 50-mg human dose. To evaluate the clinical relevance of the dog toxicity finding, this phase 2a, double-blind study assessed BAEP changes and intraepidermal nerve fiber (IENF) histology in adults with alopecia areata treated with ritlecitinib. Patients were randomized to receive oral ritlecitinib 50 mg once daily (QD) with a 4-week loading dose of 200 mg QD or placebo for 9 months (placebo-controlled phase); they then entered the active-therapy extension and received ritlecitinib 50 mg QD (with a 4-week loading dose of 200 mg in patients switching from placebo). Among the 71 patients, no notable mean differences in change from baseline (CFB) in Waves I-V interwave latency (primary outcome) or Wave V amplitude on BAEP at a stimulus intensity of 80 dB nHL were observed in the ritlecitinib or placebo group at Month 9, with no notable differences in interwave latency or Wave V amplitude between groups. The CFB in mean or median IENF density and in percentage of IENFs with axonal swellings was minimal and similar between groups at Month 9. Ritlecitinib treatment was also not associated with an imbalanced incidence of neurological and audiological adverse events. These results provide evidence that the BAEP and axonal swelling finding in dogs are not clinically relevant in humans.
Collapse
Affiliation(s)
- Samira Anderson
- Department of Hearing and Speech SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Linda J. Hood
- Department of Hearing and Speech SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Michael Polydefkis
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Gary Rance
- Department of Audiology and Speech PathologyThe University of MelbourneCarltonVictoriaAustralia
| | - Brett King
- Department of DermatologyYale University School of MedicineNew HavenConnecticutUSA
| | - Amy J. McMichael
- Department of DermatologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Maryanne M. Senna
- Department of DermatologyLahey Hospital and Medical CenterBurlingtonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Brian S. Kim
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lynne Napatalung
- Pfizer IncNew YorkNew YorkUSA
- Mount Sinai HospitalNew YorkNew YorkUSA
| | | | | | | | | | | | | |
Collapse
|
7
|
Weinberg RL, Kim S, Pang Z, Awad S, Hanback T, Pan B, Bettin L, Chang D, Polydefkis MJ, Qu L, Caterina MJ. Pain Hypersensitivity in SLURP1 and SLURP2 Knock-out Mouse Models of Hereditary Palmoplantar Keratoderma. J Neurosci 2024; 44:e0260232024. [PMID: 38866482 PMCID: PMC11236581 DOI: 10.1523/jneurosci.0260-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
SLURP1 and SLURP2 are both small secreted members of the Ly6/u-PAR family of proteins and are highly expressed in keratinocytes. Loss-of-function mutations in SLURP1 lead to a rare autosomal recessive palmoplantar keratoderma (PPK), Mal de Meleda (MdM), which is characterized by diffuse, yellowish palmoplantar hyperkeratosis. Some individuals with MdM experience pain in conjunction with the hyperkeratosis that has been attributed to fissures or microbial superinfection within the affected skin. By comparison, other hereditary PPKs such as pachyonychia congenita and Olmsted syndrome show prevalent pain in PPK lesions. Two mouse models of MdM, Slurp1 knock-out and Slurp2X knock-out, exhibit robust PPK in all four paws. However, whether the sensory experience of these animals includes augmented pain sensitivity remains unexplored. In this study, we demonstrate that both models exhibit hypersensitivity to mechanical and thermal stimuli as well as spontaneous pain behaviors in males and females. Anatomical analysis revealed slightly reduced glabrous skin epidermal innervation and substantial alterations in palmoplantar skin immune composition in Slurp2X knock-out mice. Primary sensory neurons innervating hindpaw glabrous skin from Slurp2X knock-out mice exhibit increased incidence of spontaneous activity and mechanical hypersensitivity both in vitro and in vivo. Thus, Slurp knock-out mice exhibit polymodal PPK-associated pain that is associated with both immune alterations and neuronal hyperexcitability and might therefore be useful for the identification of therapeutic targets to treat PPK-associated pain.
Collapse
Affiliation(s)
- Rachel L Weinberg
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Suyeon Kim
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Zixuan Pang
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Sandy Awad
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Tyger Hanback
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205
| | - Baohan Pan
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Leonie Bettin
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Dennis Chang
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Michael J Polydefkis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Lintao Qu
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Michael J Caterina
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
8
|
Mehling K, Becker J, Chen J, Scriba S, Kindl G, Jakubietz R, Sommer C, Hartmannsberger B, Rittner HL. Bilateral deficiency of Meissner corpuscles and papillary microvessels in patients with acute complex regional pain syndrome. Pain 2024; 165:1613-1624. [PMID: 38335004 PMCID: PMC11190899 DOI: 10.1097/j.pain.0000000000003168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 02/10/2024]
Abstract
ABSTRACT Complex regional pain syndrome (CRPS) presents postinjury with disproportionate pain and neuropathic, autonomic, motor symptoms, and skin texture affection. However, the origin of these multiplex changes is unclear. Skin biopsies offer a window to analyze the somatosensory and vascular system as well as skin trophicity with their protecting barriers. In previous studies, barrier-protective exosomal microRNAs were altered in CRPS. We here postulated that tissue architecture and barrier proteins are already altered at the beginning of CRPS. We analyzed ipsilateral and contralateral skin biopsies of 20 fully phenotyped early CRPS patients compared with 20 age- and sex-matched healthy controls. We established several automated unbiased methods to comprehensively analyze microvessels and somatosensory receptors as well as barrier proteins, including claudin-1, claudin-5, and claudin-19. Meissner corpuscles in the skin were bilaterally reduced in acute CRPS patients with some of them lacking these completely. The number of Merkel cells and the intraepidermal nerve fiber density were not different between the groups. Dermal papillary microvessels were bilaterally less abundant in CRPS, especially in patients with allodynia. Barrier proteins in keratinocytes, perineurium of dermal nerves, Schwann cells, and papillary microvessels were not affected in early CRPS. Bilateral changes in the tissue architecture in early CRPS might indicate a predisposition for CRPS that manifests after injury. Further studies should evaluate whether these changes might be used to identify risk patients for CRPS after trauma and as biomarkers for outcome.
Collapse
Affiliation(s)
- Katharina Mehling
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Juliane Becker
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Jeremy Chen
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Sabrina Scriba
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Gudrun Kindl
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Rafael Jakubietz
- Department Surgery II, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Beate Hartmannsberger
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Heike L. Rittner
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Yum Y, Park S, Nam YH, Yoon J, Song H, Kim HJ, Lim J, Jung SC. Therapeutic Effect of Schwann Cell-Like Cells Differentiated from Human Tonsil-Derived Mesenchymal Stem Cells on Diabetic Neuropathy in db/db Mice. Tissue Eng Regen Med 2024; 21:761-776. [PMID: 38619758 PMCID: PMC11187028 DOI: 10.1007/s13770-024-00638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Diabetic neuropathy (DN) is the most common complication of diabetes, and approximately 50% of patients with this disease suffer from peripheral neuropathy. Nerve fiber loss in DN occurs due to myelin defects and is characterized by symptoms of impaired nerve function. Schwann cells (SCs) are the main support cells of the peripheral nervous system and play important roles in several pathways contributing to the pathogenesis and development of DN. We previously reported that human tonsil-derived mesenchymal stem cells differentiated into SCs (TMSC-SCs), named neuronal regeneration-promoting cells (NRPCs), which cells promoted nerve regeneration in animal models with peripheral nerve injury or hereditary peripheral neuropathy. METHODS In this study, NRPCs were injected into the thigh muscles of BKS-db/db mice, a commonly used type 2 diabetes model, and monitored for 26 weeks. Von Frey test, sensory nerve conduction study, and staining of sural nerve, hind foot pad, dorsal root ganglia (DRG) were performed after NRPCs treatment. RESULTS Von Frey test results showed that the NRPC treatment group (NRPC group) showed faster responses to less force than the vehicle group. Additionally, remyelination of sural nerve fibers also increased in the NRPC group. After NRPCs treatment, an improvement in response to external stimuli and pain sensation was expected through increased expression of PGP9.5 in the sole and TRPV1 in the DRG. CONCLUSION The NRPCs treatment may alleviate DN through the remyelination and the recovery of sensory neurons, could provide a better life for patients suffering from complications of this disease.
Collapse
Affiliation(s)
- Yoonji Yum
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Yu Hwa Nam
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Juhee Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Hyeryung Song
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Ho Jin Kim
- Cellatoz Therapeutics Lnc., 17, Pangyo-ro 228beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13487, Republic of Korea
| | - Jaeseung Lim
- Cellatoz Therapeutics Lnc., 17, Pangyo-ro 228beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13487, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
- Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
| |
Collapse
|
10
|
Klein T, Grüner J, Breyer M, Schlegel J, Schottmann NM, Hofmann L, Gauss K, Mease R, Erbacher C, Finke L, Klein A, Klug K, Karl-Schöller F, Vignolo B, Reinhard S, Schneider T, Günther K, Fink J, Dudek J, Maack C, Klopocki E, Seibel J, Edenhofer F, Wischmeyer E, Sauer M, Üçeyler N. Small fibre neuropathy in Fabry disease: a human-derived neuronal in vitro disease model and pilot data. Brain Commun 2024; 6:fcae095. [PMID: 38638148 PMCID: PMC11024803 DOI: 10.1093/braincomms/fcae095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/24/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Acral burning pain triggered by fever, thermal hyposensitivity and skin denervation are hallmarks of small fibre neuropathy in Fabry disease, a life-threatening X-linked lysosomal storage disorder. Variants in the gene encoding alpha-galactosidase A may lead to impaired enzyme activity with cellular accumulation of globotriaosylceramide. To study the underlying pathomechanism of Fabry-associated small fibre neuropathy, we generated a neuronal in vitro disease model using patient-derived induced pluripotent stem cells from three Fabry patients and one healthy control. We further generated an isogenic control line via gene editing. We subjected induced pluripotent stem cells to targeted peripheral neuronal differentiation and observed intra-lysosomal globotriaosylceramide accumulations in somas and neurites of Fabry sensory neurons using super-resolution microscopy. At functional level, patch-clamp analysis revealed a hyperpolarizing shift of voltage-gated sodium channel steady-state inactivation kinetics in isogenic control neurons compared with healthy control neurons (P < 0.001). Moreover, we demonstrate a drastic increase in Fabry sensory neuron calcium levels at 39°C mimicking clinical fever (P < 0.001). This pathophysiological phenotype was accompanied by thinning of neurite calibres in sensory neurons differentiated from induced pluripotent stem cells derived from Fabry patients compared with healthy control cells (P < 0.001). Linear-nonlinear cascade models fit to spiking responses revealed that Fabry cell lines exhibit altered single neuron encoding properties relative to control. We further observed mitochondrial aggregation at sphingolipid accumulations within Fabry sensory neurites utilizing a click chemistry approach together with mitochondrial dysmorphism compared with healthy control cells. We pioneer pilot insights into the cellular mechanisms contributing to pain, thermal hyposensitivity and denervation in Fabry small fibre neuropathy and pave the way for further mechanistic in vitro studies in Fabry disease and the development of novel treatment approaches.
Collapse
Affiliation(s)
- Thomas Klein
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Julia Grüner
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Maximilian Breyer
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics, University of Würzburg, 97074 Würzburg, Germany
| | | | - Lukas Hofmann
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Kevin Gauss
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Rebecca Mease
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Christoph Erbacher
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Laura Finke
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Alexandra Klein
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Katharina Klug
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | | | - Bettina Vignolo
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics, University of Würzburg, 97074 Würzburg, Germany
| | - Tamara Schneider
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Katharina Günther
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Julian Fink
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center CHFC, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center CHFC, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Eva Klopocki
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Frank Edenhofer
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Erhard Wischmeyer
- Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, 97074 Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
- Würzburg Fabry Center for Interdisciplinary Therapy (FAZIT), University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
11
|
O’Brien J, Niehaus P, Chang K, Remark J, Barrett J, Dasgupta A, Adenegan M, Salimian M, Kevas Y, Chandrasekaran K, Kristian T, Chellappan R, Rubin S, Kiemen A, Lu CPJ, Russell JW, Ho CY. Skin keratinocyte-derived SIRT1 and BDNF modulate mechanical allodynia in mouse models of diabetic neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.24.523981. [PMID: 36747753 PMCID: PMC9900813 DOI: 10.1101/2023.01.24.523981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical pain. The role of skin mechanoreceptors in the development of mechanical pain (allodynia) is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aβ axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.
Collapse
Affiliation(s)
- Jennifer O’Brien
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Peter Niehaus
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, National Taiwan University, Taipei, 100, Taiwan
| | - Juliana Remark
- Hansj rg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Joy Barrett
- Hansj rg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Abhishikta Dasgupta
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Morayo Adenegan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Mohammad Salimian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, 21201, USA
| | - Tibor Kristian
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, 21201, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rajeshwari Chellappan
- Department of Pathology, University of Alabama Birmingham, Birmingham, AL, 35233, USA
| | - Samuel Rubin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemistry, College of William and Mary, Williamsburg, VA, 23187, USA
| | - Ashley Kiemen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Catherine Pei-Ju Lu
- Hansj rg Wyss Department of Plastic Surgery, Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - James W. Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, 21201, USA
| | - Cheng-Ying Ho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
12
|
Gendre T, Lefaucheur JP, Nordine T, Baba-Amer Y, Authier FJ, Devaux J, Créange A. Characterizing Acute-Onset Small Fiber Neuropathy. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200195. [PMID: 38170952 PMCID: PMC10766082 DOI: 10.1212/nxi.0000000000200195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND AND OBJECTIVES Immune-mediated small fiber neuropathy (SFN) is increasingly recognized. Acute-onset SFN (AOSFN) remains poorly described. Herein, we report a series of AOSFN cases in which immune origins are debatable. METHODS We included consecutive patients with probable or definite AOSFN. Diagnosis of SFN was based on the NEURODIAB criteria. Acute onset was considered when the maximum intensity and extension of both symptoms and signs were reached within 28 days. We performed the following investigations: clinical examination, neurophysiologic assessment encompassing a nerve conduction study to rule out large fiber neuropathy, laser-evoked potentials (LEPs), warm detection thresholds (WDTs), electrochemical skin conductance (ESC), epidermal nerve fiber density (ENF), and patient serum reactivity against mouse sciatic nerve teased fibers, mouse dorsal root ganglion (DRG) sections, and cultured DRG. The serum reactivity of healthy subjects (n = 10) and diseased controls (n = 12) was also analyzed. Data on baseline characteristics, biological investigations, and disease course were collected. RESULTS Twenty patients presenting AOSFN were identified (60% women; median age: 44.2 years [interquartile range: 35.7-56.2]). SFN was definite in 18 patients (90%) and probable in 2 patients. A precipitating event was present in 16 patients (80%). The median duration of the progression phase was 14 days [5-28]. Pain was present in 17 patients (85%). Twelve patients (60%) reported autonomic involvement. The clinical pattern was predominantly non-length-dependent (85%). Diagnosis was confirmed by abnormal LEPs (60%), ENF (55%), WDT (39%), or ESC (31%). CSF analysis was normal in 5 of 5 patients. Antifibroblast growth factor 3 antibodies were positive in 4 of 18 patients (22%) and anticontactin-associated protein-2 antibodies in one patient. In vitro studies showed IgG immunoreactivity against nerve tissue in 14 patients (70%), but not in healthy subjects or diseased controls. Patient serum antibodies bound to unmyelinated fibers, Schwann cells, juxtaparanodes, paranodes, or DRG. Patients' condition improved after a short course of oral corticosteroids (3/3). Thirteen patients (65%) showed partial or complete recovery. Others displayed relapses or a chronic course. DISCUSSION AOSFN primarily presents as an acute, non-length-dependent, symmetric painful neuropathy with a variable disease course. An immune-mediated origin has been suggested based on in vitro immunohistochemical studies.
Collapse
Affiliation(s)
- Thierry Gendre
- From the Service de Neurologie (T.G., A.C.), CHU Henri Mondor APHP; Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France (T.G., J.-P.L., T.N., F.-J.A., A.C.); Unité de Neurophysiologie Clinique (J.-P.L., T.N.), CHU Henri Mondor APHP; Unité de Recherche EA 4391 (J.-P.L., T.N., A.C.), Faculté de Santé, UniversitéParis Est Créteil; IMRB INSERM U955-Equipe 10 (Y.B.-A., F.-J.A.), UniversitéParis Est Créteil; Service d'Anatomo-Pathologie (F.-J.A.), CHU Henri Mondor APHP, Créteil; and Institut de Génomique Fonctionnelle (J.D.), Universitéde Montpellier, CNRS, INSERM, France
| | - Jean-Pascal Lefaucheur
- From the Service de Neurologie (T.G., A.C.), CHU Henri Mondor APHP; Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France (T.G., J.-P.L., T.N., F.-J.A., A.C.); Unité de Neurophysiologie Clinique (J.-P.L., T.N.), CHU Henri Mondor APHP; Unité de Recherche EA 4391 (J.-P.L., T.N., A.C.), Faculté de Santé, UniversitéParis Est Créteil; IMRB INSERM U955-Equipe 10 (Y.B.-A., F.-J.A.), UniversitéParis Est Créteil; Service d'Anatomo-Pathologie (F.-J.A.), CHU Henri Mondor APHP, Créteil; and Institut de Génomique Fonctionnelle (J.D.), Universitéde Montpellier, CNRS, INSERM, France
| | - Tarik Nordine
- From the Service de Neurologie (T.G., A.C.), CHU Henri Mondor APHP; Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France (T.G., J.-P.L., T.N., F.-J.A., A.C.); Unité de Neurophysiologie Clinique (J.-P.L., T.N.), CHU Henri Mondor APHP; Unité de Recherche EA 4391 (J.-P.L., T.N., A.C.), Faculté de Santé, UniversitéParis Est Créteil; IMRB INSERM U955-Equipe 10 (Y.B.-A., F.-J.A.), UniversitéParis Est Créteil; Service d'Anatomo-Pathologie (F.-J.A.), CHU Henri Mondor APHP, Créteil; and Institut de Génomique Fonctionnelle (J.D.), Universitéde Montpellier, CNRS, INSERM, France
| | - Yasmine Baba-Amer
- From the Service de Neurologie (T.G., A.C.), CHU Henri Mondor APHP; Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France (T.G., J.-P.L., T.N., F.-J.A., A.C.); Unité de Neurophysiologie Clinique (J.-P.L., T.N.), CHU Henri Mondor APHP; Unité de Recherche EA 4391 (J.-P.L., T.N., A.C.), Faculté de Santé, UniversitéParis Est Créteil; IMRB INSERM U955-Equipe 10 (Y.B.-A., F.-J.A.), UniversitéParis Est Créteil; Service d'Anatomo-Pathologie (F.-J.A.), CHU Henri Mondor APHP, Créteil; and Institut de Génomique Fonctionnelle (J.D.), Universitéde Montpellier, CNRS, INSERM, France
| | - François-Jérôme Authier
- From the Service de Neurologie (T.G., A.C.), CHU Henri Mondor APHP; Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France (T.G., J.-P.L., T.N., F.-J.A., A.C.); Unité de Neurophysiologie Clinique (J.-P.L., T.N.), CHU Henri Mondor APHP; Unité de Recherche EA 4391 (J.-P.L., T.N., A.C.), Faculté de Santé, UniversitéParis Est Créteil; IMRB INSERM U955-Equipe 10 (Y.B.-A., F.-J.A.), UniversitéParis Est Créteil; Service d'Anatomo-Pathologie (F.-J.A.), CHU Henri Mondor APHP, Créteil; and Institut de Génomique Fonctionnelle (J.D.), Universitéde Montpellier, CNRS, INSERM, France
| | - Jérôme Devaux
- From the Service de Neurologie (T.G., A.C.), CHU Henri Mondor APHP; Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France (T.G., J.-P.L., T.N., F.-J.A., A.C.); Unité de Neurophysiologie Clinique (J.-P.L., T.N.), CHU Henri Mondor APHP; Unité de Recherche EA 4391 (J.-P.L., T.N., A.C.), Faculté de Santé, UniversitéParis Est Créteil; IMRB INSERM U955-Equipe 10 (Y.B.-A., F.-J.A.), UniversitéParis Est Créteil; Service d'Anatomo-Pathologie (F.-J.A.), CHU Henri Mondor APHP, Créteil; and Institut de Génomique Fonctionnelle (J.D.), Universitéde Montpellier, CNRS, INSERM, France
| | - Alain Créange
- From the Service de Neurologie (T.G., A.C.), CHU Henri Mondor APHP; Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France (T.G., J.-P.L., T.N., F.-J.A., A.C.); Unité de Neurophysiologie Clinique (J.-P.L., T.N.), CHU Henri Mondor APHP; Unité de Recherche EA 4391 (J.-P.L., T.N., A.C.), Faculté de Santé, UniversitéParis Est Créteil; IMRB INSERM U955-Equipe 10 (Y.B.-A., F.-J.A.), UniversitéParis Est Créteil; Service d'Anatomo-Pathologie (F.-J.A.), CHU Henri Mondor APHP, Créteil; and Institut de Génomique Fonctionnelle (J.D.), Universitéde Montpellier, CNRS, INSERM, France
| |
Collapse
|
13
|
Hartmannsberger B, Scriba S, Guidolin C, Becker J, Mehling K, Doppler K, Sommer C, Rittner HL. Transient immune activation without loss of intraepidermal innervation and associated Schwann cells in patients with complex regional pain syndrome. J Neuroinflammation 2024; 21:23. [PMID: 38233858 PMCID: PMC10792943 DOI: 10.1186/s12974-023-02969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) develops after injury and is characterized by disproportionate pain, oedema, and functional loss. CRPS has clinical signs of neuropathy as well as neurogenic inflammation. Here, we asked whether skin biopsies could be used to differentiate the contribution of these two systems to ultimately guide therapy. To this end, the cutaneous sensory system including nerve fibres and the recently described nociceptive Schwann cells as well as the cutaneous immune system were analysed. METHODS We systematically deep-phenotyped CRPS patients and immunolabelled glabrous skin biopsies from the affected ipsilateral and non-affected contralateral finger of 19 acute (< 12 months) and 6 chronic (> 12 months after trauma) CRPS patients as well as 25 sex- and age-matched healthy controls (HC). Murine foot pads harvested one week after sham or chronic constriction injury were immunolabelled to assess intraepidermal Schwann cells. RESULTS Intraepidermal Schwann cells were detected in human skin of the finger-but their density was much lower compared to mice. Acute and chronic CRPS patients suffered from moderate to severe CRPS symptoms and corresponding pain. Most patients had CRPS type I in the warm category. Their cutaneous neuroglial complex was completely unaffected despite sensory plus signs, e.g. allodynia and hyperalgesia. Cutaneous innate sentinel immune cells, e.g. mast cells and Langerhans cells, infiltrated or proliferated ipsilaterally independently of each other-but only in acute CRPS. No additional adaptive immune cells, e.g. T cells and plasma cells, infiltrated the skin. CONCLUSIONS Diagnostic skin punch biopsies could be used to diagnose individual pathophysiology in a very heterogenous disease like acute CRPS to guide tailored treatment in the future. Since numbers of inflammatory cells and pain did not necessarily correlate, more in-depth analysis of individual patients is necessary.
Collapse
Affiliation(s)
- Beate Hartmannsberger
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Sabrina Scriba
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Carolina Guidolin
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Juliane Becker
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Katharina Mehling
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany.
| |
Collapse
|
14
|
Chandrasekaran K, Najimi N, Sagi AR, Yarlagadda S, Salimian M, Arvas MI, Hedayat AF, Kevas Y, Kadakia A, Kristian T, Russell JW. NAD + Precursors Reverse Experimental Diabetic Neuropathy in Mice. Int J Mol Sci 2024; 25:1102. [PMID: 38256175 PMCID: PMC10816262 DOI: 10.3390/ijms25021102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Abnormal NAD+ signaling has been implicated in axonal degeneration in diabetic peripheral neuropathy (DPN). We hypothesized that supplementing NAD+ precursors could alleviate DPN symptoms through increasing the NAD+ levels and activating the sirtuin-1 (SIRT1) protein. To test this, we exposed cultured Dorsal Root Ganglion neurons (DRGs) to Nicotinamide Riboside (NR) or Nicotinamide Mononucleotide (NMN), which increased the levels of NAD+, the SIRT1 protein, and the deacetylation activity that is associated with increased neurite growth. A SIRT1 inhibitor blocked the neurite growth induced via NR or NMN. We then induced neuropathy in C57BL6 mice with streptozotocin (STZ) or a high fat diet (HFD) and administered NR or NMN for two months. Both the STZ and HFD mice developed neuropathy, which was reversed through the NR or NMN administration: sensory function improved, nerve conduction velocities normalized, and intraepidermal nerve fibers were restored. The NAD+ levels and SIRT1 activity were reduced in the DRGs from diabetic mice but were preserved with the NR or NMN treatment. We also tested the effect of NR or NMN administration in mice that overexpress the SIRT1 protein in neurons (nSIRT1 OE) and found no additional benefit from the addition of the drug. These findings suggest that supplementing with NAD+ precursors or activating SIRT1 may be a promising treatment for DPN.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Neda Najimi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Avinash R. Sagi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Sushuma Yarlagadda
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Muhammed Ikbal Arvas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Ahmad F. Hedayat
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Anand Kadakia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Tibor Kristian
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - James W. Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- CAMC Institute for Academic Medicine, 415 Morris Street Suite 300, Charleston, WV 25301, USA
| |
Collapse
|
15
|
Ozdag Acarli AN, Tuzun E, Sanli E, Koral G, Akbayir E, Cakar A, Sirin NG, Soysal A, Aysal F, Durmus H, Parman Y, Yilmaz V. Disease activity in chronic inflammatory demyelinating polyneuropathy: association between circulating B-cell subsets, cytokine levels, and clinical outcomes. Clin Exp Immunol 2024; 215:65-78. [PMID: 37638717 PMCID: PMC10776240 DOI: 10.1093/cei/uxad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP), a common and treatable autoimmune neuropathy, is frequently misdiagnosed. The aim of this study is to evaluate the relationship between immunological markers and clinical outcome measures in a mixed cohort of patients with typical CIDP and CIDP variants at different disease stages. Twenty-three typical, 16 multifocal and five distal CIDP patients were included. Twenty-five sex and age-matched healthy controls and 12 patients with Charcot-Marie-Tooth type 1A (CMT1A) disease served as controls. Peripheral B-cell populations were analyzed by flow cytometry. IL6, IL10, TNFA mRNA and mir-21, mir-146a, and mir-155-5p expression levels were evaluated by real-time polymerase chain reaction in peripheral blood mononuclear cells (PBMC) and/or skin biopsy specimens. Results were then assessed for a possible association with clinical disability scores and intraepidermal nerve fiber densities (IENFD) in the distal leg. We detected a significant reduction in naive B cells (P ≤ 0.001), plasma cells (P ≤ 0.001) and regulatory B cells (P < 0.05), and an elevation in switched memory B cells (P ≤ 0.001) in CIDP compared to healthy controls. CMT1A and CIDP patients had comparable B-cell subset distribution. CIDP cases had significantly higher TNFA and IL10 gene expression levels in PBMC compared to healthy controls (P < 0.05 and P ≤ 0.01, respectively). IENFDs in the distal leg showed a moderate negative correlation with switched memory B-cell ratios (r = -0.51, P < 0.05) and a moderate positive correlation with plasma cell ratios (r = 0.46, P < 0.05). INCAT sum scores showed a moderate positive correlation with IL6 gene expression levels in PBMC (r = 0.54, P < 0.05). Altered B-cell homeostasis and IL10 and TNFA gene expression levels imply chronic antigen exposure and overactivity in the humoral immune system, and seem to be a common pathological pathway in both typical CIDP and CIDP variants.
Collapse
Affiliation(s)
- Ayse Nur Ozdag Acarli
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tuzun
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Sanli
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gizem Koral
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ece Akbayir
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Arman Cakar
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nermin Gorkem Sirin
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Neurology, Bakirkoy Mazhar Osman Mental Health and Neurological Diseases Education and Research Hospital, Istanbul, Turkey
| | - Aysun Soysal
- Department of Neurology, Bakirkoy Mazhar Osman Mental Health and Neurological Diseases Education and Research Hospital, Istanbul, Turkey
| | - Fikret Aysal
- Department of Neurology, Bakirkoy Mazhar Osman Mental Health and Neurological Diseases Education and Research Hospital, Istanbul, Turkey
| | - Hacer Durmus
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yesim Parman
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
16
|
Gangfuß A, Rating P, Ferreira T, Hentschel A, Marina AD, Kölbel H, Sickmann A, Abicht A, Kraft F, Ruck T, Böhm J, Schänzer A, Schara-Schmidt U, Neuhann TM, Horvath R, Roos A. A Homozygous NDUFS6 Variant Associated with Neuropathy and Optic Atrophy. J Neuromuscul Dis 2024; 11:485-491. [PMID: 38217609 DOI: 10.3233/jnd-230181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Background The NADH dehydrogenase [ubiquinone] iron-sulfur protein 6 (NDUFS6) gene encodes for an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I). Bi-allelic NDUFS6 variants have been linked with a severe disorder mostly reported as a lethal infantile mitochondrial disease (LMID) or Leigh syndrome (LS). Objective Here, we identified a homozygous variant (c.309 + 5 G > A) in NDUFS6 in one male patient with axonal neuropathy accompanied by loss of small fibers in skin biopsy and further complicated by optic atrophy and borderline intellectual disability. Methods To address the pathogenicity of the variant, biochemical studies (mtDNA copy number quantification, ELISA, Proteomic profiling) of patient-derived leukocytes were performed. Results The analyses revealed loss of NDUFS6 protein associated with a decrease of three further mitochondrial NADH dehydrogenase subunit/assembly proteins (NDUFA12, NDUFS4 and NDUFV1). Mitochondrial copy number is not altered in leukocytes and the mitochondrial biomarker GDF15 is not significantly changed in serum. Conclusions Hence, our combined clinical and biochemical data strengthen the concept of NDUFS6 being causative for a very rare form of axonal neuropathy associated with optic atrophy and borderline intellectual disability, and thus expand (i) the molecular genetic landscape of neuropathies and (ii) the clinical spectrum of NDUFS6-associated phenotypes.
Collapse
Affiliation(s)
- Andrea Gangfuß
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Philipp Rating
- Department of Ophthalmology, University Duisburg-Essen, Essen, Germany
| | - Tomas Ferreira
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Dortmund, Germany
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Heike Kölbel
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. Dortmund, Germany
| | - Angela Abicht
- Department of Neurology, Friedrich-Baur Institute, Munich, Germany
- MGZ - Medizinisch Genetisches Zentrum, Munich, Germany
| | - Florian Kraft
- Institute of Human Genetics und Genomic Medicine, RWTH-Aachen University, Aachen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johann Böhm
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | | | - Rita Horvath
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
17
|
Jänsch S, Evdokimov D, Egenolf N, Meyer zu Altenschildesche C, Kreß L, Üçeyler N. Distinguishing fibromyalgia syndrome from small fiber neuropathy: a clinical guide. Pain Rep 2024; 9:e1136. [PMID: 38283649 PMCID: PMC10811691 DOI: 10.1097/pr9.0000000000001136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/04/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Fibromyalgia syndrome (FMS) and small fiber neuropathy (SFN) are distinct pain conditions that share commonalities and may be challenging as for differential diagnosis. Objective To comprehensively investigate clinical characteristics of women with FMS and SFN to determine clinically applicable parameters for differentiation. Methods We retrospectively analyzed medical records of 158 women with FMS and 53 with SFN focusing on pain-specific medical and family history, accompanying symptoms, additional diseases, and treatment. We investigated data obtained using standardized pain, depression, and anxiety questionnaires. We further analyzed test results and findings obtained in standardized small fiber tests. Results FMS patients were on average ten years younger at symptom onset, described higher pain intensities requiring frequent change of pharmaceutics, and reported generalized pain compared to SFN. Pain in FMS was accompanied by irritable bowel or sleep disturbances, and in SFN by paresthesias, numbness, and impaired glucose metabolism (P < 0.01 each). Family history was informative for chronic pain and affective disorders in FMS (P < 0.001) and for neurological disorders in SFN patients (P < 0.001). Small fiber pathology in terms of skin denervation and/or thermal sensory threshold elevation was present in 110/158 (69.7 %) FMS patients and 39/53 (73.6 %) SFN patients. FMS patients mainly showed proximally reduced skin innervation and higher corneal nerve branch densities (p<0.001) whereas SFN patients were characterized by reduced cold detection and prolonged electrical A-delta conduction latencies (P < 0.05). Conclusions Our data show that FMS and SFN differ substantially. Detailed pain, drug and family history, investigating blood glucose metabolism, and applying differential small fiber tests may help to improve diagnostic differentiation and targeted therapy.
Collapse
Affiliation(s)
- Sarah Jänsch
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Dimitar Evdokimov
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Nadine Egenolf
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Caren Meyer zu Altenschildesche
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Luisa Kreß
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Meyer zu Altenschildesche is now with the Department of Dermatology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
18
|
Pinton S, Vacchi E, Chiaro G, Raimondi A, Tzankov A, Gerber B, Gobbi C, Kaelin-Lang A, Melli G. Amyloid detection and typing yield of skin biopsy in systemic amyloidosis and polyneuropathy. Ann Clin Transl Neurol 2023; 10:2347-2359. [PMID: 37849451 PMCID: PMC10723241 DOI: 10.1002/acn3.51924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
OBJECTIVE Disease-modifying therapies are available for amyloidosis but are ineffective if end-organ damage is severe. As small fiber neuropathy is an early and common feature of amyloidosis, we assessed detection and typing yield of skin biopsy for amyloid in patients with confirmed systemic amyloidosis and neuropathic symptoms. METHODS In this case-control study, patients with transthyretin and light chain amyloidosis (ATTRv, ATTRwt, and AL) were consecutively recruited. They were sex and age-matched to three control groups (1) non-neuropathic controls (NNC), (2) monoclonal gammopathy of undetermined significance (MGUS), and (3) other neuropathic disease controls (ONC). Patients underwent a double 3 mm skin biopsy in proximal and distal leg. Amyloid index and burden, protein typing by immuno-electron microscopy, intraepidermal nerve fiber density, electroneuromyography, and clinical characteristics were analyzed. RESULTS We studied 15 subjects with confirmed systemic amyloidosis, 20 NNC, 18 MGUS, and 20 ONC. Amyloid was detected in 100% of patients with amyloidosis (87% in ankle and 73% in thigh). It was not detected in any of the control groups. A small fiber neuropathy was encountered in 100% of amyloidosis patients, in 80% of MGUS, and in 78% of ONC. Amyloid burden was higher in ATTRv, followed by AL and ATTRwt. The ultrastructural examination allowed the identification of the precursor protein by immunotyping in most of the cases. INTERPRETATION Skin biopsy is a minimally invasive test with optimal sensitivity for amyloid. It allows amyloid typing by electron microscope to identify the precursor protein. The diagnostic work up of systemic amyloidosis should include a skin biopsy.
Collapse
Affiliation(s)
- Sandra Pinton
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Neurodegenerative disorders lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Elena Vacchi
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Neurodegenerative disorders lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Giacomo Chiaro
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Neurodegenerative disorders lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Andrea Raimondi
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alexandar Tzankov
- Histopathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Bernhard Gerber
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Claudio Gobbi
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Alain Kaelin-Lang
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Neurodegenerative disorders lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Giorgia Melli
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Neurodegenerative disorders lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
19
|
Bjørnkaer A, Gaist LM, Holbech JV, Gaist D, Wirenfeldt M, Sindrup SH, Krøigård T. Corneal confocal microscopy in small and mixed fiber neuropathy-Comparison with skin biopsy and cold detection in a large prospective cohort. J Peripher Nerv Syst 2023; 28:664-676. [PMID: 37651181 DOI: 10.1111/jns.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND AND AIMS The diagnosis of small fiber neuropathy (SFN) is supported by reduced intraepidermal nerve fiber density (IENFD). The noninvasive method corneal confocal microscopy (CCM) has the potential to be a practical alternative. We aimed to estimate the diagnostic accuracy of CCM compared with IENFD and cold detection thresholds (CDT) in SFN and mixed fiber neuropathy (MFN). METHODS CCM was performed in an unselected prospective cohort of patients with a clinical suspicion of polyneuropathy. Predefined criteria were used to classify SFN and MFN. Neuropathy scores, including the Utah early neuropathy scale (UENS), were used to describe severity. Patients with established other diagnoses were used for diagnostic specificity calculations. RESULTS Data were taken from 680 patients, of which 244 had SFN or MFN. There was no significant difference in sensitivities [95%CI] of CCM (0.44 [0.38-0.51]), IEFND (0.43 [0.36-0.49]), and CDT (0.34 [0.29-0.41]). CCM specificity (0.75 [0.69-0.81]) was lower (p = .044) than for IENFD (0.99 [0.96-1.00]) but not than for CDT (0.81 [0.75-0.86]). The AUCs of the ROC curves of 0.63, 0.63 and 0.74 respectively, was lower for corneal nerve fiber density (p = .0012) and corneal nerve fiber length (p = .0015) compared with IENFD. While UENS correlated significantly with IENFD (p = .0016; R2 = .041) and CDT (p = .0002; R2 = .056), it did not correlate with CCM measures. INTERPRETATION The diagnostic utility of CCM in SNF and MFN is limited by the low specificity compared with skin biopsy. Further, CCM is less suitable than skin biopsy and CDT as a marker for neuropathy severity.
Collapse
Affiliation(s)
- Asger Bjørnkaer
- Neurology Research Unit, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Laura M Gaist
- Neurology Research Unit, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Jakob V Holbech
- Neurology Research Unit, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - David Gaist
- Neurology Research Unit, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Martin Wirenfeldt
- University of Southern Denmark, Odense, Denmark
- Pathology Research Unit, Odense University Hospital, Odense, Denmark
| | - Søren H Sindrup
- Neurology Research Unit, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Thomas Krøigård
- Neurology Research Unit, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Koetsier E, Vacchi E, Maino P, Dukanac J, Melli G, van Kuijk SMJ. Dorsal Root Ganglion Stimulation in Chronic Painful Polyneuropathy: A Potential Modulator for Small Nerve Fiber Regeneration. Neuromodulation 2023; 26:1772-1780. [PMID: 36192280 DOI: 10.1016/j.neurom.2022.08.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Neuromodulatory treatments like spinal cord stimulation and dorsal root ganglion stimulation (DRGS) have emerged as effective treatments to relieve pain in painful polyneuropathy. Animal studies have demonstrated that neurostimulation can enhance nerve regeneration. This study aimed to investigate if DRGS may impact intraepidermal nerve fiber regeneration and sensory nerve function. MATERIALS AND METHODS Nine patients with chronic, intractable painful polyneuropathy were recruited. Intraepidermal nerve fiber density (IENFD) quantification in 3 mm punch skin biopsy was performed 1 month before DRGS (placed at the level of the L5 and S1 dorsal root ganglion) and after 12- and 24-month follow-up. Quantitative sensory testing, nerve conduction studies, and a clinical scale score were also performed at the same time points. RESULTS In 7 of 9 patients, DRGS was successful (defined as a reduction of ≥ 50% in daytime and/or night-time pain intensity), allowing a definitive implantable pulse generator implantation. The median baseline IENFD among these 7 patients was 1.6 fibers/mm (first and third quartile: 1.2; 4.3) and increased to 2.6 fibers/mm (2.5; 2.9) and 1.9 fibers/mm (1.6; 2.4) at 1- and 2-years follow-up, respectively. These changes were not statistically significant (p = 1.000 and 0.375). Sensory nerve tests did not show substantial changes. CONCLUSIONS Although not significant, the results of this study showed that in most of the patients with implants, there was a slight increase of the IENFD at the 1- and 2-year follow-up. Larger-scale clinical trials are warranted to explore the possible role of DRGS in reversing the progressive neurodegeneration over time. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT02435004; Swiss National Clinical Trials Portal: SNCTP000001376.
Collapse
Affiliation(s)
- Eva Koetsier
- Pain Management Center, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
| | - Elena Vacchi
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Laboratories for Translational Research, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Paolo Maino
- Pain Management Center, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Jasmina Dukanac
- Pain Management Center, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giorgia Melli
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Laboratories for Translational Research, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Sander M J van Kuijk
- Pain Management Center, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland; Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
21
|
Kume M, Ahmad A, DeFea KA, Vagner J, Dussor G, Boitano S, Price TJ. Protease-Activated Receptor 2 (PAR2) Expressed in Sensory Neurons Contributes to Signs of Pain and Neuropathy in Paclitaxel Treated Mice. THE JOURNAL OF PAIN 2023; 24:1980-1993. [PMID: 37315729 PMCID: PMC10615692 DOI: 10.1016/j.jpain.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common, dose-limiting side effect of cancer therapy. Protease-activated receptor 2 (PAR2) is implicated in a variety of pathologies, including CIPN. In this study, we demonstrate the role of PAR2 expressed in sensory neurons in a paclitaxel (PTX)-induced model of CIPN in mice. PAR2 knockout/wildtype (WT) mice and mice with PAR2 ablated in sensory neurons were treated with PTX administered via intraperitoneal injection. In vivo behavioral studies were done in mice using von Frey filaments and the Mouse Grimace Scale. We then examined immunohistochemical staining of dorsal root ganglion (DRG) and hind paw skin samples from CIPN mice to measure satellite cell gliosis and intra-epidermal nerve fiber (IENF) density. The pharmacological reversal of CIPN pain was tested with the PAR2 antagonist C781. Mechanical allodynia caused by PTX treatment was alleviated in PAR2 knockout mice of both sexes. In the PAR2 sensory neuronal conditional knockout (cKO) mice, both mechanical allodynia and facial grimacing were attenuated in mice of both sexes. In the DRG of the PTX-treated PAR2 cKO mice, satellite glial cell activation was reduced compared to control mice. IENF density analysis of the skin showed that the PTX-treated control mice had a reduction in nerve fiber density while the PAR2 cKO mice had a comparable skin innervation as the vehicle-treated animals. Similar results were seen with satellite cell gliosis in the DRG, where gliosis induced by PTX was absent in PAR cKO mice. Finally, C781 was able to transiently reverse established PTX-evoked mechanical allodynia. PERSPECTIVE: Our work demonstrates that PAR2 expressed in sensory neurons plays a key role in PTX-induced mechanical allodynia, spontaneous pain, and signs of neuropathy, suggesting PAR2 as a possible therapeutic target in multiple aspects of PTX CIPN.
Collapse
Affiliation(s)
- Moeno Kume
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Ayesha Ahmad
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | | | | | - Gregory Dussor
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Scott Boitano
- University of Arizona Bio5 Research Institute
- University of Arizona Heath Sciences, Asthma and Airway Disease Research Center
- University of Arizona Heath Sciences, Department of Physiology
| | - Theodore J. Price
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| |
Collapse
|
22
|
Machado-Costa MC, Mitne-Neto M, Costa LHD, Alves LM, Oliveira ASB, Zatz M, Silva HCA. Small-fibre Neuropathy in Patients with Familial Amyotrophic Lateral Sclerosis Type 8. Can J Neurol Sci 2023; 50:885-890. [PMID: 36457144 DOI: 10.1017/cjn.2022.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a degenerative disease of the nervous system that primarily affects motor neurons. ALS type 8 (ALS8) is a familiar form with predominant involvement of lower motor neurons, tremor, and slow progression. OBJECTIVE The aim of this study was to describe sensory involvement in a cohort of ALS8 patients and compare it with the characteristics of sporadic ALS (sALS) patients and controls. METHODS We compared data from 40 ALS8 and 10 sALS patients assessed by neurological evaluation and electrophysiological study. Skin biopsies were performed in these patients and 12 controls for analysis of intraepidermal nerve fiber (IENF) density by protein gene product 9.5 (PGP 9.5) immunohistochemistry. RESULTS The ALS8 group was younger than the sALS group at the onset of symptoms (p < 0.05) and had a longer disease evolution (p < 0.01). Sensory abnormalities were evident in 35% of the ALS8 and 30% of the sALS patients by neurological examination, and all ALS patients presented normal sensory nerve action potentials. Despite being similar in the ALS8 and sALS groups, IENF density in the ALS8 group was lower than that in the controls (p < 0.0005). In the ALS8 group, IENF density was significantly lower in patients with impairment of vibratory sensation than in those without this finding (p < 0.05) and in females than in males (p < 0.05). CONCLUSION Sensory impairment and decreased IENF density are present in ALS8 patients at a frequency and intensity similar to that in the sALS group.
Collapse
Affiliation(s)
| | - Miguel Mitne-Neto
- Department of Research and Development, Fleury Group, São Paulo, Brazil
| | | | - Luciana Moura Alves
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Research Centre, University of São Paulo, São Paulo, Brazil
| | - Helga Cristina Almeida Silva
- Discipline of Anaesthesiology, Pain and Intensive Care, Department of Surgery, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Kim HW, Shim SW, Zhao AM, Roh D, Han HM, Middleton SJ, Kim W, Chung S, Johnson E, Prentice J, Tacon M, Koel-Simmelink MJ, Wieske L, Teunissen CE, Bae YC, Bennett DL, Rinaldi S, Davies AJ, Oh SB. Long-term tactile hypersensitivity after nerve crush injury in mice is characterized by the persistence of intact sensory axons. Pain 2023; 164:2327-2342. [PMID: 37366595 PMCID: PMC10502897 DOI: 10.1097/j.pain.0000000000002937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
ABSTRACT Traumatic peripheral nerve injuries are at high risk of neuropathic pain for which novel effective therapies are urgently needed. Preclinical models of neuropathic pain typically involve irreversible ligation and/or nerve transection (neurotmesis). However, translation of findings to the clinic has so far been unsuccessful, raising questions on injury model validity and clinically relevance. Traumatic nerve injuries seen in the clinic commonly result in axonotmesis (ie, crush), yet the neuropathic phenotype of "painful" nerve crush injuries remains poorly understood. We report the neuropathology and sensory symptoms of a focal nerve crush injury using custom-modified hemostats resulting in either complete ("full") or incomplete ("partial") axonotmesis in adult mice. Assays of thermal and mechanically evoked pain-like behavior were paralleled by transmission electron microscopy, immunohistochemistry, and anatomical tracing of the peripheral nerve. In both crush models, motor function was equally affected early after injury; by contrast, partial crush of the nerve resulted in the early return of pinprick sensitivity, followed by a transient thermal and chronic tactile hypersensitivity of the affected hind paw, which was not observed after a full crush injury. The partially crushed nerve was characterized by the sparing of small-diameter myelinated axons and intraepidermal nerve fibers, fewer dorsal root ganglia expressing the injury marker activating transcription factor 3, and lower serum levels of neurofilament light chain. By day 30, axons showed signs of reduced myelin thickness. In summary, the escape of small-diameter axons from Wallerian degeneration is likely a determinant of chronic pain pathophysiology distinct from the general response to complete nerve injury.
Collapse
Affiliation(s)
- Hyoung Woo Kim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sang Wook Shim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Anna Mae Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Dahee Roh
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hye Min Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Steven J. Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Wheedong Kim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sena Chung
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - John Prentice
- Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford, United Kingdom
| | - Mike Tacon
- Department of Physics, Denys Wilkinson Building, University of Oxford, Oxford, United Kingdom
| | - Marleen J.A. Koel-Simmelink
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam UMC, Academisch Medisch Centrum, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - David L.H. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alexander J. Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Kokotis P, Papantoniou M, Schmelz M, Buntziouka C, Tzavellas E, Paparrigopoulos T. Pure small fiber neuropathy in alcohol dependency detected by skin biopsy. Alcohol 2023; 111:67-73. [PMID: 37295567 DOI: 10.1016/j.alcohol.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Alcohol overconsumption is well known to cause damage to the peripheral nervous system. The aim of this study was the functional and structural evaluation of the small nerve fibers in alcohol-dependent subjects, with or without symptoms of peripheral neuropathy. METHODS Twenty-six consecutive alcohol-dependent subjects treated for detoxification voluntarily in the specialized unit of the Athens University Psychiatric Clinic were enrolled in this prospective study over 18 months. Every subject was assessed by peripheral nerve evaluation using the Neuropathy Symptoms Score (NSS) and Neuropathy Impairment Score (NIS), followed by nerve conduction studies (NCS), quantitative sensory testing (QST), and skin biopsy. Twenty-nine normal subjects, age- and gender-matched, constituted the control group. RESULTS Peripheral neuropathy was diagnosed in 16 subjects (61.5%). Among these 16 subjects, pure large fiber neuropathy (LFN) was found in two subjects (12.5%), pure small fiber neuropathy (SFN) was found in eight subjects (50%), and both large and small fiber neuropathy was diagnosed in six patients (37.5%). The intraepidermal nerve fiber density (IENFD) of the patients' skin biopsy was significantly lower than that of the control group. Additionally, QST results showed a statistically significant sensory impairment in the patients. CONCLUSIONS Our study confirms small fiber neuropathy due to alcohol abuse with a high prevalence of pure SFN that might have remained undetected without QST and IENFD.
Collapse
Affiliation(s)
- Panagiotis Kokotis
- Laboratory of Clinical Neurophysiology, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Michail Papantoniou
- Laboratory of Clinical Neurophysiology, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Martin Schmelz
- Department of Experimental Pain Research, MCTN Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Chrysanthi Buntziouka
- Laboratory of Clinical Neurophysiology, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Tzavellas
- First Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Paparrigopoulos
- First Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Zhu GC, Chen YW, Tsai KL, Wang JJ, Hung CH, Schmid AB. Swimming exercise attenuates mechanical hypersensitivity and mitigates peripheral nerve degeneration in rats with painful diabetic neuropathy (PDN). Neurosci Lett 2023; 812:137406. [PMID: 37480979 DOI: 10.1016/j.neulet.2023.137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND This study aimed to assess the effectiveness of swimming exercise in alleviating mechanical hypersensitivity and peripheral nerve degeneration associated with a pre-clinical model of painful diabetic neuropathy (PDN). METHODS This study is a pre-clinical study conducted using the streptozocin (STZ)-induced PDN rat model. Rats were randomly allocated to three groups: a vehicle group of non-diabetic rats (Vehicle, n = 9), a group of rats with PDN (PDN, n = 8), and a group of rats with PDN that performed a swimming exercise program (PDN-SW, n = 10). The swimming exercise program included daily 30-minute swimming exercise, 5 days per week for 4 weeks. Von Frey testing was used to monitor hindpaw mechanical sensitivity over 4 weeks. Assessment of cutaneous peripheral nerve fiber integrity was performed after the 4-week study period via immunohistochemistry for protein gene product 9.5-positive (PGP9.5+) intra-epidermal nerve fiber density (IENFD) in hind-paw skin biopsies by a blinded investigator. RESULTS The results showed that swimming exercise mitigated but did not fully reverse mechanical hypersensitivity in rats with PDN. Immunohistochemical testing revealed that the rats in the PDN-SW group retained higher PGP9.5+ IENFD compared to the PDN group but did not reach normal levels of the Vehicle group. CONCLUSIONS The results of this study indicate that swimming exercise can mitigate mechanical hypersensitivity and degeneration of peripheral nerve fibers in rats with experimental PDN.
Collapse
Affiliation(s)
- Guan-Cheng Zhu
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yu-Wen Chen
- Department of Physical Therapy, China Medical University, Taichung, Taiwan, ROC
| | - Kun-Ling Tsai
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jhi-Joung Wang
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan, ROC
| | - Ching-Hsia Hung
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan, ROC.
| | - Annina B Schmid
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Truini A, Aleksovska K, Anderson CC, Attal N, Baron R, Bennett DL, Bouhassira D, Cruccu G, Eisenberg E, Enax-Krumova E, Davis KD, Di Stefano G, Finnerup NB, Garcia-Larrea L, Hanafi I, Haroutounian S, Karlsson P, Rakusa M, Rice ASC, Sachau J, Smith BH, Sommer C, Tölle T, Valls-Solé J, Veluchamy A. Joint European Academy of Neurology-European Pain Federation-Neuropathic Pain Special Interest Group of the International Association for the Study of Pain guidelines on neuropathic pain assessment. Eur J Neurol 2023; 30:2177-2196. [PMID: 37253688 DOI: 10.1111/ene.15831] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND PURPOSE In these guidelines, we aimed to develop evidence-based recommendations for the use of screening questionnaires and diagnostic tests in patients with neuropathic pain (NeP). METHODS We systematically reviewed studies providing information on the sensitivity and specificity of screening questionnaires, and quantitative sensory testing, neurophysiology, skin biopsy, and corneal confocal microscopy. We also analysed how functional neuroimaging, peripheral nerve blocks, and genetic testing might provide useful information in diagnosing NeP. RESULTS Of the screening questionnaires, Douleur Neuropathique en 4 Questions (DN4), I-DN4 (self-administered DN4), and Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) received a strong recommendation, and S-LANSS (self-administered LANSS) and PainDETECT weak recommendations for their use in the diagnostic pathway for patients with possible NeP. We devised a strong recommendation for the use of skin biopsy and a weak recommendation for quantitative sensory testing and nociceptive evoked potentials in the NeP diagnosis. Trigeminal reflex testing received a strong recommendation in diagnosing secondary trigeminal neuralgia. Although many studies support the usefulness of corneal confocal microscopy in diagnosing peripheral neuropathy, no study specifically investigated the diagnostic accuracy of this technique in patients with NeP. Functional neuroimaging and peripheral nerve blocks are helpful in disclosing pathophysiology and/or predicting outcomes, but current literature does not support their use for diagnosing NeP. Genetic testing may be considered at specialist centres, in selected cases. CONCLUSIONS These recommendations provide evidence-based clinical practice guidelines for NeP diagnosis. Due to the poor-to-moderate quality of evidence identified by this review, future large-scale, well-designed, multicentre studies assessing the accuracy of diagnostic tests for NeP are needed.
Collapse
Affiliation(s)
- Andrea Truini
- Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Katina Aleksovska
- European Academy of Neurology, Vienna, Austria
- Department of Neurology, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Christopher C Anderson
- Division of Clinical and Translational Research, Department of Anesthesiology, Pain Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nadine Attal
- Université Versailles Saint Quentin en Yvelines, Versailles, France
- Inserm U987, Pathophysiology and Clinical Pharmacology of Pain, Centre d'évaluation et de Traitement de la Douleur, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Didier Bouhassira
- Inserm U987, Pathophysiology and Clinical Pharmacology of Pain, Centre d'évaluation et de Traitement de la Douleur, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Giorgio Cruccu
- Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Elon Eisenberg
- Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Elena Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Karen Deborah Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Centre, Aarhus University, Aarhus, Denmark
| | - Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Centre, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
- Centre D'évaluation et de Traitement de la Douleur, Hôpital Neurologique, Lyon, France
| | - Ibrahem Hanafi
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Simon Haroutounian
- Division of Clinical and Translational Research, Department of Anesthesiology, Pain Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pall Karlsson
- Department of Clinical Medicine, Danish Pain Research Centre, Aarhus University, Aarhus, Denmark
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
| | - Martin Rakusa
- Division of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - Andrew S C Rice
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Tölle
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Josep Valls-Solé
- Institut d'Investigació Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Abirami Veluchamy
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
27
|
Akbar M, Wandy A, Soraya GV, Goysal Y, Lotisna M, Basri MI. Sudomotor dysfunction in diabetic peripheral neuropathy (DPN) and its testing modalities: A literature review. Heliyon 2023; 9:e18184. [PMID: 37539131 PMCID: PMC10393629 DOI: 10.1016/j.heliyon.2023.e18184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/04/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Long term consequences of diabetes mellitus (DM) may include multi-organ complications such as retinopathy, cardiovascular disease, neuronal, and kidney damage. One of the most prevalent complication is diabetic peripheral neuropathy (DPN), occurring in half of all diabetics, and is the main cause of disability globally with profound impact on a patient's quality of life. Small fiber neuropathy (SFN) can develop in the pre-diabetes stage preceding large fiber damage in DPN. Asymptomatic SFN is difficult to diagnose in early stages, with sudomotor dysfunction considered one of the earliest manifestations of autonomic neuropathy. Early detection is crucial as it can prevent potential cardiovascular events. Although punch skin biopsy is the gold-standard method for SFN diagnosis, implementation as routine screening is hindered due to its invasive, impractical, and time-consuming nature. Other sudomotor testing modalities, most of which evaluate the postganglionic cholinergic sympathetic nervous system, have been developed with varying sensitivity and specificity for SFN diagnosis. Here, we provide an overview on the general mechanism of DPN, the importance of sudomotor assessment for early detection of autonomic dysfunction in DPN, the benefits and disadvantages of current testing modalities, factors that may affect testing, and the importance of future discoveries on sudomotor testing for successful DPN diagnosis.
Collapse
Affiliation(s)
- Muhammad Akbar
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Alvian Wandy
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Gita Vita Soraya
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Yudy Goysal
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Mimi Lotisna
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Iqbal Basri
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
28
|
Badian RA, Ekman L, Pripp AH, Utheim TP, Englund E, Dahlin LB, Rolandsson O, Lagali N. Comparison of Novel Wide-Field In Vivo Corneal Confocal Microscopy With Skin Biopsy for Assessing Peripheral Neuropathy in Type 2 Diabetes. Diabetes 2023; 72:908-917. [PMID: 37058418 PMCID: PMC10281223 DOI: 10.2337/db22-0863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a serious complication of diabetes, where skin biopsy assessing intraepidermal nerve fiber density (IENFD) plays an important diagnostic role. In vivo confocal microscopy (IVCM) of the corneal subbasal nerve plexus has been proposed as a noninvasive diagnostic modality for DPN. Direct comparisons of skin biopsy and IVCM in controlled cohorts are lacking, as IVCM relies on subjective selection of images depicting only 0.2% of the nerve plexus. We compared these diagnostic modalities in a fixed-age cohort of 41 participants with type 2 diabetes and 36 healthy participants using machine algorithms to create wide-field image mosaics and quantify nerves in an area 37 times the size of prior studies to avoid human bias. In the same participants, and at the same time point, no correlation between IENFD and corneal nerve density was found. Corneal nerve density did not correlate with clinical measures of DPN, including neuropathy symptom and disability scores, nerve conduction studies, or quantitative sensory tests. Our findings indicate that corneal and intraepidermal nerves likely mirror different aspects of nerve degeneration, where only intraepidermal nerves appear to reflect the clinical status of DPN, suggesting that scrutiny is warranted concerning methodologies of studies using corneal nerves to assess DPN. ARTICLE HIGHLIGHTS Comparison of intraepidermal nerve fiber density with automated wide-field corneal nerve fiber density in participants with type 2 diabetes revealed no correlation between these parameters. Intraepidermal and corneal nerve fibers both detected neurodegeneration in type 2 diabetes, but only intraepidermal nerve fibers were associated with clinical measures of diabetic peripheral neuropathy. A lack of association of corneal nerves with peripheral neuropathy measures suggests that corneal nerve fibers may be a poor biomarker for diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Reza A. Badian
- Department of Medical Biochemistry, Unit of Regenerative Medicine, Oslo University Hospital, Oslo, Norway
| | - Linnéa Ekman
- Department of Translational Medicine, Hand Surgery, Lund University, Malmö, Sweden
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elisabet Englund
- Department of Clinical Sciences, Pathology, Lund University, Lund, Sweden
| | - Lars B. Dahlin
- Department of Translational Medicine, Hand Surgery, Lund University, Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | - Olov Rolandsson
- Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
29
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer S, Crawford LK, Engelhardt JA, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Points to Consider: Sampling, Processing, Evaluation, Interpretation, and Reporting of Test Article-Related Ganglion Pathology for Nonclinical Toxicity Studies. Toxicol Pathol 2023; 51:176-204. [PMID: 37489508 DOI: 10.1177/01926233231179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Certain biopharmaceutical products consistently affect dorsal root ganglia, trigeminal ganglia, and/or autonomic ganglia. Product classes targeting ganglia include antineoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, and anti-nerve growth factor agents. This article outlines "points to consider" for sample collection, processing, evaluation, interpretation, and reporting of ganglion findings; these points are consistent with published best practices for peripheral nervous system evaluation in nonclinical toxicity studies. Ganglion findings often occur as a combination of neuronal injury (e.g., degeneration, necrosis, and/or loss) and/or glial effects (e.g., increased satellite glial cell cellularity) with leukocyte accumulation (e.g., mononuclear cell infiltration or inflammation). Nerve fiber degeneration and/or glial reactions may be seen in nerves, dorsal spinal nerve roots, spinal cord, and occasionally brainstem. Interpretation of test article (TA)-associated effects may be confounded by incidental background changes or experimental procedure-related changes and limited historical control data. Reports should describe findings at these sites, any TA relationship, and the criteria used for assigning severity grades. Contextualizing adversity of ganglia findings can require a weight-of-evidence approach because morphologic changes of variable severity occur in ganglia but often are not accompanied by observable overt in-life functional alterations detectable by conventional behavioral and neurological testing techniques.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Gene Therapy Program, Philadelphia, Pennsylvania, USA
| | | | - LaTasha K Crawford
- University of Wisconsin-Madison, School of Veterinary Medicine, Madison, Wisconsin, USA
| | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
30
|
Zhang D, Ma L, Tan X, Deng W, Wen S, Li Y, Qin B, Cao S, Yu T. Intradermal miR-16-5p targets Akt3 and reduces RTX-induced postherpetic neuralgia-mimic pain in mice. Eur J Pharmacol 2023; 946:175665. [PMID: 36940911 DOI: 10.1016/j.ejphar.2023.175665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
The molecular mechanisms of refractory pain in postherpetic neuralgia (PHN) patients are not fully understood. PHN may be related to skin abnormality after herpes zoster induced skin lesions. We previously reported 317 differentially expressed microRNAs (miRNAs) in PHN skin compared with the contralateral normal mirror skin. In this study, 19 differential miRNAs were selected and the expression was validated in other 12 PHN patients. The expression levels of miR-16-5p, miR-20a-5p, miR-505-5p, miR-3664-3p, miR-4714-3p and let-7a-5p are lower in PHN skin, which is the same as those in microarray experiment. To evaluate the effects of cutaneous miRNA on PHN, the expression of candidate miRNAs is further observed in resiniferatoxin (RTX) induced PHN-mimic mice model. In the plantar skin of RTX mice, miR-16-5p and let-7a-5p are downregulated, with the same expression trend of PHN patients. In addition, intraplantar injection of agomir-16-5p reduced mechanical hyperalgesia, and improved thermal hypoalgesia in RTX mice. Furthermore, agomir-16-5p down-regulated the expression levels of Akt3, which is the target gene of agomir-16-5p. These results suggest that intraplantar miR-16-5p may alleviate RTX induced PHN-mimic pain by inhibiting the expression of Akt3 in the skin.
Collapse
Affiliation(s)
- Dexin Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lulin Ma
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinran Tan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wenwen Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Song Wen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ying Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Bangyong Qin
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Song Cao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
31
|
Galiero R, Caturano A, Vetrano E, Beccia D, Brin C, Alfano M, Di Salvo J, Epifani R, Piacevole A, Tagliaferri G, Rocco M, Iadicicco I, Docimo G, Rinaldi L, Sardu C, Salvatore T, Marfella R, Sasso FC. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. Int J Mol Sci 2023; 24:ijms24043554. [PMID: 36834971 PMCID: PMC9967934 DOI: 10.3390/ijms24043554] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetic neuropathy (DN) is one of the main microvascular complications of both type 1 and type 2 diabetes mellitus. Sometimes, this could already be present at the time of diagnosis for type 2 diabetes mellitus (T2DM), while it appears in subjects with type 1 diabetes mellitus (T1DM) almost 10 years after the onset of the disease. The impairment can involve both somatic fibers of the peripheral nervous system, with sensory-motor manifestations, as well as the autonomic system, with neurovegetative multiorgan manifestations through an impairment of sympathetic/parasympathetic conduction. It seems that, both indirectly and directly, the hyperglycemic state and oxygen delivery reduction through the vasa nervorum can determine inflammatory damage, which in turn is responsible for the alteration of the activity of the nerves. The symptoms and signs are therefore various, although symmetrical painful somatic neuropathy at the level of the lower limbs seems the most frequent manifestation. The pathophysiological aspects underlying the onset and progression of DN are not entirely clear. The purpose of this review is to shed light on the most recent discoveries in the pathophysiological and diagnostic fields concerning this complex and frequent complication of diabetes mellitus.
Collapse
Affiliation(s)
- Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Chiara Brin
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Jessica Di Salvo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaella Epifani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ilaria Iadicicco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giovanni Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
- Correspondence: ; Tel.: +39-08-1566-5010
| |
Collapse
|
32
|
Autonomic Nerve Involvement in Post-Acute Sequelae of SARS-CoV-2 Syndrome (PASC). J Clin Med 2022; 12:jcm12010073. [PMID: 36614874 PMCID: PMC9821608 DOI: 10.3390/jcm12010073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
The novel SARS-CoV-2 virus and resulting COVID-19 global pandemic emerged in 2019 and continues into 2022. While mortality from COVID-19 is slowly declining, a subset of patients have developed chronic, debilitating symptoms following complete recovery from acute infection with COVID-19. Termed as post-acute sequelae of SARS-CoV-2 syndrome (PASC), the underlying pathophysiology of PASC is still not well understood. Given the similarity between the clinical phenotypes of PASC and postural orthostatic tachycardia syndrome (POTS), it has been postulated that dysautonomia may play a role in the pathophysiology of PASC. However, there have been only a few studies that have examined autonomic function in PASC. In this retrospective study, we performed an analysis of autonomic nerve function testing in PASC patients and compared the results with those of POTS patients and healthy controls. Our results suggest that a significant number of PASC patients have abnormal autonomic function tests, and their clinical features are indistinguishable from POTS.
Collapse
|
33
|
Toma W, Paris JJ, Warncke UO, Nass SR, Caillaud M, McKiver B, Ondo O, Bagdas D, Bigbee J, Knapp PE, Hauser KF, Damaj MI. Persistent sensory changes and sex differences in transgenic mice conditionally expressing HIV-1 Tat regulatory protein. Exp Neurol 2022; 358:114226. [PMID: 36096180 PMCID: PMC10053560 DOI: 10.1016/j.expneurol.2022.114226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/19/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022]
Abstract
HIV-associated sensory neuropathies (HIV-SN) are prevalent in >50% of patients aged over 45 years many of which report moderate to severe chronic pain. Previous preclinical studies have investigated the mechanisms by which HIV-1 causes sensory neuropathies and pain-like behaviors. The aim of the present study is to delineate the role of chronic HIV-1 trans-activator of transcription protein (Tat) exposure in the development of neuropathy in mice. The temporal effects of conditional Tat expression on the development of hypersensitivity to mechanical (von Frey filaments) and thermal (heat or cold) stimuli were tested in male and female mice that transgenically expressed HIV-1 Tat in a doxycycline-inducible manner. Inducing Tat expression produced an allodynic response to mechanical or cold (but not heat) stimuli that respectively persisted for at least 23-weeks (mechanical hypersensitivity) or at least 8-weeks (cold hypersensitivity). Both allodynic states were greater in magnitude among females, compared to males, and mechanical increased hypersensitivity progressively in females over time. Acute morphine or gabapentin treatment partly attenuated allodynia in males, but not females. Irrespective of sex, Tat reduced intraepidermal nerve fiber density, the mean amplitude of sensory nerve action potentials (but not conductance), engagement in some pain-related ethological behaviors (cage-hanging and rearing), and down-regulated PPAR-α gene expression in lumbar spinal cord while upregulating TNF-α expression in dorsal root ganglion. Taken together, these data reveal fundamental sex differences in mechanical and cold hypersensitivity in response to Tat and demonstrate the intractable nature in female mice to current therapeutics. Understanding the role of Tat in these pathologies may aid the design of future therapies aimed at mitigating the peripheral sensory neuropathies that accompany neuroHIV.
Collapse
Affiliation(s)
- Wisam Toma
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, USA; Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, USA
| | - Urszula O Warncke
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Bryan McKiver
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Olivia Ondo
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Deniz Bagdas
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - John Bigbee
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Pamela E Knapp
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA; Institute for Drug and Alcohol Studies, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA; Institute for Drug and Alcohol Studies, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
34
|
Kazamel M, Pischik E, Desnick RJ. Pain in acute hepatic porphyrias: Updates on pathophysiology and management. Front Neurol 2022; 13:1004125. [PMID: 36479055 PMCID: PMC9719963 DOI: 10.3389/fneur.2022.1004125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Acute hepatic porphyrias (AHPs) typically present with recurrent acute attacks of severe abdominal pain and acute autonomic dysfunction. While chronic symptoms were historically overlooked in the literature, recent studies have reported increased prevalence of chronic, mainly neuropathic, pain between the attacks. Here we characterize acute and chronic pain as prominent manifestations of the AHPs and discuss their pathophysiology and updated management. In addition to the severe abdominal pain, patients could experience low back pain, limb pain, and headache during acute attacks. Chronic pain between the attacks is typically neuropathic and reported mainly by patients who undergo recurrent attacks. While the acute abdominal pain during attacks is likely mediated by autonomic neuropathy, chronic pain likely represents delayed recovery of the acute neuropathy with ongoing small fiber neuropathy in addition to peripheral and/or central sensitization. δ-aminolaevulinic acid (ALA) plays a major role in acute and chronic pain via its neurotoxic effect, especially where the blood-nerve barrier is less restrictive or absent i.e., the autonomic ganglia, nerve roots, and free nerve endings. For earlier diagnosis, we recommend testing a spot urine porphobilinogen (PBG) analysis in any patient with recurrent severe acute abdominal pain with no obvious explanation, especially if associated with neuropathic pain, hyponatremia, autonomic dysfunction, or encephalopathy. Of note, it is mandatory to exclude AHPs in any acute painful neuropathy. Between the attacks, diagnostic testing for AHPs should be considered for patients with a past medical history of acute/subacute neuropathy, frequent emergency room visits with abdominal pain, and behavioral changes. Pain during the attacks should be treated with opiates combined with hemin infusions. Symptomatic treatment of chronic pain should start with gabapentinoids and certain antidepressants before opiates. Givosiran reduces levels of ALA and PBG and likely has long-term benefits for chronic pain, especially if started early during the course of the disease.
Collapse
Affiliation(s)
- Mohamed Kazamel
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Mohamed Kazamel
| | - Elena Pischik
- Department of Neurology, Consultative and Diagnostic Center With Polyclinics, St. Petersburg, Russia
| | - Robert J. Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
35
|
Proinflammatory profile in the skin of Parkinson's disease patients with and without pain. PLoS One 2022; 17:e0276564. [PMID: 36301901 PMCID: PMC9612575 DOI: 10.1371/journal.pone.0276564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022] Open
Abstract
Background Pain is a common non-motor symptom of Parkinson`s disease (PD), however, its pathomechanism remains elusive. Objective We aimed to investigate the local gene expression of selected proinflammatory mediators in patients with PD and correlated our data with patients`pain phenotype. Methods We recruited 30 patients with PD and 30 healthy controls. Pain intensity of patients was assessed using the Numeric Rating Scale (NRS) and patients were stratified into PD pain (NRS≥4) and PD No Pain (NRS<4) subgroups. Skin punch biopsies were immunoassayed for protein-gene product 9.5 as a pan-neuronal marker and intraepidermal nerve fiber density (IEFND). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to assess the gene expression of inflammatory mediators in the skin compared to controls. Results Patients with PD had lower distal IENFD compared to healthy controls. In skin samples, IL-2 (p<0.001) and TNF-α (p<0.01) were expressed higher in PD patients compared to controls. IL-1β (p<0.05) was expressed higher in the PD pain group compared to healthy controls. PD patients with pain receiving analgesics had a lower expression of TNF-α (p<0.05) in the skin compared to those not receiving treatment. Conclusions Our data suggest the occurrence of a local, peripheral inflammatory response in the skin in PD, but do not support this being a relevant factor contributing to pain in PD.
Collapse
|
36
|
Zhu GC, Chen YW, Tsai KL, Wang JJ, Hung CH, Schmid AB. Effects of Neural Mobilization on Sensory Dysfunction and Peripheral Nerve Degeneration in Rats With Painful Diabetic Neuropathy. Phys Ther 2022; 102:pzac104. [PMID: 35913760 PMCID: PMC7613682 DOI: 10.1093/ptj/pzac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/16/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study aims to evaluate the effectiveness of neural mobilization (NM) in the management of sensory dysfunction and nerve degeneration related to experimental painful diabetic neuropathy (PDN). METHODS This is a pre-clinical animal study performed in the streptozocin-induced diabetic rat model. Three groups were included: a treatment group of rats with PDN receiving NM under anesthesia (PDN-NM, n = 10), a sham treatment group of rats with PDN that received only anesthesia (PDN-Sham, n = 9), and a vehicle control group with nondiabetic animals (Vehicle, n = 10). Rats in the PDN-NM and PDN-Sham groups received 1 treatment session on days 10, 12, and 14 after streptozocin injection, with a 48-hour rest period between sessions. Behavioral tests were performed using von Frey and Plantar tests. Evaluation for peripheral nerve degeneration was performed through measuring protein gene product 9.5-positive intra-epidermal nerve fiber density in hind-paw skin biopsies. All measurements were performed by a blinded investigator. RESULTS The behavioral tests showed that a single NM session could reduce hyperalgesia, which was maintained for 48 hours. The second treatment session further improved this treatment effect, and the third session maintained it. These results suggest that it requires multiple treatment sessions to produce and maintain hypoalgesic effects. Skin biopsy analysis showed that the protein gene product 9.5-positive intra-epidermal nerve fiber density was higher on the experimental side of the PDN-NM group compared with the PDN-Sham group, suggesting NM may mitigate the degeneration of peripheral nerves. CONCLUSION This study demonstrated that NM may be an effective method to manage experimentally induced PDN, potentially through mitigation of nerve degeneration. Further studies are needed to develop standardized protocols for clinical use. IMPACT These findings provide neurophysiological evidence for the use of NM in PDN and can form the basis for the development of physical therapy-based programs in clinics.
Collapse
Affiliation(s)
- Guan-Cheng Zhu
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan (R.O.C.)
| | - Yu-Wen Chen
- Department of Physical Therapy, China Medical University, Taichung, Taiwan (R.O.C.)
| | - Kun-Ling Tsai
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan (R.O.C.)
| | - Jhi-Joung Wang
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan (R.O.C.)
| | - Ching-Hsia Hung
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan (R.O.C.)
| | - Annina B Schmid
- Nuffield Department of Clinical Neuroscience, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
37
|
Whole structural reconstruction and quantification of epidermal innervation through the suction blister method and skin-clearing technique. Sci Rep 2022; 12:13596. [PMID: 36064954 PMCID: PMC9445051 DOI: 10.1038/s41598-022-16986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Three-dimensional (3-D) analysis of intraepidermal nerve fibers (IENFs) is conducted to advance assessment methods for peripheral neuropathies and pruritic skin disorders. The skin-clearing technique was proven to be a reliable method for 3-D imaging of IENFs. Nonetheless, it still requires further improvement in the imaging process. The aim of this study was to standardize the 3-D evaluation method of IENFs and to suggest promising 3-D biomarkers for clinical application. A total of nine healthy individuals were prospectively enrolled. The newly adopted suction blister method was combined with the tissue-clearing technique. The detailed structure of the IENFs was reconstructed and quantified using the neuron tracing software. The suction blister method showed improved linear integrity of IENFs compared with those obtained from the previously used salt-split skin test. The 3-D parameters most significantly related to natural aging were the convex hull two-dimensional perimeter and the total length (both p = 0.020). The meaningful correlations were followed by total volume (p = 0.025), ends (p = 0.026), convex hull 3-D surface, and complexity (both p = 0.030). Thus, the 3-D parameters could be utilized as possible biomarkers to identify ambiguous pathologies of peripheral neuropathies and pruritic skin disorders.
Collapse
|
38
|
Early Diagnosis in Cerebellar Ataxia, Neuropathy, Vestibular Areflexia Syndrome (CANVAS) by Focusing on Major Clinical Clues: Beyond Ataxia and Vestibular Impairment. Biomedicines 2022; 10:biomedicines10082046. [PMID: 36009593 PMCID: PMC9405877 DOI: 10.3390/biomedicines10082046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
CANVAS, a rare disorder responsible for late-onset ataxia of autosomal recessive inheritance, can be misdiagnosed. We investigated a series of eight patients with sensory neuropathy and/or an unexplained cough, who appeared to suffer from CANVAS, and we emphasized the clinical clues for early diagnosis. Investigations included clinical and routine laboratory analyses, skin biopsy, nerve biopsy and molecular genetics. The eight patients had clinical and/or laboratory evidence of sensory neuronopathy. All but one had neuropathic pain that had started in an asymmetric fashion in two patients. A chronic cough was a prominent feature in our eight patients and had started years before neuropathic symptoms in all but one. The course of the disease was slow, and ataxia remained mild in all. Five patients were initially thought to have immune-mediated sensory neuronopathy and received immunotherapy. Skin biopsies showed a near complete and non-length-dependent loss of intraepidermal nerve fibers. Moreover, nerve biopsy findings suggested a prominent involvement of small myelinated and unmyelinated fibers. The burden of CANVAS extends far beyond cerebellar ataxia and vestibular manifestations. Indeed, our study shows that a chronic cough and neuropathic pain may represent a major source of impairment in these patients and should not be overlooked to allow an early diagnosis and prevent unnecessary immunotherapy.
Collapse
|
39
|
Luzu J, Antoine L, Annabelle RLG, Ghislaine R, Hong L, Bénédicte D, Benjamin B, Damien S, Christophe B. In vivo confocal microscopic study of corneal innervation in Sjögren's Syndrome with or without small fiber neuropathy. Ocul Surf 2022; 25:155-162. [PMID: 35872076 DOI: 10.1016/j.jtos.2022.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE To study changes in the subbasal nerve plexus by In vivo confocal microscopy (IVCM) in Sjögren's Syndrome (SS) with or without associated Small Fiber Neuropathy (SFN), in order to prevent diagnostic delay. METHODS Seventy-one patients with SS, including 19 with associated SFN, 20 healthy volunteers and 20 patients with Meibomian gland dysfunction (MGD) were included in this retrospective case-control study. IVCM was used to investigate subbasal nerve plexus density and morphology. RESULTS Corneal sensitivity as evaluated with the Cochet-Bonnet aesthesiometer was significantly reduced in the SS group versus the control group (P = 0.026) and the MGD group (P = 0.037). The number of inflammatory cells was significantly increased in the SS group to 86.2 ± 82.1 cells/mm2 compared to the control group (P < 0.001). The density of the subbasal nerve plexus was significantly reduced to 16.7 ± 6.5 mm/mm2 in the SS group compared to the control group (P < 0.005) and the MGD group (P = 0.042). The tortuosity of the nerves in the SS group was significantly increased compared to the control group (P < 0.001) and the MGD group (P = 0.025). The average number of subbasal nerve plexus neuromas was significantly increased in the SS group compared to the control group (P = 0.001), with a significant increase in the average number of neuromas in SS patients with associated SFN compared to SS patients without SFN (P = 0.008). CONCLUSION IVCM can be useful to detect corneal nerve changes in SS patients and may allow earlier diagnosis of the disease and to consider new therapeutic approaches.
Collapse
Affiliation(s)
- Jade Luzu
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28 rue de Charenton, F-75012, Paris, France.
| | - Labbé Antoine
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28 rue de Charenton, F-75012, Paris, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, IHU FOReSIGHT, 17 rue Moreau, F-75012, Paris, France
| | - Réaux-Le Goazigo Annabelle
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, IHU FOReSIGHT, 17 rue Moreau, F-75012, Paris, France
| | - Rabut Ghislaine
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28 rue de Charenton, F-75012, Paris, France
| | - Liang Hong
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28 rue de Charenton, F-75012, Paris, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, IHU FOReSIGHT, 17 rue Moreau, F-75012, Paris, France
| | - Dupas Bénédicte
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28 rue de Charenton, F-75012, Paris, France
| | - Blautain Benjamin
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28 rue de Charenton, F-75012, Paris, France
| | - Sène Damien
- Departement of Internal Medecine, Lariboisière Hospital, 2 rue Ambroise Paré, F-75010, Paris, France
| | - Baudouin Christophe
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28 rue de Charenton, F-75012, Paris, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, IHU FOReSIGHT, 17 rue Moreau, F-75012, Paris, France
| |
Collapse
|
40
|
Raicher I, Ravagnani LHC, Correa SG, Dobo C, Mangueira CLP, Macarenco RSES. Investigation of nerve fibers in the skin by biopsy: technical aspects, indications, and contribution to diagnosis of small-fiber neuropathy. EINSTEIN-SAO PAULO 2022; 20:eMD8044. [PMID: 35830153 PMCID: PMC9262281 DOI: 10.31744/einstein_journal/2022md8044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 11/05/2022] Open
Abstract
Skin biopsy with investigation of small-diameter nerve fibers in human epidermis and dermis has been proven to be a useful method for confirming small-fiber neuropathy. In medical practice, small-fiber neuropathy is increasingly recognized as a leading cause of neuropathic pain. It is a prevalent complaint in medical offices, brought by patients often as a “painful burning sensation”. The prevalence of neuropathic pain is high in small-fiber neuropathies of different etiologies, especially in the elderly; 7% of population in this age group present peripheral neuropathy. Pain and paresthesia are symptoms which might cause disability and impair quality of life of patients. The early detection of small-fiber neuropathy can contribute to reducing unhealthy lifestyles, associated to higher incidence of the disease.
Collapse
|
41
|
Daeschler SC, Zhang J, Gordon T, Borschel GH, Feinberg K. Foretinib mitigates cutaneous nerve fiber loss in experimental diabetic neuropathy. Sci Rep 2022; 12:8444. [PMID: 35589940 PMCID: PMC9120083 DOI: 10.1038/s41598-022-12455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Diabetes is by far, the most common cause of neuropathy, inducing neurodegeneration of terminal sensory nerve fibers associated with loss of sensation, paresthesia, and persistent pain. Foretinib prevents die-back degeneration in cultured sensory and sympathetic neurons by rescuing mitochondrial activity and has been proven safe in prospective clinical trials. Here we aimed at investigating a potential neuroprotective effect of Foretinib in experimental diabetic neuropathy. A mouse model of streptozotocin induced diabetes was used that expresses yellow fluorescent protein (YFP) in peripheral nerve fibers under the thy-1 promoter. Streptozotocin-injected mice developed a stable diabetic state (blood glucose > 270 mg/dl), with a significant reduction of intraepidermal nerve fiber density by 25% at 5 weeks compared to the non-diabetic controls. When diabetic mice were treated with Foretinib, a significantly greater volume of the cutaneous nerve fibers (67.3%) in the plantar skin was preserved compared to vehicle treated (37.8%) and non-treated (44.9%) diabetic mice while proximal nerve fiber morphology was not affected. Our results indicate a neuroprotective effect of Foretinib on cutaneous nerve fibers in experimental diabetic neuropathy. As Foretinib treated mice showed greater weight loss compared to vehicle treated controls, future studies may define more sustainable treatment regimen and thereby may allow patients to take advantage of this neuroprotective drug in chronic neurodegenerative diseases like diabetic neuropathy.
Collapse
Affiliation(s)
- Simeon C Daeschler
- Neuroscience and Mental Health Program, SickKids Research Institute, 686 Bay St, Toronto, ON, M5G 0A4, Canada.
| | - Jennifer Zhang
- Neuroscience and Mental Health Program, SickKids Research Institute, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tessa Gordon
- Neuroscience and Mental Health Program, SickKids Research Institute, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Gregory H Borschel
- Neuroscience and Mental Health Program, SickKids Research Institute, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Ophthalmology, Indiana University School of Medicine, IN, Indianapolis, USA
| | - Konstantin Feinberg
- Neuroscience and Mental Health Program, SickKids Research Institute, 686 Bay St, Toronto, ON, M5G 0A4, Canada.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
42
|
Bailleux S, Collins P, Nikkels AF. The Relevance of Skin Biopsies in General Internal Medicine: Facts and Myths. Dermatol Ther (Heidelb) 2022; 12:1103-1119. [PMID: 35430724 PMCID: PMC9110592 DOI: 10.1007/s13555-022-00717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Non-dermatology medical specialties may refer patients for skin biopsies, searching for a particular diagnosis. However, the diagnostic impact of the skin biopsy is not clearly established. This article aims to assess the indications for, and evaluate the clinical relevance of, skin biopsies in non-dermatology medical specialties. METHODS A questionnaire was sent to 23 non-dermatology specialty departments in a university medical center, requesting a list of indications for skin biopsies, as well as to 10 staff dermatologists to collect the indications of skin biopsies requested by non-dermatology specialties. Once the indications were collected, a literature search was performed to evaluate their clinical value and relevance. RESULTS Eleven non-dermatology specialties provided a list of skin biopsy indications, to which staff dermatologists added seven more indications. A literature search revealed evidence-based medicine data for six diseases, that is, amyloidosis, peripheral autonomic neuropathy, Sneddon's syndrome, intravascular lymphoma, sarcoidosis, and chronic graft-versus-host disease. Results were questionable concerning infectious endocarditis, acute graft-versus-host-disease, and the lupus band test. Skin biopsy were not evidenced as useful for the diagnosis of calciphylaxis, systemic scleroderma, Behçet's disease, or hypermobile Ehlers-Danlos syndrome. For the diagnosis of Alport's syndrome, pseudoxanthoma elasticum, and vascular Ehlers-Danlos syndrome, skin biopsy is currently outperformed by genetic analyses. For diagnoses such as Henoch-Schönlein purpura and Sjögren's syndrome, skin biopsy represents an additional item among other diagnostic criteria. CONCLUSION The usefulness of skin biopsy as requested by non-dermatology specialties is only evidenced for amyloidosis, peripheral autonomic neuropathy, Sneddon's syndrome, intravascular lymphoma, sarcoidosis, chronic graft-versus-host-disease, Henoch-Schönlein purpura, and Sjögren's syndrome.
Collapse
Affiliation(s)
- Sophie Bailleux
- Department of Dermatology, University Hospital Centre, CHU du Sart Tilman, University of Liège, 4000, Liège, Belgium
| | - Patrick Collins
- Department of Dermatopathology, University Hospital Centre, CHU du Sart Tilman, Liège, Belgium
| | - Arjen F Nikkels
- Department of Dermatology, University Hospital Centre, CHU du Sart Tilman, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
43
|
Vacchi E, Lazzarini E, Pinton S, Chiaro G, Disanto G, Marchi F, Robert T, Staedler C, Galati S, Gobbi C, Barile L, Kaelin-Lang A, Melli G. Tau protein quantification in skin biopsies differentiates tauopathies from alpha-synucleinopathies. Brain 2022; 145:2755-2768. [PMID: 35485527 DOI: 10.1093/brain/awac161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/03/2022] [Accepted: 04/19/2022] [Indexed: 11/12/2022] Open
Abstract
Abnormal accumulation of microtubule-associated protein tau (τ) is a characteristic feature of atypical parkinsonisms with tauopathies such as Progressive Supranuclear Palsy (PSP) and Corticobasal Degeneration (CBD). However, pathological τ has also been observed in α-synucleinopathies like Parkinson's Disease (PD) and Multiple System Atrophy (MSA). Based on the involvement of peripheral nervous system in several neurodegenerative diseases, we characterized and compared τ expression in skin biopsies of patients clinically diagnosed with PD, MSA, PSP, CBD, and in healthy control subjects. In all groups, τ protein was detected along both somatosensory and autonomic nerve fibers in the epidermis and dermis by immunofluorescence. We found by western blot the presence of mainly two different bands at 55 and 70 KDa, co-migrating with 0N4R/1N3R and 2N4R isoforms, respectively. At the RNA level, the main transcript variants were 2N and 4R, and both resulted more expressed in PSP/CBD by real-time PCR. ELISA assay demonstrated significantly higher levels of total τ protein in skin lysates of PSP/CBD compared to the other groups. Multivariate regression analysis and ROC curves analysis of τ amount at both sites showed a clinical association with tauopathies diagnosis and high diagnostic value for PSP/CBD vs. PD (sensitivity 90%, specificity 69%) and PSP/CBD vs. MSA (sensitivity 90%, specificity 86%). τ protein increase correlated with cognitive impairment in PSP/CBD. This study is a comprehensive characterization of τ in the human cutaneous peripheral nervous system in physiologic and pathologic conditions. The differential expression of τ, both at transcript and protein levels, suggests that skin biopsy, an easily accessible and minimally invasive exam, can help in discriminating among different neurodegenerative diseases.
Collapse
Affiliation(s)
- Elena Vacchi
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Edoardo Lazzarini
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Sandra Pinton
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giacomo Chiaro
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giulio Disanto
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Francesco Marchi
- Neurosurgery Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Thomas Robert
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Neurosurgery Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Claudio Staedler
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Salvatore Galati
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Claudio Gobbi
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Lucio Barile
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alain Kaelin-Lang
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Giorgia Melli
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| |
Collapse
|
44
|
Bouchenaki H, Bernard A, Bessaguet F, Frachet S, Richard L, Sturtz F, Magy L, Bourthoumieu S, Demiot C, Danigo A. Neuroprotective Effect of Ramipril Is Mediated by AT2 in a Mouse MODEL of Paclitaxel-Induced Peripheral Neuropathy. Pharmaceutics 2022; 14:pharmaceutics14040848. [PMID: 35456682 PMCID: PMC9030366 DOI: 10.3390/pharmaceutics14040848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Paclitaxel (PTX)-induced peripheral neuropathy (PIPN) induces numerous symptoms affecting patient quality of life, leading to decreased doses or even to cessation of anticancer therapy. Previous studies have reported that a widely used drug, ramipril, improves neuroprotection in several rodent models of peripheral neuropathy. The protective role of the angiotensin II type 2 receptor (AT2) in the central and peripheral nervous systems is well-established. Here, we evaluate the effects of ramipril in the prevention of PIPN and the involvement of AT2 in this effect. Paclitaxel was administered in wild type or AT2-deficient mice on alternate days for 8 days, at a cumulative dose of 8 mg/kg (2 mg/kg per injection). Ramipril, PD123319 (an AT2 antagonist), or a combination of both were administered one day before PTX administration, and daily for the next twenty days. PTX-administered mice developed mechanical allodynia and showed a loss of sensory nerve fibers. Ramipril prevented the functional and morphological alterations in PTX mice. The preventive effect of ramipril against tactile allodynia was completely absent in AT2-deficient mice and was counteracted by PD123319 administration in wild type mice. Our work highlights the potential of ramipril as a novel preventive treatment for PIPN, and points to the involvement of AT2 in the neuroprotective role of ramipril in PIPN.
Collapse
Affiliation(s)
- Hichem Bouchenaki
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| | - Amandine Bernard
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| | - Flavien Bessaguet
- INSERM 1083 CNRS UMR 6015 Mitovasc Laboratory, CarMe Team, University of Angers, 49045 Angers, France;
| | - Simon Frachet
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87000 Limoges, France
| | - Laurence Richard
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87000 Limoges, France
| | - Franck Sturtz
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Biochemistry and Molecular Genetics, University Hospital of Limoges, 87000 Limoges, France
| | - Laurent Magy
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87000 Limoges, France
| | - Sylvie Bourthoumieu
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Cytogenetic, Medical Genetic and Reproduction Biology, University Hospital of Limoges, 87000 Limoges, France
| | - Claire Demiot
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Correspondence: ; Tel.: +33-5554-35915
| | - Aurore Danigo
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| |
Collapse
|
45
|
Hossain MJ, Kendig MD, Letton ME, Morris MJ, Arnold R. Peripheral Neuropathy Phenotyping in Rat Models of Type 2 Diabetes Mellitus: Evaluating Uptake of the Neurodiab Guidelines and Identifying Future Directions. Diabetes Metab J 2022; 46:198-221. [PMID: 35385634 PMCID: PMC8987683 DOI: 10.4093/dmj.2021.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 11/08/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) affects over half of type 2 diabetes mellitus (T2DM) patients, with an urgent need for effective pharmacotherapies. While many rat and mouse models of T2DM exist, the phenotyping of DPN has been challenging with inconsistencies across laboratories. To better characterize DPN in rodents, a consensus guideline was published in 2014 to accelerate the translation of preclinical findings. Here we review DPN phenotyping in rat models of T2DM against the 'Neurodiab' criteria to identify uptake of the guidelines and discuss how DPN phenotypes differ between models and according to diabetes duration and sex. A search of PubMed, Scopus and Web of Science databases identified 125 studies, categorised as either diet and/or chemically induced models or transgenic/spontaneous models of T2DM. The use of diet and chemically induced T2DM models has exceeded that of transgenic models in recent years, and the introduction of the Neurodiab guidelines has not appreciably increased the number of studies assessing all key DPN endpoints. Combined high-fat diet and low dose streptozotocin rat models are the most frequently used and well characterised. Overall, we recommend adherence to Neurodiab guidelines for creating better animal models of DPN to accelerate translation and drug development.
Collapse
Affiliation(s)
- Md Jakir Hossain
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Michael D. Kendig
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Meg E. Letton
- Department of Exercise Physiology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Ria Arnold
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
- Department of Exercise Physiology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
- Department of Exercise and Rehabilitation, School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, Australia
- Corresponding author: Ria Arnold https://orcid.org/0000-0002-7469-6587 Department of Exercise Physiology, School of Health Sciences, UNSW Sydney, Sydney, NSW 2052, Australia E-mail:
| |
Collapse
|
46
|
Ekman L, Pourhamidi K, Englund E, Lagali N, Rolandsson O, Dahlin LB. Temporal trend of small nerve fibre degeneration in people with and without type 2 diabetes mellitus. Diabet Med 2022; 39:e14691. [PMID: 34536243 DOI: 10.1111/dme.14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
AIMS We investigated the long-term temporal trend of intraepidermal nerve fibre density (IENFD) and the association between changes in IENFD and metabolic factors in individuals with and without type 2 diabetes. METHODS A total of 66 participants were enrolled in this longitudinal population-based study, at baseline consisting of 35 individuals (median 61 years) without diabetes and 31 individuals with type 2 diabetes mellitus. Participants underwent clinical and electrophysiological examinations, as well as a skin biopsy both at baseline and at the follow-up visit (mean 8.1 ± 0.5 years). IENFD was assessed in thin sections of 5 μm, stained with the protein gene product 9.5-antibody and compared between the groups. RESULTS IENFD decreased during the period in both groups, with a greater decline in the group without diabetes than in type 2 diabetes (-2.3 and -0.6 fibres/mm respectively; p < 0.001). While IENFD at baseline was significantly reduced in type 2 diabetes relative to people without (p < 0.001), no difference in IENFD was found between groups at the follow-up (p = 0.183). Linear mixed model analysis indicated that age, weight and HbA1c were associated with decrease in IENFD in the total population (p < 0.007). IENFD also decreased with increasing age and weight, but not with HbA1c , in the separate groups (p < 0.049). CONCLUSIONS Despite lower IENFD levels at baseline in type 2 diabetes, IENFD was equal between the groups at follow-up. A decrease in IENFD is to a limited extent affected by body weight, and HbA1c , but age seems to be the long-term determinant of IENFD in an elderly population.
Collapse
Affiliation(s)
- Linnéa Ekman
- Department of Translational Medicine, Hand Surgery, Lund University, Malmö, Sweden
| | - Kaveh Pourhamidi
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Englund
- Department of Clinical Sciences, Pathology, Lund University, Lund, Sweden
| | - Neil Lagali
- Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Lars B Dahlin
- Department of Translational Medicine, Hand Surgery, Lund University, Malmö, Sweden
| |
Collapse
|
47
|
Southam K, Sousa C, Daniel A, Taylor BV, Foa L, Premilovac D. Development and characterisation of a rat model that exhibits both metabolic dysfunction and neurodegeneration seen in type 2 diabetes. J Physiol 2022; 600:1611-1630. [PMID: 35128667 PMCID: PMC9541365 DOI: 10.1113/jp282454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/02/2022] [Indexed: 11/27/2022] Open
Abstract
Abstract Accurate modelling type 2 diabetes and diabetic complications in rodents has proven a challenge, largely as a result of the long‐time course of disease development in humans. In the present study, we aimed to develop and comprehensively characterise a new rodent model of type 2 diabetes. To do this, we fed Sprague–Dawley rats a high fat/high sugar diet (HFD) to induce obesity and dyslipidaemia. After 3 weeks, we s.c. implanted osmotic mini pumps to enable a 14 day, slow infusion of streptozotocin (STZ; lower dose = 100 mg kg−1; higher dose = 120 mg kg−1) to dose‐dependently reduce pancreatic beta cell mass. After removing the mini pumps, we monitored animals for 4 months using a battery of tests to assess both metabolic and neurodegenerative changes across time. Our data demonstrate the combination of the HFD and lower dose STZ leads to induction of early‐stage type 2 diabetes defined by moderate hyperglycaemia, hyperinsulinaemia and impaired glucose tolerance, at the same time as the retention of an obese phenotype. By contrast, combining the HFD and higher dose STZ leads to induction of later‐stage type 2 diabetes defined by frank hyperglycaemia, hypoinsulinaemia (but not insulin depletion) and severely impaired glucose tolerance, at the same time as retaining an obese phenotype. Regardless of dose of STZ (and level of hyperglycaemia), all diabetic rats exhibited signs of peripheral neurodegeneration in the skin and muscle. Thus, this model recapitulates many of the complex metabolic disturbances seen in type 2 diabetes and provides an excellent platform for investigating the pathophysiological mechanisms that lead to diabetic complications such as peripheral neuropathy. Key points Type 2 diabetes is a major health concern and markedly increases risk cardiovascular and neurodegenerative diseases. Accurate modelling of type 2 diabetes is a major challenge and has impeded our ability to understand the mechanisms that contribute to complications of type 2 diabetes. We have developed a method of inducing different stages of type 2 diabetes using a high fat/high sugar diet and 14 day infusion of streptozotocin to dose‐dependently destroy pancreatic beta cell mass. Over 4 months, we comprehensively characterised these animals and confirmed that they develop sustained metabolic dysfunction and progressive peripheral neurodegeneration as seen in type 2 diabetes. This new model will improve our ability to investigate the pathophysiological mechanisms that link type 2 diabetes with complications such as neurodegeneration.
Collapse
Affiliation(s)
- Katherine Southam
- Tasmanian School of Medicine College of Health and Medicine University of Tasmania Hobart Tasmania Australia
- Menzies Institute for Medical Research College of Health and Medicine University of Tasmania Hobart Tasmania Australia
| | - Chantal Sousa
- Tasmanian School of Medicine College of Health and Medicine University of Tasmania Hobart Tasmania Australia
| | - Abraham Daniel
- Tasmanian School of Medicine College of Health and Medicine University of Tasmania Hobart Tasmania Australia
- School of Pharmacy and Pharmacology College of Health and Medicine University of Tasmania Hobart Tasmania Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research College of Health and Medicine University of Tasmania Hobart Tasmania Australia
| | - Lisa Foa
- Tasmanian School of Medicine College of Health and Medicine University of Tasmania Hobart Tasmania Australia
- School of Psychological Sciences College of Health and Medicine University of Tasmania Hobart Tasmania Australia
| | - Dino Premilovac
- Tasmanian School of Medicine College of Health and Medicine University of Tasmania Hobart Tasmania Australia
| |
Collapse
|
48
|
Corrà MF, Vila-Chã N, Sardoeira A, Hansen C, Sousa AP, Reis I, Sambayeta F, Damásio J, Calejo M, Schicketmueller A, Laranjinha I, Salgado P, Taipa R, Magalhães R, Correia M, Maetzler W, Maia LF. Peripheral neuropathy in Parkinson's disease: prevalence and functional impact on gait and balance. Brain 2022; 146:225-236. [PMID: 35088837 PMCID: PMC9825570 DOI: 10.1093/brain/awac026] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 01/12/2023] Open
Abstract
Peripheral neuropathy is a common problem in patients with Parkinson's disease. Peripheral neuropathy's prevalence in Parkinson's disease varies between 4.8-55%, compared with 9% in the general population. It remains unclear whether peripheral neuropathy leads to decreased motor performance in Parkinson's disease, resulting in impaired mobility and increased balance deficits. We aimed to determine the prevalence and type of peripheral neuropathy in Parkinson's disease patients and evaluate its functional impact on gait and balance. A cohort of consecutive Parkinson's disease patients assessed by movement disorders specialists based on the UK Brain Bank criteria underwent clinical, neurophysiological (nerve conduction studies and quantitative sensory testing) and neuropathological (intraepidermal nerve fibre density in skin biopsy punches) evaluation to characterize the peripheral neuropathy type and aetiology using a cross-sectional design. Gait and balance were characterized using wearable health-technology in OFF and ON medication states, and the main parameters were extracted using validated algorithms. A total of 99 Parkinson's disease participants with a mean age of 67.2 (±10) years and mean disease duration of 6.5 (±5) years were assessed. Based on a comprehensive clinical, neurophysiological and neuropathological evaluation, we found that 40.4% of Parkinson's disease patients presented peripheral neuropathy, with a predominance of small fibre neuropathy (70% of the group). In the OFF state, the presence of peripheral neuropathy was significantly associated with shorter stride length (P = 0.029), slower gait speed (P = 0.005) and smaller toe-off angles (P = 0.002) during straight walking; significantly slower speed (P = 0.019) and smaller toe-off angles (P = 0.007) were also observed during circular walking. In the ON state, the above effects remained, albeit moderately reduced. With regard to balance, significant differences between Parkinson's disease patients with and without peripheral neuropathy were observed in the OFF medication state during stance with closed eyes on a foam surface. In the ON states, these differences were no longer observable. We showed that peripheral neuropathy is common in Parkinson's disease and influences gait and balance parameters, as measured with mobile health-technology. Our study supports that peripheral neuropathy recognition and directed treatment should be pursued in order to improve gait in Parkinson's disease patients and minimize balance-related disability, targeting individualized medical care.
Collapse
Affiliation(s)
- Marta Francisca Corrà
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal,Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal,Institute for Research and Innovation in Health (i3s), University of Porto, 4200-135 Porto, Portugal
| | - Nuno Vila-Chã
- Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal
| | - Ana Sardoeira
- Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal
| | - Clint Hansen
- Department of Neurology, Kiel University, 24118 Kiel, Germany
| | - Ana Paula Sousa
- Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal
| | - Inês Reis
- Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal
| | - Firmina Sambayeta
- Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal
| | - Joana Damásio
- Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal
| | - Margarida Calejo
- Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal
| | - Andreas Schicketmueller
- Institute for Medical Engineering and Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany,HASOMED GmbH, 39114 Magdeburg, Germany
| | - Inês Laranjinha
- Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal
| | - Paula Salgado
- Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal
| | - Ricardo Taipa
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal,Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal
| | - Rui Magalhães
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal,Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal
| | - Manuel Correia
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal,Centro Hospitalar Universitário do Porto (CHUPorto), 4099-001 Porto, Portugal
| | - Walter Maetzler
- Department of Neurology, Kiel University, 24118 Kiel, Germany
| | - Luís F Maia
- Correspondence to: Luís F. Maia Department of Neurology Centro Hospitalar Universitario do Porto (CHUPorto) Largo do Prof. Abel Salazar, 4099-001 Porto, Portugal E-mail:
| |
Collapse
|
49
|
Mathew A, John T. Efficiency of 90-Min Extended EMLA-Induced Stimulated Skin-Wrinkling Test in the Diagnosis of Carpal Tunnel Syndrome. Ann Indian Acad Neurol 2022; 25:92-99. [PMID: 35342267 PMCID: PMC8954309 DOI: 10.4103/aian.aian_305_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Previous researchers have used a 30-min eutectic mixture of local anesthetic (EMLA) test, which assesses the sympathetically mediated vasomotor function, in diagnosing carpal tunnel syndrome (CTS). However, its specificity was low, limiting its clinical diagnostic utility. In this study, we assessed the efficiency of 90-min extended EMLA-induced stimulated skin-wrinkling (SSW) test in CTS diagnosis. Methods: A cross-sectional study was designed among patients clinically diagnosed with CTS. Hands of healthy volunteers and the asymptomatic hands of selected patients served as control. The Boston symptom severity scale (SSS) and the neuropathic pain severity inventory (NPSI) were used to assess symptom severity, and nerve conduction study (NCS) was used to assess electrophysiological severity. EMLA-induced SSW was visually graded after 90 min of application and correlated with symptom and NCS severities. Results: Forty-two symptomatic hands and 30 asymptomatic hands were enrolled as cases and controls, respectively. The diagnostic efficiency of the extended EMLA test was found to be 83.4% for digit 2 and 87.3% for the lateral 4 digits (mean), whereas the diagnostic efficiency of standard NCS was 88.1%. Boston SSS and NPSI were better correlated with EMLA positivity than NCS positivity. A linear regression analysis showed negative correlation of wrinkling grade with NCS grade. Conclusion: With its improved diagnostic efficiency, the 90-min extended EMLA test can feasibly be used as an alternative to NCS, especially in general practice settings. Its potential clinical utility should be explored in a large population of CTS patients showing varying clinical and electrophysiological severities.
Collapse
|
50
|
Hulens M, Bruyninckx F, Thal DR, Rasschaert R, Bervoets C, Dankaerts W. Large- and Small-Fiber Neuropathy in Patients with Tarlov Cysts. J Pain Res 2022; 15:193-202. [PMID: 35115823 PMCID: PMC8801331 DOI: 10.2147/jpr.s342759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/08/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mieke Hulens
- Department of Rehabilitation Sciences, Musculoskeletal Rehabilitation Research Unit, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Correspondence: Mieke Hulens, Department of Rehabilitation Sciences, Musculoskeletal Rehabilitation Research Unit, Faculty of Kinesiology and Rehabilitation Sciences, University of Leuven, Tervuursevest 101, Leuven, Belgium, Tel +32 478 338003, Fax +32 16 32 91 97, Email
| | - Frans Bruyninckx
- Department of Physical Medicine & Rehabilitation, EMG-Laboratory, University Hospitals of Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Department of Imaging and Pathology, Laboratory of Neuropathology, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals of Leuven, Leuven, Belgium
| | | | - Chris Bervoets
- Department of Neurosciences, Adult Psychiatry, KU Leuven, Leuven, Belgium
- Department of Ophthalmology, University Hospitals of Leuven, Leuven, Belgium
- Department Adult Psychiatry, University Psychiatric Center of KU Leuven, Leuven, Belgium
| | - Wim Dankaerts
- Department of Rehabilitation Sciences, Musculoskeletal Rehabilitation Research Unit, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|