1
|
Gholap AD, Pardeshi SR, Hatvate NT, Dhorkule N, Sayyad SF, Faiyazuddin M, Khalid M. Environmental implications and nanotechnological advances in octocrylene-enriched sunscreen formulations: A comprehensive review. CHEMOSPHERE 2024; 358:142235. [PMID: 38705416 DOI: 10.1016/j.chemosphere.2024.142235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Ultraviolet (UV) radiation is a major contributor to skin aging, cancer, and other detrimental health effects. Sunscreens containing FDA-approved UV filters, like avobenzone, offer protection but suffer from photodegradation and potential phototoxicity. Encapsulation, antioxidants, and photostabilizers are strategies employed to combat these drawbacks. Octocrylene, an organic UV filter, utilizes nanotechnology to enhance sun protection factor (SPF). This review examines recent literature on octocrylene-enriched sunscreens, exploring the interplay between environmental impact, nanotechnological advancements, and clinical trial insights. A critical focus is placed on the environmental consequences of sunscreen use, particularly the potential hazards UV filters pose to marine ecosystems. Research in the Mediterranean Sea suggests bacterial sensitivity to these filters, raising concerns about their integration into the food chain. This review aims to guide researchers in developing effective strategies for photostabilization of UV filters. By combining encapsulation, photostabilizers, and antioxidants, researchers can potentially reduce phototoxic effects and contribute to developing more environmentally friendly sunscreens.
Collapse
Affiliation(s)
- Amol D Gholap
- St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India; Department of Pharmaceutics, Amrutvahini College of Pharmacy, Sangamner, 422608, Maharashtra, India
| | - Sagar R Pardeshi
- St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India
| | - Navnath T Hatvate
- Institute of Chemical Technology, Marathwada Campus, Jalna, Maharashtra, 431203, India
| | - Nilesh Dhorkule
- St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India
| | - Sadikali F Sayyad
- Department of Pharmaceutics, Amrutvahini College of Pharmacy, Sangamner, 422608, Maharashtra, India.
| | - Md Faiyazuddin
- School of Pharmacy, Al-Karim University, Katihar, Bihar, 854106, India; Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, India.
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; Centre of Research Impact and Outcome, Chitkara University, Punjab, 140401 India; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India.
| |
Collapse
|
2
|
Bernasqué A, Faure C, Rezvani H, Cario M. A new eco-friendly and water-resistant sunscreen agent: Lecithin-based multilamellar liposomes. J Cosmet Dermatol 2024; 23:918-925. [PMID: 37947116 DOI: 10.1111/jocd.16072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND UV skin exposure is an important matter of public health, as the worldwide rising prevalence of skin cancers indicates. However, a wide majority of commercially available sunscreens are responsible for ocean ecosystem damages such as coral reef degradation and phytoplankton mortality. AIMS To answer the urge for new eco-friendly UV filters, we studied the use of lecithin-based multilamellar liposomes (MLLs) of controlled size and elasticity as a bio-sourced and biodegradable alternative to classic sunscreens. These parameters control allows different skin layers targeting. METHODS The performance of two different MLLs compositions and a commercially available SPF50+ water-resistant liposomal sunscreen was compared on skin explants. SC-MLLs target the stratum corneum and Epi-MLLs the whole epidermis. Preparations were applied prior to skin irradiation. Their efficiencies were evaluated histologically (hematoxylin and eosin staining plus cyclobutane pyrimidine dimer [CPD] immunostaining) and by skin barrier quality assessment (trans-epithelial electrical resistance). Adhesiveness to the skin was also investigated. RESULTS Altogether, ex vivo results indicate MLLs offer a solar protection as effective as a SPF50+ water-resistant liposomal sunscreen but with a better skin adhesiveness and an improved skin barrier function. CONCLUSION Lecithin-based MLLs of controlled physicochemical parameters can be used as a new eco-friendly and water-resistant agent for solar protection. The stratum corneum targeted action of SC-MLLs appears to be more interesting, as SC-MLLs exhibit an overall better performance than Epi-MLLs at a lower cost. The skin barrier improvement showcased could be of interest to people suffering from dry skin or skin barrier impairment related disease.
Collapse
Affiliation(s)
- Antoine Bernasqué
- CBMN, Univ. Bordeaux, CNRS, Bordeaux INP, UMR5248, Pessac, France
- Bordeaux Institute of Oncology, BRIC U1312, INSERM, Université de Bordeaux, Bordeaux, France
| | - Chrystel Faure
- CBMN, Univ. Bordeaux, CNRS, Bordeaux INP, UMR5248, Pessac, France
| | - Hamid Rezvani
- Bordeaux Institute of Oncology, BRIC U1312, INSERM, Université de Bordeaux, Bordeaux, France
| | - Muriel Cario
- Bordeaux Institute of Oncology, BRIC U1312, INSERM, Université de Bordeaux, Bordeaux, France
- National Reference Center for Rare Skin Diseases, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
3
|
Sunena, Tomar D, Jawla S. Clinical Applications of Sunscreens and Formulation Advancements. Curr Drug Res Rev 2024; 16:198-208. [PMID: 37464824 DOI: 10.2174/2589977515666230718124841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/05/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023]
Abstract
Sunscreens cover the big market ratio in terms of cosmetic applications, but the therapeutic necessity of sunscreen still needs to be uncovered in the clinical context. Clinically, sunscreens are being employed more often nowadays as a result of the rising consequences of skin malignancies and the photodamaging effects of UV radiation. Sunscreens are essential to prevent aging by shielding the skin from the harmful effects of ultraviolet (UV) radiation. Over the recent decades, there has been a significant evolution in the usage of sunscreens as photo protectants. The demand for sunscreen formulations will inevitably rise as more people become aware of the protection that sunscreens provide against tanning, photoaging, non-melanoma skin cancers, premalignant skin lesions, and skin melanomas. The novel contemporary formulation techniques are also beneficial in enhancing the product's aesthetic look and quality. Recently, regulatory agencies have also started paying attention to the regulation of the clinical application, efficacy, and safety parameters related to sunscreen. This review underlines the pathophysiological response of UV exposure with the therapeutic applications of sunscreen in various dermatological conditions and the recent formulation advancements in the development of sunscreen.
Collapse
Affiliation(s)
- Sunena
- Geeta Institute of Pharmacy, Geeta University, Panipat, 132145, India
| | - Deepali Tomar
- Geeta Institute of Pharmacy, Geeta University, Panipat, 132145, India
| | - Sunil Jawla
- Geeta Institute of Pharmacy, Geeta University, Panipat, 132145, India
| |
Collapse
|
4
|
Chang J, Yu B, Saltzman WM, Girardi M. Nanoparticles as a Therapeutic Delivery System for Skin Cancer Prevention and Treatment. JID INNOVATIONS 2023; 3:100197. [PMID: 37205301 PMCID: PMC10186617 DOI: 10.1016/j.xjidi.2023.100197] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 03/18/2023] Open
Abstract
The use of nanoparticles (NPs) as a therapeutic delivery system has expanded markedly over the past decade, particularly regarding applications targeting the skin. The delivery of NP-based therapeutics to the skin requires special consideration owing to its role as both a physical and immunologic barrier, and specific technologies must not only take into consideration the target but also the pathway of delivery. The unique challenge this poses has been met with the development of a wide panel of NP-based technologies meant to precisely address these considerations. In this review article, we describe the application of NP-based technologies for drug delivery targeting the skin, summarize the types of NPs, and discuss the current landscape of NPs for skin cancer prevention and skin cancer treatment as well as future directions within these applications.
Collapse
Affiliation(s)
- Jungsoo Chang
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Beverly Yu
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - W. Mark Saltzman
- Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Thirumal D, Sindhu RK, Goyal S, Sehgal A, Kumar A, Babu MA, Kumar P. Pathology and Treatment of Psoriasis Using Nanoformulations. Biomedicines 2023; 11:1589. [PMID: 37371684 DOI: 10.3390/biomedicines11061589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Psoriasis (PSO) is an inflammatory skin condition that causes a variety of diseases and significantly decreases the life characteristics of patients, and substantially diminishes patients' quality of life. PSO usually impairs the skin and is linked to various disorders. Inflammation pathology does not only damage psoriatic skin; it shows how PSO impinges other body parts. Many variables interact with one another and can impact the etiology of psoriasis directly or indirectly. PSO has an effect on approximately 2% of the world's population, and significant progress has been made in comprehending and treating the alternative PSO by novel drug delivery systems. Topical, systemic, biological, biomaterials, and phototherapy are some of the useful therapies for PSO. Nonetheless, topical treatments remain the gold standard for treating moderate PSO. The applicability of several nanocarrier systems, such as lipid nanoparticles, metallic nanoparticles, and certain phytocompounds, has been briefly explored. The present review focuses mainly on traditional therapeutic strategies as well as on breakthroughs in nanoformulations and drug delivery methods for several anti-psoriatic drugs.
Collapse
Affiliation(s)
- Divya Thirumal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Shuchi Goyal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Aayush Sehgal
- Department of Pharmacology, G.H.G. Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana 141014, Punjab, India
| | - Ashok Kumar
- Department of Cardiology, Sadbhwana Hospital, Fatehabad 125050, Haryana, India
| | | | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
6
|
Chen H, Zhang Y, Zhang Y, Liu D, Li M, Cao Y. Surface encapsulating UV filters based on self-assembly of an amphiphilic random copolymer by miniemulsion polymerization. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Gholap AD, Sayyad SF, Hatvate NT, Dhumal VV, Pardeshi SR, Chavda VP, Vora LK. Drug Delivery Strategies for Avobenzone: A Case Study of Photostabilization. Pharmaceutics 2023; 15:1008. [PMID: 36986867 PMCID: PMC10059943 DOI: 10.3390/pharmaceutics15031008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Several developments and research methods are ongoing in drug technology and chemistry research to elicit effectiveness regarding the therapeutic activity of drugs along with photoprotection for their molecular integrity. The detrimental effect of UV light induces damaged cells and DNA, which leads to skin cancer and other phototoxic effects. The application of sunscreen shields to the skin is important, along with recommended UV filters. Avobenzone is widely used as a UVA filter for skin photoprotection in sunscreen formulations. However, keto-enol tautomerism propagates photodegradation into it, which further channelizes the phototoxic and photoirradiation effects, further limiting its use. Several approaches have been used to counter these issues, including encapsulation, antioxidants, photostabilizers, and quenchers. To seek the gold standard approach for photoprotection in photosensitive drugs, combinations of strategies have been implemented to identify effective and safe sunscreen agents. The stringent regulatory guidelines for sunscreen formulations, along with the availability of limited FDA-approved UV filters, have led many researchers to develop perfect photostabilization strategies for available photostable UV filters, such as avobenzone. From this perspective, the objective of the current review is to summarize the recent literature on drug delivery strategies implemented for the photostabilization of avobenzone that could be useful to frame industrially oriented potential strategies on a large scale to circumvent all possible photounstable issues of avobenzone.
Collapse
Affiliation(s)
- Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
- Department of Pharmaceutics, Amrutvahini College of Pharmacy, Sangamner 422608, Maharashtra, India
| | - Sadikali F. Sayyad
- Department of Pharmaceutics, Amrutvahini College of Pharmacy, Sangamner 422608, Maharashtra, India
| | - Navnath T. Hatvate
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Vilas V. Dhumal
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Sagar R. Pardeshi
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
8
|
Sharma G, Khanna G, Gupta S, Ramzan M, Singh J, Singh M, Mudgill U, Gulati JS, Kaur IP. Scope of solid lipid nanoparticles per se as all-purpose moisturising sunscreens. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Lipid Nanomaterials for Targeted Delivery of Dermocosmetic Ingredients: Advances in Photoprotection and Skin Anti-Aging. NANOMATERIALS 2022; 12:nano12030377. [PMID: 35159721 PMCID: PMC8840400 DOI: 10.3390/nano12030377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
Despite the health benefits of the sun, overexposure to solar radiation without proper precautions can cause irreversible damage to exposed skin. In the search for balance between the risks and benefits of exposure to solar radiation in human health, a technological alternative was found, the incorporation of photoprotective products in lipid nanoparticulate systems for topical application. These nanometric systems have demonstrated several advantages when used as adjuvants in photoprotection compared to chemical and/or physical sunscreens alone. The increase in the sun protection factor (SPF), photostability and UV action spectrum are parameters that have benefited from the application of these systems in order to increase the effectiveness and safety of photoprotective formulations containing organic and/or inorganic sunscreens.
Collapse
|
10
|
Caldas AR, Faria MJ, Ribeiro A, Machado R, Gonçalves H, Gomes AC, Soares GM, Lopes CM, Lúcio M. Avobenzone-loaded and omega-3-enriched lipid formulations for production of UV blocking sunscreen gels and textiles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Salvioni L, Morelli L, Ochoa E, Labra M, Fiandra L, Palugan L, Prosperi D, Colombo M. The emerging role of nanotechnology in skincare. Adv Colloid Interface Sci 2021; 293:102437. [PMID: 34023566 DOI: 10.1016/j.cis.2021.102437] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The role of cosmetic products is rapidly evolving in our society, with their use increasingly seen as an essential contribution to personal wellness. This suggests the necessity of a detailed elucidation of the use of nanoparticles (NPs) in cosmetics. The aim of the present work is to offer a critical and comprehensive review discussing the impact of exploiting nanomaterials in advanced cosmetic formulations, emphasizing the beneficial effects of their extensive use in next-generation products despite a persisting prejudice around the application of nanotechnology in cosmetics. The discussion here includes an interpretation of the data underlying generic information reported on the product labels of formulations already available in the marketplace, information that often lacks details identifying specific components of the product, especially when nanomaterials are employed. The emphasis of this review is mainly focused on skincare because it is believed to be the cosmetics market sector in which the impact of nanotechnology is being seen most significantly. To date, nanotechnology has been demonstrated to improve the performance of cosmetics in a number of different ways: 1) increasing both the entrapment efficiency and dermal penetration of the active ingredient, 2) controlling drug release, 3) enhancing physical stability, 4) improving moisturizing power, and 5) providing better UV protection. Specific attention is paid to the effect of nanoparticles contained in semisolid formulations on skin penetration issues. In light of the emerging concerns about nanoparticle toxicity, an entire section has been devoted to listing detailed examples of nanocosmetic products for which safety has been investigated.
Collapse
|
12
|
Design, Preparation, and Characterization of Effective Dermal and Transdermal Lipid Nanoparticles: A Review. COSMETICS 2021. [DOI: 10.3390/cosmetics8020039] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Limited permeability through the stratum corneum (SC) is a major obstacle for numerous skin care products. One promising approach is to use lipid nanoparticles as they not only facilitate penetration across skin but also avoid the drawbacks of conventional skin formulations. This review focuses on solid lipid nanoparticles (SLNs), nanostructured lipid nanocarriers (NLCs), and nanoemulsions (NEs) developed for topical and transdermal delivery of active compounds. A special emphasis in this review is placed on composition, preparation, modifications, structure and characterization, mechanism of penetration, and recent application of these nanoparticles. The presented data demonstrate the potential of these nanoparticles for dermal and transdermal delivery.
Collapse
|
13
|
Lipidic Matrixes Containing Clove Essential Oil: Biological Activity, Microstructural and Textural Studies. Molecules 2021; 26:molecules26092425. [PMID: 33921948 PMCID: PMC8122422 DOI: 10.3390/molecules26092425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Clove essential oil (CEO) is known for having excellent antioxidant and antimicrobial properties, but the poor stability of its components to light and temperature compromise this activity. The aim of this study is to evaluate the textural, antioxidant, antimicrobial and microstructural properties of matrixes produced with representative natural waxes and CEO. Thus, waxy emulsifiers, such as beeswax, candelilla wax, carnauba wax, and ozokerite wax, were employed to create such matrixes. The thermal, microstructural, textural, wetting, antioxidant, antimicrobial and infrared characteristics of the matrixes were then studied. The diverse chemical composition (long-chain wax esters in carnauba wax and short-chain fatty acids and hydrocarbons in beeswax and ozokerite wax, respectively) explained the differences in wetting, texture, melting, and crystallization characteristics. Crystal forms of these matrix systems varied from grainy, oval, to needle-like shape, but keeping an orthorhombic allomorph. The alignment and reorganization of beeswax and ozokerite wax into needle-like crystals increased the matrix strength and adhesion force compared to those of carnauba and candelilla matrixes, which showed weak strength and grainy morphology. The former two waxes and their matrixes also showed the largest plasticity. These lipidic matrixes show potential use for topical applications having acceptable antioxidant and textural properties.
Collapse
|
14
|
Romanhole RC, Fava ALM, Tundisi LL, Macedo LMD, Santos ÉMD, Ataide JA, Mazzola PG. Unplanned absorption of sunscreen ingredients: Impact of formulation and evaluation methods. Int J Pharm 2020; 591:120013. [PMID: 33132151 DOI: 10.1016/j.ijpharm.2020.120013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
Permeation of sunscreens agents reduces its effectiveness and safety, leading to systemic circulation and causing unknown adverse effects. In order to maintain the sunscreen efficacy and safety, the filters must stay on the skin surface, with minimum penetration through dermis. Even facing the possibility of filters permeation, the use of sunscreen is important to avoid skin damage as erythema, free-radicals formation, skin ageing and skin cancer, caused by ultraviolet radiation. Aiming potential side effects caused by topical absorption of sunscreens, studies are carried to improve formulation characteristics and stability, reduce skin permeation and evaluate sun protections factor (SPF). Current assays to detect the permeation of sunscreens involve in vivo or in vitro studies, to simulate physiological conditions of use. The aim of this review is to revisit sunscreen skin permeation data over the last decade and the factors that can enhance skin permeation or improve the sunscreen efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil.
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
15
|
Dhapte-Pawar V, Kadam S, Saptarsi S, Kenjale PP. Nanocosmeceuticals: facets and aspects. Future Sci OA 2020; 6:FSO613. [PMID: 33312696 PMCID: PMC7720364 DOI: 10.2144/fsoa-2019-0109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 06/12/2020] [Indexed: 11/23/2022] Open
Abstract
The global cosmetic market prized $532.43 billion USD in 2017 is expected to reach $805.61 billion USD by 2023, with a 7.14% compound annual growth rate. These figures have appealed to the cosmeceutical players for developing new and effective products containing advanced materials. Cosmetics incorporated with pharmaceutical actives, termed as 'cosmeceuticals,' are receiving an overwhelming response from cosmetic industry. Nowadays, the implementation of nanotechnology for enhanced effectiveness of cosmeceuticals is witnessing a huge success. These applications include remedies for hair damage, wrinkles, aging and skin dryness. Currently, there is a need to establish regulations and harmonized guidelines for nanotechnology-based products to assess their efficacy, safety and toxicity profiles. This review summarizes current development, applications, safety and regulations of nanocosmeceuticals.
Collapse
Affiliation(s)
- Vividha Dhapte-Pawar
- Department of Pharmaceutics, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Shivajirao Kadam
- Bharati Vidyapeeth University, Bharati Vidyapeeth Bhavan, Lal Bahadur Shastri Marg, Pune, India
| | - Shai Saptarsi
- Department of Pharmaceutics, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Prathmesh P Kenjale
- Department of Pharmaceutics, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| |
Collapse
|
16
|
Rajpoot K. Solid Lipid Nanoparticles: A Promising Nanomaterial in Drug Delivery. Curr Pharm Des 2020; 25:3943-3959. [PMID: 31481000 DOI: 10.2174/1381612825666190903155321] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022]
Abstract
The solid lipid nanoparticles (SLNs) usually consists of active drug molecules along with solid lipids, surfactants, and/or co-surfactants. They possess some potential features such as nano-size, surface with a free functional group to attach ligands, and as well they prove safe homing for both lipophilic as well as hydrophilic molecules. As far as synthesis is concerned, SLNs can be prepared by employing various techniques viz., homogenization techniques (e.g., high-pressure, high-speed, cold, or hot homogenization), spray drying technique, ultrasonication, solvent emulsification, double emulsion technique, etc. Apart from this, they are characterized by different methods for determining various parameters like particle-size, polydispersity-index, surface morphology, DSC, XRD, etc. SLNs show good stability as well as the ability for surface tailoring with the specific ligand, which makes them a suitable candidate in the therapy of numerous illnesses, especially in the targeting of the cancers. In spite of this, SLNs have witnessed their application via various routes e.g., oral, parenteral, topical, pulmonary, rectal routes, etc. Eventually, SLNs have also shown great potential for delivery of gene/DNA, vaccines, as well as in cosmeceuticals. Hence, SLNs have emerged as a promising nanomaterial for efficient delivery of various Active Pharmaceutical Ingredients (APIs).
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Pharmaceutical Research Project Laboratory, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495 009, Chhattisgarh, India
| |
Collapse
|
17
|
Ammar HO, Ghorab MM, Mostafa DM, Abd El-Alim SH, Kassem AA, Salah S, Shalaby ES. Development of folic acid-loaded nanostructured lipid carriers for topical delivery: preparation, characterisation and ex vivo investigation. J Microencapsul 2020; 37:366-383. [PMID: 32338149 DOI: 10.1080/02652048.2020.1761904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The present work is designed to achieve efficient localised skin delivery of folic acid (FA)-loaded nanostructured lipid carriers (NLCs) to infer efficient treatment of skin photoageing conditions induced via excessive exposure to ultraviolet (UV) radiation. FA NLCs were prepared by high-speed homogenisation followed by ultrasonication. The obtained NLCs revealed high encapsulation efficiencies (89.42-99.26%) with nanometric particle sizes (27.06-85.36 nm) of monodisperse distribution (PDI = 0.137-0.442), zeta potential values >|27| mV, pseudoplastic rheological behaviour, good spreadability (2.25-3.30 cm) and promoted occlusive properties throughout 48 h. Optimised NLC formulations appeared as sphere-shaped particles using transmission electron microscopy, showed improved photostability of FA and prolonged in vitro release profile best fitted to Higuchi diffusion model. Ex vivo permeation and deposition of FA, employing Wistar rat skins, depicted enhanced permeability and existence of FA in skin layers after 6 h. Based on the obtained results, FA-loaded NLC formulations demonstrate a promising modality for anti-photoageing therapy.
Collapse
Affiliation(s)
- Hussein Osman Ammar
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt.,Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University, New Cairo, Egypt
| | - Mahmoud Mohamed Ghorab
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt
| | - Salwa Salah
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman Samy Shalaby
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
18
|
Prasertpol T, Tiyaboonchai W. Nanostructured lipid carriers: A novel hair protective product preventing hair damage and discoloration from UV radiation and thermal treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 204:111769. [PMID: 31954264 DOI: 10.1016/j.jphotobiol.2019.111769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 12/25/2019] [Accepted: 12/28/2019] [Indexed: 12/31/2022]
Abstract
The goal of this study was to investigate the protective effects of nanostructured lipid carriers (NLCs) and vitamin E loaded NLCs (Vit E-NLCs) on preventing hair damages and discoloration against UV radiation and thermal treatment. The NLCs and Vit E-NLCs were prepared using a high-pressure homogenization technique. At optimal conditions, they showed spherical particles with a mean particle size of ~140 nm and a polydispersity index of < 0.3. Up to 90% (w/w) vitamin E acetate incorporation efficacy was achieved. The protective efficacy of the model cream containing blank-NLCs (NLCs cream) or Vit E-NLCs (Vit E-NLCs cream) was investigated. Upon exposure to UV-light and heat, the FE-SEM images revealed that the hair treated with both NLCs creams showed a smoothness of hair surface similar to the virgin hair. In accordance with protein loss, they exhibited the least protein loss as compared to the hair treated with Vit-E cream, cream base and commercial products. The same trend was observed for the discoloration test, the hair treated with both NLCs creams demonstrated the lowest total color loss, as compared to other products. Comparing between two NLCs formulations, antioxidant Vit E-NLCs showed to promote the photoprotective effect against hair damage and discoloration slightly greater than blank NLCs, but it has no extra benefit for heat protection. Considered overall, the developed NLCs and Vit E-NLCs is a novel alternative for preventing hair damage and discoloration from daily UV and heat exposure.
Collapse
Affiliation(s)
- Tashatai Prasertpol
- Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Waree Tiyaboonchai
- Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand; The Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on High Education, Ministry of Education, Thailand; The Center of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
19
|
Barbosa LMQ, Amaral-Machado L, Félix-Silva J, Oliveira WN, Alencar ÉN, Rocha KBP, Medeiros ADC, Rocha HAO, Fernandes-Pedrosa MF, Egito EST. Bullfrog Oil Reduces the Carrageenan-induced Edema in Wistar Rats by in vitro Reduction of Inflammatory Mediators. J Oleo Sci 2020; 69:133-142. [PMID: 31941865 DOI: 10.5650/jos.ess19215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bullfrog oil (BFO) is a natural product from the adipose tissue of the amphibian Rana catesbeiana Shaw, a bio-product rich in polyunsaturated fatty acids, which claims anti-inflammatory activity. The objective of this work was to evaluate the cytotoxicity and the anti-inflammatory activity of BFO using in vivo and in vitro assays. Thus, the in vitro cytotoxicity was assessed by the MTT assay. Additionally, the in vivo anti-inflammatory activity was performed by the carrageenan-induced paw edema model in Wistar rats, followed by histological analysis. Moreover, the BFO effect on inflammatory pathways was investigated by in vitro evaluation of the nitric oxide (NO) synthesis, and type-6 interleukin (IL-6) and tumor-necrosis-factor (TNF) levels. In vivo experiments showed that BFO administered by intragastric route produced a significant anti-inflammatory effect, which was as substantial as indomethacin, the positive control. Histopathological analysis confirmed these results, showing the absence of the edema and minimal signs of inflammation in the paws of rats treated with BFO. The MTT results showed that BFO at all tested concentrations had no toxic effect against a macrophage cell line, not affecting the cell viability. In addition, after 48 hours of treatment, the BFO itself and its blend with Cetiol®-V (1:1v/v) at 200 µg.mL-1 were able to reduce the NO synthesis, and the IL-6 and TNF levels up to 35 ± 2%, 40 ± 6%, and 12 ± 3%, respectively. Therefore, these results provide unprecedented scientific evidence of the anti-inflammatory effect of BFO, suggesting its potential as a new candidate for the development of pharmaceutical products with anti-inflammatory activity.
Collapse
Affiliation(s)
| | - Lucas Amaral-Machado
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN).,Graduation Program in Health Sciences, UFRN
| | | | - Wógenes N Oliveira
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN).,Graduation Program in Health Sciences, UFRN
| | - Éverton N Alencar
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN)
| | | | | | - Hugo A O Rocha
- Laboratory of Natural Polymers Biotechnology (BioPol), Federal University of Rio Grande do Norte (UFRN)
| | | | - Eryvaldo S T Egito
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN).,Graduation Program in Health Sciences, UFRN
| |
Collapse
|
20
|
Damiani E, Puglia C. Nanocarriers and Microcarriers for Enhancing the UV Protection of Sunscreens: An Overview. J Pharm Sci 2019; 108:3769-3780. [PMID: 31521640 DOI: 10.1016/j.xphs.2019.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/24/2019] [Accepted: 09/06/2019] [Indexed: 11/30/2022]
Abstract
This review addresses a major question of importance to pharmaceutical scientists: how can novel drug delivery systems play a role in maximizing the UV protection of sunscreens? Because more and more people are being diagnosed with skin cancer each year than all other cancers combined, adequate sun protective measures are pivotal. In this context, the present review is to give an up-to-date overview on the different nanocarrier systems that have been explored so far for encapsulating different types of UV filters present on the market. The aim of these carrier systems is to prevent skin penetration and to enhance the photoprotective potential of sunscreen actives. For each supramolecular system, a brief description along with the studies, achievements, and pitfalls, on the type of UV actives inside them, ranging from classical UV filters to new generation of UV actives is given. A brief overview of UV filters encapsulated in microcarriers is also discussed.
Collapse
Affiliation(s)
- Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of the Marche, Ancona, Italy.
| | - Carmelo Puglia
- Department of Drug Sciences, University of Catania, Catania, Italy
| |
Collapse
|
21
|
Geoffrey K, Mwangi AN, Maru SM. Sunscreen products: Rationale for use, formulation development and regulatory considerations. Saudi Pharm J 2019; 27:1009-1018. [PMID: 31997908 PMCID: PMC6978633 DOI: 10.1016/j.jsps.2019.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/13/2019] [Indexed: 12/03/2022] Open
Abstract
The association of sunrays with skin damage have been known since medieval times. The description of the electromagnetic spectrum facilitated the identification of the ultraviolet light spectrum as being responsible for skin damage resulting from prolonged skin exposure. Sunscreens have been used since ancient civilizations with various measures to limit exposure to sun exposure being employed. Awareness of the risks associated with sunrays has been increasing in the last century, and as a result, the science, technologies, and formulation have advanced significantly. The use of sunscreen products continues rising as government health agencies seek to contain increasing cases of UV induced melanomas. Recreational sunbathing and artificial tanning have increased the risk for these diseases significantly. This review article sought to expound the scientific basis of sunscreen use, the classification, formulation, quality control and regulation across the different countries around the world. The literature review was conducted on Google scholar, PubMed, SCOPUS, Cochrane, BMJ, SCIELO among others.
Collapse
Affiliation(s)
- Kiriiri Geoffrey
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy, University of Nairobi, P.O Box 19676-00202, Nairobi, Kenya
| | - A N Mwangi
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy, University of Nairobi, P.O Box 19676-00202, Nairobi, Kenya
| | - S M Maru
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy, University of Nairobi, P.O Box 19676-00202, Nairobi, Kenya
| |
Collapse
|
22
|
Asfour MH, Kassem AA, Salama A. Topical nanostructured lipid carriers/inorganic sunscreen combination for alleviation of all-trans retinoic acid-induced photosensitivity: Box-Behnken design optimization, in vitro and in vivo evaluation. Eur J Pharm Sci 2019; 134:219-232. [DOI: 10.1016/j.ejps.2019.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 01/17/2023]
|
23
|
Sharma Bora N, Mazumder B, Patowary P, Kishor S, Doma Bhutia Y, Chattopadhyay P, Dwivedi SK. Formulation development and accelerated stability testing of a novel sunscreen cream for ultraviolet radiation protection in high altitude areas. Drug Dev Ind Pharm 2019; 45:1332-1341. [DOI: 10.1080/03639045.2019.1616750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nilutpal Sharma Bora
- Division of Pharmaceutical Technology, Defence Research Laboratory, Defence Research and Development Organization, Ministry of Defence, Government of India, Tezpur, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Defence Research and Development Organization, Ministry of Defence, Government of India, Tezpur, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Sumit Kishor
- Division of Pharmaceutical Technology, Defence Research Laboratory, Defence Research and Development Organization, Ministry of Defence, Government of India, Tezpur, India
| | - Yangchen Doma Bhutia
- Division of Pharmaceutical Technology, Defence Research Laboratory, Defence Research and Development Organization, Ministry of Defence, Government of India, Tezpur, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, Defence Research and Development Organization, Ministry of Defence, Government of India, Tezpur, India
| | - Sanjai Kumar Dwivedi
- Division of Pharmaceutical Technology, Defence Research Laboratory, Defence Research and Development Organization, Ministry of Defence, Government of India, Tezpur, India
| |
Collapse
|
24
|
Ntohogian S, Gavriliadou V, Christodoulou E, Nanaki S, Lykidou S, Naidis P, Mischopoulou L, Barmpalexis P, Nikolaidis N, Bikiaris DN. Chitosan Nanoparticles with Encapsulated Natural and UF-Purified Annatto and Saffron for the Preparation of UV Protective Cosmetic Emulsions. Molecules 2018; 23:E2107. [PMID: 30131464 PMCID: PMC6225254 DOI: 10.3390/molecules23092107] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
The aim of the present work is to evaluate the preparation of sunscreen emulsions based on chitosan (CS) nanoparticles with annatto, ultrafiltrated (UF) annatto, saffron, and ultrafiltrated saffron. Ionic gelation was used for the preparation of chitosan nanoparticles, while their morphological characteristics and physicochemical properties were evaluated via Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and dynamic light scattering (DLS). Results showed that the prepared nanoparticles ranged from ~150 to ~500 nm and had a spherical or irregular shape. In the case of annatto and UF annatto, due to the formation of H-bonds, the sunscreen agents were amorphously dispersed within CS nanoparticles, while in the case of saffron and UF saffron, crystalline dispersion was observed. All encapsulated materials had good thermal stability as well as color stability. In a further step, sunscreen emulsions were prepared based on the formed CS-sunscreen nanoparticles and evaluated for their stability in terms of pH and viscosity, along with their ultraviolet (UV) radiation protection ability in terms of sun protection factor (SPF). All prepared emulsions showed low cytotoxicity and good storage stability for up to 90 days, while minimum sunscreen protection was observed with SPF values varying from 2.15 to 4.85.
Collapse
Affiliation(s)
- Sonia Ntohogian
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Viktoria Gavriliadou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Evi Christodoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Stavroula Nanaki
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Smaro Lykidou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis Naidis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Lily Mischopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Nikolaos Nikolaidis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
25
|
Jose J, Netto G. Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J Cosmet Dermatol 2018; 18:315-321. [PMID: 29441672 DOI: 10.1111/jocd.12504] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Novel drug delivery systems have gained popularity since last two decades because of its advantages over conventional dosage forms. Effect of UV radiation on skin can cause either acute or chronic damage to our skin. Solid lipid nanoparticles (SLNs) were developed as novel carrier over the conventional carrier systems like liposomes and emulsions. The SLNs were selected as a carrier for the formulation because of its ability to protect the labile drug particles, the ability to make the drug release in a controlled manner, and occlusive property of the SLNs. OBJECTIVE The current review is an attempt to focus on the characteristics of solid lipid nanoparticles, methods for the preparations, and their cosmetic applications along with some future perspectives of the nanodrug delivery systems. METHODS A review of the current literature of solid lipid nanoparticles (SLNs) as novel carrier showed better photoprotection in sunscreens. RESULTS AND CONCLUSIONS The disadvantages of conventional sunscreens can be overcome by incorporation of solid lipid nanoparticles. On comparing the lipid nanobased systems with traditional cosmetic products, the occlusion can be achieved without the use of paraffin and other greasy oils. The film formed by lipid nanoparticles will be smooth as compared to the inflexible films formed by the paraffin. Newer approaches may lead to even better results. They also possess excellent UV-blocking activity and showed better photoprotection.
Collapse
Affiliation(s)
- Jobin Jose
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, Nitte University, Mangalore, India
| | - Gladyston Netto
- Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, Nitte University, Mangalore, India
| |
Collapse
|
26
|
Gonçalves FDS, Giovanini IRT, Cerqueira C, Ricci Junior E, Freitas ZMFD, Santos EPD. Multifunctional photoprotection: corrective makeup for cutaneous dyschromias. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000417313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Andréo-Filho N, Bim AVK, Kaneko TM, Kitice NA, Haridass IN, Abd E, Santos Lopes P, Thakur SS, Parekh HS, Roberts MS, Grice JE, Benson HA, Leite-Silva VR. Development and Evaluation of Lipid Nanoparticles Containing Natural Botanical Oil for Sun Protection: Characterization and in vitro and in vivo Human Skin Permeation and Toxicity. Skin Pharmacol Physiol 2017; 31:1-9. [DOI: 10.1159/000481691] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/15/2017] [Indexed: 01/07/2023]
|
28
|
Yap FHX, Chua HC, Tait CP. Active sunscreen ingredients in Australia. Australas J Dermatol 2017; 58:e160-e170. [DOI: 10.1111/ajd.12597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/06/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Francis HX Yap
- Department of Dermatology; Royal Perth Hospital; Perth Western Australia Australia
| | - Hock C Chua
- Department of Dermatology; Fiona Stanley Hospital; Perth Western Australia Australia
| | - Clare P Tait
- Department of Dermatology; Royal Perth Hospital; Perth Western Australia Australia
| |
Collapse
|
29
|
Musazzi UM, Marini V, Casiraghi A, Minghetti P. Is the European regulatory framework sufficient to assure the safety of citizens using health products containing nanomaterials? Drug Discov Today 2017; 22:870-882. [PMID: 28189800 DOI: 10.1016/j.drudis.2017.01.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/30/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
Abstract
The growing application of nanomaterials in healthcare products (i.e., cosmetics, medical devices, and medicinal products) has encouraged the upgrade of the regulatory framework within the European Community to better control their use and manage the risk of negative effects on human health and environment. Unfortunately, despite the efforts of European Authorities, the current legislation is still stratified and several criticisms remain because of the lack of well-established scientific knowledge on nanomaterials. Although the regulatory framework for cosmetic products is almost complete, the efficacy and/or safety assessment of nanomaterials in medicinal products and medical devices is still based on case-by-case evaluation because of the complexity of such systems.
Collapse
Affiliation(s)
- Umberto M Musazzi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133 Milan, Italy
| | - Valentina Marini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133 Milan, Italy
| | - Antonella Casiraghi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133 Milan, Italy
| | - Paola Minghetti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo, 71, 20133 Milan, Italy.
| |
Collapse
|
30
|
Ganesan P, Choi DK. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomedicine 2016; 11:1987-2007. [PMID: 27274231 PMCID: PMC4869672 DOI: 10.2147/ijn.s104701] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
31
|
Shetty PK, Venuvanka V, Jagani HV, Chethan GH, Ligade VS, Musmade PB, Nayak UY, Reddy MS, Kalthur G, Udupa N, Rao CM, Mutalik S. Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. Int J Nanomedicine 2015; 10:6477-91. [PMID: 26508854 PMCID: PMC4610788 DOI: 10.2147/ijn.s90964] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The objective of present work was to develop novel sunscreen creams containing polymeric nanoparticles (NPs) of morin. Polymeric NPs containing morin were prepared and optimized. The creams containing morin NPs were also prepared and evaluated. Optimized NPs exhibited particle size of 90.6 nm and zeta potential of −31 mV. The entrapment efficiency of morin, within the polymeric NPs, was found to be low (12.27%). Fourier transformed infrared spectroscopy and differential scanning calorimetry studies revealed no interaction between morin and excipients. Transmission electron microscopy and atomic force microscopy revealed that the NPs were spherical in shape with approximately 100 nm diameter. Optimized NPs showed excellent in vitro free radical scavenging activity. Skin permeation and deposition of morin from its NPs was higher than its plain form. Different sunscreen creams (SC1–SC8) were formulated by incorporating morin NPs along with nano zinc oxide and nano titanium dioxide. SC5 and SC8 creams showed excellent sun protection factor values (≈40). In vitro and in vivo skin permeation studies of sunscreen creams containing morin NPs indicated excellent deposition of morin within the skin. Morin NPs and optimized cream formulations (SC5 and SC8) did not exhibit cytotoxicity in Vero and HaCaT cells. Optimized sunscreen creams showed excellent dermal safety. SC5 and SC8 creams demonstrated exceptional in vivo antioxidant effect (estimation of catalase, superoxide dismutase, and glutathione) in UV radiation-exposed rats. The optimized sunscreen creams confirmed outstanding UV radiation protection as well as antioxidant properties.
Collapse
Affiliation(s)
- Pallavi Krishna Shetty
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Venkatesh Venuvanka
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Hitesh Vitthal Jagani
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Gejjalagere Honnappa Chethan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Virendra S Ligade
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Prashant B Musmade
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Meka Sreenivasa Reddy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Guruprasad Kalthur
- Division of Clinical Embryology, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - Nayanabhirama Udupa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Chamallamudi Mallikarjuna Rao
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
32
|
Manaia EB, Kaminski RCK, de Oliveira AG, Corrêa MA, Chiavacci LA. Multifunction hexagonal liquid-crystal containing modified surface TiO2 nanoparticles and terpinen-4-ol for controlled release. Int J Nanomedicine 2015; 10:811-9. [PMID: 25653523 PMCID: PMC4309795 DOI: 10.2147/ijn.s71980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multifunctional products have been developed to combine the benefits of functional components and terpinen-4-ol (TP) delivery systems. In this way, p-toluene sulfonic acid modified titanium dioxide (TiO2) nanoparticles and TP, an antioxidant, have been incorporated in liquid-crystalline formulations for photoprotection and controlled release of the TP, respectively. By X-ray powder diffraction and diffuse reflectance spectroscopy, we noted that using p-toluene sulfonic acid as a surface modifier made it possible to obtain smaller and more transparent TiO2 nanoparticles than those commercially available. The liquid-crystalline formulation containing the inorganic ultraviolet filter was classified as broad-spectrum performance by the absorbance spectroscopy measurements. The formulations containing modified TiO2 nanoparticles and TP were determined to be in the hexagonal phase by polarized light microscopy and small-angle X-ray scattering, which makes possible the controlled released of TP following zero-order kinetics. The developed formulations can control the release of TP. Constant concentrations of the substance have been released per time unit, and the modified TiO2 nanoparticles can act as a transparent inorganic sunscreen.
Collapse
Affiliation(s)
- Eloísa Berbel Manaia
- Drugs and Medicines Department, Faculty of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, Brazil
| | | | - Anselmo Gomes de Oliveira
- Drugs and Medicines Department, Faculty of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, Brazil
| | - Marcos Antonio Corrêa
- Drugs and Medicines Department, Faculty of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, Brazil
| | - Leila Aparecida Chiavacci
- Drugs and Medicines Department, Faculty of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, Brazil
| |
Collapse
|
33
|
Morsella M, Giammatteo M, Arrizza L, Tonucci L, Bressan M, d'Alessandro N. Lignin coating to quench photocatalytic activity of titanium dioxide nanoparticles for potential skin care applications. RSC Adv 2015. [DOI: 10.1039/c5ra05232g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ultraviolet light can cause photodamage to the skin, such as sunburn and melanomas.
Collapse
Affiliation(s)
- M. Morsella
- Department of Engineering and Geology
- University G. d'Annunzio of Chieti-Pescara
- 65127 Pescara
- Italy
| | - M. Giammatteo
- Microscopy Centre
- University of L'Aquila
- 67100 L'Aquila
- Italy
| | - L. Arrizza
- Microscopy Centre
- University of L'Aquila
- 67100 L'Aquila
- Italy
| | - L. Tonucci
- Department of Philosophical, Educational and Economic Science
- University G. d'Annunzio
- 66100 Chieti Scalo
- Italy
| | - M. Bressan
- Department of Engineering and Geology
- University G. d'Annunzio of Chieti-Pescara
- 65127 Pescara
- Italy
| | - N. d'Alessandro
- Department of Engineering and Geology
- University G. d'Annunzio of Chieti-Pescara
- 65127 Pescara
- Italy
| |
Collapse
|
34
|
Zinc oxide as a new antimicrobial preservative of topical products: interactions with common formulation ingredients. Int J Pharm 2014; 479:88-95. [PMID: 25527211 DOI: 10.1016/j.ijpharm.2014.12.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022]
Abstract
Zinc oxide (ZnO) appears as a promising preservative for pharmaceutical or cosmetic formulations. The other ingredients of the formulations may have specific interactions with ZnO that alter its antimicrobial properties. The influence of common formulation excipients on the antimicrobial efficacy of ZnO has been investigated in simple model systems and in typical topical products containing a complex formulation. A wide variety of formulation excipients have been investigated for their interactions with ZnO: antioxidants, chelating agents, electrolytes, titanium dioxide pigment. The antimicrobial activity of ZnO against Escherichia coli was partially inhibited by NaCl and MgSO4 salts. A synergistic influence of uncoated titanium dioxide has been observed. The interference effects of antioxidants and chelating agents were quite specific. The interactions of these substances with ZnO particles and with the soluble species released by ZnO were discussed so as to reach scientific guidelines for the choice of the ingredients. The preservative efficacy of ZnO was assessed by challenge testing in three different formulations: an oil-in-water emulsion; a water-in-oil emulsion and a dry powder. The addition of ZnO in complex formulations significantly improved the microbiological quality of the products, in spite of the presence of other ingredients that modulate the antimicrobial activity.
Collapse
|
35
|
Seixas VC, Serra OA. Stability of sunscreens containing CePO4: proposal for a new inorganic UV filter. Molecules 2014; 19:9907-25. [PMID: 25010465 PMCID: PMC6271536 DOI: 10.3390/molecules19079907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 11/16/2022] Open
Abstract
Inorganic UV filters have become attractive because of their role in protecting the skin from the damage caused by continuous exposure to the sun. However, their large refractive index and high photocatalytic activity have led to the development of alternative inorganic materials such as CePO4 for application as UV filters. This compound leaves a low amount of white residue on the skin and is highly stable. The aim of this study was to evaluate the physical and chemical stability of a cosmetic formulation containing ordinary organic UV filters combined with 5% CePO4, and, to compare it with other formulations containing the same vehicle with 5% TiO2 or ZnO as inorganic materials. The rheological behavior and chemical stability of the formulations containing these different UV filters were investigated. Results showed that the formulation containing CePO4 is a promising innovative UV filter due to its low interaction with organic filters, which culminates in longer shelf life when compared with traditional formulations containing ZnO or TiO2 filters. Moreover, the recognized ability of CePO4 to leave a low amount of white residue on the skin combined with great stability, suggests that CePO4 can be used as inorganic filter in high concentrations, affording formulations with high SPF values.
Collapse
Affiliation(s)
- Vitor C Seixas
- Department of Chemistry, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil.
| | - Osvaldo A Serra
- Department of Chemistry, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil.
| |
Collapse
|
36
|
Nikolić S, Gohla S, Müller RH. Lipid nanoparticles: nanocarriers for more effective and safer photoprotective products. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.11.56] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Interaction of Nanoparticles with Lipid Monolayers and Lung Surfactant Films. MEASURING BIOLOGICAL IMPACTS OF NANOMATERIALS 2014. [DOI: 10.1007/11663_2014_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Ansari M, Sharififar F, Kazemipour M, Sarhadinejad Z, Mahdavi H. Teucrium polium L. extract adsorbed on zinc oxide nanoparticles as a fortified sunscreen. Int J Pharm Investig 2013; 3:188-93. [PMID: 24350038 PMCID: PMC3853758 DOI: 10.4103/2230-973x.121289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction: Zinc oxide nanoparticles (ZnOn) have been used as carriers and sun-protecting agents for Teucrium polium L. extract to enhance sun protection. ZnOn was synthesized by hydrolyzing zinc acetate using sodium hydroxide with mean particle diameter less than 500 nm. Materials and Methods: Top flowerings of T. polium L. were extracted by percolation method with petroleum ether, chloroform, and 80% methanol consecutively. Methanolic extract was lyophilized and used as a flavonoid-rich fraction. Sunscreen was prepared by the reconstitution of 0.5 g of the lyophilized extract in water and mixing with 0.5 to 2 g zinc-oxide (ZnO). Sun protection factor (SPF) of the aqueous extract of T. polium, the prepared gel, as well as the zinc oxide suspension alone and in combination with each other was determined spectrophotometrically based on a modified Transpore® tape method. Results and Conclusion: Obtained results showed that the T. polium extract has a wide band of ultraviolet radiation (UV) spectrum absorption ranging from 250 nm to 380 nm. SPF of the combination product in the ultraviolet B (UVB) area was greater than 80, revealing a synergistic action between ZnO and T. polium. The adsorption of flavonoids of T. polium on Zinc-oxide nanoparticles (ZnOn) slowed down their release thereby lengthening their persistence on the skin and contributing to further duration of action.
Collapse
Affiliation(s)
- Mehdi Ansari
- Pharmaceutics Research Center, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Kazemipour
- Kerman branch of Azad University, Department of Chemistry, Kerman, Iran
| | - Zarrin Sarhadinejad
- Pharmaceutics Research Center, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Mahdavi
- Department of Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
39
|
Kathawala MH, Xiong S, Richards M, Ng KW, George S, Loo SCJ. Emerging in vitro models for safety screening of high-volume production nanomaterials under environmentally relevant exposure conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1504-1520. [PMID: 23019115 DOI: 10.1002/smll.201201452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Indexed: 06/01/2023]
Abstract
The rising production of nanomaterial-based consumer products has raised safety concerns. Testing these with animal and other direct models is neither ethically nor economically viable, nor quick enough. This review aims to discuss the strength of in vitro testing, including the use of 2D and 3D cultures, stem cells, and tissue constructs, etc., which would give fast and repeatable answers of a highly specific nature, while remaining relevant to in vivo outcomes. These results can then be combined and the overall toxicity predicted with relative accuracy. Such in vitro models can screen potentially toxic nanomaterials which, if required, can undergo further stringent studies in animals. The cyto- and phototoxicity of some high-volume production nanomaterials, using in vitro models, is also reviewed.
Collapse
Affiliation(s)
- Mustafa Hussain Kathawala
- Nanyang Technological University, School of Materials Science and Engineering, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | | | |
Collapse
|
40
|
Chen S, Bhushan B. Nanomechanical and nanotribological characterization of two synthetic skins with and without skin cream treatment using atomic force microscopy. J Colloid Interface Sci 2013; 398:247-54. [DOI: 10.1016/j.jcis.2013.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
41
|
Effect of lipid on physicochemical properties of solid lipid nanoparticle of paclitaxel. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2012. [DOI: 10.1007/s40005-012-0038-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Liu M, Cheng Z, Yan J, Qiang L, Ru X, Liu F, Ding D, Li J. Preparation and characterization of TiO2nanofibers via using polylactic acid as template. J Appl Polym Sci 2012. [DOI: 10.1002/app.38166] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
Nikolić S, Keck C, Anselmi C, Müller R. Skin photoprotection improvement: Synergistic interaction between lipid nanoparticles and organic UV filters. Int J Pharm 2011; 414:276-84. [DOI: 10.1016/j.ijpharm.2011.05.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/01/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
|
44
|
Severino P, Moraes LF, Zanchetta B, Souto EB, Santana MHA. Elastic liposomes containing benzophenone-3 for sun protection factor enhancement. Pharm Dev Technol 2011; 17:661-5. [PMID: 21563987 DOI: 10.3109/10837450.2011.580762] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This work was focused on the loading of benzophenone-3 in elastic liposomes composed of egg phosphatidylcholine and cholesterol, prepared by the Bangham method. Samples were characterized in terms of particle size, polydispersity index (PI), zeta potential, encapsulation efficiency and in vitro photoprotection properties. The extrusion of liposomes loading benzophenone-3 produced reduced-size (100 nm) elastic liposomes with a PI of 0.2. The active was loaded with a concentration of 20.34% (m/m) revealing changes in the ultraviolet properties after loading. On the basis of these results, it can be anticipated that liposomes are able to improve sun protector factor in vitro compared the free active.
Collapse
Affiliation(s)
- Patrícia Severino
- Department of Biotechnological Processes, School of Chemical Engineering, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | | | | |
Collapse
|