1
|
Lee JSF, Cohen RM, Khan RA, Burry J, Casas EC, Chung HY, Costa LH, Ford N, Galvao DLN, Giron N, Jarvis JN, Mondal M, Odionyi JJ, Casas CP, Rangaraj A, Rode J, Ruffell C, Sued O, Ribeiro I. Paving the way for affordable and equitable liposomal amphotericin B access worldwide. Lancet Glob Health 2024; 12:e1552-e1559. [PMID: 39151989 PMCID: PMC11345448 DOI: 10.1016/s2214-109x(24)00225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 08/19/2024]
Abstract
Amphotericin B has long been crucial for treating many serious infectious diseases, such as invasive fungal infections and visceral leishmaniasis, particularly for patients who are immunocompromised, including those with advanced HIV infection. The conventional amphotericin B deoxycholate formulation has largely been replaced in high-income countries with liposomal amphotericin B (LAmB), which has many advantages, including lower rates of adverse events, such as nephrotoxicity and anaemia. Despite an evident need for LAmB in low-income and middle-income countries, where mortality from invasive fungal infections is still substantial, many low-income and middle-income countries still often use the amphotericin B deoxycholate formulation because of a small number of generic formulations and the high price of the originator LAmB. The pricing of LAmB is also highly variable between countries. Overcoming supply barriers through the availability of additional quality-assured, generic formulations of LAmB at accessible prices would substantially facilitate equitable access and have a substantial effect on mortality attributable to deadly fungal infections.
Collapse
Affiliation(s)
| | - Rachel M Cohen
- Drugs for Neglected Diseases initiative, New York, NY, USA
| | | | - Jessica Burry
- Médecins Sans Frontières Access Campaign, Geneva, Switzerland
| | | | - Han Yang Chung
- Drugs for Neglected Diseases Initiative, Kuala Lumpur, Malaysia
| | | | - Nathan Ford
- World Health Organization, Geneva, Switzerland
| | | | - Nora Giron
- Pan American Health Organization Strategic Fund, Washington, DC, USA
| | - Joseph N Jarvis
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; UK & Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Mousumi Mondal
- Drugs for Neglected Diseases Initiative, New Delhi, India
| | | | | | - Ajay Rangaraj
- Department of HIV, Hepatitis and STIs, World Health Organization, Geneva, Switzerland
| | - Joelle Rode
- Drugs for Neglected Diseases Initiative, Rio de Janeiro, Brazil
| | - Carol Ruffell
- Drugs for Neglected Diseases Initiative Global Antibiotic R&D Partnership, Cape Town, South Africa
| | - Omar Sued
- Pan American Health Organization, Washington, DC, USA
| | - Isabela Ribeiro
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| |
Collapse
|
2
|
Akinosoglou K, Rigopoulos EA, Papageorgiou D, Schinas G, Polyzou E, Dimopoulou E, Gogos C, Dimopoulos G. Amphotericin B in the Era of New Antifungals: Where Will It Stand? J Fungi (Basel) 2024; 10:278. [PMID: 38667949 PMCID: PMC11051097 DOI: 10.3390/jof10040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Amphotericin B (AmB) has long stood as a cornerstone in the treatment of invasive fungal infections (IFIs), especially among immunocompromised patients. However, the landscape of antifungal therapy is evolving. New antifungal agents, boasting novel mechanisms of action and better safety profiles, are entering the scene, presenting alternatives to AmB's traditional dominance. This shift, prompted by an increase in the incidence of IFIs, the growing demographic of immunocompromised individuals, and changing patterns of fungal resistance, underscores the continuous need for effective treatments. Despite these challenges, AmB's broad efficacy and low resistance rates maintain its essential status in antifungal therapy. Innovations in AmB formulations, such as lipid complexes and liposomal delivery systems, have significantly mitigated its notorious nephrotoxicity and infusion-related reactions, thereby enhancing its clinical utility. Moreover, AmB's efficacy in treating severe and rare fungal infections and its pivotal role as prophylaxis in high-risk settings highlight its value and ongoing relevance. This review examines AmB's standing amidst the ever-changing antifungal landscape, focusing on its enduring significance in current clinical practice and exploring its potential future therapeutic adaptations.
Collapse
Affiliation(s)
- Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| | | | - Despoina Papageorgiou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Georgios Schinas
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Eleni Polyzou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | | | - Charalambos Gogos
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - George Dimopoulos
- 3rd Department of Critical Care, Evgenidio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
3
|
Leonhard V, Comini LR, Alasino RV, Cometto MJ, Bierbrauer KL, Beltramo DM. Self-Assembled Teicoplanin Micelles as Amphotericin B Nanocarrier. J Pharm Sci 2023; 112:1081-1088. [PMID: 36528112 DOI: 10.1016/j.xphs.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Teicoplanin (Teico) is an antimicrobial agent that spontaneously forms micelles in aqueous media. In this work, we characterized the physicochemical properties of nanoparticles formed by the interaction of Teico with Amphotericin B (AmB). Teico-AmB micelles structure spontaneously in aqueous media, with a particle size of 70-100 nm and a zeta potential of -28 mV. Although the characterization of these nanostructures yielded satisfactory results, in vitro cytotoxicity tests showed high toxicity. Based on this, adding cholesterol to the formulation was evaluated to try to reduce the toxicity of the drug. These Teico-AmB-Chol nanostructures have a larger size, close to 160 nm, but a lower polydispersity index. They also showed strongly negative surface charge and were more stable than Teico-AmB, remaining stable for at least 20 days at 4 °C and 25 °C and against centrifugation, dilution, freezing, lyophilization and re-suspension processes with a recovery percentage of AmB greater than 95%, maintaining their initial size and zeta potential. These Teico-AmB-Chol micelles show lower cytotoxic effect and higher biological activity than Teico-AmB, even than Amfostat® and Ambisome® formulations. These two new nanoparticles, with and without Chol, are discussed as potential formulations able to improve the antifungal therapeutic efficiency of AmB.
Collapse
Affiliation(s)
- V Leonhard
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - L R Comini
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - R V Alasino
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - M Jávega Cometto
- Facultad de Ciencias Químicas - Universidad Nacional de Córdoba, Argentina
| | - K L Bierbrauer
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - D M Beltramo
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Biotecnología - Facultad de Ciencias Químicas - Universidad Católica de Córdoba, Argentina.
| |
Collapse
|
4
|
Delanghe JR, Himpe J, Boelens J, Benoit D, Gadeyne B, Speeckaert MM, Verbeke F. C-reactive protein interacts with amphotericin B liposomes and its potential clinical consequences. Clin Chem Lab Med 2023; 61:1065-1068. [PMID: 36691951 DOI: 10.1515/cclm-2022-1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Amphotericin B (AmB) is the gold standard for treating invasive fungal infections. New liposomal-containing AmB formulations have been developed to improve efficacy and tolerability. Serum/plasma C-reactive protein (CRP) values are widely used for monitoring infections and inflammation. CRP shows a high affinity to phosphocholine and it aggregates structures bearing this ligand, e.g. phosphocholine-containing liposomes. Therefore, we studied the interaction between CRP and phosphocholine-containing liposomal AmB preparations in vivo and in vitro. METHODS CRP was prepared by affinity chromatography. Liposomal AmB (L-AmB, AmBisome®) was spiked (final concentrations of L-AmB: 150 mg/L) to CRP-containing serum (final CRP concentration: 300 mg/L). Following the addition of L-AmB, complex formation was monitored turbidimetrically. The size of CRP-L-AmB complexes was assessed using gel filtration. CRP was monitored in patients receiving either L-Amb or AmB lipid complex (ABLC). RESULTS Following addition of L-AmB to CRP-containing plasma, turbidimetry showed an increase in absorbance. These results were confirmed by gel permeation chromatography. Similarly, in vivo effects were observed following intravenous administration of AmBisome®: a decline in CRP values was observed. In patients receiving L-Amb, decline of CRP concentration was faster than in patients receiving ABLC. CONCLUSIONS In vitro experiments are suggestive of a complexation between CRP and liposomes in plasma. Interpretation of CRP values following administration of AmBisome® might be impaired due to this complexation. In vivo formation of complexes between liposomes and CRP might contribute, or even lead, to intravascular microembolisation. Similar effects have been described following the administration of Intralipid® and other phosphocholine-containing liposomes.
Collapse
Affiliation(s)
- Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jonas Himpe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jerina Boelens
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Dominique Benoit
- Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bram Gadeyne
- Department of Development of Healthcare Applications, Ghent University Hospital, Ghent, Belgium
| | | | | |
Collapse
|
5
|
Haslene‐Hox H, Nærdal GK, Mørch Y, Hageskal G, Tøndervik A, Turøy AV, Johnsen H, Klinkenberg G, Sletta H. High-throughput assay for effect screening of amphotericin B and bioactive components on filamentous Candida albicans. J Appl Microbiol 2022; 133:3113-3125. [PMID: 35947058 PMCID: PMC9804330 DOI: 10.1111/jam.15770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 08/06/2022] [Indexed: 01/05/2023]
Abstract
AIMS The aim of this study was to develop a high-throughput robotic microtiter plate-based screening assay for Candida albicans, optimizing growth conditions to replicate the filamentous biofilm growth found in vivo, and subsequently, to demonstrate the assay by evaluating the effect of nutritional drinks alone and in combination with the antifungal amphotericin B (AmB). METHODS AND RESULTS Candida albicans cultured in a defined growth medium showed filamentous growth in microcolonies, mimicking the morphology of oral mucosal disease (oral candidiasis). Addition of nutrient drinks containing fruit juices, fish oil and whey protein to the medium resulted in changed morphology and promoted growth as free yeast cells and with weak biofilm structures. Minimum inhibitory concentration of AmB on the biofilms was 0.25 μg ml-1 , and this was eightfold reduced (0.0038 μg ml-1 ) in the presence of the nutritional drinks. CONCLUSIONS The established assay demonstrated applicability for screening of antifungal and anti-biofilm effects of bioactive substances on C. albicans biofilm with clinically relevant morphology. SIGNIFICANCE AND IMPACT OF THE STUDY Candida albicans is the causative agent of the majority of fungal infections globally. The filamentous morphology of C. albicans and the ability to form biofilm are traits known to increase virulence and resistance towards antifungals. This study describes the development of a plate-based in vitro screening method mimicking the filamentous morphology of C. albicans found in vivo. The assay established can thus facilitate efficient antifungal drug discovery and development.
Collapse
Affiliation(s)
- Hanne Haslene‐Hox
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Guro Kruge Nærdal
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Yrr Mørch
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Gunhild Hageskal
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Anne Tøndervik
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | | | - Heidi Johnsen
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Geir Klinkenberg
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Håvard Sletta
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| |
Collapse
|
6
|
Orally Administered Amphotericin B Nanoformulations: Physical Properties of Nanoparticle Carriers on Bioavailability and Clinical Relevance. Pharmaceutics 2022; 14:pharmaceutics14091823. [PMID: 36145572 PMCID: PMC9505005 DOI: 10.3390/pharmaceutics14091823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Amphotericin B is an effective polyene antifungal considered as a “gold standard” in the management of fungal infections. Currently, it is administered mainly by IV due to poor aqueous solubility, which precludes its delivery orally. Paradoxically, IV administration is akin to side effects that have not been fully eliminated even with more recent IV formulations. Thus, the need for alternative formulations/route of administration for amphotericin B remains crucial. The oral route offers the possibility of delivering amphotericin B systemically and with diminished side effects; however, enterocyte permeation remains a constraint. Cellular phagocytosis of submicron particles can be used to courier encapsulated drugs. In this regard, nanoparticulate delivery systems have received much attention in the past decade. This review examines the trajectory of orally delivered amphotericin B and discusses key physical factors of nanoformulations that impact bioavailability. The review also explores obstacles that remain and gives a window into the possibility of realizing an oral nanoformulation of amphotericin B in the near future.
Collapse
|
7
|
Haro-Reyes T, Díaz-Peralta L, Galván-Hernández A, Rodríguez-López A, Rodríguez-Fragoso L, Ortega-Blake I. Polyene Antibiotics Physical Chemistry and Their Effect on Lipid Membranes; Impacting Biological Processes and Medical Applications. MEMBRANES 2022; 12:681. [PMID: 35877884 PMCID: PMC9316096 DOI: 10.3390/membranes12070681] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023]
Abstract
This review examined a collection of studies regarding the molecular properties of some polyene antibiotic molecules as well as their properties in solution and in particular environmental conditions. We also looked into the proposed mechanism of action of polyenes, where membrane properties play a crucial role. Given the interest in polyene antibiotics as therapeutic agents, we looked into alternative ways of reducing their collateral toxicity, including semi-synthesis of derivatives and new formulations. We follow with studies on the role of membrane structure and, finally, recent developments regarding the most important clinical applications of these compounds.
Collapse
Affiliation(s)
- Tammy Haro-Reyes
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Lucero Díaz-Peralta
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Arturo Galván-Hernández
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Anahi Rodríguez-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Lourdes Rodríguez-Fragoso
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| |
Collapse
|
8
|
Ivanov M, Ćirić A, Stojković D. Emerging Antifungal Targets and Strategies. Int J Mol Sci 2022; 23:2756. [PMID: 35269898 PMCID: PMC8911111 DOI: 10.3390/ijms23052756] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
Despite abundant research in the field of antifungal drug discovery, fungal infections remain a significant healthcare burden. There is an emerging need for the development of novel antifungals since those currently available are limited and do not completely provide safe and secure protection. Since the current knowledge regarding the physiology of fungal cells and the infection mechanisms is greater than ever, we have the opportunity to use this for the development of novel generations of antifungals. In this review, we selected and summarized recent studies describing agents employing different antifungal mechanisms. These mechanisms include interference with fungal resistance, including impact on the efflux pumps and heat shock protein 90. Additionally, interference with virulence factors, such as biofilms and hyphae; the impact on fungal enzymes, metabolism, mitochondria, and cell wall; and antifungal vaccines are explored. The agents investigated belong to different classes of natural or synthetic molecules with significant attention given also to plant extracts. The efficacy of these antifungals has been studied mainly in vitro with some in vivo, and clinical studies are needed. Nevertheless, there is a large quantity of products employing novel antifungal mechanisms that can be further explored for the development of new generation of antifungals.
Collapse
Affiliation(s)
- Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.Ć.); (D.S.)
| | | | | |
Collapse
|
9
|
Islek Z, Ucisik MH, Keskin E, Sucu BO, Gomes‐Alves AG, Tomás AM, Guzel M, Sahin F. Antileishmanial Activity of BNIPDaoct- and BNIPDanon-loaded Emulsomes on Leishmania infantum Parasites. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.773741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among bisnaphthalimidopropyl (BNIP) derivatives, BNIPDaoct and BNIPDanon recently came forward with antileishmanial activities beyond the standard, commercialized antileishmanial therapies. However, high-level toxicity on macrophages plus poor aqueous solubility and poor bioavailability of the compounds limit their application in therapies. Addressing these limitations, the present study introduces BNIPDaoct- and BNIPDanon-loaded emulsomes as lipid-based nanocarrier systems. Accordingly, emulsome formulations were prepared with the presence of BNIP compounds. The average diameters of BNIPDaoct- and BNIPDanon-loaded emulsomes were found as 363.1 and 337.4 nm, respectively; while empty emulsomes differed with a smaller average particle diameter, i.e., 239.1 nm. All formulations exhibited a negative zeta potential value. The formulations achieved the encapsulation of BNIPDaoct and BNIPDanon at approximately 0.31 mg/ml (501 µM) and 0.24 mg/ml (387 µM), respectively. The delivery of BNIP within the emulsomes improved the antileishmanial activity of the compounds. BNIPDaoct-loaded emulsome with 50% inhibitory concentration (IC50) value of 0.59 ± 0.08 µM was in particular effective against Leishmania infantum promastigotes compared to free BNIPDaoct (0.84 ± 0.09 µM), free BNIPDanon (1.85 ± 0.01 µM), and BNIPDanon-loaded emulsome (1.73 ± 0.02 µM). Indicated by at least ≥ 2-fold higher 50% cytotoxic concentration (CC50) values, the incorporation of BNIP into emulsomes significantly reduced the toxicity of BNIPs against macrophages, corresponding to up to 16-fold improvement in selectivity index (CC50/IC50) for L. infantum promastigotes. The infection rates of macrophages were determined using dual-fluorescent flow cytometry as 68.6%. Both BNIP formulations at concentration of 1.87 µM reduced the parasitic load nearly to 40%, whereas BNIPDaoct-loaded emulosmes could further decrease the parasitic load below 20% at 7.5 µM and above. In conclusion, the incorporation of BNIPDaoct and BNIPDanon into emulsomes results in water-soluble dispersed emulsome formulations that do not only successfully facilitate the delivery of BNIP compounds into the parasites and the Leishmania-infected macrophages in vitro but also enhance antileishmanial efficacy as proven by the decline in IC50 values. The selectivity of the formulation for L. infantum parasites further contributes to the challenging safety profile of the compounds. The promising in vitro antileishmanial efficacy of BNIP-loaded emulsomes highlights the potential of the system for the future in vivo studies.
Collapse
|
10
|
Silva-Carvalho R, Leão T, Bourbon AI, Gonçalves C, Pastrana L, Parpot P, Amorim I, Tomas AM, Portela da Gama M. Hyaluronic acid-Amphotericin B Nanocomplexes: a Promising Anti-Leishmanial Drug Delivery System. Biomater Sci 2022; 10:1952-1967. [DOI: 10.1039/d1bm01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an effective amphotericin B (AmB) formulation to replace actual treatments available for leishmaniasis, which present serious drawbacks, is a challenge. Here we report the development of hyaluronic...
Collapse
|
11
|
Beadell BA, Chieng A, Parducho KR, Dai Z, Ho SO, Fujii G, Wang Y, Porter E. Nano- and Macroscale Imaging of Cholesterol Linoleate and Human Beta Defensin 2-Induced Changes in Pseudomonas aeruginosa Biofilms. Antibiotics (Basel) 2021; 10:antibiotics10111279. [PMID: 34827217 PMCID: PMC8615053 DOI: 10.3390/antibiotics10111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
The biofilm production of Pseudomonas aeruginosa (PA) is central to establishing chronic infection in the airways in cystic fibrosis. Epithelial cells secrete an array of innate immune factors, including antimicrobial proteins and lipids, such as human beta defensin 2 (HBD2) and cholesteryl lineolate (CL), respectively, to combat colonization by pathogens. We have recently shown that HBD2 inhibits biofilm production by PA, possibly linked to interference with the transport of biofilm precursors. Considering that both HBD2 and CL are increased in airway fluids during infection, we hypothesized that CL synergizes with HBD2 in biofilm inhibition. CL was formulated in phospholipid-based liposomes (CL-PL). As measured by atomic force microscopy of single bacteria, CL-PL alone and in combination with HBD2 significantly increased bacterial surface roughness. Additionally, extracellular structures emanated from untreated bacterial cells, but not from cells treated with CL-PL and HBD2 alone and in combination. Crystal violet staining of the biofilm revealed that CL-PL combined with HBD2 effected a significant decrease of biofilm mass and increased the number of larger biofilm particles consistent with altered cohesion of formed biofilms. These data suggest that CL and HBD2 affect PA biofilm formation at the single cell and community-wide level and that the community-wide effects of CL are enhanced by HBD2. This research may inform future novel treatments for recalcitrant infections in the airways of CF patients.
Collapse
Affiliation(s)
- Brent A. Beadell
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA; (B.A.B.); (K.R.P.)
| | - Andy Chieng
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA; (A.C.); (Y.W.)
| | - Kevin R. Parducho
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA; (B.A.B.); (K.R.P.)
| | - Zhipeng Dai
- Molecular Express, Inc., Rancho Dominguez, CA 90220, USA; (Z.D.); (S.O.H.); (G.F.)
| | - Sam On Ho
- Molecular Express, Inc., Rancho Dominguez, CA 90220, USA; (Z.D.); (S.O.H.); (G.F.)
| | - Gary Fujii
- Molecular Express, Inc., Rancho Dominguez, CA 90220, USA; (Z.D.); (S.O.H.); (G.F.)
| | - Yixian Wang
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA; (A.C.); (Y.W.)
| | - Edith Porter
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA; (B.A.B.); (K.R.P.)
- Correspondence: ; Tel.: +1-323-343-6353
| |
Collapse
|
12
|
Subramaniam S, Joyce P, Thomas N, Prestidge CA. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv Drug Deliv Rev 2021; 177:113948. [PMID: 34464665 DOI: 10.1016/j.addr.2021.113948] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
Bacteria have developed a wealth of strategies to avoid and resist the action of antibiotics, one of which involves pathogens invading and forming reservoirs within host cells. Due to the poor cell membrane permeability, stability and retention of conventional antibiotics, this renders current treatments largely ineffective, since achieving a therapeutically relevant antibiotic concentration at the site of intracellular infection is not possible. To overcome such challenges, current antibiotics are 'repurposed' via reformulation using micro- or nano-carrier systems that effectively encapsulate and deliver therapeutics across cellular membranes of infected cells. Bioinspired materials that imitate the uptake of biological particulates and release antibiotics in response to natural stimuli are recently explored to improve the targeting and specificity of this 'nanoantibiotic' approach. In this review, the mechanisms of internalization and survival of intracellular bacteria are elucidated, effectively accentuating the current treatment challenges for intracellular infections and the implications for repurposing conventional antibiotics. Key case studies of nanoantibiotics that have drawn inspiration from natural biological particles and cellular uptake pathways to effectively eradicate intracellular pathogens are detailed, clearly highlighting the rational for harnessing bioinspired drug delivery strategies.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Nicky Thomas
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia; The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
13
|
Echeverria-Esnal D, Martín-Ontiyuelo C, Navarrete-Rouco ME, Barcelo-Vidal J, Conde-Estévez D, Carballo N, De-Antonio Cuscó M, Ferrández O, Horcajada JP, Grau S. Pharmacological management of antifungal agents in pulmonary aspergillosis: an updated review. Expert Rev Anti Infect Ther 2021; 20:179-197. [PMID: 34328373 DOI: 10.1080/14787210.2021.1962292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Aspergillus may cause different types of lung infections: invasive, chronic pulmonary or allergic bronchopulmonary aspergillosis. Pharmacological management with antifungals poses as a challenge. Patients diagnosed with pulmonary aspergillosis are complex, as well as the problems associated with antifungal agents. AREAS COVERED This article reviews the pharmacology of antifungal agents in development and currently used to treat pulmonary aspergillosis, including the mechanisms of action, pharmacokinetics, pharmacodynamics, dosing, therapeutic drug monitoring and safety. Recommendations to manage situations that arise in daily clinical practice are provided. A literature search of PubMed was conducted on November 15th, 2020 and updated on March 30th, 2021. EXPERT OPINION Recent and relevant developments in the treatment of pulmonary aspergillosis have taken place. Novel antifungals with new mechanisms of action that extend antifungal spectrum and improve pharmacokinetic-related aspects, drug-drug interactions and safety are under current study. For those antifungals already marketed, new data related to pharmacokinetics, pharmacodynamics, dose adjustments in special situations, therapeutic drug monitoring and safety are available. To maximize efficacy and reduce the risk of associated toxicities, it is essential to choose the most appropriate antifungal; optimize its dose, interval, route of administration and length of treatment; and prevent side effects.
Collapse
Affiliation(s)
- Daniel Echeverria-Esnal
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain.,Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | | | | | - David Conde-Estévez
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain.,Department Of Pharmacology, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Nuria Carballo
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain
| | | | - Olivia Ferrández
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain
| | - Juan Pablo Horcajada
- Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Department Of Pharmacology, Universitat Autònoma De Barcelona, Barcelona, Spain.,Infectious Diseases Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain
| | - Santiago Grau
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain.,Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Department Of Pharmacology, Universitat Autònoma De Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Wang X, Mohammad IS, Fan L, Zhao Z, Nurunnabi M, Sallam MA, Wu J, Chen Z, Yin L, He W. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm Sin B 2021; 11:2585-2604. [PMID: 34522599 PMCID: PMC8424280 DOI: 10.1016/j.apsb.2021.04.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Invasive fungal infections (IFIs) represent a growing public concern for clinicians to manage in many medical settings, with substantial associated morbidities and mortalities. Among many current therapeutic options for the treatment of IFIs, amphotericin B (AmB) is the most frequently used drug. AmB is considered as a first-line drug in the clinic that has strong antifungal activity and less resistance. In this review, we summarized the most promising research efforts on nanocarriers for AmB delivery and highlighted their efficacy and safety for treating IFIs. We have also discussed the mechanism of actions of AmB, rationale for treating IFIs, and recent advances in formulating AmB for clinical use. Finally, this review discusses some practical considerations and provides recommendations for future studies in applying AmB for combating IFIs.
Collapse
Key Words
- ABCD, AmB colloidal dispersion
- AIDS, acquired immunodeficiency syndrome
- AP, antisolvent precipitation
- ARDS, acute respiratory distress syndrome
- AmB, amphotericin B
- AmB-GCPQ, AmB-encapsulated N-palmitoyl-N-methyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycol-chitosan nanoparticles
- AmB-IONP, AmB-loaded iron oxide nanoparticles
- AmB-PM, AmB-polymeric micelles
- AmB-SD, AmB sodium deoxycholate
- AmBd, AmB deoxycholate
- Amphotericin B
- Aspergillus fumigatus, A. fumigatus
- BBB, blood‒brain barrier
- BCS, biopharmaceutics classification system
- BDDE, butanediol diglycidyl ether
- BSA, bovine serum albumin
- BUN, blood urea nitrogen
- C. Albicans, Candida Albicans
- CFU, colony-forming unit
- CLSM, confocal laser scanning microscope
- CMC, carboxymethylated l-carrageenan
- CP, chitosan-polyethylenimine
- CS, chitosan
- Conjugates
- DDS, drug delivery systems
- DMPC, dimyristoyl phosphatidyl choline
- DMPG, dimyristoyl phosphatidylglycerole
- DMSA, dimercaptosuccinic acid
- Drug delivery
- GNPs, gelatin nanoparticles
- HPH, high-pressure homogenization
- HPMC, hydroxypropyl methylcellulose
- ICV, intensive care unit
- IFIs, invasive fungal infections
- Invasive fungal infections
- L-AmB, liposomal AmB
- LNA, linolenic acid
- MAA, methacrylic acid
- MFC, minimum fungicidal concentrations
- MIC, minimum inhibitory concentration
- MN, microneedles
- MOP, microneedle ocular patch
- MPEG-PCL, monomethoxy poly(ethylene glycol)-poly(epsilon-caprolactone)
- NEs, nanoemulsions
- NLC, nanostructured lipid carriers
- NPs, nanoparticles
- Nanoparticles
- P-407, poloxamer-407
- PAM, polyacrylamide
- PCL, polycaprolactone
- PDA, poly(glycolic acid)
- PDLLA, poly(d,l-lactic acid)
- PDLLGA, poly(d,l-lactic-co-glycolic acid)
- PEG, poly(ethylene glycol)
- PEG-DSPE, PEG-lipid poly(ethylene glycol)-distearoylphosphatidylethanolamine
- PEG-PBC, phenylboronic acid-functionalized polycarbonate/PEG
- PEG-PUC, urea-functionalized polycarbonate/PEG
- PGA-PPA, poly(l-lysine-b-l-phenylalanine) and poly(l-glutamic acid-b-l-phenylalanine)
- PLA, poly(lactic acid)
- PLGA, polyvinyl alcohol poly(lactic-co-glycolic acid)
- PLGA-PLH-PEG, PLGA-b-poly(l-histidine)-b-poly(ethylene glycol)
- PMMA, poly(methyl methacrylate)
- POR, porphyran
- PVA, poly(vinyl alcohol)
- PVP, polyvinylpyrrolidone
- Poor water-solubility
- RBCs, red blood cells
- RES, reticuloendothelial system
- ROS, reactive oxygen species
- SEM, scanning electron microscope
- SL-AmB, sophorolipid-AmB
- SLNs, solid lipid nanoparticles
- Topical administration
- Toxicity
- γ-CD, γ-cyclodextrin
- γ-PGA, γ-poly(gamma-glutamic acid
Collapse
Affiliation(s)
- Xiaochun Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Imran Shair Mohammad
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, China
| | - Lifang Fan
- Jiangsu Aosaikang Pharmaceutical Co., Ltd., Nanjing 211112, China
| | - Zongmin Zhao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Jun Wu
- Department of Geriatric Cardiology, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Wei He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
15
|
Tran THY, Vu TTG, Pham TMH. Preparation and Characterization of Liposomes Double-loaded with Amphotericin B and Amphotericin B/hydroxypropyl-beta-cyclodextrin Inclusion Complex. Pharm Nanotechnol 2021; 9:236-244. [PMID: 33745428 DOI: 10.2174/2211738509666210310160436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Amphotericin B (AMB) is water-insoluble polyene, which has a broad spectrum of antifungal activity. The hydrophobic drug only exits in the phospholipid bilayer, leading to a low-drug liposomal loading capacity. OBJECTIVES This study is designed to prepare water-soluble inclusion complex (IC) between AMB and cyclodextrin (CD) to formulate liposomal vesicles, double-loaded with drug molecules in the phospholipid bilayer and AMB/CD IC in the aqueous core. METHODS Water-soluble AMB/CD IC was prepared by pH adjustment of the aqueous media and consequently characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Liposomes double-loaded with AMB were formulated by the thin-film hydration method and accordingly evaluated for vesicle size, polydispersity index, entrapment efficiency, zeta potential, and in vitro drug leakage. RESULTS Hydroxypropyl β cyclodextrin (HP-β-CD) better solubilized AMB than both α-CD and β- CD e.g., the concentration of water-soluble AMB/HP-β-CD IC could reach 465 μg/mL. Both DSC and SEM data illustrated that the drug no longer existed in its crystalline form, in AMB/HP-β-CD IC. Liposomes double-loaded with hydrophilic AMB/HP-β-CD IC and hydrophobic AMB had a diameter of 270 nm, polydispersity index less than 0.27, and zeta potential ca.-42.8 mV. Moreover, liposomes double-loaded with AMB enhanced drug-liposomal loading capacity by 25%, less leaked drug in phosphate buffer pH 7.4 at 37°C in comparison to liposomes loaded with only hydrophobic AMB. CONCLUSION Liposomes double-loaded with AMB and AMB/HP-β-CD IC increased drug-encapsulation ability and in vitro stability, suggesting potential drug delivery systems.
Collapse
Affiliation(s)
- Thi H Yen Tran
- Department of Pharmaceutics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoankiem District, Hanoi, Vietnam
| | - Thi T Giang Vu
- Department of Pharmaceutics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoankiem District, Hanoi, Vietnam
| | - Thi M H Pham
- Department of Pharmaceutics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoankiem District, Hanoi, Vietnam
| |
Collapse
|
16
|
Varma DM, Redding EA, Bachelder EM, Ainslie KM. Nano- and Microformulations to Advance Therapies for Visceral Leishmaniasis. ACS Biomater Sci Eng 2020; 7:1725-1741. [PMID: 33966377 PMCID: PMC10372633 DOI: 10.1021/acsbiomaterials.0c01132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Visceral leishmaniasis (VL) is a deadly, vector-borne, neglected tropical disease endemic to arid parts of the world and is caused by a protozoan parasite of the genus Leishmania. Chemotherapy is the primary treatment for this systemic disease, and multiple potent therapies exist against this intracellular parasite. However, several factors, such as systemic toxicity, high costs, arduous treatment regimen, and rising drug resistance, are barriers for effective therapy against VL. Material-based platforms have the potential to revolutionize chemotherapy for leishmaniasis by imparting a better pharmacokinetic profile and creating patient-friendly routes of administration, while also lowering the risk for drug resistance. This review highlights promising drug delivery strategies and novel therapies that have been evaluated in preclinical models, demonstrating the potential to advance chemotherapy for VL.
Collapse
Affiliation(s)
- Devika M. Varma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elizabeth A. Redding
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
17
|
AL-Khikani FHO. Amphotericin B from antifungal to antiviral therapy: promising modern therapeutic branch. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.53649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction: Amphotericin B (AmB) which belongs to the polyene group has a wide spectrum in vitro and in vivo antimicrobial activity against fungi and parasites, but resistance to AmB is rare despite extensive use.
Material and methods: Atotal of 2530 articles were investigated in PubMed (n = 1525), Medline (n = 705), and Google Scholar (n = 300). From 2530 articles, only 61 studies were included in this review. All the short and full articles were searched that were scheduled to be published until April 2020.
Results: After its discovery, AmB has been one of the most common first-line choices in treating systemic fungal infection for over seven decades from its discovery. Recently, some studies have focused on the potential antimicrobial action of AmB against some enveloped and non-enveloped viruses, such as human immunodeficiency virus, Japanese encephalitis virus, herpes simplex virus, and Rubella virus.
Discussion: Among the invading pathogens, viruses constitute the most common ones,Due to the continuous spreading of viral infections with the rise in death numbers, new therapeutics development is urgent, as in general, some lethal viruses have no specific antiviral drugs or vaccines. So, this review may serve as an impetus for researchers working in the field of medical microbiology, vaccination, and antiviral drug design by discussing the most recent information about the antiviral action of AmB, as well as trying to provide a deeper understanding of major properties, mechanisms of action, immune system responses, and antimicrobial efficiency of AmB.
Conclusion: Since AmB is expected to alter the structure of the viral envelope, membrane integrity of cells, and internal cellular organelles, besides its other unique properties, such as host immunomodulatory effects, this review suggested that AmB as an effective anti-fungi drug may hold the promise of formulating a novel therapeutic option to treat many dangerous viruses, including those for treating which there are no active drugs or vaccines.
Collapse
|
18
|
Amphotericin B loaded ethyl cellulose nanoparticles with magnified oral bioavailability for safe and effective treatment of fungal infection. Biomed Pharmacother 2020; 128:110297. [PMID: 32480227 DOI: 10.1016/j.biopha.2020.110297] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Amphotericin B is a gold standard drug used in various fungal and parasitic infection treatment. Most of the marketed formulations are administered intravenously, but show dose-dependent adverse effects i.e., nephrotoxicity and hemolysis. Oral route eliminates the toxic concern but exhibits poor bioavailability. Therefore, ethylcellulose nanoparticles (EC-NPs) have been used for magnified oral delivery of AmB, where EC provides gastrointestinal stability. These nanoparticles were synthesized by high-pressure emulsification solvent evaporation (HPESE) method and evaluated for in vitro and in vivo studies. This method yields small, monodisperse AmB-EC-NPs along with smooth surface morphology and improved encapsulation efficiency. The developed formulation showed a sustained release pattern following Higuchi diffusion kinetics along with gastric and storage stability. Aggregation study revealed that AmB was present in its monomeric form inside the biocompatible EC matrix. The antifungal result demonstrated that the MIC of AmB-EC-NPs was reduced ∼1/3rd than AmB and Fungizone® at 24 h whereas it was observed ∼1/8th at 48 h. in vivo pharmacokinetic analysis demonstrated 1.3-fold higher AUC than Fungizone® even at a 4.5-time lesser dose via the oral route and a ∼15-fold rise in the bioavailability in contrast to the native AmB. The hemolytic study revealed that the developed formulation exhibited 8-fold lesser hemolysis than Fungizone®. Furthermore, the biosafety profile of AmB-EC-NPs was ensured by the significantly lesser level of blood urea nitrogen and plasma creatinine along with the normal pattern of renal tubules in comparison to AmB and Fungizone®. In conclusion, the results stipulated that the AmB-EC-NPs could be effective, viable and a better alternative to currently existing iv formulations, for magnified oral delivery of AmB in the treatment of fungal infection without associated adverse effects.
Collapse
|
19
|
Abstract
Neonates and immunosuppressed/immunocompromised pediatric patients are at high risk of invasive fungal diseases. Appropriate antifungal selection and optimized dosing are imperative to the successful prevention and treatment of these life-threatening infections. Conventional amphotericin B was the mainstay of antifungal therapy for many decades, but dose-limiting nephrotoxicity and infusion-related adverse events impeded its use. Despite the development of several new antifungal classes and agents in the past 20 years, and their now routine use in at-risk pediatric populations, data to guide the optimal dosing of antifungals in children are limited. This paper reviews the spectra of activity for approved antifungal agents and summarizes the current literature specific to pediatric patients regarding pharmacokinetic/pharmacodynamic data, dosing, and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Kevin J Downes
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 2716 South Street, Suite 10360, Philadelphia, PA, 19146, USA.
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Brian T Fisher
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 2716 South Street, Suite 10360, Philadelphia, PA, 19146, USA
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole R Zane
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
20
|
Böttger R, Pauli G, Chao PH, AL Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev 2020; 154-155:79-101. [PMID: 32574575 DOI: 10.1016/j.addr.2020.06.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
Liver diseases such as hepatitis, cirrhosis, and hepatocellular carcinoma are global health problems accounting for approximately 800 million cases and over 2 million deaths per year worldwide. Major drawbacks of standard pharmacological therapies are the inability to deliver a sufficient concentration of a therapeutic agent to the diseased liver, and nonspecific drug delivery leading to undesirable systemic side effects. Additionally, depending on the specific liver disease, drug delivery to a subset of liver cells is required. In recent years, lipid nanoparticles have been developed to passively and actively target drugs to the liver. The success of this approach has been highlighted by the FDA-approval of the first liver-targeting lipid nanoparticle, ONPATTRO, in 2018 and many other promising candidate technologies are expected to follow. This review summarizes recent developments of various lipid-based liver-targeting technologies, namely solid-lipid nanoparticles, liposomes, niosomes and micelles, and discusses the challenges and future perspectives in this field.
Collapse
|
21
|
Abstract
Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs. Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.
Collapse
|
22
|
Development of a topical liposomal formulation of Amphotericin B for the treatment of cutaneous leishmaniasis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 11:156-165. [PMID: 31582344 PMCID: PMC6904837 DOI: 10.1016/j.ijpddr.2019.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Currently, there is no topical treatment available for any form of cutaneous leishmaniasis (CL) in most of the endemic areas. The aim of the current study was to develop a topical nano-liposomal Amphotericin B (AmB) for the treatment of CL. METHODOLOGY/PRINCIPAL FINDINGS Liposomes containing 0.1, 0.2 and 0.4% AmB (Lip-AmB) were formulated and characterized for the size, entrapment efficiency, long term stability, and skin penetration properties using Franz diffusion cells. Liposomes diameters were around 100 nm with no change during more than 20 months' storage either at 4 °C or at room temperature. Franz diffusion cells studies showed that almost 4% of the applied formulations penetrated across the skin and the highest skin retention (73.92%) observed with Lip-AmB 0.4%. The median effective doses (ED50), the doses of AmB required to kill 50% of L. major amastigotes were 0.151, 0.151, and 0.0856 (μg/mL) in Lip-AmB 0.1, 0.2, 0.4%, respectively. Lip-AmB 0.4% caused 80% reduction in fluorescence intensity of GFP+ L. tropica infected macrophages at 5 μg/mL of AmB concentration. Topical Lip-AmB was applied twice a day for 4 weeks to the skin of BALB/c mice to treat lesions caused by L. major. Results showed the superiority of Lip-AmB 0.4% compared to Lip-AmB 0.2 and 0.1%. The parasite was completely cleared from the skin site of infection and spleens at week 8 and 12 post-infection in mice treated with Lip-AmB 0.4%. The results suggest that topical Lip-AmB 0.4% may be a useful tool in the treatment of CL and merits further investigation.
Collapse
|
23
|
Yen TTH, Nho Dan L, Duc LH, Tung BT, Hue PTM. Preparation and Characterization of Freeze-dried Liposomes Loaded with Amphotericin B. CURRENT DRUG THERAPY 2019. [DOI: 10.2174/1574885514666181217130259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Amphotericin B (AmB) is a drug of choice in the therapy of systemic
fungal infection because of its board-spectrum antifungal activity. However, its
conventional formulation has many side effects such as acute and chronic nephrotoxicity.
Liposomes have been developed to reduce the drug’s toxicity. However, they had to meet
strict stability criteria. In general, liposomes can be freeze-dried to inhibit liposomes infusion,
phospholipids degradation during storage. Liposomal size usually increases after
freeze-drying because of being influenced by many factors in freezing, lyophilizing and
rehydration processes. Therefore, cryoprotectants are used to stabilize liposomal vesicles
during freeze-drying process.
</P><P>
Objective: In the present study, we developed AmB liposomal suspension and lyophilized
liposomes loaded with AmB, evaluated the effect of different cryoprotectants on the characterization
of freeze-dried AmB liposomes.
</P><P>
Methods: In this study, AmB liposomes were prepared from hydrogenated soy phosphatidylcholine,
distearoylphosphatidylglycerol and cholesterol by thin lipid film hydration
method using different hydrate mediums likely: Glucose solution, citrate buffer,
phosphate buffer. High-pressure homogenization and extrusion methods were used to
reducing vesicles size. Dynamic light scattering was used to characterize liposomal size,
and size distribution. HPLC method was used to assay drug and determine entrapment
efficiency. Liposomal suspension was lyophilized with different cryoprotectants: Sucrose,
mannitol, lactose, trehalose and glycerol. Differential scanning calorimetry was used to
study lyophilized cake.
</P><P>
Results: We found that liposomal suspension with hydration medium10 mM citrate buffer
pH 5.5 had a small average size (<100nm) and narrow distribution (PDI <0.2). Sucrose
and trehalose stabilized vesicles size during freezing process, and lyophilized liposomes
with sucrose and trehalose had an elegant appearance, yellow, compact cake. DSC study
showed that sucrose and trehalose in lyophilized cake were amorphous. The cake was
rehydrated within 10 seconds to form liposomal suspension, in which vesicles size was
less than 140 nm.
</P><P>
Conclusion: We have developed successfully AmB liposomal suspension and lyophilized
liposomes loaded with AmB. Sucrose and trehalose can be used as cryoprotectants in the
freeze-drying and reconstitution process.
Collapse
Affiliation(s)
- Tran Thi Hai Yen
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong Street, Hoankiem District, Hanoi, Vietnam
| | - Le Nho Dan
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong Street, Hoankiem District, Hanoi, Vietnam
| | - Le Hoang Duc
- National Institute of Drug Quality Control, Tamhiep, Thanhtri District, Hanoi, Vietnam
| | - Bui Thanh Tung
- School of Medicine and Pharmacy, Vietnam National University Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Pham Thi Minh Hue
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong Street, Hoankiem District, Hanoi, Vietnam
| |
Collapse
|
24
|
Ambati S, Ferarro AR, Kang SE, Lin J, Lin X, Momany M, Lewis ZA, Meagher RB. Dectin-1-Targeted Antifungal Liposomes Exhibit Enhanced Efficacy. mSphere 2019; 4:e00025-19. [PMID: 30760610 PMCID: PMC6374590 DOI: 10.1128/msphere.00025-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 11/24/2022] Open
Abstract
Aspergillus species cause pulmonary invasive aspergillosis resulting in nearly 100,000 deaths each year. Patients at the greatest risk of developing life-threatening aspergillosis have weakened immune systems and/or various lung disorders. Patients are treated with antifungals such as amphotericin B (AmB), caspofungin acetate, or triazoles (itraconazole, voriconazole, etc.), but these antifungal agents have serious limitations due to lack of sufficient fungicidal effect and human toxicity. Liposomes with AmB intercalated into the lipid membrane (AmB-LLs; available commercially as AmBisome) have severalfold-reduced toxicity compared to that of detergent-solubilized drug. However, even with the current antifungal therapies, 1-year survival among patients is only 25 to 60%. Hence, there is a critical need for improved antifungal therapeutics. Dectin-1 is a mammalian innate immune receptor in the membrane of some leukocytes that binds as a dimer to beta-glucans found in fungal cell walls, signaling fungal infection. Using a novel protocol, we coated AmB-LLs with Dectin-1's beta-glucan binding domain to make DEC-AmB-LLs. DEC-AmB-LLs bound rapidly, efficiently, and with great strength to Aspergillus fumigatus and to Candida albicans and Cryptococcus neoformans, highly divergent fungal pathogens of global importance. In contrast, untargeted AmB-LLs and bovine serum albumin (BSA)-coated BSA-AmB-LLs showed 200-fold-lower affinity for fungal cells. DEC-AmB-LLs reduced the growth and viability of A. fumigatus an order of magnitude more efficiently than untargeted control liposomes delivering the same concentrations of AmB, in essence decreasing the effective dose of AmB. Future efforts will focus on examining pan-antifungal targeted liposomal drugs in animal models of disease.IMPORTANCE The fungus Aspergillus fumigatus causes pulmonary invasive aspergillosis resulting in nearly 100,000 deaths each year. Patients are often treated with antifungal drugs such as amphotericin B (AmB) loaded into liposomes (AmB-LLs), but all antifungal drugs, including AmB-LLs, have serious limitations due to human toxicity and insufficient fungal cell killing. Even with the best current therapies, 1-year survival among patients with invasive aspergillosis is only 25 to 60%. Hence, there is a critical need for improved antifungal therapeutics. Dectin-1 is a mammalian protein that binds to beta-glucan polysaccharides found in nearly all fungal cell walls. We coated AmB-LLs with Dectin-1 to make DEC-AmB-LLs. DEC-AmB-LLs bound strongly to fungal cells, while AmB-LLs had little affinity. DEC-AmB-LLs killed or inhibited A. fumigatus 10 times more efficiently than untargeted liposomes, decreasing the effective dose of AmB. Dectin-1-coated drug-loaded liposomes targeting fungal pathogens have the potential to greatly enhance antifungal therapeutics.
Collapse
Affiliation(s)
- Suresh Ambati
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Aileen R Ferarro
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - S Earl Kang
- Fungal Biology Group and Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Michelle Momany
- Fungal Biology Group and Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Zachary A Lewis
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
25
|
Temboot P, Usman F, Ul-Haq Z, Khalil R, Srichana T. Biomolecular interactions of amphotericin B nanomicelles with serum albumins: A combined biophysical and molecular docking approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:442-456. [PMID: 30055454 DOI: 10.1016/j.saa.2018.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
In this work, we investigated the interaction of amphotericin B (AmB) nanomicelles on the binding affinity and conformational change of human serum albumin (HSA) in comparison with bovine serum albumin (BSA) under physiological conditions by conducting several spectroscopic techniques further confirmed through molecular docking approaches. The experimental results showed that AmB nanomicelles could bind to both HSA and BSA to form protein/drug complexes with one binding site, and the binding process was spontaneous under physiological conditions. Fluorescence studies revealed that the quenching mechanism of these complexes was static quenching rather than dynamic quenching and exhibited strong binding between serum albumin and AmB nanomicelles. The results from UV-Visible spectra, FT-IR spectra, and CD spectra revealed that the AmB formulations affected the structure of both HSA and BSA proteins by changing the microenvironment around the tryptophan residues of protein and caused a secondary structure change of the protein with the loss of helical stability. The molecular docking experiments also supported the above results and effectively proved the binding and changes in the conformation of serum albumins by AmB micelles. This finding provides information of in vitro drug-plasma protein interactions for further study on the AmB binding mechanism and the pharmacodynamics and pharmacokinetics.
Collapse
Affiliation(s)
- Pornvichai Temboot
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla Univesity, Songkhla 90112, Thailand
| | - Faisal Usman
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla Univesity, Songkhla 90112, Thailand
| | - Zaheer Ul-Haq
- Computational Chemistry Unit, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ruqaiya Khalil
- Computational Chemistry Unit, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla Univesity, Songkhla 90112, Thailand.
| |
Collapse
|
26
|
Nanomedicines: The magic bullets reaching their target? Eur J Pharm Sci 2018; 128:73-80. [PMID: 30465818 DOI: 10.1016/j.ejps.2018.11.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/29/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
Abstract
Nanomedicines, since the approval of the first one in the 1950s, have been accompanied by expectations of higher efficiency and efficacy, compared to less complex drugs. The fulfilment of those expectations has been slower than anticipated, due to the high complexity of nanomedicine drugs combined with a lack of scientific understanding of nanomedicine interactions with biological systems. The unique properties of their size and their surface composition create difficulties in their physicochemical characterization, and as a consequence, difficulty in assessing the similarity of follow-on products (nanosimilars) to originator nanomedicines. During the 2018 European Federation for Pharmaceutical Sciences (EUFEPS) annual meeting "Crossing the barrier for future medicines" in Athens, there were several sessions on nanomedicines organised by the EUFEPS Nanomedicine Network. This review focuses on the session "Nanomedicines and nanosimilars: how to assess similar?", discussing the nature of nanomedicines, the regulatory aspects of the topic and the impact of practical use and handling of such medicinal products. Emphasis is put on the consequences their nanosize-related properties have on the establishment of their critical quality attributes and how this affects the demonstration of bioequivalence of nanosimilars to their originator products. The lack of an appropriate and harmonized regulatory evaluation procedure and the absence of corresponding education are also discussed, especially the uncertainty surrounding the practical use of nanosimilars, including the higher healthcare cost due to less than satisfactory number of safe and efficacious nanosimilars in the market.
Collapse
|
27
|
Jansook P, Pichayakorn W, Ritthidej GC. Amphotericin B-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): effect of drug loading and biopharmaceutical characterizations. Drug Dev Ind Pharm 2018; 44:1693-1700. [PMID: 29936874 DOI: 10.1080/03639045.2018.1492606] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The aim of this study was to further investigate the effect of drug loading, drug entrapment efficiency, the drug release profiles and biopharmaceutical point of views of amphotericin B (AmB) lipid formulations, that is, degree of aggregation by UV-spectroscopy, in vitro hemolytic and antifungal activities. The optimum drug loading was 2.5% by weight corresponded to lipid fraction in formulation. Increasing of the drug entrapment was achieved by blending small amount of phospholipid in solid lipid nanoparticle (SLN) dispersions. All AmB lipid dispersions were less aggregated species and hemolytic response than Fungizone® indicating that lipid nanoparticles could reduce its toxicity. The sustained release profiles of AmB formulations depended on its aggregated form and entrapment efficiency. Too high AmB loaded (5% w/w) showed a biphasic drug release profile probably due to some amounts of drug deposited on the nanosphere surface including in continuous phase which promptly released. For in vitro antifungal testing, all AmB lipid formulations were equal and more effective than both AmB itself and Fungizone®. These observations suggested that AmB loaded SLNs, nanostructured lipid carriers and modified SLNs by blending lecithin could enhance AmB solubility, prolong release characteristics, reduce toxicity and improve antifungal activity.
Collapse
Affiliation(s)
- Phatsawee Jansook
- a Faculty of Pharmaceutical Sciences , Chulalongkorn University , Bangkok, Thailand
| | - Wiwat Pichayakorn
- b Faculty of Pharmaceutical Sciences , Prince of Songkla University , Songkhla, Hat-Yai, Songkhla , Thailand
| | | |
Collapse
|
28
|
Casa DM, Scariot DB, Khalil NM, Nakamura CV, Mainardes RM. Bovine serum albumin nanoparticles containing amphotericin B were effective in treating murine cutaneous leishmaniasis and reduced the drug toxicity. Exp Parasitol 2018; 192:12-18. [PMID: 30026113 DOI: 10.1016/j.exppara.2018.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/21/2018] [Accepted: 07/14/2018] [Indexed: 12/28/2022]
Abstract
Cutaneous leishmaniasis is the most common form of leishmaniasis and the available chemotherapy causes serious side effects, justifying the search for new therapies. This study investigated the antileishmanial activity of bovine serum albumin (BSA) nanoparticles containing amphotericin B (AmB) against Leishmania amazonensis. The antiproliferative activity against promastigotes and amastigotes was assessed and the cytotoxicity was determined and compared to commercial AmB-deoxycholate (AmB-D). In vivo antileishmania activity was evaluated in murine cutaneous leishmaniasis model. BSA nanoparticles showed spherical shape, mean size about 180 nm, zeta potential of ≈ -45 mV and AmB encapsulation efficiency >95%. AmB-D was effective in promastigote and amastigote forms, while AmB-loaded BSA nanoparticles were more effective against amastigotes than promastigotes. AmB-D was more effective than AmB-loaded BSA nanoparticles in both forms, however, the lowest cytotoxicity against macrophages was achieved by AmB-nanoparticles. BALB/c mice treated with AmB-D or AmB-loaded BSA nanoparticles showed a significant decrease in the lesion thickness at the infected footpad. Histopathological analysis after 3 weeks of treatment revealed AmB-D-related toxicity in heart, spleen, lung, liver and kidneys, while treatment with AmB-loaded BSA nanoparticles did not reveal tissue toxicity. The antileishmanial efficacy and the reduced toxicity become BSA nanoparticles containing AmB a potential candidate for treating cutaneous leishmaniasis.
Collapse
Affiliation(s)
- D M Casa
- Department of Pharmacy, Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste-UNICENTRO, Rua Simeão Camargo Varela de Sá 03, Guarapuava, 85040-080, Brazil
| | - D B Scariot
- Department of Pharmacy, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, Universidade Estadual de Maringá Maringá-UEM, Avenida Colombo 5790, Maringá, PR 87020-900, Brazil
| | - N M Khalil
- Department of Pharmacy, Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste-UNICENTRO, Rua Simeão Camargo Varela de Sá 03, Guarapuava, 85040-080, Brazil
| | - C V Nakamura
- Department of Pharmacy, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, Universidade Estadual de Maringá Maringá-UEM, Avenida Colombo 5790, Maringá, PR 87020-900, Brazil
| | - R M Mainardes
- Department of Pharmacy, Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste-UNICENTRO, Rua Simeão Camargo Varela de Sá 03, Guarapuava, 85040-080, Brazil.
| |
Collapse
|
29
|
Efficacy, Biodistribution, and Nephrotoxicity of Experimental Amphotericin B-Deoxycholate Formulations for Pulmonary Aspergillosis. Antimicrob Agents Chemother 2018; 62:AAC.00489-18. [PMID: 29760126 DOI: 10.1128/aac.00489-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/06/2018] [Indexed: 12/16/2022] Open
Abstract
An experimental micellar formulation of 1:1.5 amphotericin B-sodium deoxycholate (AMB:DCH 1:1.5) was obtained and characterized to determine its aggregation state and particle size. The biodistribution, nephrotoxicity, and efficacy against pulmonary aspergillosis in a murine model were studied and compared to the liposomal commercial formulation of amphotericin B after intravenous administration. The administration of 5 mg/kg AMB:DCH 1:1.5 presented 2.8-fold-higher lung concentrations (18.125 ± 3.985 μg/g after 6 daily doses) and lower kidney exposure (0.391 ± 0.167 μg/g) than liposomal commercial amphotericin B (6.567 ± 1.536 and 5.374 ± 1.157 μg/g in lungs and kidneys, respectively). The different biodistribution of AMB:DCH micelle systems compared to liposomal commercial amphotericin B was attributed to their different morphologies and particle sizes. The efficacy study has shown that both drugs administered at 5 mg/kg produced similar survival percentages and reductions of fungal burden. A slightly lower nephrotoxicity, associated with amphotericin B, was observed with AMB:DCH 1:1.5 than the one induced by the liposomal commercial formulation. However, AMB:DCH 1:1.5 reached higher AMB concentrations in lungs, which could represent a therapeutic advantage over liposomal commercial amphotericin B-based treatment of pulmonary aspergillosis. These results are encouraging to explore the usefulness of AMB:DCH 1:1.5 against this disease.
Collapse
|
30
|
Abstract
By the end of 2017 more than 200,000 scientific research articles had been published about nanomedicine. Out of this vast number only a few of the reported nanoconstructs reached clinical trials for various applications, including the diagnosis and treatment of several cancers, and the treatment of infections and other non-cancerous diseases. 30 years after the pioneering work in this field of research, the low product yield at the end of research pipeline leads to a question that is asked by many: 'had nanomedicine been lost in translation?' In this review, we will discuss the landscape of nanomedicine regarding cancer treatment and miscellaneous applications as well as some obstacles toward full utilization of this powerful therapeutic tool and suggest a few solutions to improve the current translational value of nanomedicine research.
Collapse
|
31
|
Moraes Moreira Carraro T, Altmeyer C, Maissar Khalil N, Mara Mainardes R. Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. J Mycol Med 2017; 27:519-529. [DOI: 10.1016/j.mycmed.2017.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
32
|
Liposomal and Deoxycholate Amphotericin B Formulations: Effectiveness against Biofilm Infections of Candida spp. Pathogens 2017; 6:pathogens6040062. [PMID: 29194382 PMCID: PMC5750586 DOI: 10.3390/pathogens6040062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 11/29/2022] Open
Abstract
Background: candidiasis is the primary fungal infection encountered in patients undergoing prolonged hospitalization, and the fourth leading cause of nosocomial bloodstream infections. One of the most important Candida spp. virulence factors is the ability to form biofilms, which are extremely refractory to antimicrobial therapy and very difficult to treat with the traditional antifungal therapies. It is known that the prophylaxis or treatment of a systemic candidiasis are recurrently taken without considering the possibility of a Candida spp. biofilm-related infections. Therefore, it is important to assess the effectiveness of the available drugs and which formulations have the best performance in these specific infections. Methods: 24-h-biofilms of four Candida spp. and their response to two amphotericin B (AmB) pharmaceutical formulations (liposomal and deoxycholate) were evaluated. Results: generally, Candida glabrata was the less susceptible yeast species to both AmBs. MBECs revealed that it is therapeutically more appealing to use AmB-L than AmB-Deox for all Candida spp. biofilms, since none of the determined concentrations of AmB-L reached 10% of the maximum daily dose, but both formulations showed a very good capacity in the biomass reduction. Conclusions: the liposomal formulation presents better performance in the eradication of the biofilm cells for all the species in comparison with the deoxycholate formulation.
Collapse
|
33
|
Menotti J, Alanio A, Sturny-Leclère A, Vitry S, Sauvage F, Barratt G, Bretagne S. A cell impedance-based real-time in vitro assay to assess the toxicity of amphotericin B formulations. Toxicol Appl Pharmacol 2017; 334:18-23. [DOI: 10.1016/j.taap.2017.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 08/02/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
|
34
|
Natfji AA, Osborn HM, Greco F. Feasibility of polymer-drug conjugates for non-cancer applications. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Biodistribution and In Vivo Antileishmanial Activity of 1,2-Distigmasterylhemisuccinoyl- sn-Glycero-3-Phosphocholine Liposome-Intercalated Amphotericin B. Antimicrob Agents Chemother 2017. [PMID: 28630182 DOI: 10.1128/aac.02525-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1,2-Distigmasterylhemisuccinoyl-sn-glycero-3-phosphocholine (DSHemsPC) is a new lipid in which two molecules of stigmasterol (an inexpensive plant sterol) are covalently linked via a succinic acid to glycerophosphocholine. Our previous study revealed that liposome (Lip)-intercalated amphotericin B (AMB) prepared from DSHemsPC (DSHemsPC-AMB-Lip) possesses excellent colloidal properties and in vitro antifungal and antileishmanial activities similar to those of the liposomal AMB preparation AmBisome. The aim of this study was to determine the biodistribution and evaluate the antileishmanial effects of DSHemsPC-AMB-Lip in Leishmania major-infected BALB/c mice. The serum profile and tissue concentrations of AMB were similar in DSHemsPC-AMB-Lip- and AmBisome-treated mice after intravenous (i.v.) injection. Multiple i.v. doses of the micellar formulation of AMB (Fungizone; 1 mg/kg of body weight), DSHemsPC-AMB-Lip (5 mg/kg), and AmBisome (5 mg/kg) were used in L. major-infected BALB/c mouse models of early and established lesions. In a model of the early lesions of cutaneous leishmaniasis (CL), the results indicated that the level of footpad inflammation was significantly (P < 0.001) lower in mice treated with DSHemsPC-AMB-Lip and AmBisome than mice treated with empty liposomes or 5% dextrose. The splenic and footpad parasite load was also significantly (P < 0.001) lower in these groups of mice than in control mice that received 5% DW or free liposome. The in vivo activity of DSHemsPC-AMB-Lip was comparable to that of AmBisome, and both provided improved results compared to those achieved with Fungizone at the designated doses. The results suggest that systemic DSHemsPC-AMB-Lip administration may be useful for the treatment of leishmaniasis, and because it costs less to produce DSHemsPC-AMB-Lip than AmBisome, DSHemsPC-AMB-Lip merits further investigation.
Collapse
|
36
|
Buscema M, Matviykiv S, Mészáros T, Gerganova G, Weinberger A, Mettal U, Mueller D, Neuhaus F, Stalder E, Ishikawa T, Urbanics R, Saxer T, Pfohl T, Szebeni J, Zumbuehl A, Müller B. Immunological response to nitroglycerin-loaded shear-responsive liposomes in vitro and in vivo. J Control Release 2017; 264:14-23. [PMID: 28803115 DOI: 10.1016/j.jconrel.2017.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/06/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022]
Abstract
Liposomes formulated from the 1,3-diamidophospholipid Pad-PC-Pad are shear-responsive and thus promising nano-containers to specifically release a vasodilator at stenotic arteries. The recommended preclinical safety tests for therapeutic liposomes of nanometer size include the in vitro assessment of complement activation and the evaluation of the associated risk of complement activation-related pseudo-allergy (CARPA) in vivo. For this reason, we measured complement activation by Pad-PC-Pad formulations in human and porcine sera, along with the nanopharmaceutical-mediated cardiopulmonary responses in pigs. The evaluated formulations comprised of Pad-PC-Pad liposomes, with and without polyethylene glycol on the surface of the liposomes, and nitroglycerin as a model vasodilator. The nitroglycerin incorporation efficiency ranged from 25% to 50%. In human sera, liposome formulations with 20mg/mL phospholipid gave rise to complement activation, mainly via the alternative pathway, as reflected by the rises in SC5b-9 and Bb protein complex concentrations. Formulations having a factor of ten lower phospholipid content did not result in measurable complement activation. The weak complement activation induced by Pad-PC-Pad liposomal formulations was confirmed by the results obtained by performing an in vivo study in a porcine model, where hemodynamic parameters were monitored continuously. Our study suggests that, compared to FDA-approved liposomal drugs, Pad-PC-Pad exhibits less or similar risks of CARPA.
Collapse
Affiliation(s)
- Marzia Buscema
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Sofiya Matviykiv
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Tamás Mészáros
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University Budapest, Hungary; SeroScience Ltd., Budapest, Hungary
| | - Gabriela Gerganova
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | | | - Ute Mettal
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Dennis Mueller
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Frederik Neuhaus
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Etienne Stalder
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | | | | | - Till Saxer
- Cardiology Division, University Hospital of Geneva, Geneva, Switzerland
| | - Thomas Pfohl
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - János Szebeni
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University Budapest, Hungary; SeroScience Ltd., Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | - Andreas Zumbuehl
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Bert Müller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.
| |
Collapse
|
37
|
Adler-Moore JP, Proffitt RT, Olson JA, Jensen GM. Tissue pharmacokinetics and pharmacodynamics of AmBisome® (L-AmBis) in uninfected and infected animals and their effects on dosing regimens. J Liposome Res 2017; 27:195-209. [PMID: 28480760 DOI: 10.1080/08982104.2017.1327543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
By selecting a unique combination of lipids and amphotericin B, the liposome composition for AmBisome® (L-AmBis) has been optimized resulting in a formulation that is minimally toxic, targets to fungal cell walls, and distributes into and remains for days to weeks in various host tissues at drug levels above the MIC for many fungi. Procedures have been standardized to ensure that large scale production of the drug retains the drug's low toxicity profile, favorable pharmacokinetics and antifungal efficacy. Tissue accumulation and clearance with single or multiple intravenous administration is similar in uninfected and infected animal species, with tissue accumulation being dose-dependent and the liver and spleen retaining the most drug. The efficacy in animals appears to be correlated with drug tissue levels although the amount needed in a given organ varies depending upon the type of infection. The long-term tissue retention of bioactive L-AmBis in different organs suggests that for some indications, prophylactic and intermittent drug dosing would be efficacious reducing the cost and possible toxic side-effects. In addition, preliminary preclinical studies using non-intravenous routes of delivery, such as aerosolized L-AmBis, catheter lock therapy, and intravitreal administration, suggest that alternative routes could possibly provide additional therapeutic applications for this antifungal drug.
Collapse
Affiliation(s)
- J P Adler-Moore
- a Department of Biological Sciences , California State Polytechnic University , Pomona , CA , USA
| | | | - J A Olson
- a Department of Biological Sciences , California State Polytechnic University , Pomona , CA , USA
| | - G M Jensen
- c Gilead Sciences Inc. , San Dimas , CA , USA
| |
Collapse
|
38
|
Aversa F, Busca A, Candoni A, Cesaro S, Girmenia C, Luppi M, Nosari AM, Pagano L, Romani L, Rossi G, Venditti A, Novelli A. Liposomal amphotericin B (AmBisome®) at beginning of its third decade of clinical use. J Chemother 2017; 29:131-143. [DOI: 10.1080/1120009x.2017.1306183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Franco Aversa
- Department of Clinical and Experimental Medicine, Hematology and BMT Unit, University of Parma, Parma, Italy
| | - Alessandro Busca
- Department of Oncology and Hematology, BMT Unit, A.O. Citta’ della Salute e della Scienza di Torino, Torino, Italy
| | - Anna Candoni
- Hematology and Center for Stem Cell Transplantation and Cell Therapy, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Simone Cesaro
- Pediatric Hematology Oncology, G.B. Rossi Hosptial, Verona, Italy
| | | | - Mario Luppi
- Department of Medical and Surgical Sciences UNIMORE, Division of Hematology AOU Policlinico, Modena, Italy
| | - Anna Maria Nosari
- Dipartimento di Ematologia ed Oncologia, Niguarda Cancer Centre ASST Grande Ospedale Metropolitano Niguarda Piazza Ospedale, Milano, Italy
| | - Livio Pagano
- Hematology Unit, Catholic University Holy Hearth, Roma, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giuseppe Rossi
- Ematologia e Dipartimento di Oncologia Clinica, A.O. Spedali Civili, Brescia, Italy
| | | | - Andrea Novelli
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| |
Collapse
|
39
|
Stone NRH, Bicanic T, Salim R, Hope W. Liposomal Amphotericin B (AmBisome(®)): A Review of the Pharmacokinetics, Pharmacodynamics, Clinical Experience and Future Directions. Drugs 2016; 76:485-500. [PMID: 26818726 DOI: 10.1007/s40265-016-0538-7] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Liposomal amphotericin B (AmBisome(®); LAmB) is a unique lipid formulation of amphotericin B. LAmB is a standard of care for a wide range of medically important opportunistic fungal pathogens. LAmB has a significantly improved toxicity profile compared with conventional amphotericin B deoxycholate (DAmB). Despite nearly 20 years of clinical use, the pharmacokinetics and pharmacodynamics of this agent, which differ considerably from DAmB, remain relatively poorly understood and underutilized in the clinical setting. The molecular pharmacology, preclinical and clinical pharmacokinetics, and clinical experience with LAmB for the most commonly encountered fungal pathogens are reviewed. In vitro, experimental animal models and human clinical trial data are summarized, and novel routes of administration and dosing schedules are discussed. LAmB is a formulation that results in reduced toxicity as compared with DAmB while retaining the antifungal effect of the active agent. Its long terminal half-life and retention in tissues suggest that single or intermittent dosing regimens are feasible, and these should be actively investigated in both preclinical models and in clinical trials. Significant gaps remain in knowledge of pharmacokinetics and pharmacodynamics in special populations such as neonates and children, pregnant women and obese patients.
Collapse
Affiliation(s)
- Neil R H Stone
- Institute for Infection and Immunity, St. George's University of London, London, UK.
| | - Tihana Bicanic
- Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Rahuman Salim
- Department of Haematology, Royal Liverpool University Hospital, Liverpool, UK
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, 1.09 Sherrington Building, University of Liverpool, Liverpool, UK
| |
Collapse
|
40
|
Tripathi P, Dwivedi P, Khatik R, Jaiswal AK, Dube A, Shukla P, Mishra PR. Development of 4-sulfated N-acetyl galactosamine anchored chitosan nanoparticles: A dual strategy for effective management of Leishmaniasis. Colloids Surf B Biointerfaces 2015; 136:150-9. [PMID: 26381698 DOI: 10.1016/j.colsurfb.2015.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/14/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022]
Abstract
The present investigation reports the modification of chitosan nanoparticles with a ligand 4-sulfated N-acetyl galactosamine (4-SO4GalNAc) for efficient chemotherapy in leishmaniasis (SCNPs) by using dual strategy of targeting. These (SCNPs) were loaded with amphotericin B (AmB) for specific delivery to infected macrophages. Developed AmB loaded SCNPs (AmB-SCNPs) had mean particle size of 333 ± 7 nm, and showed negative zeta potential (-13.9 ± 0.016 mV). Flow cytometric analysis revealed enhanced uptake of AmB-SCNPs in J774A.1, when compared to AmB loaded unmodified chitosan NPs (AmB-CNPs). AmB-SCNPs provide significantly higher localization of AmB in liver and spleen as compared to AmB-CNPs after i.v. administration. The study stipulates that 4-SO4GalNAc assures of targeting, resident macrophages. Highly significant anti-leishmanial activity (P<0.05 compared with AmB-CNPs) was observed with AmB-SCNPs, causing 75.30 ± 3.76% inhibition of splenic parasitic burdens. AmB-CNPs and plain AmB caused only 63.89 ± 3.44% and 47.56 ± 2.37% parasite inhibition, respectively, in Leishmania-infected hamsters (P<0.01 for AmB-SCNPs versus plain AmB and AmB-CNPs versus plain AmB).
Collapse
Affiliation(s)
- Priyanka Tripathi
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pankaj Dwivedi
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Renuka Khatik
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Kumar Jaiswal
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anuradha Dube
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Poonam Shukla
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Prabhat Ranjan Mishra
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
41
|
Zia Q, Khan AA, Swaleha Z, Owais M. Self-assembled amphotericin B-loaded polyglutamic acid nanoparticles: preparation, characterization and in vitro potential against Candida albicans. Int J Nanomedicine 2015; 10:1769-90. [PMID: 25784804 PMCID: PMC4356689 DOI: 10.2147/ijn.s63155] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the present study, we developed a self-assembled biodegradable polyglutamic acid (PGA)-based formulation of amphotericin B (AmB) and evaluated its in vitro antifungal potential against Candida albicans. The AmB-loaded PGA nanoparticles were prepared in-house and had a mean size dimension of around 98±2 nm with a zeta potential of -35.2±7.3 mV. Spectroscopic studies revealed that the drug predominantly acquires an aggregated form inside the formulation with an aggregation ratio above 2. The PGA-based AmB formulation was shown to be highly stable in phosphate-buffered saline as well as in serum (only 10%-20% of the drug was released after 10 days). The AmB-PGA nanoparticles were less toxic to red blood cells (<15% lysis at an AmB concentration of 100 μg/mL after 24 hours) when compared with Fungizone(®), a commercial antifungal product. An MTT assay showed that the viability of mammalian cells (KB and RAW 264.7) was negligibly affected at AmB concentrations as high as 200 μg/mL. Histopathological examination of mouse kidney revealed no signs of tissue necrosis. The AmB-PGA formulation showed potent antimicrobial activity similar to that of Fungizone against C. albicans. Interestingly, AmB-bearing PGA nanoparticles were found to inhibit biofilm formation to a considerable extent. In summary, AmB-PGA nanoparticles showed highly attenuated toxicity when compared with Fungizone, while retaining equivalent active antifungal properties. This study indicates that the AmB-PGA preparation could be a promising treatment for various fungal infections.
Collapse
Affiliation(s)
- Qamar Zia
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Aijaz Ahmed Khan
- Department of Anatomy, Aligarh Muslim University, Aligarh, India
| | - Zubair Swaleha
- Women's College, Aligarh Muslim University, Aligarh, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
42
|
Falci DR, da Rosa FB, Pasqualotto AC. Hematological toxicities associated with amphotericin B formulations. Leuk Lymphoma 2015; 56:2889-94. [DOI: 10.3109/10428194.2015.1010080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Iatta R, Immediato D, Montagna MT, Otranto D, Cafarchia C. In vitro
activity of two amphotericin B formulations against
Malassezia furfur
strains recovered from patients with bloodstream infections. Med Mycol 2015; 53:269-74. [DOI: 10.1093/mmy/myu089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Falci DR, da Rosa FB, Pasqualotto AC. Comparison of nephrotoxicity associated to different lipid formulations of amphotericin B: a real-life study. Mycoses 2015; 58:104-12. [PMID: 25590436 DOI: 10.1111/myc.12283] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/24/2014] [Accepted: 11/20/2014] [Indexed: 11/30/2022]
Abstract
Amphotericin B (AmB) use is limited by the occurrence of kidney toxicity. Here, we evaluated the incidence and impact of nephrotoxicity in a large series of patients receiving therapy with amphotericin B deoxycholate (d-AmB), liposomal AmB (L-AmB), or AmB lipid complex (ABLC), in a clinical practice scenario. In a retrospective cohort study, patients treated with different AmB formulations between 2003 and 2012 were evaluated. Medical records and laboratory data were reviewed. Nephrotoxicity was determined according to modified RIFLE criteria. Predictors of nephrotoxicity and mortality were determined and treatment groups were compared. About 431 patients were studied (d-AmB, n = 236; L-AmB, n = 105; ABLC, n = 90). Frequency of severe nephrotoxicity (RIFLE 'Failure') was 11.5%, 2.4% and 7.2% for d-AmB, L-AmB and ABLC, respectively (P = 0.046). Use of L-AmB was found to be an independent protective factor (OR: 0.18; 95% CI: 0.03-0.64; P = 0.006) for severe nephrotoxicity, considering d-AmB as a reference. L-AmB was also a protective factor for mortality (OR: 0.56; 95% CI: 0.32-0.99; P = 0.046). In addition, in-hospital overall mortality was associated with cancer, previous dialysis, evolution to dialysis, and stay in the intensive care unit. Patients treated with ABLC showed similar frequency of severe kidney toxicity than those treated with d-AmB. L-AmB was associated with better outcomes than other formulations, including severe nephrotoxicity and overall mortality.
Collapse
Affiliation(s)
- Diego R Falci
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil; Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil
| | | | | |
Collapse
|
45
|
Kelly C, Lawlor C, Burke C, Barlow JW, Ramsey JM, Jefferies C, Cryan SA. High-throughput methods for screening liposome–macrophage cell interaction. J Liposome Res 2014; 25:211-221. [DOI: 10.3109/08982104.2014.987785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Rodrigues CD, Khalil NM, Mainardes RM. Determination of amphotericin B in PLA-PEG blend nanoparticles by HPLC-PDA. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502014000400021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this work, we developed and validated an effective reversed-phase HPLC method with photodiode array (PDA) detection for the quantitative analysis of amphotericin B (AmB) in poly(lactide)-poly(ethylene glycol) (PLA-PEG) blend nanoparticles. Chromatographic runs were performed on a reverse phase C18 column using a mobile phase comprising a 9% acetic acid and acetonitrile mixture (40:60, v/v) under isocratic elution with a flow rate of 1 mL/min. AmB was detected at a wavelength of 408 nm. The validation process was performed considering the selectivity, linearity, precision, accuracy, robustness, limit of detection (LOD) and limit of quantitation (LOQ) of the method. A concentration range of 1-20 µg/mL was used to construct a linear calibration curve. The LOQ and LOD were 55 and 18 ng/mL, respectively. The mean recovery of AmB from the samples was 99.92% (relative standard deviation (RSD) = 0.34%, n=9), and the method was robust for changes in the flow rate of the mobile phase (maximum RSD=4.82%). The intra- and inter-assay coefficients of variation were less than 0.59%. The method was successfully used to determine the entrapment efficiency of AmB in PLA-PEG blend nanoparticles.
Collapse
|
47
|
Al-Quadeib BT, Radwan MA, Siller L, Horrocks B, Wright MC. Stealth Amphotericin B nanoparticles for oral drug delivery: In vitro optimization. Saudi Pharm J 2014; 23:290-302. [PMID: 26106277 PMCID: PMC4475820 DOI: 10.1016/j.jsps.2014.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/11/2014] [Indexed: 02/06/2023] Open
Abstract
Purpose Amphotericin B (AmB) is an effective anti-fungal and anti-leishmanial agent. However, AmB has low oral bioavailability (0.3%) and adverse effects (e.g., nephrotoxicity). The objectives of this study were to improve the oral bioavailability by entrapping AmB in pegylated (PEG) poly lactide co glycolide copolymer (PLGA–PEG) nanoparticles (NPs). The feasibility of different surfactants and stabilizers on the mean particle size (MPS) and entrapment efficiency were also investigated. Materials and methods NPs of AmB were prepared by a modified emulsification diffusion method employing a vitamin E derivative as a stabilizer. Physicochemical properties and particle size characterization were evaluated using Fourier Transform Infra-Red spectroscopy (FTIR), differential scanning calorimetry, scanning electron microscopy and transmission electron microscopy. Moreover, in vitro dissolution profiles were performed for all formulated AmB NPs. Results MPS of the prepared spherical particles of AmB ranged from 26.4 ± 2.9 to 1068 ± 489.8 nm. An increased stirring rate favored AmB NPs with a smaller MPS. There was a significant reduction in MPS, drug content and drug release, when AmB NPs were prepared using the diblock polymer PLGA–PEG with 15% PEG. Addition of three emulsifying agents poly vinyl pyrrolidone (PVP), Vitamin E (TPGS) and pluronic F-68 to AmB formulations led to a significant reduction in particle size and increase in drug entrapment efficiency (DEE) compared to addition of PVP alone. FTIR spectroscopy demonstrated a successful loading of AmB to pegylated PLGA–PEG copolymers. PLGA–PEG copolymer entrapment efficiency of AmB was increased up to 56.7%, with 92.7% drug yield. After a slow initial release, between 20% and 54% of AmB was released in vitro within 24 h phosphate buffer containing 2% sodium deoxycholate and were best fit Korsmeyer–Peppas model. In conclusion, PLGA–PEG diblock copolymer with 15% PEG produced a significant reduction (>70%) in MPS with highest drug content. The percentage of PEG in the copolymer and the surfactant/stabilizer used had a direct effect on AmB release in vitro, entrapment efficiency and MPS. These developed formulations are feasible, effective and improved alternatives to other carriers for oral delivery of AmB.
Collapse
Affiliation(s)
- Bushra T Al-Quadeib
- Department of Pharmaceutics, Pharmacy College, King Saud University, Saudi Arabia
| | - Mahasen A Radwan
- Department of Pharmaceutical Practice, Princess Nourah bint Abdelrahman University, Saudi Arabia
| | - Lidija Siller
- School of Chemical Engineering and Advanced Materials, Herschel Building, Newcastle University, UK
| | - Benjamin Horrocks
- School of Chemical Engineering and Advanced Materials, Herschel Building, Newcastle University, UK
| | - Matthew C Wright
- Institute of Cellular Medicine, Leech Building, Medical School, Newcastle University, UK
| |
Collapse
|
48
|
Carraro TCMM, Khalil NM, Mainardes RM. Amphotericin B-loaded polymeric nanoparticles: formulation optimization by factorial design. Pharm Dev Technol 2014; 21:140-6. [PMID: 25384838 DOI: 10.3109/10837450.2014.979942] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, PLGA or PLGA-PEG blend nanoparticles were developed loading amphotericin B (AmB), an antifungal agent broadly used in therapy. A 2(2) × 3(1) factorial experimental design was conducted to indicate an optimal formulation of nanoparticles containing AmB and demonstrate the influence of the interactions of components on the mean particle size and drug encapsulation efficiency. The independent variables analyzed were polymer amount (two levels) and organic phase (three factors in one level). The parameters methanol as cosolvent and higher polymer amount originated from the higher AmB encapsulation, but with the larger particle size. The selected optimized parameters were set as the lower polymer amount and ethyl acetate as cosolvent in organic phase, for both PLGA and PLGA-PEG nanoparticles. These parameters originated from nanoparticles with the size of 189.5 ± 90 nm and 169 ± 6.9 nm and AmB encapsulation efficiency of 94.0 ± 1.3% and 92.8 ± 2.9% for PLGA and PLGA-PEG nanoparticles, respectively. Additionally, these formulations showed a narrow size distribution indicating homogeneity in the particle size. PLGA and PLGA-PEG nanoparticles are potential carrier for AmB delivery and the factorial design presented an important tool in optimizing nanoparticles formulations.
Collapse
Affiliation(s)
| | - Najeh Maissar Khalil
- a Department of Pharmacy , Universidade Estadual do Centro-Oeste , Guarapuava , PR , Brazil
| | - Rubiana Mara Mainardes
- a Department of Pharmacy , Universidade Estadual do Centro-Oeste , Guarapuava , PR , Brazil
| |
Collapse
|
49
|
Study of amphotericin B magnetic liposomes for brain targeting. Int J Pharm 2014; 475:9-16. [DOI: 10.1016/j.ijpharm.2014.08.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/08/2014] [Accepted: 08/19/2014] [Indexed: 12/30/2022]
|
50
|
Gangadhar KN, Adhikari K, Srichana T. Synthesis and evaluation of sodium deoxycholate sulfate as a lipid drug carrier to enhance the solubility, stability and safety of an amphotericin B inhalation formulation. Int J Pharm 2014; 471:430-8. [DOI: 10.1016/j.ijpharm.2014.05.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/20/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
|