1
|
Voorhies K, Young K, Hsu FC, Palmer ND, McDonald MLN, Lee S, Hahn G, Hecker J, Prokopenko D, Wu AC, Regan EA, DeMeo D, Kinney GL, Crapo JD, Cho MH, Silverman EK, Lange C, Budoff MJ, Hokanson JE, Lutz SM. Association of PHACTR1 with Coronary Artery Calcium Differs by Sex and Cigarette Smoking. J Cardiovasc Dev Dis 2024; 11:194. [PMID: 39057616 PMCID: PMC11276683 DOI: 10.3390/jcdd11070194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Coronary artery calcium (CAC) is a marker of subclinical atherosclerosis and is a complex heritable trait with both genetic and environmental risk factors, including sex and smoking. Methods: We performed genome-wide association (GWA) analyses for CAC among all participants and stratified by sex in the COPDGene study (n = 6144 participants of European ancestry and n = 2589 participants of African ancestry) with replication in the Diabetes Heart Study (DHS). We adjusted for age, sex, current smoking status, BMI, diabetes, self-reported high blood pressure, self-reported high cholesterol, and genetic ancestry (as summarized by principal components computed within each racial group). For the significant signals from the GWA analyses, we examined the single nucleotide polymorphism (SNP) by sex interactions, stratified by smoking status (current vs. former), and tested for a SNP by smoking status interaction on CAC. Results: We identified genome-wide significant associations for CAC in the chromosome 9p21 region [CDKN2B-AS1] among all COPDGene participants (p = 7.1 × 10-14) and among males (p = 1.0 × 10-9), but the signal was not genome-wide significant among females (p = 6.4 × 10-6). For the sex stratified GWA analyses among females, the chromosome 6p24 region [PHACTR1] had a genome-wide significant association (p = 4.4 × 10-8) with CAC, but this signal was not genome-wide significant among all COPDGene participants (p = 1.7 × 10-7) or males (p = 0.03). There was a significant interaction for the SNP rs9349379 in PHACTR1 with sex (p = 0.02), but the interaction was not significant for the SNP rs10757272 in CDKN2B-AS1 with sex (p = 0.21). In addition, PHACTR1 had a stronger association with CAC among current smokers (p = 6.2 × 10-7) than former smokers (p = 7.5 × 10-3) and the SNP by smoking status interaction was marginally significant (p = 0.03). CDKN2B-AS1 had a strong association with CAC among both former (p = 7.7 × 10-8) and current smokers (p = 1.7 × 10-7) and the SNP by smoking status interaction was not significant (p = 0.40). Conclusions: Among current and former smokers of European ancestry in the COPDGene study, we identified a genome-wide significant association in the chromosome 6p24 region [PHACTR1] with CAC among females, but not among males. This region had a significant SNP by sex and SNP by smoking interaction on CAC.
Collapse
Affiliation(s)
- Kirsten Voorhies
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA 02115, USA
| | - Kendra Young
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Merry-Lynn N. McDonald
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35212, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sanghun Lee
- Division of Medicine, Department of Medical Consilience, Graduate School, Dankook University, Yongin 16890, Republic of Korea
| | - Georg Hahn
- Brigham and Women’s Hospital, Division of Pharmacoepidemiology and Pharmacoeconomics, and Department of Medicine, Harvard Medical School, Boston, MA 02120, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Dmitry Prokopenko
- Genetics and Aging Research Unit and the McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ann Chen Wu
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA 02115, USA
| | | | - Dawn DeMeo
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Greg L. Kinney
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James D. Crapo
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Lange
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matthew J. Budoff
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - John E. Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sharon M. Lutz
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
2
|
Ramuš SM, Petrovič D. Genetic Variations and Subclinical Markers of Carotid Atherosclerosis in Patients with Type 2 Diabetes Mellitus. Curr Vasc Pharmacol 2018; 17:16-24. [DOI: 10.2174/1570161116666180206112635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
Abstract
Atherosclerosis and its cardiovascular complications are the main cause of death in diabetic
patients. Patients with diabetes mellitus have a greater than 10-fold risk of cardiovascular disease in
their lifetime. The carotid Intima-Media Thickness (cIMT), a surrogate marker for the presence and
progression of atherosclerosis, predicts future cardiovascular events in asymptomatic subjects with Type
2 Diabetes Mellitus (T2DM). This review focuses on genetic variants that contribute to the pathobiology
of subclinical atherosclerosis in the setting of T2DM. Specifically, we devoted our attention to wellstudied
genes selected for their relevance for atherosclerosis. These include: The Renin-Angiotensin-
Aldosterone System (RAAS), Apolipoprotein E (ApoE), Methylenetetrahydrofolate Reductase (MTHFR)
and pro-inflammatory genes.
</P><P>
The ever-growing availability of advanced genotyping technologies has made Genome-Wide Association
Studies (GWAS) possible. Although several bioinformatics tools have been developed to manage
and interpret the huge amounts of data produced, there has been limited success in the many attempts to
uncover the biological meaning of the novel susceptibility loci for atherosclerosis.
Collapse
Affiliation(s)
- Sara Mankoč Ramuš
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Daniel Petrovič
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Prasada S, Oswalt C, Yeboah P, Saylor G, Bowden D, Yeboah J. Heart rate is an independent predictor of all-cause mortality in individuals with type 2 diabetes: The diabetes heart study. World J Diabetes 2018; 9:33-39. [PMID: 29359027 PMCID: PMC5763038 DOI: 10.4239/wjd.v9.i1.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/25/2017] [Accepted: 11/27/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To assess the association of resting heart rate with all-cause and cardiovascular disease (CVD) mortality in the Diabetes Heart Study (DHS).
METHODS Out of a total of 1443 participants recruited into the DHS, 1315 participants with type 2 diabetes who were free of atrial fibrillation and supraventricular tachycardia during the baseline exam were included in this analysis. Heart rate was collected from baseline resting electrocardiogram and mortality (all-cause and CVD) was obtained from state and national death registry. Kaplan-Meier (K-M) and Cox proportional hazard analyses were used to assess the association.
RESULTS The mean age, body mass index (BMI) and systolic blood pressure (SBP) of the cohort were 61.4 ± 9.2 years, 32.0 ± 6.6 kg/m2, and 139.4 ± 19.4 mmHg respectively. Fifty-six percent were females, 85% were whites, 15% were blacks, 18% were smokers. The mean ± SD heart rate was 69.8 (11.9) beats per minute (bpm). After a median follow-up time of 8.5 years (maximum follow-up time is 14.0 years), 258 participants were deceased. In K-M analysis, participants with heart rate above the median had a significantly higher event rate compared with those below the median (log-rank P = 0.0223). A one standard deviation increase in heart rate was associated with all-cause mortality in unadjusted (hazard ratio 1.16, 95%CI: 1.03-1.31) and adjusted (hazard ratio 1.20, 95%CI: 1.05-1.37) models. Similar results were obtained with CVD mortality as the outcome of interest.
CONCLUSION Heart rate is an independent predictor of all-cause mortality in this population with type 2 diabetes. In this study, a 1-SD increase in heart rate was associated with a 20% increase in risk suggesting that additional prognostic information may be gleaned from this ubiquitously collected vital sign.
Collapse
Affiliation(s)
- Sameer Prasada
- Department of Medical School (Medical students), Wake Forest University, Winston Salem, NC 27157, United States
| | - Cameron Oswalt
- Department of Medical School (Medical students), Wake Forest University, Winston Salem, NC 27157, United States
| | - Phyllis Yeboah
- Department of Internal Medicine, Wake Forest Baptist Health, Winston Salem, NC 27157, United States
| | - Georgia Saylor
- Department of Heart and Vascular Center of Excellence, Wake Forest Baptist Health, Winston Salem, NC 27157, United States
| | - Donald Bowden
- Department of Biochemistry, Genomics and Personalized Medicine Research, Wake Forest University, Winston Salem, NC 27157, United States
| | - Joseph Yeboah
- Department of Heart and Vascular Center of Excellence, Wake Forest Baptist Health, Winston Salem, NC 27157, United States
| |
Collapse
|
4
|
Chien LC, Bowden DW, Chiu YF. Region-based association tests for sequencing data on survival traits. Genet Epidemiol 2017; 41:511-522. [DOI: 10.1002/gepi.22054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Li-Chu Chien
- Center for Fundamental Science; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Donald W. Bowden
- Center for Diabetes Research, Wake Forest School of Medicine; Winston-Salem North Carolina United States of America
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine; Winston-Salem North Carolina United States of America
- Department of Biochemistry; Wake Forest School of Medicine; Winston-Salem North Carolina United States of America
| | - Yen-Feng Chiu
- Institute of Population Health Sciences; National Health Research Institutes; Miaoli Taiwan
| |
Collapse
|
5
|
Zhu W, Li J, Sun X, Hua Q. Association of G-protein beta3 subunit gene C825T polymorphism with cardiac and cerebrovascular events in Chinese hypertensive patients. Clin Exp Hypertens 2017; 39:80-84. [PMID: 28067546 DOI: 10.1080/10641963.2016.1210621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Several recent studies showed that C825T polymorphism is related to cardiovascular diseases in normal population. However, studies on whether 825T allele influences the incidence of cardiovascular diseases in hypertensive patients are rare. In the current study, 729 patients (CC, n = 332; CT, n = 313; TT, n = 84) with essential hypertension were genotyped for C825T polymorphism of the GNB3 gene and followed 8 years for major adverse cardiovascular events (MACEs) which include stroke, the onset of coronary artery disease (CAD), and all-cause death. Established cardiovascular risk factors were used to adjust the multivariate Cox analysis. After a mean follow-up period of 7.60 ± 1.12 years, a significantly higher incidence of MACEs was seen in the TT genotype group than CC and CT genotypes. The TT variant was significantly and independently predictive of MACEs (relative risk = 2.574; p < 0.001), CAD (relative risk = 2.963; p < 0.001), but not stroke, CAD+stroke or death. The GNB3 TT genotype is a risk factor for CAD independent of other established cardiovascular risk factors in Chinese hypertensive patients.
Collapse
Affiliation(s)
- Weiwei Zhu
- a Department of Cardiology , Xuanwu Hospital, Capital Medical University , Beijing , China
| | - Jing Li
- a Department of Cardiology , Xuanwu Hospital, Capital Medical University , Beijing , China
| | - Xipeng Sun
- a Department of Cardiology , Xuanwu Hospital, Capital Medical University , Beijing , China
| | - Qi Hua
- a Department of Cardiology , Xuanwu Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
6
|
Prevalence and Risk Factors of Carotid Plaque Among Middle-aged and Elderly Adults in Rural Tianjin, China. Sci Rep 2016; 6:23870. [PMID: 27029785 PMCID: PMC4814923 DOI: 10.1038/srep23870] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/15/2016] [Indexed: 11/08/2022] Open
Abstract
Carotid plaque (CP) is associated with cardiovascular and cerebrovascular events. However, population-based studies with a large sample are rare in China, particularly those in the low-income population. We aimed to determine the prevalence of CP and the associated risk factors in the rural areas of northern China. Between April 2014 and June 2014, we recruited 3789 residents aged ≥45 years. B-mode ultrasonography was performed to measure the extent of CP. The prevalence of CP was 40.3% overall, 47.1% in men, and 35.4% in women (P < 0.001). The prevalence of CP increased with increasing age (P < 0.001). The participants with CP were more likely to have hypertension, diabetes, high total cholesterol (TC) levels, and high low-density lipoprotein-cholesterol levels and be a current smoker; however, they were less likely to be obese. Multiple logistic regression analysis, adjusted for confounders, indicated that age, male sex, hypertension, diabetes, current smoking, and high LDL-C levels were the independent risk factors for CP. There was a lower risk of CP with alcohol consumption. The findings suggest that managing the conventional risk factors is crucial to reduce the burden of cardiovascular and cerebrovascular diseases in the low-income population in China.
Collapse
|
7
|
Adams JN, Martelle SE, Raffield LM, Freedman BI, Langefeld CD, Hsu FC, Maldjian JA, Williamson JD, Hugenschmidt CE, Carr JJ, Cox AJ, Bowden DW. Analysis of advanced glycation end products in the DHS Mind Study. J Diabetes Complications 2016; 30:262-8. [PMID: 26739237 PMCID: PMC4761276 DOI: 10.1016/j.jdiacomp.2015.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/16/2015] [Accepted: 11/29/2015] [Indexed: 12/11/2022]
Abstract
AIMS Human studies of links between advanced glycation end-products (AGEs) and disease phenotypes are less common than studies of animal and cell models. Here, we examined the association of total AGEs with diabetes risk factors in a predominately type 2 diabetes (T2D) affected cohort. METHODS AGEs were measured using an enzyme linked immunosorbant assay in 816 individuals from the DHS Mind Study (n=709 T2D affected), and association analyses were completed. RESULTS Total AGEs were associated with estimated glomerular filtration rate (p=0.0054; β=-0.1291) and coronary artery calcification (p=0.0352; β=1.1489) in the entire cohort. No significant associations were observed when individuals with T2D were analyzed separately. In individuals without T2D, increased circulating AGEs were associated with increased BMI (p=0.02, β=0.138), low density lipoproteins (p=0.046, β=17.07) and triglycerides (p=0.0004, β=0.125), and decreased carotid artery calcification (p=0.0004, β=-1.2632) and estimated glomerular filtration rate (p=0.0018, β=-0.1405). Strong trends were also observed for an association between AGEs and poorer cognitive performance on the digit symbol substitution test (p=0.046, β=-6.64) and decreased grey matter volume (p=0.037, β=-14.87). CONCLUSIONS AGEs may play an important role in a number of phenotypes and diseases, although not necessarily in interindividual variation in people with T2D. Further evaluation of specific AGE molecules may shed more light on these relationships.
Collapse
Affiliation(s)
- Jeremy N Adams
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Susan E Martelle
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Laura M Raffield
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Barry I Freedman
- Department of Internal Medicine, Nephrology, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Winston Salem, North Carolina
| | - Fang-Chi Hsu
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Winston Salem, North Carolina
| | - Joseph A Maldjian
- Radiologic Sciences and Advanced NeuroScience Imaging (ANSIR) Laboratory, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jeff D Williamson
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Christina E Hugenschmidt
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - J Jeffery Carr
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston - Salem, NC, USA
| | - Amanda J Cox
- Molecular Basis of Disease, Griffith University, Southport, QLD, Australia
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston - Salem, NC, USA.
| |
Collapse
|
8
|
Adams JN, Raffield LM, Martelle SE, Freedman BI, Langefeld CD, Carr JJ, Cox AJ, Bowden DW. Genetic analysis of advanced glycation end products in the DHS MIND study. Gene 2016; 584:173-9. [PMID: 26915486 DOI: 10.1016/j.gene.2016.02.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/21/2016] [Accepted: 02/19/2016] [Indexed: 11/24/2022]
Abstract
Advanced glycation end-products (AGEs) are a diverse group of molecules produced by the non-enzymatic addition of glucose to proteins, lipids, and nucleic acids. AGE levels have been associated with hyperglycemia and diabetic complications, especially in animal models, but less clearly in human studies. We measured total serum AGEs using an enzyme linked immunosorbant assay (ELISA) in 506 subjects from 246 families in the Diabetes Heart Study (DHS)/DHS MIND Study (n=399 type 2 diabetes (T2D)-affected). Single nucleotide polymorphisms (SNPs) in several candidate genes, including known AGE receptors, were tested for their influence on circulating AGE levels. The genetic analysis was expanded to include an exploratory genome-wide association study (GWAS) and exome chip analysis of AGEs (≈440,000 SNPs). AGEs were found to be highly heritable (h(2)=0.628, p=8.96 × 10(-10)). While no SNPs from candidate genes were significantly associated after Bonferroni correction, rs1035798 in the gene AGER was the most significantly associated (p=0.007). Additionally, rs7198427, in MT1A, showed a nominally significant p-value (p=0.0099). No SNPs from the GWAS or exome studies were identified after correction for multiple comparisons; however, rs17054480 in the PALLD2 gene on chromosome 4 showed the strongest association (p=7.77 × 10(-7)). Five SNPs at two loci (ISCA2/NPC2 and FBXO33) had p-values of less than 2.0 × 10(-5) and three additional SNPs (rs716326 in MACROD2, and rs6795197 and rs6765857 in ZBTB38) showed a nominal association with p-values of less than 1.0 × 10(-5).These findings provide a foundation for further investigation into the genetic component of circulating AGEs.
Collapse
Affiliation(s)
- Jeremy N Adams
- Program in Molecular Genetics and Genomics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Laura M Raffield
- Program in Molecular Genetics and Genomics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Susan E Martelle
- Integrative Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Barry I Freedman
- Department of Internal Medicine - Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Carl D Langefeld
- Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - J Jeffrey Carr
- Department of Radiologic Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Amanda J Cox
- Molecular Basis of Disease, Griffith University, Southport, QLD, Australia
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
9
|
Chien LC, Hsu FC, Bowden DW, Chiu YF. Generalization of Rare Variant Association Tests for Longitudinal Family Studies. Genet Epidemiol 2016; 40:101-12. [PMID: 26783077 DOI: 10.1002/gepi.21951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 11/06/2022]
Abstract
Given the functional relevance of many rare variants, their identification is frequently critical for dissecting disease etiology. Functional variants are likely to be aggregated in family studies enriched with affected members, and this aggregation increases the statistical power to detect rare variants associated with a trait of interest. Longitudinal family studies provide additional information for identifying genetic and environmental factors associated with disease over time. However, methods to analyze rare variants in longitudinal family data remain fairly limited. These methods should be capable of accounting for different sources of correlations and handling large amounts of sequencing data efficiently. To identify rare variants associated with a phenotype in longitudinal family studies, we extended pedigree-based burden (BT) and kernel (KS) association tests to genetic longitudinal studies. Generalized estimating equation (GEE) approaches were used to generalize the pedigree-based BT and KS to multiple correlated phenotypes under the generalized linear model framework, adjusting for fixed effects of confounding factors. These tests accounted for complex correlations between repeated measures of the same phenotype (serial correlations) and between individuals in the same family (familial correlations). We conducted comprehensive simulation studies to compare the proposed tests with mixed-effects models and marginal models, using GEEs under various configurations. When the proposed tests were applied to data from the Diabetes Heart Study, we found exome variants of POMGNT1 and JAK1 genes were associated with type 2 diabetes.
Collapse
Affiliation(s)
- Li-Chu Chien
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Fang-Chi Hsu
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Donald W Bowden
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America.,Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America.,Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Yen-Feng Chiu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
10
|
Hsu FC, Raffield LM, Hugenschmidt CE, Cox A, Xu J, Carr JJ, Freedman BI, Maldjian JA, Williamson JD, Bowden DW. Relationships between Cognitive Performance, Neuroimaging and Vascular Disease: The DHS-MIND Study. Neuroepidemiology 2015; 45:1-11. [PMID: 26185004 DOI: 10.1159/000435775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/04/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus increases the risk of cognitive decline and dementia, and elevated burdens of vascular disease are hypothesized to contribute to this risk. These relationships were examined in the Diabetes Heart Study-MIND using a battery of cognitive tests, neuroimaging measures and subclinical cardiovascular disease (CVD) burden assessed by coronary artery calcified (CAC) plaque. We hypothesized that CAC would attenuate the association between neuroimaging measures and cognition performance. METHODS Associations were examined using marginal models in this family-based cohort of 572 European Americans from 263 families. All models were adjusted for age, gender, education, type 2 diabetes and hypertension, with some neuroimaging measures additionally adjusted for intracranial volume. RESULTS Higher total brain volume was associated with better performance on the Digit Symbol Substitution Task and Semantic Fluency (both p ≤ 7.0 × 10(-4)). Higher gray matter volume was associated with better performance on the Modified Mini-Mental State Examination and Semantic Fluency (both p ≤ 9.0 × 10(-4)). Adjusting for CAC caused minimal changes to the results. CONCLUSIONS Relationships exist between neuroimaging measures and cognitive performance in a type 2 diabetes-enriched European American cohort. Associations were minimally attenuated after adjusting for subclinical CVD. Additional work is needed to understand how subclinical CVD burden interacts with other factors and impacts relationships between neuroimaging and cognitive testing measures.
Collapse
Affiliation(s)
- Fang-Chi Hsu
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, N.C., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Prediction of mortality using a multi-bed vascular calcification score in the Diabetes Heart Study. Cardiovasc Diabetol 2014; 13:160. [PMID: 25496604 PMCID: PMC4266952 DOI: 10.1186/s12933-014-0160-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/27/2014] [Indexed: 11/17/2022] Open
Abstract
Background Vascular calcified plaque, a measure of subclinical cardiovascular disease (CVD), is unlikely to be limited to a single vascular bed in patients with multiple risk factors. Consideration of vascular calcified plaque as a global phenomenon may allow for a more accurate assessment of the CVD burden. The aim of this study was to examine the utility of a combined vascular calcified plaque score in the prediction of mortality. Methods Vascular calcified plaque scores from the coronary, carotid, and abdominal aortic vascular beds and a derived multi-bed score were examined for associations with all-cause and CVD-mortality in 699 European-American type 2 diabetes (T2D) affected individuals from the Diabetes Heart Study. The ability of calcified plaque to improve prediction beyond Framingham risk factors was assessed. Results Over 8.4 ± 2.3 years (mean ± standard deviation) of follow-up, 156 (22.3%) participants were deceased, 74 (10.6%) from CVD causes. All calcified plaque scores were significantly associated with all-cause (HR: 1.4-1.8; p < 1x10−5) and CVD-mortality (HR: 1.5-1.9; p < 1×10−4) following adjustment for Framingham risk factors. Associations were strongest for coronary calcified plaque. Improvement in prediction of outcome beyond Framingham risk factors was greatest using coronary calcified plaque for all-cause mortality (AUC: 0.720 to 0.757, p = 0.004) and the multi-bed score for CVD mortality (AUC: 0.731 to 0.767, p = 0.008). Conclusions Although coronary calcified plaque and the multi-bed score were the strongest predictors of all-cause mortality and CVD-mortality respectively in this T2D-affected sample, carotid and abdominal aortic calcified plaque scores also significantly improved prediction of outcome beyond traditional risk factors and should not be discounted as risk stratification tools. Electronic supplementary material The online version of this article (doi:10.1186/s12933-014-0160-5) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Cox AJ, Hsu FC, Freedman BI, Herrington DM, Criqui MH, Carr JJ, Bowden DW. Contributors to mortality in high-risk diabetic patients in the Diabetes Heart Study. Diabetes Care 2014; 37:2798-803. [PMID: 24989706 PMCID: PMC4392938 DOI: 10.2337/dc14-0081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Not all individuals with type 2 diabetes and high coronary artery calcified plaque (CAC) experience the same risk for adverse outcomes. This study examined a subset of high-risk individuals based on CAC >1,000 mg (using a total mass score) and evaluated whether differences in a range of modifiable cardiovascular disease (CVD) risk factors provided further insights into risk for mortality. RESEARCH DESIGN AND METHODS We assessed contributors to all-cause mortality among 371 European American individuals with type 2 diabetes and CAC >1,000 from the Diabetes Heart Study (DHS) after 8.2 ± 3.0 years (mean ± SD) of follow-up. Differences in known CVD risk factors, including modifiable CVD risk factors, were compared between living (n = 218) and deceased (n = 153) participants. Cox proportional hazards regression models were used to quantify risk for all-cause mortality. RESULTS Deceased participants had a longer duration of type 2 diabetes (P = 0.02) and reduced use of cholesterol-lowering medications (P = 0.004). Adjusted analyses revealed that vascular calcified plaque scores were associated with increased risk for mortality (hazard ratio 1.31-1.63; 3.89 × 10(-5) < P < 0.03). Higher HbA1c, lipids, and C-reactive protein and reduced kidney function also were associated with a 1.1- to 1.5-fold increased risk for mortality (3.45 × 10(-6) < P < 0.03) after adjusting for confounding factors. CONCLUSIONS Even in this high-risk group, vascular calcification and known CVD risk factors provide useful information for ongoing assessment. The use of cholesterol-lowering medication seemed to be protective for mortality.
Collapse
Affiliation(s)
- Amanda J Cox
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC
| | - Fang-Chi Hsu
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Barry I Freedman
- Department of Internal Medicine-Nephrology, Wake Forest School of Medicine, Winston-Salem, NC
| | - David M Herrington
- Department of Internal Medicine-Cardiology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Michael H Criqui
- Department of Family and Preventive Medicine, University of California, San Diego, La Jolla, CA
| | - J Jeffrey Carr
- Department of Radiologic Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Donald W Bowden
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
13
|
Adams JN, Raffield LM, Freedman BI, Langefeld CD, Ng MCY, Carr JJ, Cox AJ, Bowden DW. Analysis of common and coding variants with cardiovascular disease in the Diabetes Heart Study. Cardiovasc Diabetol 2014; 13:77. [PMID: 24725463 PMCID: PMC4021556 DOI: 10.1186/1475-2840-13-77] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/26/2014] [Indexed: 11/24/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a major cardiovascular disease (CVD) risk factor. Identification of genetic risk factors for CVD is important to understand disease risk. Two recent genome-wide association study (GWAS) meta-analyses in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium detected CVD-associated loci. Methods Variants identified in CHARGE were tested for association with CVD phenotypes, including vascular calcification, and conventional CVD risk factors, in the Diabetes Heart Study (DHS) (n = 1208; >80% T2DM affected). This included 36 genotyped or imputed single nucleotide polymorphisms (SNPs) from DHS GWAS data. 28 coding SNPs from 14 top CHARGE genes were also identified from exome sequencing resources and genotyped, along with 209 coding variants from the Illumina HumanExome BeadChip genotype data in the DHS were also tested. Genetic risk scores (GRS) were calculated to evaluate the association of combinations of variants with CVD measures. Results After correction for multiple comparisons, none of the CHARGE SNPs were associated with vascular calcification (p < 0.0014). Multiple SNPs showed nominal significance with calcification, including rs599839 (PSRC1, p = 0.008), rs646776 (CELSR2, p = 0.01), and rs17398575 (PIK3CG, p = 0.009). Additional COL4A2 and CXCL12 SNPs were nominally associated with all-cause or CVD-cause mortality. Three SNPs were significantly or nominally associated with serum lipids: rs3135506 (Ser19Trp, APOA5) with triglycerides (TG) (p = 5×10−5), LDL (p = 0.00070), and nominally with high density lipoprotein (HDL) (p = 0.0054); rs651821 (5′UTR, APOA5) with increased TGs (p = 0.0008); rs13832449 (splice donor, APOC3) associated with decreased TGs (p = 0.0015). Rs45456595 (CDKN2A, Gly63Arg), rs5128 (APOC3, 3′UTR), and rs72650673 (SH2B3, Glu400Lys) were nominally associated with history of CVD, subclinical CVD, or CVD risk factors (p < 0.010). From the exome chip, rs3750103 (CHN2, His204Arg/His68Arg) with carotid intima-medial thickness (IMT) (p = 3.9×10−5), and rs61937878 (HAL, Val549Met) with infra-renal abdominal aorta CP (AACP) (p = 7.1×10−5). The unweighted GRS containing coronary artery calcified plaque (CAC) SNPs was nominally associated with history of prior CVD (p = 0.033; OR = 1.09). The weighted GRS containing SNPs was associated with CAC and myocardial infarction (MI) was associated with history of MI (p = 0.026; OR = 1.15). Conclusions Genetic risk factors for subclinical CVD in the general population (CHARGE) were modestly associated with T2DM-related risk factors and CVD outcomes in the DHS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
14
|
Cox AJ, Hsu FC, Ng MCY, Langefeld CD, Freedman BI, Carr JJ, Bowden DW. Genetic risk score associations with cardiovascular disease and mortality in the Diabetes Heart Study. Diabetes Care 2014; 37:1157-64. [PMID: 24574349 PMCID: PMC4178326 DOI: 10.2337/dc13-1514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Given the high rates of cardiovascular disease (CVD) and associated mortality in individuals with type 2 diabetes, identifying and understanding predictors of CVD events and mortality could help inform clinical management in this high-risk group. Recent large-scale genetic studies may provide additional tools in this regard. RESEARCH DESIGN AND METHODS Genetic risk scores (GRSs) were constructed in 1,175 self-identified European American (EA) individuals comprising the family-based Diabetes Heart Study based on 1) 13 single nucleotide polymorphisms (SNPs) and 2) 30 SNPs with previously documented associations with CVD in genome-wide association studies. Associations between each GRS and a self-reported history of CVD, coronary artery calcified plaque (CAC) determined by noncontrast computed tomography scan, all-cause mortality, and CVD mortality were examined using marginal models with generalized estimating equations and Cox proportional hazards models. RESULTS The weighted 13-SNP GRS was associated with prior CVD (odds ratio [OR] 1.51 [95% CI 1.22-1.86]; P = 0.0002), CAC (β-coefficient [β] 0.22 [0.02-0.43]; P = 0.04) and CVD mortality (hazard ratio [HR] 1.35 [1.10-1.81]; P = 0.04) when adjusting for the other known CVD risk factors: age, sex, type 2 diabetes affection status, BMI, current smoking status, hypertension, and dyslipidemia. The weighted 30-SNP GRS was also associated with prior CVD (OR 1.33 [1.08-1.65]; P = 0.008), CAC (β 0.29 [0.08-0.50]; P = 0.006), all-cause mortality (HR 1.28 [1.05-1.56]; P = 0.01), and CVD mortality (HR 1.46 [1.08-1.96]; P = 0.01). CONCLUSIONS These findings support the utility of two simple GRSs in examining genetic associations for adverse outcomes in EAs with type 2 diabetes.
Collapse
|
15
|
Cox AJ, Hugenschmidt CE, Raffield LM, Langefeld CD, Freedman BI, Williamson JD, Hsu FC, Bowden DW. Heritability and genetic association analysis of cognition in the Diabetes Heart Study. Neurobiol Aging 2014; 35:1958.e3-1958.e12. [PMID: 24684796 DOI: 10.1016/j.neurobiolaging.2014.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/15/2014] [Accepted: 03/03/2014] [Indexed: 11/16/2022]
Abstract
Cognitive performance is an important component of healthy aging. Type 2 diabetes (T2D) is associated with negative outcomes for the brain and cognition, although causal mechanisms have not been definitely determined. Genetic risk factors warrant further consideration in this context. This study examined the heritability of cognitive function as assessed by (1) the Digit Symbol Substitution Task; (2) the Modified Mini-Mental State Examination; (3) the Stroop Task; (4) the Rey Auditory-Verbal Learning Task; and (5) the Controlled Oral Word Association Task for Phonemic and Semantic Fluency, in the family-based, T2D-enriched, Diabetes Heart Study sample (n = 550 participants from 257 families). The genetic basis of these cognitive measures was further evaluated by association analysis with candidate single-nucleotide polymorphisms (SNPs) and genome-wide SNP data. Measures of cognitive function were significantly heritable (hˆ(2) = 0.28-0.62) following adjustment for age, gender, and education. A total of 31 SNPs (from 26 genes/regions) selected to form an a priori set of candidate SNPs showed limited evidence of association with cognitive function when applying conservative metrics of significance. Genome-wide assessment of both noncoding and coding variants revealed suggestive evidence of association for several coding variants including rs139509083 in CNST (p = 4.9 × 10(-9)), rs199968569 in PLAA (p = 4.9 × 10(-9)) and rs138487371 in PCDH8 (p = 3.7 × 10(-8)). The identification of a heritable component to cognitive performance in T2D suggests a role for genetic contributors to cognitive performance even in the presence of metabolic disease and other associated comorbidities and is supported by the identification of genetic association signals in functionally plausible candidates.
Collapse
Affiliation(s)
- Amanda J Cox
- Center for Human Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA; Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christina E Hugenschmidt
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Laura M Raffield
- Center for Human Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA; Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jeff D Williamson
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Fang-Chi Hsu
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald W Bowden
- Center for Human Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA; Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
16
|
Affiliation(s)
- Donald W Bowden
- Center for Genomics & Personalized Medicine Research, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27104, USA
| | | |
Collapse
|
17
|
Cox AJ, Lambird JE, An SS, Register TC, Langefeld CD, Carr JJ, Freedman BI, Bowden DW. Variants in adiponectin signaling pathway genes show little association with subclinical CVD in the diabetes heart study. Obesity (Silver Spring) 2013; 21:E456-62. [PMID: 23670978 DOI: 10.1002/oby.20184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 11/10/2012] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Understanding the interplay between adiposity, inflammation, and cardiovascular complications in type 2 diabetes mellitus (T2DM) remains a challenge. Signaling from adipocytes is considered important in this context. Adiponectin is the most abundant adipocytokine and has been associated with various measures of cardiovascular disease (CVD). This study examines the relationships between genetic variants in the adiponectin (ADIPOQ) and adiponectin-related signaling pathway genes and measures of subclinical CVD (vascular calcified plaque and carotid intima-media thickness), plasma lipids, and inflammation in T2DM. DESIGN AND METHODS Single-nucleotide polymorphisms (SNPs) in ADIPOQ (n = 45), SNPs tagging ADIPOR1 (n = 6), APIPOR2 (n = 8), APPL1 (n = 6) and known rare coding variants in KNG1 (n = 3) and LYZL1 (n = 3) were genotyped in 1220 European Americans from the family-based Diabetes Heart Study. Associations between SNPs and phenotypes of interest were assessed using a variance components analysis with adjustment for age, sex, T2DM-affected status, and body mass index. RESULTS There was minimal evidence of association between SNPs in the adiponectin signaling pathway genes and measures of calcified plaque; eight of the 71 SNPs showed evidence of association with subclinical CVD (P = 0.007-0.046) but not with other phenotypes examined. Nine additional SNPs were associated with at least one of the plasma lipid measures (P = 0.008-0.05). CONCLUSION Findings from this study do not support a significant role for variants in the adiponectin signaling pathway genes in contributing to risk for vascular calcification in T2DM. However, further understanding the interplay between adiposity, plasma lipids, and inflammation may prove important in the prediction and management of cardiovascular complications in T2DM.
Collapse
Affiliation(s)
- Amanda J Cox
- Center for Human Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hugenschmidt CE, Hsu FC, Hayasaka S, Carr JJ, Freedman BI, Nyenhuis DL, Williamson JD, Bowden DW. The influence of subclinical cardiovascular disease and related risk factors on cognition in type 2 diabetes mellitus: The DHS-Mind study. J Diabetes Complications 2013; 27:422-8. [PMID: 23659774 PMCID: PMC3770734 DOI: 10.1016/j.jdiacomp.2013.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 01/21/2023]
Abstract
We hypothesized that measures of coronary artery calcified plaque (CAC) collected at baseline from the Diabetes Heart Study (DHS) would explain associations between cognition and diabetes collected at follow-up approximately 7 years later. The DHS is a sibling study of cardiovascular disease (CVD) in a cohort with a high prevalence of type 2 diabetes (~80%). Associations between baseline CAC and cognitive performance were tested using generalized estimating equations and mixed effects models to adjust for familial relationships. Diabetes status was associated (p<0.05) with poorer performance on tests of verbal memory, processing speed, and semantic fluency adjusting for age, sex, education, and hypertension status. As hypothesized, including CAC in the statistical model attenuated this association. Additionally, CAC and fasting glucose predicted performance in tasks not associated with diabetes status in this study (Stroop Task, Phonemic Fluency). These results confirm work attributing the heterogeneity of cognitive outcomes in type 2 diabetes to subclinical risk factors that combine to affect different aspects of brain function. Importantly, these results imply that risk factor intervention should begin before comorbidities, particularly CVD, become clinically apparent.
Collapse
Affiliation(s)
- Christina E Hugenschmidt
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cox AJ, Ng MCY, Xu J, Langefeld CD, Koch KL, Dawson PA, Carr JJ, Freedman BI, Hsu FC, Bowden DW. Association of SNPs in the UGT1A gene cluster with total bilirubin and mortality in the Diabetes Heart Study. Atherosclerosis 2013; 229:155-60. [PMID: 23642732 PMCID: PMC3691283 DOI: 10.1016/j.atherosclerosis.2013.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/19/2013] [Accepted: 04/08/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVE A negative relationship between total bilirubin concentration (TBili) and CVD risk has been documented in a series of epidemiological studies. In addition, TBili is thought to be under strong genetic regulation via the UGT1A gene family, suggesting it may be a heritable CVD risk factor. However, few studies directly relate TBili-associated UGT1A variants to CVD severity or outcome. This study replicated the genetic association for TBili in the Diabetes Heart Study (DHS), and examined the relationships of TBili-associated SNPs with measures of subclinical CVD and mortality. METHODS This investigation included 1220 self-described European American (EA) individuals from the DHS, a family-based study examining risk for macrovascular complications in type 2 diabetes (T2D). Genetic associations with TBili were examined using the Affymetrix Genome-wide Human SNP Array 5.0 and the Illumina Infinium Human Exome beadchip v1.0. Subsequent analyses assessed the relationships of the top TBili-associated SNPs with measures of vascular calcified plaque and mortality. RESULTS A genome-wide association study detected 18 SNPs within the UGT1A gene family associated with TBili at p < 5 × 10(-8). The top hit was rs887829 (p = 8.67 × 10(-20)). There was no compelling evidence of association between the top TBili-associated SNPs and vascular calcified plaque (p = 0.05-0.88). There was, however, evidence of association with all-cause mortality (p = 0.0004-0.06), the top hit being rs2741034. CONCLUSION These findings support a potential role for UGT1A genetic variants in risk for mortality in T2D. Further quantification of the extent of CVD risk conferred by UGT1A gene family variants in a high risk cohort with T2D is still required.
Collapse
Affiliation(s)
- Amanda J Cox
- Center for Human Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maggie C-Y Ng
- Center for Human Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jianzhao Xu
- Center for Human Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kenneth L Koch
- Department of Internal Medicine - Gastroenterology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Paul A Dawson
- Department of Internal Medicine - Gastroenterology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - J Jeffrey Carr
- Department of Radiologic Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barry I Freedman
- Department of Internal Medicine - Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Fang-Chi Hsu
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald W Bowden
- Center for Human Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
20
|
Cox AJ, Lehtinen AB, Xu J, Langefeld CD, Freedman BI, Carr JJ, Bowden DW. Polymorphisms in the Selenoprotein S gene and subclinical cardiovascular disease in the Diabetes Heart Study. Acta Diabetol 2013; 50:391-9. [PMID: 23161441 PMCID: PMC3597768 DOI: 10.1007/s00592-012-0440-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/03/2012] [Indexed: 12/16/2022]
Abstract
Selenoprotein S (SelS) has previously been associated with a range of inflammatory markers, particularly in the context of cardiovascular disease (CVD). The aim of this study was to examine the role of SELS genetic variants in risk for subclinical CVD and mortality in individuals with type 2 diabetes mellitus (T2DM). The association between 10 polymorphisms tagging SELS and coronary (CAC), carotid (CarCP) and abdominal aortic calcified plaque, carotid intima media thickness and other known CVD risk factors was examined in 1220 European Americans from the family-based Diabetes Heart Study. The strongest evidence of association for SELS SNPs was observed for CarCP; rs28665122 (5' region; β = 0.329, p = 0.044), rs4965814 (intron 5; β = 0.329, p = 0.036), rs28628459 (3' region; β = 0.331, p = 0.039) and rs7178239 (downstream; β = 0.375, p = 0.016) were all associated. In addition, rs12917258 (intron 5) was associated with CAC (β = -0.230, p = 0.032), and rs4965814, rs28628459 and rs9806366 were all associated with self-reported history of prior CVD (p = 0.020-0.043). These results suggest a potential role for the SELS region in the development subclinical CVD in this sample enriched for T2DM. Further understanding the mechanisms underpinning these relationships may prove important in predicting and managing CVD complications in T2DM.
Collapse
Affiliation(s)
- Amanda J Cox
- Center for Human Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Cox AJ, Hsu FC, Carr JJ, Freedman BI, Bowden DW. Glomerular filtration rate and albuminuria predict mortality independently from coronary artery calcified plaque in the Diabetes Heart Study. Cardiovasc Diabetol 2013; 12:68. [PMID: 23594619 PMCID: PMC3637614 DOI: 10.1186/1475-2840-12-68] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/12/2013] [Indexed: 11/17/2022] Open
Abstract
Background Risk stratification in individuals with type 2 diabetes (T2D) remains an important priority in the management of associated morbidity and mortality, including from cardiovascular disease (CVD). The current investigation examined whether estimated glomerular filtration rate (eGFR) and urine albumin:creatinine ratio (UACR) were independent predictors of CVD-mortality in European Americans (EAs) with T2D after accounting for subclinical CVD. Methods The family-based Diabetes Heart Study (DHS) cohort (n=1,220) had baseline measures of serum creatinine, eGFR, UACR and coronary artery calcified plaque (CAC) assessed by non-contrast computed tomography scan. Cox proportional hazards regression was performed to determine risk for all-cause mortality and CVD-mortality associated with indices of kidney disease after accounting for traditional CVD risk factors and CAC as a measure of subclinical CVD. Results Participants were followed for 8.2±2.6 years (mean±SD) during which time 247 (20.9%) were deceased, 107 (9.1%) from CVD. Univariate analyses revealed positive associations between serum creatinine (HR:1.56; 95% CI:1.37–1.80; p<0.0001) and UACR (1.59; 1.43–1.77; p>0.0001) and negative associations between serum albumin (0.74; 0.65–0.84; p<0.0001) and eGFR (0.66; 0.58–0.76; p<0.0001) with all-cause mortality. Associations remained significant after adjustment for traditional CVD risk factors, as well as for CAC. Similar trends were noted when predicting risk for CVD-mortality. Conclusions The DHS reveals that kidney function and albuminuria are independent risk factors for all-cause mortality and CVD-mortality in EAs with T2D, even after accounting for CAC.
Collapse
Affiliation(s)
- Amanda J Cox
- Center for Human Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | |
Collapse
|
22
|
Cox AJ, Hugenschmidt CE, Wang PT, Hsu FC, Kenchaiah S, Daniel K, Langefeld CD, Freedman BI, Herrington DM, Carr JJ, Stacey B, Bowden DW. Usefulness of biventricular volume as a predictor of mortality in patients with diabetes mellitus (from the Diabetes Heart Study). Am J Cardiol 2013; 111:1152-8. [PMID: 23351459 DOI: 10.1016/j.amjcard.2012.12.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/23/2012] [Accepted: 12/23/2012] [Indexed: 01/12/2023]
Abstract
Patients with type 2 diabetes mellitus are at increased risk for cardiovascular disease (CVD) and mortality. Beyond traditional CVD risk factors, novel measures reflecting additional aspects of disease pathophysiology, such as biventricular volume (BiVV), may be useful for risk stratification. The aim of this study was to examine the relationship between BiVV and risk for mortality in European Americans with type 2 diabetes mellitus from the Diabetes Heart Study (DHS). BiVV was calculated from 771 noncontrast computed tomographic scans performed to image coronary artery calcified plaque. Relationships between BiVV and traditional CVD risk factors were examined. Cox proportional-hazards regression was performed to determine risk for mortality (all-cause and CVD mortality) associated with increasing BiVV. Area under the curve analysis was used to assess BiVV utility in risk prediction models. During 8.4 ± 2.4 years of follow-up, 23% of the patients died. In unadjusted analyses, BiVV was significantly associated with increasing body mass index, height, coronary artery calcified plaque, history of hypertension, and previous myocardial infarction (p <0.0001 to 0.012). BiVV was significantly associated with all-cause (hazard ratio 2.45, 95% confidence interval 1.06 to 5.67, p = 0.036) and CVD (hazard ratio 4.36, 95% confidence interval 1.36 to 14.03, p = 0.014) mortality in models adjusted for other known CVD risk factors. Area under the curve increased from 0.76 to 0.78 (p = 0.04) and from 0.74 to 0.77 (p = 0.02) for all-cause and CVD mortality with the inclusion of BiVV. In conclusion, in the absence of echocardiography or other noninvasive imaging modalities to assess ventricular volumes, or when such methods are contraindicated, BiVV from computed tomography may be considered a tool for the stratification of high-risk patients, such as those with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Amanda J Cox
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Park JB, Park HE, Choi SY, Kim MK, Oh BH. Relation between cardio-ankle vascular index and coronary artery calcification or stenosis in asymptomatic subjects. J Atheroscler Thromb 2013; 20:557-67. [PMID: 23524474 DOI: 10.5551/jat.15149] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The cardio-ankle vascular index (CAVI) is an index of arterial stiffness. We investigated the association of CAVI with the severity of coronary artery calcification (CAC) and coronary stenosis by coronary computed tomography angiography (CTA) in an asymptomatic population. METHODS A total of 549 asymptomatic Korean individuals who underwent CAVI and CTA were analyzed retrospectively. CAC and coronary stenosis were measured by CTA and assessed for the correlation with CAVI. RESULTS The degree of CAC and coronary stenosis demonstrated a significant correlation with CAVI (r= 0.187, p<0.001 and r= 0.212, p<0.001 for the CAC score and stenosis, respectively). After adjustment for potential confounders, including age, gender, hypertension, diabetes mellitus, and dyslipidemia, a predefined cutoff value of CAVI ≥8 was associated with advanced CAC (CAC ≥300) and significant coronary stenosis (stenosis ≥50%). Specifically, the adjusted odds ratio (95% confidence interval) of CAC ≥300 and coronary stenosis ≥50% was 3.57 (1.92-6.66) and 2.81 (1.13-7.00), respectively. Additional inclusion of CAVI improved the predictive power of the receiver operating characteristic curves for predicting coronary atherosclerosis based on traditional risk factors; the area under the curve for predicting CAC ≥300 and coronary stenosis ≥50% increased from 0.739 to 0.791 (p for difference= 0.023), and from 0.761 to 0.842 (p= 0.032), respectively. CONCLUSIONS CAVI reflects coronary atherosclerosis and may be used as a screening tool for assessing subclinical atherosclerotic burden in an asymptomatic population.
Collapse
Affiliation(s)
- Jun-Bean Park
- Department of Internal Medicine, Seoul National University Hospital, 135-984 Seoul, Korea
| | | | | | | | | |
Collapse
|
24
|
Genetic analysis of haptoglobin polymorphisms with cardiovascular disease and type 2 diabetes in the Diabetes Heart Study. Cardiovasc Diabetol 2013; 12:31. [PMID: 23399657 PMCID: PMC3576297 DOI: 10.1186/1475-2840-12-31] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/01/2013] [Indexed: 12/29/2022] Open
Abstract
Background Haptoglobin (HP) is an acute phase protein that binds to freely circulating hemoglobin. HP exists as two distinct forms, HP1 and HP2. The longer HP2 form has been associated with cardiovascular (CVD) events and mortality in individuals with type 2 diabetes (T2DM). Methods This study examined the association of HP genotypes with subclinical CVD, T2DM risk, and associated risk factors in a T2DM-enriched sample. Haptoglobin genotypes were determined in 1208 European Americans (EA) from 473 Diabetes Heart Study (DHS) families via PCR. Three promoter SNPs (rs5467, rs5470, and rs5471) were also genotyped. Results Analyses revealed association between HP2-2 duplication and increased carotid intima-media thickness (IMT; p = 0.001). No association between HP and measures of calcified arterial plaque were observed, but the HP polymorphism was associated with triglyceride concentrations (p = 0.005) and CVD mortality (p = 0.04). We found that the HP2-2 genotype was associated with increased T2DM risk with an odds ratio (OR) of 1.49 (95% CI 1.18-1.86, p = 6.59x10-4). Promoter SNPs were not associated with any traits. Conclusions This study suggests association between the HP duplication and IMT, triglycerides, CVD mortality, and T2DM in an EA population enriched for T2DM. Lack of association with atherosclerotic calcified plaque likely reflect differences in the pathogenesis of these CVD phenotypes. HP variation may contribute to the heritable risk for CVD complications in T2DM.
Collapse
|
25
|
Cox AJ, Agarwal S, Herrington DM, Carr JJ, Freedman BI, Bowden DW. C-reactive protein concentration predicts mortality in type 2 diabetes: the Diabetes Heart Study. Diabet Med 2012; 29:767-70. [PMID: 22211818 PMCID: PMC4386279 DOI: 10.1111/j.1464-5491.2011.03560.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Although current American Heart Association guidelines address C-reactive protein concentration and cardiovascular disease risk, it remains unclear whether this paradigm is consistent across populations with differing disease burdens. Individuals with Type 2 diabetes mellitus represent one group at increased risk of cardiovascular disease and subsequent mortality. This study aimed to examine the relationship between C-reactive protein concentrations and risk for all-cause mortality in European Americans with Type 2 diabetes from the Diabetes Heart Study. METHODS A total of 846 European Americans with Type 2 diabetes and baseline measures of C-reactive protein were evaluated. Vital status was determined after a follow-up period of 7.3 ± 2.1 years (mean ± SD). C-reactive protein concentrations were compared between living and deceased subgroups along with other known risk factors for cardiovascular disease, including blood lipids. Logistic regression was performed to determine risk for mortality associated with increasing C-reactive protein concentrations. RESULTS At follow-up 160 individuals (18.7%) were deceased. No significant differences in baseline serum glucose or lipid measures were observed between living and deceased subgroups. Baseline C-reactive protein concentrations were significantly higher in the deceased subgroup (9.37 ± 15.94) compared with the living subgroup (5.36 ± 7.91 mg/l; P < 0.0001). Participants with C-reactive protein concentrations of 3-10 mg/l were approximately two times more likely to be deceased at follow-up (OR 2.06; 95% CI 1.17-3.62); those with C-reactive protein >10 mg/l were more than five times more likely to be deceased (OR 5.24; CI 2.80-9.38). CONCLUSIONS This study documents the utility of C-reactive protein in predicting risk for all-cause mortality in European Americans with Type 2 diabetes and supports its use as a screening tool in risk prediction models.
Collapse
Affiliation(s)
- A. J. Cox
- Center for Human Genomics, Wake Forest School of Medicine, Winston-Salem, NC
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC
| | - S. Agarwal
- Division of Cardiology, Oakwood Hospital and Medical Center, Dearborn, MI
| | - D. M Herrington
- Department of Internal Medicine – Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - J. J. Carr
- Department of Radiologic Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - B. I. Freedman
- Department of Internal Medicine – Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - D. W. Bowden
- Center for Human Genomics, Wake Forest School of Medicine, Winston-Salem, NC
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
26
|
Braun TR, Been LF, Singhal A, Worsham J, Ralhan S, Wander GS, Chambers JC, Kooner JS, Aston CE, Sanghera DK. A replication study of GWAS-derived lipid genes in Asian Indians: the chromosomal region 11q23.3 harbors loci contributing to triglycerides. PLoS One 2012; 7:e37056. [PMID: 22623978 PMCID: PMC3356398 DOI: 10.1371/journal.pone.0037056] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 04/17/2012] [Indexed: 01/08/2023] Open
Abstract
Recent genome-wide association scans (GWAS) and meta-analysis studies on European populations have identified many genes previously implicated in lipid regulation. Validation of these loci on different global populations is important in determining their clinical relevance, particularly for development of novel drug targets for treating and preventing diabetic dyslipidemia and coronary artery disease (CAD). In an attempt to replicate GWAS findings on a non-European sample, we examined the role of six of these loci (CELSR2-PSRC1-SORT1 rs599839; CDKN2A-2B rs1333049; BUD13-ZNF259 rs964184; ZNF259 rs12286037; CETP rs3764261; APOE-C1-C4-C2 rs4420638) in our Asian Indian cohort from the Sikh Diabetes Study (SDS) comprising 3,781 individuals (2,902 from Punjab and 879 from the US). Two of the six SNPs examined showed convincing replication in these populations of Asian Indian origin. Our study confirmed a strong association of CETP rs3764261 with high-density lipoprotein cholesterol (HDL-C) (p = 2.03×10−26). Our results also showed significant associations of two GWAS SNPs (rs964184 and rs12286037) from BUD13-ZNF259 near the APOA5-A4-C3-A1 genes with triglyceride (TG) levels in this Asian Indian cohort (rs964184: p = 1.74×10−17; rs12286037: p = 1.58×10−2). We further explored 45 SNPs in a ∼195 kb region within the chromosomal region 11q23.3 (encompassing the BUD13-ZNF259, APOA5-A4-C3-A1, and SIK3 genes) in 8,530 Asian Indians from the London Life Sciences Population (LOLIPOP) (UK) and SDS cohorts. Five more SNPs revealed significant associations with TG in both cohorts individually as well as in a joint meta-analysis. However, the strongest signal for TG remained with BUD13-ZNF259 (rs964184: p = 1.06×10−39). Future targeted deep sequencing and functional studies should enhance our understanding of the clinical relevance of these genes in dyslipidemia and hypertriglyceridemia (HTG) and, consequently, diabetes and CAD.
Collapse
Affiliation(s)
- Timothy R. Braun
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Latonya F. Been
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Akhil Singhal
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jacob Worsham
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Sarju Ralhan
- Section of Cardiology, Hero Dayanand Medical College and Hospital Heart Institute, Ludhiana, Punjab, India
| | - Gurpreet S. Wander
- Section of Cardiology, Hero Dayanand Medical College and Hospital Heart Institute, Ludhiana, Punjab, India
| | - John C. Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Jaspal S. Kooner
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Christopher E. Aston
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Dharambir K. Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
27
|
Kuo F, Gardener H, Dong C, Cabral D, Della-Morte D, Blanton SH, Elkind MSV, Sacco RL, Rundek T. Traditional cardiovascular risk factors explain the minority of the variability in carotid plaque. Stroke 2012; 43:1755-60. [PMID: 22550054 DOI: 10.1161/strokeaha.112.651059] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Subclinical atherosclerotic plaque is an important marker of increased vascular risk. Identifying factors underlying the variability in burden of atherosclerotic carotid plaque unexplained by traditional vascular risk factors may help target novel preventive strategies. METHODS As a part of the carotid substudy of the Northern Manhattan Study (NOMAS), 1790 stroke-free individuals (mean age, 69±9; 60% women; 61% Hispanic, 19% black, 18% white) were assessed for total plaque area (TPA) burden using 2-dimensional carotid ultrasound imaging. Multiple linear regression models were constructed. Model 1 used prespecified traditional risk factors: age, sex, low-density lipoprotein cholesterol, diabetes mellitus, pack-years of smoking, blood pressure, and treatment for blood pressure; and Model 2, an addition of socioeconomic and less traditional risk factors. The contributions of the components of the Framingham heart risk score and the NOMAS Global Vascular Risk Score to the TPA were explored. RESULTS Prevalence of carotid plaque was 58%. Mean TPA was 13±19 mm2. Model 1 explained 19.5% of the variance in TPA burden (R2=0.195). Model 2 explained 21.9% of TPA burden. Similarly, the Framingham heart risk score explained 18.8% and NOMAS global vascular risk score 21.5% of the TPA variance. CONCLUSIONS The variation in preclinical carotid plaque burden is largely unexplained by traditional and less traditional vascular risk factors, suggesting that other unaccounted environmental and genetic factors play an important role in the determination of atherosclerotic plaque. Identification of these factors may lead to new approaches to prevent stroke and cardiovascular disease.
Collapse
Affiliation(s)
- Frank Kuo
- Department of Neurology, Miller School of Medicine, University of Miami, Clinical Research Building, CRB 1348, 1120 NW 14th Street, Miami, FL 33136, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Della-Morte D, Guadagni F, Palmirotta R, Testa G, Caso V, Paciaroni M, Abete P, Rengo F, Ferroni P, Sacco RL, Rundek T. Genetics of ischemic stroke, stroke-related risk factors, stroke precursors and treatments. Pharmacogenomics 2012; 13:595-613. [PMID: 22462751 DOI: 10.2217/pgs.12.14] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stroke remains a leading cause of death worldwide and the first cause of disability in the western world. Ischemic stroke (IS) accounts for almost 80% of the total cases of strokes and is a complex and multifactorial disease caused by the combination of vascular risk factors, environment and genetic factors. Investigations of the genetics of atherosclerosis and IS has greatly enhanced our knowledge of this complex multifactorial disease. In this article we sought to review common single-gene disorders relevant to IS, summarize candidate gene and genome-wide studies aimed at discovering genetic stroke risk factors and subclinical phenotypes, and to briefly discuss pharmacogenetics related to stroke treatments. Genetics of IS is, in fact, one of the most promising research frontiers and genetic testing may be helpful for novel drug discoveries as well as for appropriate drug and dose selection for treatment of patients with cerebrovascular disease.
Collapse
Affiliation(s)
- David Della-Morte
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Laboratory Medicine & Advanced Biotechnologies, IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Fiorella Guadagni
- Department of Laboratory Medicine & Advanced Biotechnologies, IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Raffaele Palmirotta
- Department of Laboratory Medicine & Advanced Biotechnologies, IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Gianluca Testa
- Department of Clinical Medicine, Cardiovascular Science & Immunology, Cattedra di Geriatria, University of Naples Federico II, Naples, Italy
- Department of Health Sciences, University of Molise, Campobasso, Italy
| | - Valeria Caso
- Stroke Unit & Division of Cardiovascular Medicine, University of Perugia, 06126 Perugia, Italy
| | - Maurizio Paciaroni
- Stroke Unit & Division of Cardiovascular Medicine, University of Perugia, 06126 Perugia, Italy
| | - Pasquale Abete
- Department of Clinical Medicine, Cardiovascular Science & Immunology, Cattedra di Geriatria, University of Naples Federico II, Naples, Italy
| | - Franco Rengo
- Department of Clinical Medicine, Cardiovascular Science & Immunology, Cattedra di Geriatria, University of Naples Federico II, Naples, Italy
| | - Patrizia Ferroni
- Department of Laboratory Medicine & Advanced Biotechnologies, IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Ralph L Sacco
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
29
|
Differences in arachidonic acid levels and fatty acid desaturase (FADS) gene variants in African Americans and European Americans with diabetes or the metabolic syndrome. Br J Nutr 2011; 107:547-55. [PMID: 21733300 DOI: 10.1017/s0007114511003230] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past 50 years, increases in dietary n-6 PUFA, such as linoleic acid, have been hypothesised to cause or exacerbate chronic inflammatory diseases. The present study examines an individual's innate capacity to synthesise n-6 long-chain PUFA (LC-PUFA) with respect to the fatty acid desaturase (FADS) locus in Americans of African and European descent with diabetes or the metabolic syndrome. Compared with European Americans (EAm), African Americans (AfAm) exhibited markedly higher serum levels of arachidonic acid (AA) (EAm 7·9 (sd 2·1), AfAm 9·8 (sd 1·9) % of total fatty acids; P < 2·29 × 10⁻⁹) and the AA:n-6-precursor fatty acid ratio, which estimates FADS1 activity (EAm 5·4 (sd 2·2), AfAm 6·9 (sd 2·2); P = 1·44 × 10⁻⁵). In all, seven SNP mapping to the FADS locus revealed strong association with AA, EPA and dihomo-γ-linolenic acid (DGLA) in the EAm. Importantly, EAm homozygous for the minor allele (T) had significantly lower AA levels (TT 6·3 (sd 1·0); GG 8·5 (sd 2·1); P = 3·0 × 10⁻⁵) and AA:DGLA ratios (TT 3·4 (sd 0·8), GG 6·5 (sd 2·3); P = 2·2 × 10⁻⁷) but higher DGLA levels (TT 1·9 (sd 0·4), GG 1·4 (sd 0·4); P = 3·3 × 10⁻⁷) compared with those homozygous for the major allele (GG). Allele frequency patterns suggest that the GG genotype at rs174537 (associated with higher circulating levels of AA) is much higher in AfAm (0·81) compared with EAm (0·46). Similarly, marked differences in rs174537 genotypic frequencies were observed in HapMap populations. These data suggest that there are probably important differences in the capacity of different populations to synthesise LC-PUFA. These differences may provide a genetic mechanism contributing to health disparities between populations of African and European descent.
Collapse
|
30
|
Divers J, Register TC, Langefeld CD, Wagenknecht LE, Bowden DW, Carr JJ, Hightower RC, Xu J, Hruska KA, Freedman BI. Relationships between calcified atherosclerotic plaque and bone mineral density in African Americans with type 2 diabetes. J Bone Miner Res 2011; 26:1554-60. [PMID: 21437982 PMCID: PMC4341826 DOI: 10.1002/jbmr.389] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inverse relationships have been reported between bone mineral density (BMD) and calcified atherosclerotic plaque (CP). This suggests these processes may be related. We examined relationships between BMD and CP in 753 African Americans with type 2 diabetes from 664 families, accounting for the effects of modifiable cardiovascular disease (CVD) risk factors. Association analyses were performed using generalized estimating equations (GEEs) to assess cross-sectional relationships between computed tomography-determined measures of thoracic and lumbar vertebral volumetric BMD (vBMD) and CP in the coronary and carotid arteries and infrarenal aorta. Significant inverse associations were seen between thoracic and lumbar vBMD and CP in all three vascular beds in unadjusted analyses. A fully adjusted model accounting for age, sex, body mass index, systolic blood pressure, low-density lipoprotein cholesterol, C-reactive protein, hemoglobin A(1c), smoking, and hormone-replacement therapy revealed significant inverse associations between thoracic vBMD and CP in coronary and carotid arteries and aorta, whereas lumbar vBMD was associated with CP in coronary artery and aorta. Inverse associations exist between vertebral BMD and calcified atherosclerotic plaque in African-American men and women with type 2 diabetes. This relationship was independent of conventional CVD risk factors and supports the hypothesis that bone metabolism and atherosclerotic plaque mineralization are related processes.
Collapse
Affiliation(s)
- Jasmin Divers
- Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1053, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mathias RA, Sergeant S, Ruczinski I, Torgerson DG, Hugenschmidt CE, Kubala M, Vaidya D, Suktitipat B, Ziegler JT, Ivester P, Case D, Yanek LR, Freedman BI, Rudock ME, Barnes KC, Langefeld CD, Becker LC, Bowden DW, Becker DM, Chilton FH. The impact of FADS genetic variants on ω6 polyunsaturated fatty acid metabolism in African Americans. BMC Genet 2011; 12:50. [PMID: 21599946 PMCID: PMC3118962 DOI: 10.1186/1471-2156-12-50] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 05/20/2011] [Indexed: 02/05/2023] Open
Abstract
Background Arachidonic acid (AA) is a long-chain omega-6 polyunsaturated fatty acid (PUFA) synthesized from the precursor dihomo-gamma-linolenic acid (DGLA) that plays a vital role in immunity and inflammation. Variants in the Fatty Acid Desaturase (FADS) family of genes on chromosome 11q have been shown to play a role in PUFA metabolism in populations of European and Asian ancestry; no work has been done in populations of African ancestry to date. Results In this study, we report that African Americans have significantly higher circulating levels of plasma AA (p = 1.35 × 10-48) and lower DGLA levels (p = 9.80 × 10-11) than European Americans. Tests for association in N = 329 individuals across 80 nucleotide polymorphisms (SNPs) in the Fatty Acid Desaturase (FADS) locus revealed significant association with AA, DGLA and the AA/DGLA ratio, a measure of enzymatic efficiency, in both racial groups (peak signal p = 2.85 × 10-16 in African Americans, 2.68 × 10-23 in European Americans). Ancestry-related differences were observed at an upstream marker previously associated with AA levels (rs174537), wherein, 79-82% of African Americans carry two copies of the G allele compared to only 42-45% of European Americans. Importantly, the allelic effect of the G allele, which is associated with enhanced conversion of DGLA to AA, on enzymatic efficiency was similar in both groups. Conclusions We conclude that the impact of FADS genetic variants on PUFA metabolism, specifically AA levels, is likely more pronounced in African Americans due to the larger proportion of individuals carrying the genotype associated with increased FADS1 enzymatic conversion of DGLA to AA.
Collapse
Affiliation(s)
- Rasika A Mathias
- Division of General Internal Medicine, Department of Medicine, The GeneSTAR Research Program, The Johns Hopkins University, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lehtinen AB, Cox AJ, Ziegler JT, Voruganti VS, Xu J, Freedman BI, Carr JJ, Comuzzie AG, Langefeld CD, Bowden DW. Genetic mapping of vascular calcified plaque loci on chromosome 16p in European Americans from the diabetes heart study. Ann Hum Genet 2011; 75:222-35. [PMID: 21309755 DOI: 10.1111/j.1469-1809.2010.00632.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A linkage peak for carotid artery calcified plaque (CarCP) on chromosome 16p (LOD 4.39 at 8.4 cM) in families with type 2 diabetes mellitus (T2DM) from the Diabetes Heart Study (DHS) has been refined. Fine mapping encompassed 104 single-nucleotide polymorphisms (SNPs) in 937 subjects from 315 families; including 45 SNPs in six candidate genes (CACNA1H, SEPX1, ABCA3, IL32, SOCS1, CLEC16A). Linkage and association analyses using variance components analysis adjusting for age, gender, body mass index (BMI), and diabetes status refined the CarCP linkage into two distinct peaks (LODs: 3.89 at 6.9 cM and 4.86 at 16.0 cM). Evidence of linkage for coronary calcified plaque (LOD: 2.27 at 19 cM) and a vascular calcification principle component (LOD: 3.71 at 16.0 cM) was also observed. The strongest evidence for association with CarCP was observed with SNPs in the A2BP1 gene region (rs4337300 P= 0.005) with modest evidence of association with SNPs in CACNA1H (P= 0.010-0.033). Bayesian quantitative trait nucleotide (BQTN) analysis identified a SNP, rs1358489, with either a functional effect on CarCP or in linkage disequilibrium (LD) with a functional SNP. This study refined the 16p region contributing to vascular calcification. The causal variants remain to be identified, but results are consistent with a linkage peak that is due to multiple common variants, though rare variants cannot be excluded.
Collapse
Affiliation(s)
- Allison B Lehtinen
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bowden DW, Cox AJ, Freedman BI, Hugenschimdt CE, Wagenknecht LE, Herrington D, Agarwal S, Register TC, Maldjian JA, Ng MCY, Hsu FC, Langefeld CD, Williamson JD, Carr JJ. Review of the Diabetes Heart Study (DHS) family of studies: a comprehensively examined sample for genetic and epidemiological studies of type 2 diabetes and its complications. Rev Diabet Stud 2010; 7:188-201. [PMID: 21409311 DOI: 10.1900/rds.2010.7.188] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Diabetes Heart Study (DHS) is a genetic and epidemiological study of 1,443 European American and African American participants from 564 families with multiple cases of type 2 diabetes. Initially, participants were comprehensively examined for measures of subclinical cardiovascular disease (CVD) including computed tomography measurement of vascular calcified plaque, ultrasound imaging of carotid artery wall thickness, and electrocardiographic intervals. Subsequent studies have investigated the relationship between bone mineral density and vascular calcification, measures of adiposity, and biomarkers. Ongoing studies are carrying out an extensive evaluation of cerebrovascular disease using magnetic resonance imaging and cognitive assessment. A second, parallel study, the African American DHS, has expanded the sample of African Americans to investigate marked racial differences in subclinical CVD between European Americans and African Americans. Studies in development will evaluate the impact of social stress during the lifecourse on CVD risk, and the prevalence of gastroparesis in this diabetes enriched sample. In addition, the ongoing high mortality rate in DHS participants provides novel insights into the increased risks for type 2 diabetes affected individuals. A comprehensive genetic analysis of the sample is underway using the genome-wide association study (GWAS) approach. Data from this GWAS survey will complement prior family-based linkage data in the analysis of genetic contributors to the wide range of traits in the sample. To our knowledge the DHS family of studies has created the most comprehensively examined sample of individuals with type 2 diabetes yet available, and represents a unique resource for the study people with type 2 diabetes. The aim of this review is to provide a collective overview of the major results from the DHS family of studies, and relate them to the larger body of biomedical investigations of diabetes and its complications.
Collapse
Affiliation(s)
- Donald W Bowden
- Center for Diabetes Research, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dong C, Beecham A, Slifer S, Wang L, Blanton SH, Wright CB, Rundek T, Sacco RL. Genomewide linkage and peakwide association analyses of carotid plaque in Caribbean Hispanics. Stroke 2010; 41:2750-6. [PMID: 20966410 DOI: 10.1161/strokeaha.110.596981] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND PURPOSE Atherosclerosis is a complex subclinical cardiovascular disorder with a substantial genetic component. This study sought to identify genetic loci influencing carotid plaque in 2 independent samples. METHODS B-mode ultrasound was performed to determine the presence and area of carotid plaque. Variance components analysis was used to test for linkage using 383 autosomal microsatellite markers in 1308 subjects from 100 Dominican families. Multiple linear and logistic regression models were used to investigate the association between plaque traits and 18,904 single nucleotide polymorphisms under the 1-logarithm of odds unit down regions of linkage peaks in an independent community-based data set (N = 941, 41% Dominicans) from the Northern Manhattan Study. RESULTS After adjustment for age, hypertension, diabetes mellitus, cigarette pack-years, body mass index, and waist-to-hip ratio, significant heritability was detected for plaque presence (h² = 0.50 ± 0.14, P < 0.0001) and plaque area (h²=0.17 ± 0.04, P < 0.0001). Quantitative and dichotomous trait linkage analyses obtained similar results and identified 4 regions with multipoint logarithm of odds scores ≥ 2.00 on 7q36, 11p15, 14q32, and 15q23. In the association analysis of the 4 linkage peaks, several single nucleotide polymorphisms in or near SOX6, FSD2, AP3S2, EFTUD1, and MYOD1 were associated with carotid plaque traits with a nominal P ≤ 0.0005 in the Northern Manhattan Study data set and with a P ≤ 0.01 in Northern Manhattan Study Dominican subset. CONCLUSIONS Carotid plaque has considerable heritability and may be influenced by loci on chromosomes 11p15, 14q32, and 15q23. The SOX6 gene within the bone morphogenic protein pathway could be a candidate for carotid plaque. Larger independent studies are needed to validate these findings.
Collapse
Affiliation(s)
- Chuanhui Dong
- Evelyn F. McKnight Center for Age-Related Memory Loss, Department of Neurology, Miller Schoolof Medicine, University of Miami, Miami, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Divers J, Wagenknecht LE, Bowden DW, Carr JJ, Hightower RC, Ding J, Xu J, Langefeld CD, Freedman BI. Regional adipose tissue associations with calcified atherosclerotic plaque: African American-diabetes heart study. Obesity (Silver Spring) 2010; 18:2004-9. [PMID: 20186134 PMCID: PMC2920341 DOI: 10.1038/oby.2010.30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coronary artery calcified atherosclerotic plaque (CP) is strongly associated with nonsubcutaneous adipose tissue, particularly pericardial adipose tissue (PAT), in community-based studies. We tested for relationships between regional adipose tissue depots and CP in African Americans with longstanding type 2 diabetes. Infrarenal aorta, coronary, and carotid artery CP and pericardial, visceral, intermuscular, and subcutaneous organ-specific adipose tissue volumes were measured using single and multidetector computed tomography (CT) in 422 African Americans with type 2 diabetes. Generalized estimating equations using exchangeable correlation and the sandwich estimator of the variance were used to test for associations between CP and adipose tissue depots. Mean (s.d.) age was 56.5 (7.6) years, diabetes duration 10.3 (7.6) years, PAT 85.3 (36.1) cm(3)/45 mm and visceral adipose tissue (VAT) 174.9 (70.1) cm(3)/15 mm. Adjusting for age, gender, BMI, blood pressure, medications, proteinuria, smoking, lipids, and 25-hydroxyvitamin D, PAT was positively associated with the presence (P = 0.009) and quantity of coronary artery CP in African Americans (P = 0.004), as well as the quantity of infrarenal aorta CP (P = 0.004). As in European Americans, PAT is associated with CP in African Americans with type 2 diabetes. Ethnic differences in the relationships between organ-specific adipose tissue depots and atherosclerosis require further study.
Collapse
Affiliation(s)
- Jasmin Divers
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Lynne E. Wagenknecht
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Donald W. Bowden
- Section of Endocrinology and Metabolism, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Centers for Diabetes Research and Human Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - J. Jeffrey Carr
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Radiologic Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - R. Caresse Hightower
- Department of Radiologic Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jingzhong Ding
- Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jianzhao Xu
- Centers for Diabetes Research and Human Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Carl D. Langefeld
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Barry I. Freedman
- Section of Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
36
|
Abstract
Prospective identification of which individuals with diabetes mellitus (DM) are at greatest risk for developing cardiovascular disease (CVD) complications would have considerable public health importance by allowing the allocation of limited resources to be focused on those individuals who would most benefit from aggressive intervention. Over the past 20 years genetic disease association studies have demonstrated that polymorphisms at specific genetic loci may identify those individuals at greatest risk for developing CVD in the setting of DM. This article reviews the evidence accumulated to date on four polymorphic loci with the aim of explaining how these polymorphisms modify the risk for CVD in DM by modifying the functional activity of a specific gene. Use of the knowledge of these genetic differences among individuals in targeting drug therapy (pharmacogenomics) is also discussed.
Collapse
Affiliation(s)
- Dan Farbstein
- Technion-Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
37
|
Williams FMK, Carter AM, Kato B, Falchi M, Bathum L, Surdulescu G, Kyvik KO, Palotie A, Spector TD, Grant PJ. Identification of quantitative trait loci for fibrin clot phenotypes: the EuroCLOT study. Arterioscler Thromb Vasc Biol 2009; 29:600-5. [PMID: 19150881 PMCID: PMC3508477 DOI: 10.1161/atvbaha.108.178103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Fibrin makes up the structural basis of an occlusive arterial thrombus, and variability in fibrin phenotype relates to cardiovascular risk. The aims of the current study from the EU consortium EuroCLOT were to (1) determine the heritability of fibrin phenotypes and (2) identify QTLs associated with fibrin phenotypes. METHODS AND RESULTS 447 dizygotic (DZ) and 460 monozygotic (MZ) pairs of healthy UK white female twins and 199 DZ twin pairs from Denmark were studied. D-dimer, an indicator of fibrin turnover, was measured by ELISA and measures of clot formation, morphology, and lysis were determined by turbidimetric assays. Heritability estimates and genome-wide linkage analysis were performed. Estimates of heritability for d-dimer and turbidometric variables were in the range 17% to 46%, with highest levels for maximal absorbance which provides an estimate of clot density. Genome-wide linkage analysis revealed 6 significant regions with LOD >3 on 5 chromosomes (5, 6, 9, 16, and 17). CONCLUSIONS The results indicate a significant genetic contribution to variability in fibrin phenotypes and highlight regions in the human genome which warrant further investigation in relation to ischemic cardiovascular disorders and their therapy.
Collapse
Affiliation(s)
- Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|