1
|
Fontana BD, Reichmann F, Tilley CA, Lavlou P, Shkumatava A, Alnassar N, Hillman C, Karlsson KÆ, Norton WHJ, Parker MO. adgrl3.1-deficient zebrafish show noradrenaline-mediated externalizing behaviors, and altered expression of externalizing disorder-candidate genes, suggesting functional targets for treatment. Transl Psychiatry 2023; 13:304. [PMID: 37783687 PMCID: PMC10545713 DOI: 10.1038/s41398-023-02601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
Externalizing disorders (ED) are a cause of concern for public health, and their high heritability makes genetic risk factors a priority for research. Adhesion G-Protein-Coupled Receptor L3 (ADGRL3) is strongly linked to several EDs, and loss-of-function models have shown the impacts of this gene on several core ED-related behaviors. For example, adgrl3.1-/- zebrafish show high levels of hyperactivity. However, our understanding of the mechanisms by which this gene influences behavior is incomplete. Here we characterized, for the first time, externalizing behavioral phenotypes of adgrl3.1-/- zebrafish and found them to be highly impulsive, show risk-taking in a novel environment, have attentional deficits, and show high levels of hyperactivity. All of these phenotypes were rescued by atomoxetine, demonstrating noradrenergic mediation of the externalizing effects of adgrl3.1. Transcriptomic analyses of the brains of adgrl3.1-/- vs. wild-type fish revealed several differentially expressed genes and enriched gene clusters that were independent of noradrenergic manipulation. This suggests new putative functional pathways underlying ED-related behaviors, and potential targets for the treatment of ED.
Collapse
Affiliation(s)
- Barbara D Fontana
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ceinwen A Tilley
- Department of Genetics and Genome Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, LE1 7RH, UK
| | - Perrine Lavlou
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Alena Shkumatava
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Nancy Alnassar
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Courtney Hillman
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| | - Karl Ægir Karlsson
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
- Biomedical Center, University of Iceland, Reykjavik, Iceland
- 3Z, Reykjavik, Iceland
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, LE1 7RH, UK.
- Institute of Biology, Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Matthew O Parker
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
| |
Collapse
|
2
|
Gunuc S. Investigation of the relationships between ADHD risk and digital screen exposure in children aged 4–11: A large population study in Turkey. PSYCHOLOGY IN THE SCHOOLS 2022. [DOI: 10.1002/pits.22839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Selim Gunuc
- Psychology Department Izmir Bakırçay University Izmir Turkey
| |
Collapse
|
3
|
ADGRL3 genomic variation implicated in neurogenesis and ADHD links functional effects to the incretin polypeptide GIP. Sci Rep 2022; 12:15922. [PMID: 36151371 PMCID: PMC9508192 DOI: 10.1038/s41598-022-20343-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is the most common childhood neurodevelopmental disorder. Single nucleotide polymorphisms (SNPs) in the Adhesion G Protein-Coupled Receptor L3 (ADGRL3) gene are associated with increased susceptibility to developing ADHD worldwide. However, the effect of ADGRL3 non-synonymous SNPs (nsSNPs) on the ADGRL3 protein function is vastly unknown. Using several bioinformatics tools to evaluate the impact of mutations, we found that nsSNPs rs35106420, rs61747658, and rs734644, previously reported to be associated and in linkage with ADHD in disparate populations from the world over, are predicted as pathogenic variants. Docking analysis of rs35106420, harbored in the ADGLR3-hormone receptor domain (HRM, a common extracellular domain of the secretin-like GPCRs family), showed that HRM interacts with the Glucose-dependent insulinotropic polypeptide (GIP), part of the incretin hormones family. GIP has been linked to the pathogenesis of diabetes mellitus, and our analyses suggest a potential link to ADHD. Overall, the comprehensive application of bioinformatics tools showed that functional mutations in the ADGLR3 gene disrupt the standard and wild ADGRL3 structure, most likely affecting its metabolic regulation. Further in vitro experiments are granted to evaluate these in silico predictions of the ADGRL3-GIP interaction and dissect the complexity underlying the development of ADHD.
Collapse
|
4
|
Sreepada A, Tiwari M, Pal K. Adhesion G protein-coupled receptor gluing action guides tissue development and disease. J Mol Med (Berl) 2022; 100:1355-1372. [PMID: 35969283 DOI: 10.1007/s00109-022-02240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/23/2022] [Accepted: 07/21/2022] [Indexed: 10/15/2022]
Abstract
Phylogenetic analysis of human G protein-coupled receptors (GPCRs) divides these transmembrane signaling proteins into five groups: glutamate, rhodopsin, adhesion, frizzled, and secretin families, commonly abbreviated as the GRAFS classification system. The adhesion GPCR (aGPCR) sub-family comprises 33 different receptors in humans. Majority of the aGPCRs are orphan receptors with unknown ligands, structures, and tissue expression profiles. They have a long N-terminal extracellular domain (ECD) with several adhesion sites similar to integrin receptors. Many aGPCRs undergo autoproteolysis at the GPCR proteolysis site (GPS), enclosed within the larger GPCR autoproteolysis inducing (GAIN) domain. Recent breakthroughs in aGPCR research have created new paradigms for understanding their roles in organogenesis. They play crucial roles in multiple aspects of organ development through cell signaling, intercellular adhesion, and cell-matrix associations. They are involved in essential physiological processes like regulation of cell polarity, mitotic spindle orientation, cell adhesion, and migration. Multiple aGPCRs have been associated with the development of the brain, musculoskeletal system, kidneys, cardiovascular system, hormone secretion, and regulation of immune functions. Since aGPCRs have crucial roles in tissue patterning and organogenesis, mutations in these receptors are often associated with diseases with loss of tissue integrity. Thus, aGPCRs include a group of enigmatic receptors with untapped potential for elucidating novel signaling pathways leading to drug discovery. We summarized the current knowledge on how aGPCRs play critical roles in organ development and discussed how aGPCR mutations/genetic variants cause diseases.
Collapse
Affiliation(s)
- Abhijit Sreepada
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India
| | - Mansi Tiwari
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India
| | - Kasturi Pal
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India.
| |
Collapse
|
5
|
Regan SL, Williams MT, Vorhees CV. Review of rodent models of attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2022; 132:621-637. [PMID: 34848247 PMCID: PMC8816876 DOI: 10.1016/j.neubiorev.2021.11.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a polygenic neurodevelopmental disorder that affects 8-12 % of children and >4 % of adults. Environmental factors are believed to interact with genetic predispositions to increase susceptibility to ADHD. No existing rodent model captures all aspects of ADHD, but several show promise. The main genetic models are the spontaneous hypertensive rat, dopamine transporter knock-out (KO) mice, dopamine receptor subtype KO mice, Snap-25 KO mice, guanylyl cyclase-c KO mice, and latrophilin-3 KO mice and rats. Environmental factors thought to contribute to ADHD include ethanol, nicotine, PCBs, lead (Pb), ionizing irradiation, 6-hydroxydopamine, neonatal hypoxia, some pesticides, and organic pollutants. Model validation criteria are outlined, and current genetic models evaluated against these criteria. Future research should explore induced multiple gene KOs given that ADHD is polygenic and epigenetic contributions. Furthermore, genetic models should be combined with environmental agents to test for interactions.
Collapse
Affiliation(s)
- Samantha L. Regan
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Corresponding author: Charles V. Vorhees, Ph.D., Div. of Neurology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA:
| |
Collapse
|
6
|
Bruxel EM, Moreira-Maia CR, Akutagava-Martins GC, Quinn TP, Klein M, Franke B, Ribasés M, Rovira P, Sánchez-Mora C, Kappel DB, Mota NR, Grevet EH, Bau CHD, Arcos-Burgos M, Rohde LA, Hutz MH. Meta-analysis and systematic review of ADGRL3 (LPHN3) polymorphisms in ADHD susceptibility. Mol Psychiatry 2021; 26:2277-2285. [PMID: 32051549 DOI: 10.1038/s41380-020-0673-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/28/2022]
Abstract
The gene encoding adhesion G protein-coupled receptor L3 (ADGRL3, also referred to as latrophilin 3 or LPHN3) has been associated with ADHD susceptibility in independent ADHD samples. We conducted a systematic review and a comprehensive meta-analysis to summarize the associations between the most studied ADGRL3 polymorphisms (rs6551665, rs1947274, rs1947275, and rs2345039) and both childhood and adulthood ADHD. Eight association studies (seven published and one unpublished) fulfilled criteria for inclusion in our meta-analysis. We also incorporated GWAS data for ADGRL3. In order to avoid overlapping samples, we started with summary statistics from GWAS samples and then added data from gene association studies. The results of our meta-analysis suggest an effect of ADGRL3 variants on ADHD susceptibility in children (n = 8724/14,644 cases/controls and 1893 families): rs6551665 A allele (Z score = -2.701; p = 0.0069); rs1947274 A allele (Z score = -2.033; p = 0.0421); rs1947275 T allele (Z score = 2.339; p = 0.0978); and rs2345039 C allele (Z score = 3.806; p = 0.0026). Heterogeneity was found in analyses for three SNPs (rs6551665, rs1947274, and rs2345039). In adults, results were not significant (n = 6532 cases/15,874 controls): rs6551665 A allele (Z score = 2.005; p = 0.0450); rs1947274 A allele (Z score = 2.179; p = 0.0293); rs1947275 T allele (Z score = -0.822; p = 0.4109); and rs2345039 C allele (Z score = -1.544; p = 0.1226). Heterogeneity was found just for rs6551665. In addition, funnel plots did not suggest publication biases. Consistent with ADGRL3's role in early neurodevelopment, our findings suggest that the gene is predominantly associated with childhood ADHD.
Collapse
Affiliation(s)
- E M Bruxel
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, Porto Alegre, RS, 91501-970, Brazil.,ADHD Outpatient Program (PRODAH) and Developmental Psychiatry Program, Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - C R Moreira-Maia
- ADHD Outpatient Program (PRODAH) and Developmental Psychiatry Program, Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - G C Akutagava-Martins
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, Porto Alegre, RS, 91501-970, Brazil.,ADHD Outpatient Program (PRODAH) and Developmental Psychiatry Program, Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,College of Medicine, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - T P Quinn
- Bioinformatics Core Research Group, Deakin University, Geelong, VIC, Australia
| | - M Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - P Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - C Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - D B Kappel
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, Porto Alegre, RS, 91501-970, Brazil.,ADHD Outpatient Program (PRODAH - A), Adult Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - N R Mota
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,ADHD Outpatient Program (PRODAH - A), Adult Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - E H Grevet
- ADHD Outpatient Program (PRODAH - A), Adult Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - C H D Bau
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, Porto Alegre, RS, 91501-970, Brazil.,ADHD Outpatient Program (PRODAH - A), Adult Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Instituto de Investigaciones Medicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - L A Rohde
- ADHD Outpatient Program (PRODAH) and Developmental Psychiatry Program, Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, Porto Alegre, Brazil
| | - M H Hutz
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, Porto Alegre, RS, 91501-970, Brazil. .,ADHD Outpatient Program (PRODAH) and Developmental Psychiatry Program, Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
7
|
McNeill RV, Palladino VS, Brunkhorst-Kanaan N, Grimm O, Reif A, Kittel-Schneider S. Expression of the adult ADHD-associated gene ADGRL3 is dysregulated by risk variants and environmental risk factors. World J Biol Psychiatry 2021; 22:335-349. [PMID: 32787626 DOI: 10.1080/15622975.2020.1809014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES ADGRL3 is a well-replicated risk gene for adult ADHD, encoding the G protein-coupled receptor latrophilin-3 (LPHN3). However, LPHN3's potential role in pathogenesis is unclear. We aimed to determine whether ADGRL3 expression could be dysregulated by genetic risk variants and/or ADHD-associated environmental risk factors. METHODS Eighteen adult ADHD patients and healthy controls were genotyped for rs734644, rs1397547, rs1397548, rs2271338, rs2305339, rs2345039 and rs6551665 ADGRL3 SNPs, and fibroblast cells were derived from skin punches. The environmental ADHD risk factors 'low birthweight' and 'maternal smoking' were modelled in fibroblast cell culture using starvation and nicotine exposure, respectively. Quantitative real-time PCR and western blotting were performed to quantify ADGRL3 gene and protein expression under control, starvation and nicotine-exposed conditions. RESULTS Starvation was found to significantly decrease ADGRL3 expression, whereas nicotine exposure significantly increased ADGRL3 expression. rs1397547 significantly elevated ADGRL3 transcription and protein expression. rs6551665 and rs2345039 interacted with environment to modulate ADGRL3 transcription. ADGRL3 SNPs were significantly able to predict its transcription under both baseline and starvation conditions, and rs1397547 was identified as a significant independent predictor. CONCLUSIONS ADGRL3 SNPs and environmental risk factors can regulate ADGRL3 expression, providing a potential functional mechanism by which LPHN3 may play a role in ADHD pathogenesis.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Viola Stella Palladino
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Oliver Grimm
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Regan SL, Williams MT, Vorhees CV. Latrophilin-3 disruption: Effects on brain and behavior. Neurosci Biobehav Rev 2021; 127:619-629. [PMID: 34022279 DOI: 10.1016/j.neubiorev.2021.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/22/2022]
Abstract
Latrophilin-3 (LPHN3), a G-protein-coupled receptor belonging to the adhesion subfamily, is a regulator of synaptic function and maintenance in brain regions that mediate locomotor activity, attention, and memory for location and path. Variants of LPHN3 are associated with increased risk for attention deficit hyperactivity disorder (ADHD) in some patients. Here we review the role of LPHN3 in the central nervous system (CNS). We describe synaptic localization of LPHN3, its trans-synaptic binding partners, links to neurodevelopmental disorders, animal models of Lphn3 disruption in different species, and evidence that LPHN3 is involved in cognition as well as activity and attention. The evidence shows that LPHN3 plays a more significant role in neuroplasticity than previously appreciated.
Collapse
Affiliation(s)
- Samantha L Regan
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Michael T Williams
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Charles V Vorhees
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| |
Collapse
|
9
|
Adhesion G protein-coupled receptor L3 gene variants: Statistically significant association observed in the male Indo-caucasoid Attention deficit hyperactivity disorder probands. Mol Biol Rep 2021; 48:3213-3222. [PMID: 33914279 DOI: 10.1007/s11033-021-06365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Primary symptoms of Attention Deficit Hyperactivity Disorder (ADHD) are age inappropriate inattention, hyperactivity and impulsivity. Caucasoid individuals showed increased susceptibility to ADHD and disruptive behaviour in presence of Adhesion G-protein-coupled receptor L3 (ADGRL3) gene variants. We investigated ADGRL3 rs1868790, rs6551665, rs2345039 in Indo-Caucasoid families with ADHD probands (N = 249) and controls (N = 350). Behavioural traits, executive function, and IQ of probands were measured through Conner's Parent Rating Scale-Revised, Parental Account of Children's Symptoms, Barkley Deficit in Executive Functioning-Child & Adolescent Scale, and Wechsler Intelligence Scale for Children-III respectively. After obtaining informed written consent, peripheral blood was collected for genomic DNA isolation and target sites were analyzed by PCR based methods or TaqMan assay. Case-control analysis showed higher frequency of rs2345039 'C' allele, 'CC' genotype and A-A-C haplotype in the ADHD probands, principally due to higher occurrence of the 'C' allele and A-A-C haplotype in the male probands (P < 0.05). Mother of the probands also showed higher occurrence of the 'C' allele and "CC" genotype (P < 0.01). Executive function was better in presence of rs2345039 "GG" (P = 0.04) while IQ score was higher in presence of rs6551665 "AA" (P = 0.06). Linkage disequilibrium between rs6551665 and rs2345039 was stronger in the ADHD cases, chiefly in the male probands. Multifactor dimensionality reduction analysis showed strong interaction between rs6551665 and rs2345039 in the male probands while in the female probands rs1868790 and rs6551665 revealed non-linear interaction. Based on these observations, we infer that ADGRL3 may have a role in the aetiology of ADHD in this population warranting further in depth investigation.
Collapse
|
10
|
Özaslan A, Güney E, Ergün MA, Okur İ, Yapar D. CDH13 and LPHN3 Gene Polymorphisms in Attention-Deficit/Hyperactivity Disorder: Their Relation to Clinical Characteristics. J Mol Neurosci 2020; 71:394-408. [PMID: 32691279 DOI: 10.1007/s12031-020-01662-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Genetic factors play a major role in the etiopathogenesis of attention-deficit/hyperactivity disorder (ADHD). In this study, we aimed to investigate the relationship between the CDH13 (rs6565113, rs11150556) and LPHN3 (rs6551665, rs6858066, rs1947274, rs2345039) gene polymorphisms and ADHD. We also sought to examine possible relationships between these polymorphisms and the clinical course and treatment response in ADHD. A total of 120 patients (79% boys), aged 6 to 18 years, newly diagnosed (medication-naïve) with ADHD according to the DSM-5 and a group of 126 controls (74% girls) were enrolled in the study. We examined the association between the aforementioned polymorphisms and ADHD. Univariate and multivariate logistic regression analysis were used to evaluate factors influencing the treatment response of ADHD. A significant difference was found between ADHD and control groups in terms of genotype distribution of the LPHN3 rs6551665 and rs1947274 polymorphisms. The results also showed that having the GG genotype of rs6551665 and CC genotype of rs1947274 of the LPHN3 gene was associated with risk for ADHD, and this relationship was more prominent in male participants. In the multivariate logistic regression model established with variables shown to have a significant relationship with treatment response, the presence of the GG genotype of the LPHN3 rs6551665 polymorphism and high severity of ADHD assessed by CGI-S were associated with poor response to treatment. This study is the first study to investigate the relationship between ADHD and these polymorphisms among Turkish adolescents. Our results imply that the LPHN3 rs6551665 and rs1947274 polymorphisms have a significant effect on ADHD in a Turkish population, and support previous observations that the presence of the GG genotype of the LPHN3 rs6551665 polymorphism may be associated with poor response to treatment in ADHD.
Collapse
Affiliation(s)
- Ahmet Özaslan
- Child and Adolescent Psychiatry Department, Yıldırım Beyazıt Univesity Yenimahalle Training and Research Hospital, 2026. Street, Number: 4, Yenimahalle, Ankara, Turkey.
| | - Esra Güney
- Child and Adolescent Psychiatry Department, Gazi University Medical Faculty, Ankara, Turkey
| | - Mehmet Ali Ergün
- Medical Genetics Department, Gazi University Medical Faculty, Ankara, Turkey
| | - İlyas Okur
- Department of Child Health and Diseases, Gazi University Medical Faculty, Ankara, Turkey
| | - Dilek Yapar
- Public Health Department, Gazi University Medical Faculty, Ankara, Turkey
| |
Collapse
|
11
|
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB. Opportunities and challenges for drug discovery in modulating Adhesion G protein-coupled receptor (GPCR) functions. Expert Opin Drug Discov 2020; 15:1291-1307. [DOI: 10.1080/17460441.2020.1791075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrey D. Bondarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Misty M. Attwood
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Vladimir N. Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V. Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B. Schiöth
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
12
|
Elsayed NA, Yamamoto KM, Froehlich TE. Genetic Influence on Efficacy of Pharmacotherapy for Pediatric Attention-Deficit/Hyperactivity Disorder: Overview and Current Status of Research. CNS Drugs 2020; 34:389-414. [PMID: 32133580 PMCID: PMC8083895 DOI: 10.1007/s40263-020-00702-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple stimulant and non-stimulant medications are approved for the treatment of attention-deficit/hyperactivity disorder (ADHD), one of the most prevalent childhood neurodevelopmental disorders. Choosing among the available agents and determining the most effective ADHD medication for a given child can be a time-consuming process due to the high inter-individual variability in treatment efficacy. As a result, there is growing interest in identifying predictors of ADHD medication response in children through the burgeoning field of pharmacogenomics. This article reviews childhood ADHD pharmacogenomics efficacy studies published during the last decade (2009-2019), which have largely focused on pharmacodynamic candidate gene investigations of methylphenidate and atomoxetine response, with a smaller number investigating pharmacokinetic candidate genes and genome-wide approaches. Findings from studies which have advanced the field of ADHD pharmacogenomics through investigation of meta-analytic approaches and gene-gene interactions are also overviewed. Despite recent progress, no one genetic variant or currently available pharmacogenomics test has demonstrated clinical utility in pinpointing the optimal ADHD medication for a given individual patient, highlighting the need for further investigation.
Collapse
Affiliation(s)
- Nada A Elsayed
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaila M Yamamoto
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA
| | - Tanya E Froehlich
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
13
|
Genetic Variation Underpinning ADHD Risk in a Caribbean Community. Cells 2019; 8:cells8080907. [PMID: 31426340 PMCID: PMC6721689 DOI: 10.3390/cells8080907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a highly heritable and prevalent neurodevelopmental disorder that frequently persists into adulthood. Strong evidence from genetic studies indicates that single nucleotide polymorphisms (SNPs) harboured in the ADGRL3 (LPHN3), SNAP25, FGF1, DRD4, and SLC6A2 genes are associated with ADHD. We genotyped 26 SNPs harboured in genes previously reported to be associated with ADHD and evaluated their potential association in 386 individuals belonging to 113 nuclear families from a Caribbean community in Barranquilla, Colombia, using family-based association tests. SNPs rs362990-SNAP25 (T allele; p = 2.46 × 10−4), rs2282794-FGF1 (A allele; p = 1.33 × 10−2), rs2122642-ADGRL3 (C allele, p = 3.5 × 10−2), and ADGRL3 haplotype CCC (markers rs1565902-rs10001410-rs2122642, OR = 1.74, Ppermuted = 0.021) were significantly associated with ADHD. Our results confirm the susceptibility to ADHD conferred by SNAP25, FGF1, and ADGRL3 variants in a community with a significant African American component, and provide evidence supporting the existence of specific patterns of genetic stratification underpinning the susceptibility to ADHD. Knowledge of population genetics is crucial to define risk and predict susceptibility to disease.
Collapse
|
14
|
Moreno-Salinas AL, Avila-Zozaya M, Ugalde-Silva P, Hernández-Guzmán DA, Missirlis F, Boucard AA. Latrophilins: A Neuro-Centric View of an Evolutionary Conserved Adhesion G Protein-Coupled Receptor Subfamily. Front Neurosci 2019; 13:700. [PMID: 31354411 PMCID: PMC6629964 DOI: 10.3389/fnins.2019.00700] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
The adhesion G protein-coupled receptors latrophilins have been in the limelight for more than 20 years since their discovery as calcium-independent receptors for α-latrotoxin, a spider venom toxin with potent activity directed at neurotransmitter release from a variety of synapse types. Latrophilins are highly expressed in the nervous system. Although a substantial amount of studies has been conducted to describe the role of latrophilins in the toxin-mediated action, the recent identification of endogenous ligands for these receptors helped confirm their function as mediators of adhesion events. Here we hypothesize a role for latrophilins in inter-neuronal contacts and the formation of neuronal networks and we review the most recent information on their role in neurons. We explore molecular, cellular and behavioral aspects related to latrophilin adhesion function in mice, zebrafish, Drosophila melanogaster and Caenorhabditis elegans, in physiological and pathophysiological conditions, including autism spectrum, bipolar, attention deficit and hyperactivity and substance use disorders.
Collapse
Affiliation(s)
- Ana L. Moreno-Salinas
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Monserrat Avila-Zozaya
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Paul Ugalde-Silva
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - David A. Hernández-Guzmán
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Antony A. Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
15
|
Huang X, Zhang Q, Gu X, Hou Y, Wang M, Chen X, Wu J. LPHN3 gene variations and susceptibility to ADHD in Chinese Han population: a two-stage case-control association study and gene-environment interactions. Eur Child Adolesc Psychiatry 2019; 28:861-873. [PMID: 30406846 DOI: 10.1007/s00787-018-1251-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Polymorphisms in latrophilin 3 (LPHN3) were recently reported to be associated with attention-deficit/hyperactivity disorder (ADHD), and subsequently other researchers tried to replicate the findings in different populations. This study was aimed to confirm the role of the LPHN3 in ADHD and explore the potential interactions with environmental risk factors in Chinese Han population. We examined the association of LPHN3 with ADHD in a population of 473 ADHD children and 585 controls. As a supplement of ADHD diagnosis, Conners Parent Symptom Questionnaire (PSQ) was used to evaluate ADHD symptoms. Blood lead levels (BLLs) were measured by atomic absorption spectrophotometry and other potential environmental risk factors were determined via a questionnaire filled out by the parents. Finally, after validation in an independent sample (284 cases and 390 controls), we observed significant associations between LPHN3 variants rs1868790 and ADHD risk in combined stage within codominant model [TA/AA: OR (95% CI) = 1.636 (1.325-2.021)], dominant model [OR (95% CI) = 1.573 (1.288-1.922)], and additive model [OR (95% CI) = 1.535 (1.266-1.862)]. Furthermore, rs1868790 significantly interacted with BLLs and maternal stress to modify ADHD susceptibility (P < 0.05), and rs1868790 was found to be related with ADHD symptoms (P < 0.05). Expression quantitative trait loci analysis further indicated that rs1868790 took part in the regulation of LPHN3 gene expression. As the first study to comprehensively explore the role of LPHN3 in ADHD in Chinese children, our research suggests that LPHN3 gene has a significant effect on the ADHD in a Chinese population.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qi Zhang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xue Gu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuwei Hou
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Min Wang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China. .,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
16
|
Genetic risk factors and gene–environment interactions in adult and childhood attention-deficit/hyperactivity disorder. Psychiatr Genet 2019; 29:63-78. [DOI: 10.1097/ypg.0000000000000220] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
PharmGKB summary: methylphenidate pathway, pharmacokinetics/pharmacodynamics. Pharmacogenet Genomics 2019; 29:136-154. [PMID: 30950912 DOI: 10.1097/fpc.0000000000000376] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
The role of pre-, peri-, and postnatal risk factors in bipolar disorder and adult ADHD. J Neural Transm (Vienna) 2019; 126:1117-1126. [DOI: 10.1007/s00702-019-01983-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/06/2019] [Indexed: 02/06/2023]
|
19
|
Arcos-Burgos M, Vélez JI, Martinez AF, Ribasés M, Ramos-Quiroga JA, Sánchez-Mora C, Richarte V, Roncero C, Cormand B, Fernández-Castillo N, Casas M, Lopera F, Pineda DA, Palacio JD, Acosta-López JE, Cervantes-Henriquez ML, Sánchez-Rojas MG, Puentes-Rozo PJ, Molina BSG, Boden MT, Wallis D, Lidbury B, Newman S, Easteal S, Swanson J, Patel H, Volkow N, Acosta MT, Castellanos FX, de Leon J, Mastronardi CA, Muenke M. ADGRL3 (LPHN3) variants predict substance use disorder. Transl Psychiatry 2019; 9:42. [PMID: 30696812 PMCID: PMC6351584 DOI: 10.1038/s41398-019-0396-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/02/2022] Open
Abstract
Genetic factors are strongly implicated in the susceptibility to develop externalizing syndromes such as attention-deficit/hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, and substance use disorder (SUD). Variants in the ADGRL3 (LPHN3) gene predispose to ADHD and predict ADHD severity, disruptive behaviors comorbidity, long-term outcome, and response to treatment. In this study, we investigated whether variants within ADGRL3 are associated with SUD, a disorder that is frequently co-morbid with ADHD. Using family-based, case-control, and longitudinal samples from disparate regions of the world (n = 2698), recruited either for clinical, genetic epidemiological or pharmacogenomic studies of ADHD, we assembled recursive-partitioning frameworks (classification tree analyses) with clinical, demographic, and ADGRL3 genetic information to predict SUD susceptibility. Our results indicate that SUD can be efficiently and robustly predicted in ADHD participants. The genetic models used remained highly efficient in predicting SUD in a large sample of individuals with severe SUD from a psychiatric institution that were not ascertained on the basis of ADHD diagnosis, thus identifying ADGRL3 as a risk gene for SUD. Recursive-partitioning analyses revealed that rs4860437 was the predominant predictive variant. This new methodological approach offers novel insights into higher order predictive interactions and offers a unique opportunity for translational application in the clinical assessment of patients at high risk for SUD.
Collapse
Affiliation(s)
- Mauricio Arcos-Burgos
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- INPAC Research Group, Fundación Universitaria Sanitas, Bogotá, Colombia.
- Instituto de Investigaciones Médicas (IIM), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| | - Jorge I Vélez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Universidad del Norte, Barranquilla, Colombia
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - Josep A Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Roncero
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Addiction and Dual Diagnosis Unit, Departament of Psychiatry, Hospital Universitari Vall d'Hebron-Public Health Agency, Barcelona, Spain
| | - Bru Cormand
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, CAT, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, CAT, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, CAT, Spain
| | - Noelia Fernández-Castillo
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, CAT, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, CAT, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, CAT, Spain
| | - Miguel Casas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Lopera
- Neuroscience Research Group, Universidad de Antioquia, Medellín, Colombia
| | - David A Pineda
- Neuroscience Research Group, Universidad de Antioquia, Medellín, Colombia
| | - Juan D Palacio
- Neuroscience Research Group, Universidad de Antioquia, Medellín, Colombia
| | - Johan E Acosta-López
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Martha L Cervantes-Henriquez
- Universidad del Norte, Barranquilla, Colombia
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Manuel G Sánchez-Rojas
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Pedro J Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla, Colombia
| | - Brooke S G Molina
- Departments of Psychiatry and Psychology, University of Pittsburg, Pittsburg, PA, USA
| | - Margaret T Boden
- University of Kentucky Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA
| | - Deeann Wallis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Brett Lidbury
- National Center for Indigenous Genomics, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - Saul Newman
- National Center for Indigenous Genomics, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - Simon Easteal
- National Center for Indigenous Genomics, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - James Swanson
- Department of Psychiatry, Florida International University, Miami, FL, USA
- Child Development Center, University of California at Irvine, Irvine, CA, USA
| | - Hardip Patel
- Genome Discovery Unit, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - Nora Volkow
- Office of the Director, National Institute on Drug Abuse, National Institutes of Health, Rockville, MD, USA
| | - Maria T Acosta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco X Castellanos
- Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Jose de Leon
- University of Kentucky Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA
| | - Claudio A Mastronardi
- INPAC Research Group, Fundación Universitaria Sanitas, Bogotá, Colombia
- Center for Research in Genetics and Genomics, Institute of Translational Medicine, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Kappel DB, Schuch JB, Rovaris DL, da Silva BS, Müller D, Breda V, Teche SP, S Riesgo R, Schüler-Faccini L, Rohde LA, Grevet EH, Bau CHD. ADGRL3 rs6551665 as a Common Vulnerability Factor Underlying Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder. Neuromolecular Med 2019; 21:60-67. [PMID: 30652248 DOI: 10.1007/s12017-019-08525-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
Neurodevelopmental disorders are prevalent, frequently occur in comorbidity and share substantial genetic correlation. Previous evidence has suggested a role for the ADGRL3 gene in Attention-Deficit/Hyperactivity Disorder (ADHD) susceptibility in several samples. Considering ADGRL3 functionality in central nervous system development and its previous association with neurodevelopmental disorders, we aimed to assess ADGRL3 influence in early-onset ADHD (before 7 years of age) and Autism Spectrum Disorder (ASD). The sample comprises 187 men diagnosed with early-onset ADHD, 135 boys diagnosed with ASD and 468 male blood donors. We tested the association of an ADGRL3 variant (rs6551665) with both early-onset ADHD and ASD susceptibility. We observed significant associations between ADGRL3-rs6551665 on ADHD and ASD susceptibilities; we found that G-carriers were at increased risk of ADHD and ASD, in accordance with previous studies. The overall evidence from the literature, corroborated by our results, suggests that ADGRL3 might be involved in brain development, and genetic modifications related to it might be part of a shared vulnerability factor associated with the underlying neurobiology of neurodevelopmental disorders such as ADHD and ASD.
Collapse
Affiliation(s)
- Djenifer B Kappel
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego L Rovaris
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna S da Silva
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diana Müller
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vitor Breda
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stefania P Teche
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rudimar S Riesgo
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil
| | - Luís A Rohde
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, Porto Alegre, Brazil
| | - Eugenio H Grevet
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil. .,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
21
|
Abstract
The prenatal period is increasingly considered as a crucial target for the primary prevention of neurodevelopmental and psychiatric disorders. Understanding their pathophysiological mechanisms remains a great challenge. Our review reveals new insights from prenatal brain development research, involving (epi)genetic research, neuroscience, recent imaging techniques, physical modeling, and computational simulation studies. Studies examining the effect of prenatal exposure to maternal distress on offspring brain development, using brain imaging techniques, reveal effects at birth and up into adulthood. Structural and functional changes are observed in several brain regions including the prefrontal, parietal, and temporal lobes, as well as the cerebellum, hippocampus, and amygdala. Furthermore, alterations are seen in functional connectivity of amygdalar-thalamus networks and in intrinsic brain networks, including default mode and attentional networks. The observed changes underlie offspring behavioral, cognitive, emotional development, and susceptibility to neurodevelopmental and psychiatric disorders. It is concluded that used brain measures have not yet been validated with regard to sensitivity, specificity, accuracy, or robustness in predicting neurodevelopmental and psychiatric disorders. Therefore, more prospective long-term longitudinal follow-up studies starting early in pregnancy should be carried out, in order to examine brain developmental measures as mediators in mediating the link between prenatal stress and offspring behavioral, cognitive, and emotional problems and susceptibility for disorders.
Collapse
|
22
|
Franke B, Michelini G, Asherson P, Banaschewski T, Bilbow A, Buitelaar JK, Cormand B, Faraone SV, Ginsberg Y, Haavik J, Kuntsi J, Larsson H, Lesch KP, Ramos-Quiroga JA, Réthelyi JM, Ribases M, Reif A. Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan. Eur Neuropsychopharmacol 2018; 28:1059-1088. [PMID: 30195575 PMCID: PMC6379245 DOI: 10.1016/j.euroneuro.2018.08.001] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 06/25/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is highly heritable and the most common neurodevelopmental disorder in childhood. In recent decades, it has been appreciated that in a substantial number of cases the disorder does not remit in puberty, but persists into adulthood. Both in childhood and adulthood, ADHD is characterised by substantial comorbidity including substance use, depression, anxiety, and accidents. However, course and symptoms of the disorder and the comorbidities may fluctuate and change over time, and even age of onset in childhood has recently been questioned. Available evidence to date is poor and largely inconsistent with regard to the predictors of persistence versus remittance. Likewise, the development of comorbid disorders cannot be foreseen early on, hampering preventive measures. These facts call for a lifespan perspective on ADHD from childhood to old age. In this selective review, we summarise current knowledge of the long-term course of ADHD, with an emphasis on clinical symptom and cognitive trajectories, treatment effects over the lifespan, and the development of comorbidities. Also, we summarise current knowledge and important unresolved issues on biological factors underlying different ADHD trajectories. We conclude that a severe lack of knowledge on lifespan aspects in ADHD still exists for nearly every aspect reviewed. We encourage large-scale research efforts to overcome those knowledge gaps through appropriately granular longitudinal studies.
Collapse
Affiliation(s)
- Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Giorgia Michelini
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic & Developmental Psychiatry Centre, London, UK
| | - Philip Asherson
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic & Developmental Psychiatry Centre, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andrea Bilbow
- Attention Deficit Disorder Information and Support Service (ADDISS), Edgware, UK; ADHD-Europe, Brussels, Belgium
| | - Jan K Buitelaar
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, The Netherlands
| | - Bru Cormand
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, State University of New York Upstate Medical University, New York, USA; K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ylva Ginsberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Jonna Kuntsi
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic & Developmental Psychiatry Centre, London, UK
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - J Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; MTA-SE NAP-B Molecular Psychiatry Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Marta Ribases
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Abbott PW, Gumusoglu SB, Bittle J, Beversdorf DQ, Stevens HE. Prenatal stress and genetic risk: How prenatal stress interacts with genetics to alter risk for psychiatric illness. Psychoneuroendocrinology 2018; 90:9-21. [PMID: 29407514 DOI: 10.1016/j.psyneuen.2018.01.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/20/2018] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Risk for neuropsychiatric disorders is complex and includes an individual's internal genetic endowment and their environmental experiences and exposures. Embryonic development captures a particularly complex period, in which genetic and environmental factors can interact to contribute to risk. These environmental factors are incorporated differently into the embryonic brain than postnatal one. Here, we comprehensively review the human and animal model literature for studies that assess the interaction between genetic risks and one particular environmental exposure with strong and complex associations with neuropsychiatric outcomes-prenatal maternal stress. Gene-environment interaction has been demonstrated for stress occurring during childhood, adolescence, and adulthood. Additional work demonstrates that prenatal stress risk may be similarly complex. Animal model studies have begun to address some underlying mechanisms, including particular maternal or fetal genetic susceptibilities that interact with stress exposure and those that do not. More specifically, the genetic underpinnings of serotonin and dopamine signaling and stress physiology mechanisms have been shown to be particularly relevant to social, attentional, and internalizing behavioral changes, while other genetic factors have not, including some growth factor and hormone-related genes. Interactions have reflected both the diathesis-stress and differential susceptibility models. Maternal genetic factors have received less attention than those in offspring, but strongly modulate impacts of prenatal stress. Priorities for future research are investigating maternal response to distinct forms of stress and developing whole-genome methods to examine the contributions of genetic variants of both mothers and offspring, particularly including genes involved in neurodevelopment. This is a burgeoning field of research that will ultimately contribute not only to a broad understanding of psychiatric pathophysiology but also to efforts for personalized medicine.
Collapse
Affiliation(s)
- Parker W Abbott
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA.
| | - Serena B Gumusoglu
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA.
| | - Jada Bittle
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA.
| | - David Q Beversdorf
- Interdisciplinary Neuroscience Program, Interdisciplinary Intercampus Research Program, Thompson Center for Autism and Neurodevelopment Disorders, Departments of Radiology, Neurology and Psychological Sciences, University of Missouri, Columbia, MO, USA.
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, 2312 PBDB, 169 Newton Rd., Iowa City, IA, 52246, USA.
| |
Collapse
|
24
|
Attention-deficit/hyperactivity disorder associated with KChIP1 rs1541665 in Kv channels accessory proteins. PLoS One 2017; 12:e0188678. [PMID: 29176790 PMCID: PMC5703492 DOI: 10.1371/journal.pone.0188678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 11/10/2017] [Indexed: 12/16/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is an early onset childhood neurodevelopmental disorder with high heritability. A number of genetic risk factors and environment factors have been implicated in the pathogenesis of ADHD. Genes encoding for subtypes of voltage-dependent K channels (Kv) and accessory proteins to these channels have been identified in genome-wide association studies (GWAS) of ADHD. We conducted a two-stage case–control study to investigate the associations between five key genes (KChIP4, KChIP1, DPP10, FHIT, and KCNC1) and the risk of developing ADHD. In the discovery stage comprising 256 cases and 372 controls, KChIP1 rs1541665 and FHIT rs3772475 were identified; they were further genotyped in the validation stage containing 328cases and 431 controls.KChIP1 rs1541665 showed significant association with a risk of ADHD at both stages, with CC vs TT odds ratio (OR) = 1.961, 95% confidence interval (CI) = 1.366–2.497, in combined analyses (P-FDR = 0.007). Moreover, we also found rs1541665 involvement in ADHD-I subtype (OR (95% CI) = 2.341(1.713, 3.282), and Hyperactive index score (P = 0.005) in combined samples.Intriguingly, gene-environmental interactions analysis consistently revealed the potential interactionsof rs1541665 collaboratingwith maternal stress pregnancy (Pmul = 0.021) and blood lead (Padd = 0.017) to modify ADHD risk. In conclusion, the current study provides evidence that genetic variants of Kv accessory proteins may contribute to the susceptibility of ADHD.Further studies with different ethnicitiesare warranted to produce definitive conclusions.
Collapse
|
25
|
Liu M, Zhang J, Liu C. Clinical efficacy of recombinant human latrophilin 3 antibody in the treatment of pediatric asthma. Exp Ther Med 2017; 15:539-547. [PMID: 29375702 DOI: 10.3892/etm.2017.5376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/19/2017] [Indexed: 11/06/2022] Open
Abstract
Pediatric asthma is a chronic pulmonary inflammatory disease featuring hypersecretion of mucus and inflammation in the airway, resulting in dysfunction of the airway smooth muscle. Previous evidence demonstrated that latrophilins, a novel family of receptors, present a beneficial effect on airway smooth muscle cells. In the present study, the therapeutic effects of recombinant human latrophilin 3 (rhLPHN3) antibody (Ab) in patients with pediatric asthma were investigated, and the molecular mechanism underlying the function of LPHN3 in the treatment of asthma in clinical practice was examined. A total of 342 pediatric asthma cases were recruited and randomly divided into three groups, receiving treatment with rhLPHN3 Ab (n=134), salbutamol (n=108) or montelukast (n=100) by nasal aerosolization. Each group received the respective clinically tested dose for 16 weeks. Inflammatory factors interleukin (IL)-10, IL-17, IL-4, matrix metallopeptidase-9 (MMP-9), interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) levels in peripheral blood mononuclear cells were analyzed prior to and post treatment. The clinical outcomes revealed that pathological alterations were significantly improved following treatment with rhLPHN3 Ab for patients with pediatric asthma when compared with those receiving salbutamol and montelukast. It was also observed that rhLPHN3 Ab downregulated the plasma concentration levels of IL-10, IL-17, IL-4 and MMP-9, and upregulated IFN-γ and TGF-β levels in the three groups. In addition, clinical data demonstrated that rhLPHN3 Ab significantly promoted E-selectin and mucin 5AC expression, as well as improved the activation of nuclear factor (NF)-κB p65 DNA binding activity and the phosphorylation levels of protein kinase A. Furthermore, rhLPHN3 Ab markedly improved adhesion and proliferation of airway smooth muscle cells, which led to promotion of the contraction of these cells. In conclusion, these clinical data suggest that rhLPHN3 Ab serves an important role in the inhibition of inflammatory mediators through downregulation of NF-κB signaling pathway, which contributes to airway remodeling and bronchodilation in patients with pediatric asthma.
Collapse
Affiliation(s)
- Maohua Liu
- Department of Pediatric Internal Medicine Ward 1, Yishui Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Jingxiu Zhang
- Department of Pediatric Internal Medicine Ward 3, Yishui Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Chengjun Liu
- Department of Pediatric Internal Medicine Ward 1, Yishui Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
26
|
Further replication of the synergistic interaction between LPHN3 and the NTAD gene cluster on ADHD and its clinical course throughout adulthood. Prog Neuropsychopharmacol Biol Psychiatry 2017. [PMID: 28624582 DOI: 10.1016/j.pnpbp.2017.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a common and highly heritable neuropsychiatric disorder. Despite the high heritability, the unraveling of specific genetic factors related to ADHD is hampered by its considerable genetic complexity. Recent evidence suggests that gene-gene interactions can explain part of this complexity. We examined the impact of strongly supported interaction effects between the LPHN3 gene and the NTAD gene cluster (NCAM1-TTC12-ANKK1-DRD2) in a 7-year follow-up of a clinical sample of adults with ADHD, addressing associations with susceptibility, symptomatology and stability of diagnosis. The sample comprises 548 adults with ADHD and 643 controls. Entropy-based analysis indicated a potential interaction between the LPHN3-rs6551665 and TTC12-rs2303380 SNPs influencing ADHD symptom counts. Further analyses revealed significant interaction effects on ADHD total symptoms (p=0.002), and with hyperactivity/impulsivity symptom counts (p=0.005). In the group composed by predominantly hyperactive/impulsive and combined presentation, the presence of LPHN3-rs6551665 G allele was related to increased ADHD risk only in individuals carrying the TTC12-rs2303380 AA genotype (p=0.026). Also, the same allelic constellation is involved in maintenance of ADHD in a predominantly hyperactive/impulsive or combined presentation after a 7-year follow-up (p=0.008). These observations reinforce and replicate previous evidence suggesting that an interaction effect between the LPHN3 gene and the NTAD cluster may have a role in the genetic substrate associated to ADHD also in adults. Moreover, it is possible that the interactions between LPHN3 and NTAD are specific factors contributing to the development of an ADHD phenotype with increased hyperactivity/impulsivity that is maintained throughout adulthood.
Collapse
|
27
|
Abstract
Human genetic studies have been the driving force in bringing to light the underlying biology of psychiatric conditions. As these studies fill in the gaps in our knowledge of the mechanisms at play, we will be better equipped to design therapies in rational and targeted ways, or repurpose existing therapies in previously unanticipated ways. This review is intended for those unfamiliar with psychiatric genetics as a field and provides a primer on different modes of genetic variation, the technologies currently used to probe them, and concepts that provide context for interpreting the gene-phenotype relationship. Like other subfields in human genetics, psychiatric genetics is moving from microarray technology to sequencing-based approaches as barriers of cost and expertise are removed, and the ramifications of this transition are discussed here. A summary is then given of recent genetic discoveries in a number of neuropsychiatric conditions, with particular emphasis on neurodevelopmental conditions. The general impact of genetics on drug development has been to underscore the extensive etiological heterogeneity in seemingly cohesive diagnostic categories. Consequently, the path forward is not in therapies hoping to reach large swaths of patients sharing a clinically defined diagnosis, but rather in targeting patients belonging to specific "biotypes" defined through a combination of objective, quantifiable data, including genotype.
Collapse
Affiliation(s)
- Jacob J Michaelson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Department of Biomedical Engineering, University of Iowa College of Engineering, Iowa City, IA, USA.
- Department of Communication Sciences and Disorders, University of Iowa College of Liberal Arts and Sciences, Iowa City, IA, USA.
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, USA.
- Genetics Cluster Initiative, University of Iowa, Iowa City, IA, USA.
- The DeLTA Center, University of Iowa, Iowa City, IA, USA.
- University of Iowa Informatics Initiative, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
28
|
Martinez AF, Abe Y, Hong S, Molyneux K, Yarnell D, Löhr H, Driever W, Acosta MT, Arcos-Burgos M, Muenke M. An Ultraconserved Brain-Specific Enhancer Within ADGRL3 (LPHN3) Underpins Attention-Deficit/Hyperactivity Disorder Susceptibility. Biol Psychiatry 2016; 80:943-954. [PMID: 27692237 PMCID: PMC5108697 DOI: 10.1016/j.biopsych.2016.06.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetic factors predispose individuals to attention-deficit/hyperactivity disorder (ADHD). Previous studies have reported linkage and association to ADHD of gene variants within ADGRL3. In this study, we functionally analyzed noncoding variants in this gene as likely pathological contributors. METHODS In silico, in vitro, and in vivo approaches were used to identify and characterize evolutionary conserved elements within the ADGRL3 linkage region (~207 Kb). Family-based genetic analyses of 838 individuals (372 affected and 466 unaffected patients) identified ADHD-associated single nucleotide polymorphisms harbored in some of these conserved elements. Luciferase assays and zebrafish green fluorescent protein transgenesis tested conserved elements for transcriptional enhancer activity. Electromobility shift assays were used to verify transcription factor-binding disruption by ADHD risk alleles. RESULTS An ultraconserved element was discovered (evolutionary conserved region 47) that functions as a transcriptional enhancer. A three-variant ADHD risk haplotype in evolutionary conserved region 47, formed by rs17226398, rs56038622, and rs2271338, reduced enhancer activity by 40% in neuroblastoma and astrocytoma cells (pBonferroni < .0001). This enhancer also drove green fluorescent protein expression in the zebrafish brain in a tissue-specific manner, sharing aspects of endogenous ADGRL3 expression. The rs2271338 risk allele disrupts binding of YY1 transcription factor, an important factor in the development and function of the central nervous system. Expression quantitative trait loci analysis of postmortem human brain tissues revealed an association between rs2271338 and reduced ADGRL3 expression in the thalamus. CONCLUSIONS These results uncover the first functional evidence of common noncoding variants with potential implications for the pathology of ADHD.
Collapse
|
29
|
Acosta MT, Swanson J, Stehli A, Molina BSG, Martinez AF, Arcos-Burgos M, Muenke M. ADGRL3 (LPHN3) variants are associated with a refined phenotype of ADHD in the MTA study. Mol Genet Genomic Med 2016; 4:540-7. [PMID: 27652281 PMCID: PMC5023939 DOI: 10.1002/mgg3.230] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/22/2022] Open
Abstract
Background ADHD is the most common neuropsychiatric condition affecting individuals of all ages. Long‐term outcomes of affected individuals and association with severe comorbidities as SUD or conduct disorders are the main concern. Genetic associations have been extensively described. Multiple studies show that intronic variants harbored in the ADGRL3 (LPHN3) gene are associated with ADHD, especially associated with poor outcomes. Methods In this study, we evaluated this association in the Multimodal Treatment Study of children with ADHD (MTA), initiated as a 14‐month randomized clinical trial of 579 children diagnosed with DSM‐IV ADHD‐Combined Type (ADHD‐C), that transitioned to a 16‐year prospective observational follow‐up, and 289 classmates added at the 2‐year assessment to serve as a local normative comparison group (LNCG). Diagnostic evaluations at entry were based on the Diagnostic Interview Schedule for Children‐Parent (DISC‐P), which was repeated at several points over the years. For an add‐on genetic study, blood samples were collected from 232 in the MTA group and 139 in the LNCG. Results For the 205 MTA participants, 14.6% retained the DISC‐P diagnosis of ADHD‐C in adolescence. For 127 LNCG participants, 88.2% remained undiagnosed by the DISC‐P. We genotyped 15 polymorphic SNP markers harbored in the ADGRL3 gene, and compared allele frequencies for the 30 cases with continued diagnosis of ADHD‐C in adolescence to the other participants. Replication of the association of rs2345039 ADGRL3 variant was observed (P value = 0.004, FDR corrected = 0.03; Odds ratio = 2.25, upper CI 1.28–3.97). Conclusion The detection of susceptibility conferred by ADGRL3 variants in the extreme phenotype of continued diagnosis of ADHD‐C from childhood to adolescence provides additional support that the association of ADGRL3 and ADHD is not spurious. Exploring genetic effects in longitudinal cohorts, in which refined, age‐dependent phenotypes are documented, is crucial to understand the natural history of ADHD.
Collapse
Affiliation(s)
- Maria T Acosta
- Medical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMaryland; Department of Pediatric and NeurologyGeorge Washington UniversityChildren's National Medical CenterWashingtonDistrict of Columbia
| | - James Swanson
- Department of PsychiatryFlorida International UniversityMiamiFlorida; Department of PediatricsUniversity of California at IrvineIrvineCalifornia
| | - Annamarie Stehli
- Department of Pediatrics University of California at Irvine Irvine California
| | - Brooke S G Molina
- Departments of Psychiatry and Psychology University of Pittsburgh Pittsburgh Pennsylvania
| | | | - Ariel F Martinez
- Medical Genetics Branch National Human Genome Research Institute National Institutes of Health Bethesda Maryland
| | - Mauricio Arcos-Burgos
- Genomics and Predictive Medicine Genome Biology Department John Curtin School of Medical Research ANU College of Medicine, Biology and Environment The Australian National University Canberra ACT Australia
| | - Maximilian Muenke
- Medical Genetics Branch National Human Genome Research Institute National Institutes of Health Bethesda Maryland
| |
Collapse
|
30
|
Bruxel EM, Salatino-Oliveira A, Akutagava-Martins GC, Tovo-Rodrigues L, Genro JP, Zeni CP, Polanczyk GV, Chazan R, Schmitz M, Arcos-Burgos M, Rohde LA, Hutz MH. LPHN3 and attention-deficit/hyperactivity disorder: a susceptibility and pharmacogenetic study. GENES BRAIN AND BEHAVIOR 2016; 14:419-27. [PMID: 25989180 DOI: 10.1111/gbb.12224] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/28/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022]
Abstract
Latrophilin 3 (LPHN3) is a brain-specific member of the G-protein coupled receptor family associated to both attention-deficit/hyperactivity disorder (ADHD) genetic susceptibility and methylphenidate (MPH) pharmacogenetics. Interactions of LPHN3 variants with variants harbored in the 11q chromosome improve the prediction of ADHD development and medication response. The aim of this study was to evaluate the role of LPHN3 variants in childhood ADHD susceptibility and treatment response in a naturalistic clinical cohort. The association between LPHN3 and ADHD was evaluated in 523 children and adolescents with ADHD and 132 controls. In the pharmacogenetic study, 172 children with ADHD were investigated. The primary outcome measure was the parent-rated Swanson, Nolan and Pelham Scale - version IV applied at baseline, first and third months of treatment with MPH. The results reported herein suggest the CGC haplotype derived from single nucleotide polymorphisms (SNPs) rs6813183, rs1355368 and rs734644 as an ADHD risk haplotype (P = 0.02, OR = 1.46). Although non-significant after multiple testing correction, its interaction with the 11q chromosome SNP rs965560 slightly increases risk (P = 0.03, OR = 1.55). Homozygous individuals for the CGC haplotype showed faster response to MPH treatment as a significant interaction effect between CGC haplotype and treatment over time was observed (P < 0.001). Homozygous individuals for the GT haplotype derived from SNPs rs6551665 and rs1947275 showed a nominally significant interaction with treatment over time (P = 0.04). Our findings replicate previous findings reporting that LPHN3 confers ADHD susceptibility, and moderates MPH treatment response in children and adolescents with ADHD.
Collapse
Affiliation(s)
- E M Bruxel
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - A Salatino-Oliveira
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | | | - L Tovo-Rodrigues
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - J P Genro
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - C P Zeni
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - G V Polanczyk
- Institute for Developmental Psychiatry for Children and Adolescents, Porto Alegre, RS.,Department of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - R Chazan
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - M Schmitz
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS
| | - M Arcos-Burgos
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - L A Rohde
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, RS.,Institute for Developmental Psychiatry for Children and Adolescents, Porto Alegre, RS
| | - M H Hutz
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, RS
| |
Collapse
|
31
|
Orsini CA, Setlow B, DeJesus M, Galaviz S, Loesch K, Ioerger T, Wallis D. Behavioral and transcriptomic profiling of mice null for Lphn3, a gene implicated in ADHD and addiction. Mol Genet Genomic Med 2016; 4:322-43. [PMID: 27247960 PMCID: PMC4867566 DOI: 10.1002/mgg3.207] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 01/08/2023] Open
Abstract
Background The Latrophilin 3 (LPHN3) gene (recently renamed Adhesion G protein‐coupled receptor L3 (ADGRL3)) has been linked to susceptibility to attention deficit/hyperactivity disorder (ADHD) and vulnerability to addiction. However, its role and function are not well understood as there are no known functional variants. Methods To characterize the function of this little known gene, we phenotyped Lphn3 null mice. We assessed motivation for food reward and working memory via instrumental responding tasks, motor coordination via rotarod, and depressive‐like behavior via forced swim. We also measured neurite outgrowth of primary hippocampal and cortical neuron cultures. Standard blood chemistries and blood counts were performed. Finally, we also evaluated the transcriptome in several brain regions. Results Behaviorally, loss of Lphn3 increases both reward motivation and activity levels. Lphn3 null mice display significantly greater instrumental responding for food than wild‐type mice, particularly under high response ratios, and swim incessantly during a forced swim assay. However, loss of Lphn3 does not interfere with working memory or motor coordination. Primary hippocampal and cortical neuron cultures demonstrate that null neurons display comparatively enhanced neurite outgrowth after 2 and 3 days in vitro. Standard blood chemistry panels reveal that nulls have low serum calcium levels. Finally, analysis of the transcriptome from prefrontal cortical, striatal, and hippocampal tissue at different developmental time points shows that loss of Lphn3 results in genotype‐dependent differential gene expression (DGE), particularly for cell adhesion molecules and calcium signaling proteins. Much of the DGE is attenuated with age, and is consistent with the idea that ADHD is associated with delayed cortical maturation. Conclusions Transcriptome changes likely affect neuron structure and function, leading to behavioral anomalies consistent with both ADHD and addiction phenotypes. The data should further motivate analyses of Lphn3 function in the developmental timing of altered gene expression and calcium signaling, and their effects on neuronal structure/function during development.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry McKnight Brain Institute University of Florida College of Medicine Gainesville Florida 32610
| | - Barry Setlow
- Department of Psychiatry McKnight Brain Institute University of Florida College of Medicine Gainesville Florida 32610
| | - Michael DeJesus
- Department of Computer Science and Engineering Texas A&M University College Station Texas 77843
| | - Stacy Galaviz
- Department of Biochemistry and Biophysics Texas A&M University College Station Texas 77843
| | - Kimberly Loesch
- Department of Biochemistry and Biophysics Texas A&M University College Station Texas 77843
| | - Thomas Ioerger
- Department of Computer Science and Engineering Texas A&M University College Station Texas 77843
| | - Deeann Wallis
- Department of Biochemistry and Biophysics Texas A&M University College Station Texas 77843
| |
Collapse
|
32
|
Pagerols M, Richarte V, Sánchez-Mora C, Garcia-Martínez I, Corrales M, Corominas M, Cormand B, Casas M, Ribasés M, Ramos-Quiroga JA. Pharmacogenetics of methylphenidate response and tolerability in attention-deficit/hyperactivity disorder. THE PHARMACOGENOMICS JOURNAL 2016; 17:98-104. [DOI: 10.1038/tpj.2015.89] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/15/2015] [Accepted: 11/02/2015] [Indexed: 01/06/2023]
|
33
|
Xu J, Hu H, Wright R, Sánchez BN, Schnaas L, Bellinger DC, Park SK, Martínez S, Hernández-Avila M, Téllez-Rojo MM, Wright RO. Prenatal Lead Exposure Modifies the Impact of Maternal Self-Esteem on Children's Inattention Behavior. J Pediatr 2015; 167:435-41. [PMID: 26047683 PMCID: PMC4692471 DOI: 10.1016/j.jpeds.2015.04.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/02/2015] [Accepted: 04/22/2015] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To prospectively evaluate the association of maternal self-esteem measured when their offspring were toddlers with the subsequent development of attention deficit hyperactivity disorder (ADHD)-like behavior in their school-age offspring and the potential modifying effects of prenatal lead exposure. STUDY DESIGN We evaluated a subsample of 192 mother-child pairs from a long-running birth-cohort project that enrolled mothers in Mexico from 1994-2011. Prenatal lead exposure was assessed using cord blood lead and maternal bone lead around delivery (tibia and patella lead, measured by K-x-ray-fluorescence). When children were 2 years old, maternal self-esteem was measured using the Coopersmith Self-Esteem Inventory. When children were 7-15 years old, children's blood lead levels and ADHD symptoms were assessed, and Conners' Parent Rating Scale-Revised and Behavior Rating Inventory of Executive Function-Parent Form were used as measures of ADHD-like behavior. RESULTS Adjusting for family economic status, marital status, maternal education and age, child's age and sex, and children's current blood lead levels, increased maternal self-esteem was associated with reduced child inattention behavior. Compared with those among high prenatal lead exposure (P25-P100), this association was stronger among low prenatal lead exposure groups (P1-P25, P values for the interaction effects between prenatal lead exposure and maternal self-esteem levels of <.10). Each 1-point increase in maternal self-esteem scores was associated with 0.6- to 1.3-point decrease in Conners' Parent Rating Scale-Revised and Behavior Rating Inventory of Executive Function-Parent Form T-scores among groups with low cord blood lead and patella lead (P1-P25). CONCLUSIONS Children experiencing high maternal self-esteem during toddlerhood were less likely to develop inattention behavior at school age. Prenatal lead exposure may play a role in attenuating this protective effect.
Collapse
Affiliation(s)
- Jian Xu
- Xinhua Hospital, MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Howard Hu
- Dalla Lana School of Public Health, University of Toronto, Ontario, Canada; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI.
| | - Rosalind Wright
- Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Brisa N Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI
| | | | | | - Sung Kyun Park
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI; Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI
| | | | | | | | - Robert O Wright
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
34
|
Bale TL. Lifetime stress experience: transgenerational epigenetics and germ cell programming. DIALOGUES IN CLINICAL NEUROSCIENCE 2015. [PMID: 25364281 PMCID: PMC4214173 DOI: 10.31887/dcns.2014.16.3/tbale] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transgenerational epigenetic programming involved in the passage of environmental exposures to stressful periods from one generation to the next has been examined in human populations, and mechanistically in animal models. Epidemiological studies suggest that gestational exposures to environmental factors including stress are strongly associated with an increased risk of neurodevelopmental disorders, including attention deficit-hyperactivity disorder, schizophrenia, and autism spectrum disorders. Both maternal and paternal life experiences with stress can be passed on to offspring directly during pregnancy or through epigenetic marks in the germ cell. Animal models of parental stress have examined relevant offspring phenotypes and transgenerational outcomes, and provided unique insight into the germ cell epigenetic changes associated with disruptions in neurodevelopment. Understanding germline susceptibility to exogenous signals during stress exposure and the identification of the types of epigenetic marks is critical for defining mechanisms underlying disease risk.
Collapse
Affiliation(s)
- Tracy L Bale
- Department of Psychiatry, Perelman School of Medicine, and Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
35
|
Association of SNAP-25, SLC6A2, and LPHN3 with OROS methylphenidate treatment response in attention-deficit/hyperactivity disorder. Clin Neuropharmacol 2015; 37:136-41. [PMID: 25229170 DOI: 10.1097/wnf.0000000000000045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Our study aimed to identify the association of norepinephrine transporter gene (SLC6A2), synaptosomal-associated protein of the 25-kDa gene (SNAP-25), and latrophilin 3 gene (LPHN3) with osmotic-controlled release oral delivery system methylphenidate (OROS MPH) treatment response. METHODS One hundred thirty-nine children and adolescents with attention-deficit/hyperactivity disorder (ADHD) were recruited. We selected rs192303, rs3785143 in SLC6A2; rs3746544 (1065 T>G) in SNAP-25; and rs6551665, rs1947274, and rs2345039 in LPHN3 to examine the association of OROS MPH treatment response with each single nucleotide polymorphism. We first defined good response group when the Korean version of the ADHD rating scale score at 8 weeks was decreased for more than 50% of baseline scores and compared genotype frequencies in good response group with poor group. Second, we defined it when the Clinical Global Impression-Improvement score at 8 weeks was 1 or 2, and we also analyzed the genotype frequencies. RESULTS There was a significant association between the 1065 T>G of SNAP-25 gene and OROS MPH response, with the good response group defined by the Korean version of ADHD rating scale scores; 33.3% of the subjects with GG genotype showed a good response, whereas 74.7% of those with TT genotype and 72.5% of those with TG genotype showed good responses (P=0.034). SLC6A2 rs192303 was related with OROS MPH treatment response when we defined good treatment response by Clinical Global Impression-Improvement (P=0.009). CONCLUSIONS Our study suggested that SNAP-25 gene and SLC6A2 were involved with OROS MPH response.
Collapse
|
36
|
Hwang IW, Lim MH, Kwon HJ, Jin HJ. Association of LPHN3 rs6551665 A/G polymorphism with attention deficit and hyperactivity disorder in Korean children. Gene 2015; 566:68-73. [PMID: 25871512 DOI: 10.1016/j.gene.2015.04.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 04/07/2015] [Accepted: 04/10/2015] [Indexed: 11/27/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common and highly heritable disorder of school-age children. Its heritability was estimated at 80-90% but the genetic component underpinning this disorder remains to be disclosed. Recently, a highly consistent association between latrophilin3 (LPHN3) gene and ADHD was reported. In the present study, we examined the association between the LPHN3 rs6551665 A/G polymorphism and ADHD in Korea. The samples used in the study consisted of 150 ADHD children and 322 controls. The ADHD children were diagnosed according to DSM-IV. ADHD symptoms were evaluated with Dupaul Parent ADHD Rating Scales. LPHN3 rs6551665 SNP was determined by PCR-RFLP. Hardy-Weinberg equilibrium, genotype and allele frequency differences between the case and the control, and odds ratio were examined using the chi-square and exact tests. The LPHN3 gene locus was found to have no deviation from the Hardy-Weinberg expectation. We observed a significant association between the ADHD children and control group in genotype frequency (p=0.01) and allele frequency (p=0.02). The ADHD children appeared to have a surplus of GG genotype (OR 2.959, 95% CI 1.416-6.184, p=0.003) and G allele (OR 1.44, 95% CI 1.062-1.945, p=0.02). The association was more distinctive when analysis was confined to male samples (p=0.005), the OR of male controls and cases was 4.029 (95% CI 1.597-10.164, p=0.002) and the OR having G allele vs. A allele was 1.46 (95% CI 1.002-2.127, p=0.048). Thus our results imply that the LPHN3 rs6551665 GG genotype and G allele may provide a significant effect on the ADHD, although larger sample sizes and functional studies are necessary to further elucidate these findings.
Collapse
Affiliation(s)
- In Wook Hwang
- Department of Nanobiomedical Science, College of Natural Science, Dankook University, Cheonan, South Korea; Environmental Health Center, Dankook Medical Hospital, Cheonan, South Korea
| | - Myung Ho Lim
- Environmental Health Center, Dankook Medical Hospital, Cheonan, South Korea; Department of Psychology, College of Public Welfare, Dankook University, Cheonan, South Korea
| | - Ho Jang Kwon
- Environmental Health Center, Dankook Medical Hospital, Cheonan, South Korea; Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, South Korea
| | - Han Jun Jin
- Department of Nanobiomedical Science, College of Natural Science, Dankook University, Cheonan, South Korea; Environmental Health Center, Dankook Medical Hospital, Cheonan, South Korea.
| |
Collapse
|
37
|
Bruxel EM, Akutagava-Martins GC, Salatino-Oliveira A, Contini V, Kieling C, Hutz MH, Rohde LA. ADHD pharmacogenetics across the life cycle: New findings and perspectives. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:263-82. [PMID: 24804845 DOI: 10.1002/ajmg.b.32240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/14/2014] [Indexed: 12/17/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a complex and heterogeneous disorder, affecting individuals across the life cycle. Although its etiology is not yet completely understood, genetics plays a substantial role. Pharmacological treatment is considered effective and safe for children and adults, but there is considerable inter-individual variability among patients regarding response to medication, required doses, and adverse events. We present here a systematic review of the literature on ADHD pharmacogenetics to provide a critical discussion of the existent findings, new approaches, limitations, and recommendations for future research. Our main findings are: first, the number of studies continues to grow, making ADHD one of the mental health areas with more pharmacogenetic studies. Second, there has been a focus shift on ADHD pharmacogenetic studies in the last years. There is an increasing number of studies assessing gene-gene and gene-environment interactions, using genome-wide association approaches, neuroimaging, and assessing pharmacokinetic properties. Third and most importantly, the heterogeneity in methodological strategies employed by different studies remains impressive. The question whether pharmacogenetics studies of ADHD will improve clinical management by shifting from trial-and-error approach to a pharmacological regimen that takes into account the individual variability remains unanswered. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Estela Maria Bruxel
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
38
|
Winham SJ, Biernacka JM. Gene-environment interactions in genome-wide association studies: current approaches and new directions. J Child Psychol Psychiatry 2013; 54:1120-34. [PMID: 23808649 PMCID: PMC3829379 DOI: 10.1111/jcpp.12114] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND Complex psychiatric traits have long been thought to be the result of a combination of genetic and environmental factors, and gene-environment interactions are thought to play a crucial role in behavioral phenotypes and the susceptibility and progression of psychiatric disorders. Candidate gene studies to investigate hypothesized gene-environment interactions are now fairly common in human genetic research, and with the shift toward genome-wide association studies, genome-wide gene-environment interaction studies are beginning to emerge. METHODS We summarize the basic ideas behind gene-environment interaction, and provide an overview of possible study designs and traditional analysis methods in the context of genome-wide analysis. We then discuss novel approaches beyond the traditional strategy of analyzing the interaction between the environmental factor and each polymorphism individually. RESULTS Two-step filtering approaches that reduce the number of polymorphisms tested for interactions can substantially increase the power of genome-wide gene-environment studies. New analytical methods including data-mining approaches, and gene-level and pathway-level analyses, also have the capacity to improve our understanding of how complex genetic and environmental factors interact to influence psychologic and psychiatric traits. Such methods, however, have not yet been utilized much in behavioral and mental health research. CONCLUSIONS Although methods to investigate gene-environment interactions are available, there is a need for further development and extension of these methods to identify gene-environment interactions in the context of genome-wide association studies. These novel approaches need to be applied in studies of psychology and psychiatry.
Collapse
Affiliation(s)
- Stacey J Winham
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester MN 55905
| | - Joanna M. Biernacka
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester MN 55905,Department of Psychiatry and Psychology, Mayo Clinic, Rochester MN 55905
| |
Collapse
|
39
|
Lesch KP, Merker S, Reif A, Novak M. Dances with black widow spiders: dysregulation of glutamate signalling enters centre stage in ADHD. Eur Neuropsychopharmacol 2013; 23:479-91. [PMID: 22939004 DOI: 10.1016/j.euroneuro.2012.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/10/2012] [Accepted: 07/24/2012] [Indexed: 11/26/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with impairments across the lifespan. The persistence of ADHD is associated with considerable liability to neuropsychiatric co-morbidity such as depression, anxiety and substance use disorder. The substantial heritability of ADHD is well documented and recent genome-wide analyses for risk genes revealed synaptic adhesion molecules (e.g. latrophilin-3, LPHN3; fibronectin leucine-rich repeat transmembrane protein-3, FLRT3), glutamate receptors (e.g. metabotropic glutamate receptor-5, GRM5) and mediators of intracellular signalling pathways (e.g. nitric oxide synthase-1, NOS1). These genes encode principal components of the molecular machinery that connects pre- and postsynaptic neurons, facilitates glutamatergic transmission, controls synaptic plasticity and empowers intersecting neural circuits to process and refine information. Thus, identification of genetic variation affecting molecules essential for the formation, specification and function of excitatory synapses is refocusing research efforts on ADHD pathogenesis to include the long-neglected glutamate system.
Collapse
Affiliation(s)
- K P Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, ADHD Clinical Research Network, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstr. 15, 97080 Würzburg, Germany.
| | | | | | | |
Collapse
|
40
|
Norton WHJ. Toward developmental models of psychiatric disorders in zebrafish. Front Neural Circuits 2013; 7:79. [PMID: 23637652 PMCID: PMC3636468 DOI: 10.3389/fncir.2013.00079] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/09/2013] [Indexed: 12/20/2022] Open
Abstract
Psychiatric disorders are a diverse set of diseases that affect all aspects of mental function including social interaction, thinking, feeling, and mood. Although psychiatric disorders place a large economic burden on society, the drugs available to treat them are often palliative with variable efficacy and intolerable side-effects. The development of novel drugs has been hindered by a lack of knowledge about the etiology of these diseases. It is thus necessary to further investigate psychiatric disorders using a combination of human molecular genetics, gene-by-environment studies, in vitro pharmacological and biochemistry experiments, animal models, and investigation of the non-biological basis of these diseases, such as environmental effects. Many psychiatric disorders, including autism spectrum disorder, attention-deficit/hyperactivity disorder, mental retardation, and schizophrenia can be triggered by alterations to neural development. The zebrafish is a popular model for developmental biology that is increasingly used to study human disease. Recent work has extended this approach to examine psychiatric disorders as well. However, since psychiatric disorders affect complex mental functions that might be human specific, it is not possible to fully model them in fish. In this review, I will propose that the suitability of zebrafish for developmental studies, and the genetic tools available to manipulate them, provide a powerful model to study the roles of genes that are linked to psychiatric disorders during neural development. The relative speed and ease of conducting experiments in zebrafish can be used to address two areas of future research: the contribution of environmental factors to disease onset, and screening for novel therapeutic compounds.
Collapse
Affiliation(s)
- William H J Norton
- Department of Biology, College of Medicine, Biological Sciences and Psychiatry, University of Leicester Leicester, UK
| |
Collapse
|
41
|
Duman JG, Tzeng CP, Tu YK, Munjal T, Schwechter B, Ho TSY, Tolias KF. The adhesion-GPCR BAI1 regulates synaptogenesis by controlling the recruitment of the Par3/Tiam1 polarity complex to synaptic sites. J Neurosci 2013; 33:6964-78. [PMID: 23595754 PMCID: PMC3670686 DOI: 10.1523/jneurosci.3978-12.2013] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/28/2013] [Accepted: 02/28/2013] [Indexed: 11/21/2022] Open
Abstract
Excitatory synapses are polarized structures that primarily reside on dendritic spines in the brain. The small GTPase Rac1 regulates the development and plasticity of synapses and spines by modulating actin dynamics. By restricting the Rac1-guanine nucleotide exchange factor Tiam1 to spines, the polarity protein Par3 promotes synapse development by spatially controlling Rac1 activation. However, the mechanism for recruiting Par3 to spines is unknown. Here, we identify brain-specific angiogenesis inhibitor 1 (BAI1) as a synaptic adhesion GPCR that is required for spinogenesis and synaptogenesis in mice and rats. We show that BAI1 interacts with Par3/Tiam1 and recruits these proteins to synaptic sites. BAI1 knockdown results in Par3/Tiam1 mislocalization and loss of activated Rac1 and filamentous actin from spines. Interestingly, BAI1 also mediates Rac-dependent engulfment in professional phagocytes through its interaction with a different Rac1-guanine nucleotide exchange factor module, ELMO/DOCK180. However, this interaction is dispensable for BAI1's role in synapse development because a BAI1 mutant that cannot interact with ELMO/DOCK180 rescues spine defects in BAI1-knockdown neurons, whereas a mutant that cannot interact with Par3/Tiam1 rescues neither spine defects nor Par3 localization. Further, overexpression of Tiam1 rescues BAI1 knockdown spine phenotypes. These results indicate that BAI1 plays an important role in synaptogenesis that is mechanistically distinct from its role in phagocytosis. Furthermore, our results provide the first example of a cell surface receptor that targets members of the PAR polarity complex to synapses.
Collapse
Affiliation(s)
| | | | - Yen-Kuei Tu
- Department of Neuroscience
- Graduate Program in Cell and Molecular Biology
| | - Tina Munjal
- Department of Neuroscience
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| | | | | | - Kimberley F. Tolias
- Department of Neuroscience
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, and
| |
Collapse
|
42
|
Thakur GA, Sengupta SM, Grizenko N, Choudhry Z, Joober R. Comprehensive phenotype/genotype analyses of the norepinephrine transporter gene (SLC6A2) in ADHD: relation to maternal smoking during pregnancy. PLoS One 2012; 7:e49616. [PMID: 23185385 PMCID: PMC3502190 DOI: 10.1371/journal.pone.0049616] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/11/2012] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Despite strong pharmacological evidence implicating the norepinephrine transporter in ADHD, genetic studies have yielded largely insignificant results. We tested the association between 30 tag SNPs within the SLC6A2 gene and ADHD, with stratification based on maternal smoking during pregnancy, an environmental factor strongly associated with ADHD. METHODS Children (6-12 years old) diagnosed with ADHD according to DSM-IV criteria were comprehensively evaluated with regard to several behavioral and cognitive dimensions of ADHD as well as response to a fixed dose of methylphenidate (MPH) using a double-blind placebo controlled crossover trial. Family-based association tests (FBAT), including categorical and quantitative trait analyses, were conducted in 377 nuclear families. RESULTS A highly significant association was observed with rs36021 (and linked SNPs) in the group where mothers smoked during pregnancy. Association was noted with categorical DSM-IV ADHD diagnosis (Z=3.74, P=0.0002), behavioral assessments by parents (CBCL, P=0.00008), as well as restless-impulsive subscale scores on Conners'-teachers (P=0.006) and parents (P=0.006). In this subgroup, significant association was also observed with cognitive deficits, more specifically sustained attention, spatial working memory, planning, and response inhibition. The risk allele was associated with significant improvement of behavior as measured by research staff (Z=3.28, P=0.001), parents (Z=2.62, P=0.009), as well as evaluation in the simulated academic environment (Z=3.58, P=0.0003). CONCLUSIONS By using maternal smoking during pregnancy to index a putatively more homogeneous group of ADHD, highly significant associations were observed between tag SNPs within SLC6A2 and ADHD diagnosis, behavioral and cognitive measures relevant to ADHD and response to MPH. This comprehensive phenotype/genotype analysis may help to further understand this complex disorder and improve its treatment. Clinical trial registration information - Clinical and Pharmacogenetic Study of Attention Deficit with Hyperactivity Disorder (ADHD); www.clinicaltrials.gov; NCT00483106.
Collapse
Affiliation(s)
- Geeta A. Thakur
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | | | - Natalie Grizenko
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Zia Choudhry
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Ridha Joober
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Labbe A, Liu A, Atherton J, Gizenko N, Fortier MÈ, Sengupta SM, Ridha J. Refining psychiatric phenotypes for response to treatment: contribution of LPHN3 in ADHD. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:776-85. [PMID: 22851411 DOI: 10.1002/ajmg.b.32083] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/05/2012] [Indexed: 11/10/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a heterogeneous disorder characterized by inappropriate levels of attention, hyperactivity, and impulsivity. Although a strong genetic component to the disorder has been established, the molecular genetic underpinnings of this disorder remain elusive. Recently, several studies have reported an association between polymorphisms within the latrophilin 3 gene (LPHN3) and ADHD. Interestingly, the same single-nucleotide polymorphism conferring susceptibility to ADHD has also been found to predict efficacy of stimulant medication in children. The main objectives of the current article are: (i) To tackle the phenotype heterogeneity issue in ADHD by defining an objective and quantitative measure of response to treatment in a sample of ADHD children based on a hand held automatic device (Actiwatch) and (ii) to use this measure to reproduce for the first time the association between LPHN3 variants and response to methylphenidate (MPH) using a double-blind, placebo-controlled crossover experimental design. The results of our study confirm the hypothesis that LPHN3 is associated with response to MPH in ADHD children. Although this will require further validation, our work suggests that the use of an objective measure of response to treatment, such as the change in the child's motor activity measured by Actiwatch, has the potential to uncover genetic association signals that in some conditions might not be obtained using more subjective measures, such as the clinical consensus rating, for example.
Collapse
Affiliation(s)
- Aurelie Labbe
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
44
|
Elia J, Sackett J, Turner T, Schardt M, Tang SC, Kurtz N, Dunfey M, McFarlane NA, Susi A, Danish D, Li A, Nissley-Tsiopinis J, Borgmann-Winter K. Attention-deficit/hyperactivity disorder genomics: update for clinicians. Curr Psychiatry Rep 2012; 14:579-89. [PMID: 22843546 DOI: 10.1007/s11920-012-0309-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Attention deficit, hyperactivity disorder (ADHD) is familial and highly heritable. Several candidate genes involved in neurotransmission have been identified, however these confer minimal risk, suggesting that for the most part, ADHD is not caused by single common genetic variants. Advances in genotyping enabling investigation at the level of the genome have led to the discovery of rare structural variants suggesting that ADHD is a genomic disorder, with potentially thousands of variants, and common neuronal pathways disrupted by numerous rare variants resulting in similar ADHD phenotypes. Heritability studies in humans also indicate the importance of epigenetic factors, and animal studies are deciphering some of the processes that confer risk during gestation and throughout the post-natal period. These and future discoveries will lead to improved diagnosis, individualized treatment, cures, and prevention. These advances also highlight ethical and legal issues requiring management and interpretation of genetic data and ensuring privacy and protection from misuse.
Collapse
Affiliation(s)
- Josephine Elia
- Department Psychiatry, The University of Pennsylvania, Philadelphia, PA 19104-6209, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|