1
|
Jing J, Hu M, Ngodup T, Ma Q, Lau SNN, Ljungberg MC, McGinley MJ, Trussell LO, Jiang X. Molecular logic for cellular specializations that initiate the auditory parallel processing pathways. Nat Commun 2025; 16:489. [PMID: 39788966 PMCID: PMC11717940 DOI: 10.1038/s41467-024-55257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity. The resulting comprehensive cell-type taxonomy reconciles anatomical position, morphological, physiological, and molecular criteria, enabling the determination of the molecular basis of the specialized cellular phenotypes in the CN. In particular, CN cell-type identity is encoded in a transcriptional architecture that orchestrates functionally congruent expression across a small set of gene families to customize projection patterns, input-output synaptic communication, and biophysical features required for encoding distinct aspects of acoustic signals. This high-resolution account of cellular heterogeneity from the molecular to the circuit level reveals the molecular logic driving cellular specializations, thus enabling the genetic dissection of auditory processing and hearing disorders with a high specificity.
Collapse
Affiliation(s)
- Junzhan Jing
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ming Hu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Tenzin Ngodup
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS, University of Washington, Seattle, WA, USA
| | - Qianqian Ma
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shu-Ning Natalie Lau
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - M Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew J McGinley
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
| | - Xiaolong Jiang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Jing J, Hu M, Ngodup T, Ma Q, Lau SNN, Ljungberg C, McGinley MJ, Trussell LO, Jiang X. Molecular logic for cellular specializations that initiate the auditory parallel processing pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.539065. [PMID: 37293040 PMCID: PMC10245571 DOI: 10.1101/2023.05.15.539065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cochlear nuclear complex (CN), the starting point for all central auditory processing, comprises a suite of neuronal cell types that are highly specialized for neural coding of acoustic signals, yet molecular logic governing cellular specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple new subtypes with anatomical and physiological identity. The resulting comprehensive cell-type taxonomy reconciles anatomical position, morphological, physiological, and molecular criteria, enabling the determination of the molecular basis of the remarkable cellular phenotypes in the CN. In particular, CN cell-type identity is encoded in a transcriptional architecture that orchestrates functionally congruent expression across a small set of gene families to customize projection patterns, input-output synaptic communication, and biophysical features required for encoding distinct aspects of acoustic signals. This high-resolution account of cellular heterogeneity from the molecular to the circuit level illustrates molecular logic for cellular specializations and enables genetic dissection of auditory processing and hearing disorders with unprecedented specificity.
Collapse
Affiliation(s)
- Junzhan Jing
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ming Hu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Tenzin Ngodup
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
| | - Qianqian Ma
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shu-Ning Natalie Lau
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew J. McGinley
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Laurence O. Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Xiaolong Jiang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX,USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Görgülü I, Jagannath V, Pons S, Koniuszewski F, Groszer M, Maskos U, Huck S, Scholze P. The human-specific nicotinic receptor subunit CHRFAM7A reduces α7 receptor function in human induced pluripotent stem cells-derived and transgenic mouse neurons. Eur J Neurosci 2024; 60:4893-4906. [PMID: 39073048 DOI: 10.1111/ejn.16474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
We investigated the impact of the human-specific gene CHRFAM7A on the function of α7 nicotinic acetylcholine receptors (α7 nAChRs) in two different types of neurons: human-induced pluripotent stem cell (hiPSC)-derived cortical neurons, and superior cervical ganglion (SCG) neurons, taken from transgenic mice expressing CHRFAM7A. dupα7, the gene product of CHRFAM7A, which lacks a major part of the extracellular N-terminal ligand-binding domain, co-assembles with α7, the gene product of CHRNA7. We assessed the receptor function in hiPSC-derived cortical and SCG neurons with Fura-2 calcium imaging and three different α7-specific ligands: PNU282987, choline, and 4BP-TQS. Given the short-lived open state of α7 receptors, we combined the two orthosteric agonists PNU282987 and choline with the type-2 positive allosteric modulator (PAM II) PNU120596. In line with different cellular models used previously, we demonstrate that CHRFAM7A has a major impact on nicotinic α7 nAChRs by reducing calcium transients in response to all three agonists.
Collapse
Affiliation(s)
- Ilayda Görgülü
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Vinita Jagannath
- Institut du Fer à Moulin, Sorbonne University, UMR-S 1270, Paris, France
- MSD R&D Innovation Centre, London, UK
| | - Stephanie Pons
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, Université Paris Cité, UMR 3571, Paris, France
| | - Filip Koniuszewski
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Matthias Groszer
- Institut du Fer à Moulin, Sorbonne University, UMR-S 1270, Paris, France
| | - Uwe Maskos
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, Université Paris Cité, UMR 3571, Paris, France
| | - Sigismund Huck
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Petra Scholze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Malkin J, O'Donnell C, Houghton CJ, Aitchison L. Signatures of Bayesian inference emerge from energy-efficient synapses. eLife 2024; 12:RP92595. [PMID: 39106188 PMCID: PMC11302983 DOI: 10.7554/elife.92595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
Abstract
Biological synaptic transmission is unreliable, and this unreliability likely degrades neural circuit performance. While there are biophysical mechanisms that can increase reliability, for instance by increasing vesicle release probability, these mechanisms cost energy. We examined four such mechanisms along with the associated scaling of the energetic costs. We then embedded these energetic costs for reliability in artificial neural networks (ANNs) with trainable stochastic synapses, and trained these networks on standard image classification tasks. The resulting networks revealed a tradeoff between circuit performance and the energetic cost of synaptic reliability. Additionally, the optimised networks exhibited two testable predictions consistent with pre-existing experimental data. Specifically, synapses with lower variability tended to have (1) higher input firing rates and (2) lower learning rates. Surprisingly, these predictions also arise when synapse statistics are inferred through Bayesian inference. Indeed, we were able to find a formal, theoretical link between the performance-reliability cost tradeoff and Bayesian inference. This connection suggests two incompatible possibilities: evolution may have chanced upon a scheme for implementing Bayesian inference by optimising energy efficiency, or alternatively, energy-efficient synapses may display signatures of Bayesian inference without actually using Bayes to reason about uncertainty.
Collapse
Affiliation(s)
- James Malkin
- Faculty of Engineering, University of BristolBristolUnited Kingdom
| | - Cian O'Donnell
- Faculty of Engineering, University of BristolBristolUnited Kingdom
- Intelligent Systems Research Centre, School of Computing, Engineering, and Intelligent Systems, Ulster UniversityDerry/LondonderryUnited Kingdom
| | - Conor J Houghton
- Faculty of Engineering, University of BristolBristolUnited Kingdom
| | | |
Collapse
|
5
|
Vincent PFY, Young ED, Edge ASB, Glowatzki E. Auditory hair cells and spiral ganglion neurons regenerate synapses with refined release properties in vitro. Proc Natl Acad Sci U S A 2024; 121:e2315599121. [PMID: 39058581 PMCID: PMC11294990 DOI: 10.1073/pnas.2315599121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing "synaptopathy" and hearing loss. Cocultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that, when P3-5 denervated organs of Corti are cocultured with SGNs, newly formed IHC/SGN synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When using older organs of Corti at P10-11, synaptic activity probed by deconvolution showed more mature release properties, closer to the specialized mode of IHC synaptic transmission crucial for coding the sound signal. This functional assessment of newly formed IHC synapses developed here, provides a powerful tool for testing approaches to improve synapse regeneration.
Collapse
Affiliation(s)
- Philippe F. Y. Vincent
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD21205
| | - Eric D. Young
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD21205
| | - Albert S. B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA02114
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Harvard Stem Cell Institute, Cambridge, MA02139
| | - Elisabeth Glowatzki
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD21205
| |
Collapse
|
6
|
Makarov M, Papa M, Korkotian E. Computational Modeling of Extrasynaptic NMDA Receptors: Insights into Dendritic Signal Amplification Mechanisms. Int J Mol Sci 2024; 25:4235. [PMID: 38673828 PMCID: PMC11050277 DOI: 10.3390/ijms25084235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Dendritic structures play a pivotal role in the computational processes occurring within neurons. Signal propagation along dendrites relies on both passive conduction and active processes related to voltage-dependent ion channels. Among these channels, extrasynaptic N-methyl-D-aspartate channels (exNMDA) emerge as a significant contributor. Prior studies have mainly concentrated on interactions between synapses and nearby exNMDA (100 nm-10 µm from synapse), activated by presynaptic membrane glutamate. This study concentrates on the correlation between synaptic inputs and distal exNMDA (>100 µm), organized in clusters that function as signal amplifiers. Employing a computational model of a dendrite, we elucidate the mechanism underlying signal amplification in exNMDA clusters. Our findings underscore the pivotal role of the optimal spatial positioning of the NMDA cluster in determining signal amplification efficiency. Additionally, we demonstrate that exNMDA subunits characterized by a large conduction decay constant. Specifically, NR2B subunits exhibit enhanced effectiveness in signal amplification compared to subunits with steeper conduction decay. This investigation extends our understanding of dendritic computational processes by emphasizing the significance of distant exNMDA clusters as potent signal amplifiers. The implications of our computational model shed light on the spatial considerations and subunit characteristics that govern the efficiency of signal amplification in dendritic structures, offering valuable insights for future studies in neurobiology and computational neuroscience.
Collapse
Affiliation(s)
- Mark Makarov
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Michele Papa
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Eduard Korkotian
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Vincent PF, Young ED, Edge AS, Glowatzki E. Auditory Hair Cells and Spiral Ganglion Neurons Regenerate Synapses with Refined Release Properties In Vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561095. [PMID: 38076928 PMCID: PMC10705289 DOI: 10.1101/2023.10.05.561095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing 'synaptopathy 'and hearing loss. Co-cultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that newly formed IHC synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When older organs of Corti were plated, synaptic activity probed by deconvolution, showed more mature release properties, closer to the highly specialized mode of IHC synaptic transmission that is crucial for coding the sound signal. This newly developed functional assessment of regenerated IHC synapses provides a powerful tool for testing approaches to improve synapse regeneration.
Collapse
Affiliation(s)
- Philippe F.Y. Vincent
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Eric D. Young
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Albert S.B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Elisabeth Glowatzki
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Juárez EH, Wood CR, Davies R, Kehoe O, Johnson WEB, Merighi A, Ferrini F. ST2-Conditioned Medium Fosters Dorsal Horn Cell Excitability and Synaptic Transmission in Cultured Mouse Spinal Cord. Stem Cell Rev Rep 2023; 19:2918-2928. [PMID: 37674016 PMCID: PMC10661801 DOI: 10.1007/s12015-023-10618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
Conditioned medium obtained from bone marrow-derived stem cells has been proposed as a novel cell-free therapy in spinal cord injury and neuropathic pain, yet the direct effect on spinal neuron function has never been investigated. Here, we adopted spinal cord organotypic cultures (SCOCs) as an experimental model to probe the effect of ST2 murine mesenchymal stem cells-conditioned medium (ST2-CM) on dorsal horn (DH) neuron functional properties. Three days of SCOC exposure to ST2-CM increased neuronal activity measured by Fos expression, as well as spontaneous or induced firing. We showed that the increase in neuronal excitability was associated with changes in both intrinsic membrane properties and an enhanced excitatory drive. The increased excitability at the single-cell level was substantiated at the network level by detecting synchronous bursts of calcium waves across DH neurons. Altogether, SCOCs represent a viable tool to probe mesenchymal cells' effect on intact neuronal networks. Our findings indicate that ST2-CM enhances neuronal activity and synaptic wiring in the spinal dorsal horn. Our data also support the trophic role of mesenchymal cells CM in maintaining network activity in spinal circuits.
Collapse
Affiliation(s)
- Esri H Juárez
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Chelsea R Wood
- Chester Medical School, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK
- School of Life Sciences, Coventry University, Coventry, CV1 2DS, UK
| | - Rebecca Davies
- Centre for Regenerative Medicine Research, School of Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, SY10 7AG, UK
| | - Oksana Kehoe
- Centre for Regenerative Medicine Research, School of Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, SY10 7AG, UK
| | - William E B Johnson
- Chester Medical School, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy.
- Department of Psychiatry and Neuroscience, Université Laval, Québec, G1K 7P4, Canada.
| |
Collapse
|
9
|
Wong NF, Xu-Friedman MA. Induction of Activity-Dependent Plasticity at Auditory Nerve Synapses. J Neurosci 2022; 42:6211-6220. [PMID: 35790402 PMCID: PMC9374128 DOI: 10.1523/jneurosci.0666-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022] Open
Abstract
Exposure to nontraumatic noise in vivo drives long-lasting changes in auditory nerve synapses, which may influence hearing, but the induction mechanisms are not known. We mimicked activity in acute slices of the cochlear nucleus from mice of both sexes by treating them with high potassium, after which voltage-clamp recordings from bushy cells indicated that auditory nerve synapses had reduced EPSC amplitude, quantal size, and vesicle release probability (P r). The effects of high potassium were prevented by blockers of nitric oxide (NO) synthase and protein kinase A. Treatment with the NO donor, PAPA-NONOate, also decreased P r, suggesting NO plays a central role in inducing synaptic changes. To identify the source of NO, we activated auditory nerve fibers specifically using optogenetics. Strobing for 2 h led to decreased EPSC amplitude and P r, which was prevented by antagonists against ionotropic glutamate receptors and NO synthase. This suggests that the activation of AMPA and NMDA receptors in postsynaptic targets of auditory nerve fibers drives release of NO, which acts retrogradely to cause long-term changes in synaptic function in auditory nerve synapses. This may provide insight into preventing or treating disorders caused by noise exposure.SIGNIFICANCE STATEMENT Auditory nerve fibers undergo long-lasting changes in synaptic properties in response to noise exposure in vivo, which may contribute to changes in hearing. Here, we investigated the cellular mechanisms underlying induction of synaptic changes using high potassium and optogenetic stimulation in vitro and identified important signaling pathways using pharmacology. Our results suggest that auditory nerve activity drives postsynaptic depolarization through AMPA and NMDA receptors, leading to the release of nitric oxide, which acts retrogradely to regulate presynaptic neurotransmitter release. These experiments revealed that auditory nerve synapses are unexpectedly sensitive to activity and can show dramatic, long-lasting changes in a few hours that could affect hearing.
Collapse
Affiliation(s)
- Nicole F Wong
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| |
Collapse
|
10
|
Kladisios N, Fischer L, Felmy F. Minimal Number of Required Inputs for Temporally Precise Action Potential Generation in Auditory Brainstem Nuclei. Front Cell Neurosci 2020; 14:592213. [PMID: 33250717 PMCID: PMC7674839 DOI: 10.3389/fncel.2020.592213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
The auditory system relies on temporal precise information transfer, requiring an interplay of synchronously activated inputs and rapid postsynaptic integration. During late postnatal development synaptic, biophysical, and morphological features change to enable mature auditory neurons to perform their appropriate function. How the number of minimal required input fibers and the relevant EPSC time course integrated for action potential generation changes during late postnatal development is unclear. To answer these questions, we used in vitro electrophysiology in auditory brainstem structures from pre-hearing onset and mature Mongolian gerbils of either sex. Synaptic and biophysical parameters changed distinctively during development in the medial nucleus of the trapezoid body (MNTB), the medial superior olive (MSO), and the ventral and dorsal nucleus of the lateral lemniscus (VNLL and DNLL). Despite a reduction in input resistance in most cell types, all required fewer inputs in the mature stage to drive action potentials. Moreover, the EPSC decay time constant is a good predictor of the EPSC time used for action potential generation in all nuclei but the VNLL. Only in MSO neurons, the full EPSC time course is integrated by the neuron’s resistive element, while otherwise, the relevant EPSC time matches only 5–10% of the membrane time constant, indicating membrane charging as a dominant role for output generation. We conclude, that distinct developmental programs lead to a general increase in temporal precision and integration accuracy matched to the information relaying properties of the investigated nuclei.
Collapse
Affiliation(s)
- Nikolaos Kladisios
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| | - Linda Fischer
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
11
|
Jovanovic S, Milenkovic I. Purinergic Modulation of Activity in the Developing Auditory Pathway. Neurosci Bull 2020; 36:1285-1298. [PMID: 33040238 DOI: 10.1007/s12264-020-00586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purinergic P2 receptors, activated by endogenous ATP, are prominently expressed on neuronal and non-neuronal cells during development of the auditory periphery and central auditory neurons. In the mature cochlea, extracellular ATP contributes to ion homeostasis, and has a protective function against noise exposure. Here, we focus on the modulation of activity by extracellular ATP during early postnatal development of the lower auditory pathway. In mammals, spontaneous patterned activity is conveyed along afferent auditory pathways before the onset of acoustically evoked signal processing. During this critical developmental period, inner hair cells fire bursts of action potentials that are believed to provide a developmental code for synaptic maturation and refinement of auditory circuits, thereby establishing a precise tonotopic organization. Endogenous ATP-release triggers such patterned activity by raising the extracellular K+ concentration and contributes to firing by increasing the excitability of auditory nerve fibers, spiral ganglion neurons, and specific neuron types within the auditory brainstem, through the activation of diverse P2 receptors. We review recent studies that provide new models on the contribution of purinergic signaling to early development of the afferent auditory pathway. Further, we discuss potential future directions of purinergic research in the auditory system.
Collapse
Affiliation(s)
- Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
12
|
Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus. J Neurosci 2020; 40:2471-2484. [PMID: 32051325 DOI: 10.1523/jneurosci.2573-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/22/2020] [Accepted: 02/02/2020] [Indexed: 11/21/2022] Open
Abstract
The AMPA receptor (AMPAR) subunit GluA3 has been suggested to shape synaptic transmission and activity-dependent plasticity in endbulb-bushy cell synapses (endbulb synapses) in the anteroventral cochlear nucleus, yet the specific roles of GluA3 in the synaptic transmission at endbulb synapses remains unexplored. Here, we compared WT and GluA3 KO mice of both sexes and identified several important roles of GluA3 in the maturation of synaptic transmission and short-term plasticity in endbulb synapses. We show that GluA3 largely determines the ultrafast kinetics of endbulb synapses glutamatergic currents by promoting the insertion of postsynaptic AMPARs that contain fast desensitizing flop subunits. In addition, GluA3 is also required for the normal function, structure, and development of the presynaptic terminal which leads to altered short term-depression in GluA3 KO mice. The presence of GluA3 reduces and slows synaptic depression, which is achieved by lowering the probability of vesicle release, promoting efficient vesicle replenishment, and increasing the readily releasable pool of synaptic vesicles. Surprisingly, GluA3 also makes the speed of synaptic depression rate-invariant. We propose that the slower and rate-invariant speed of depression allows an initial response window that still contains presynaptic firing rate information before the synapse is depressed. Because this response window is rate-invariant, GluA3 extends the range of presynaptic firing rates over which rate information in bushy cells can be preserved. This novel role of GluA3 may be important to allowing the postsynaptic targets of spherical bushy cells in mice use rate information for encoding sound intensity and sound localization.SIGNIFICANCE STATEMENT We report novel roles of the glutamate receptor subunit GluA3 in synaptic transmission in synapses between auditory nerve fibers and spherical bushy cells (BCs) in the cochlear nucleus. We show that GluA3 contributes to the generation of ultrafast glutamatergic currents at these synapses, which is important to preserve temporal information about the sound. Furthermore, we demonstrate that GluA3 contributes to the normal function and development of the presynaptic terminal, whose properties shape short-term plasticity. GluA3 slows and attenuates synaptic depression, and makes it less dependent on the presynaptic firing rates. This may help BCs to transfer information about the high rates of activity that occur at the synapse in vivo to postsynaptic targets that use rate information for sound localization.
Collapse
|
13
|
van Huijstee AN, Kessels HW. Variance analysis as a tool to predict the mechanism underlying synaptic plasticity. J Neurosci Methods 2020; 331:108526. [PMID: 31756397 DOI: 10.1016/j.jneumeth.2019.108526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The strength of synaptic transmission onto a neuron depends on the number of functional vesicle release sites (N), the probability of vesicle release (Pr), and the quantal size (Q). Statistical tools based on the quantal model of synaptic transmission can be used to acquire information on which of these parameters is the source of plasticity. However, quantal analysis depends on assumptions that may not be met at central synapses. NEW METHOD We examined the merit of quantal analysis to extract the mechanisms underlying synaptic plasticity by applying binomial statistics on the variance in amplitude of postsynaptic currents evoked at Schaffer collateral-CA1 (Sc-CA1) synapses in mouse hippocampal slices. We extend this analysis by combining the conventional inverse square of the coefficient of variation (1/CV2) with the variance-to-mean ratio (VMR). RESULTS This method can be used to assess the relative, but not absolute, contribution of N, Pr and Q to synaptic plasticity. The changes in 1/CV2 and VMR values correctly reflect experimental modifications of N, Pr and Q at Sc-CA1 synapses. COMPARISON WITH EXISTING METHODS While the 1/CV2 depends on N and Pr, but is independent of Q, the VMR is dependent on Pr and Q, but not on N. Combining both allows for a rapid assessment of the mechanism underlying synaptic plasticity without the need for additional electrophysiological experiments. CONCLUSION Combining the 1/CV2 with the VMR allows for a reliable prediction of the relative contribution of changes in N, Pr and Q to synaptic plasticity.
Collapse
Affiliation(s)
- Aile N van Huijstee
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Activity-Dependent Calcium Signaling in Neurons of the Medial Superior Olive during Late Postnatal Development. J Neurosci 2020; 40:1689-1700. [PMID: 31949105 DOI: 10.1523/jneurosci.1545-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/13/2019] [Accepted: 01/09/2020] [Indexed: 02/01/2023] Open
Abstract
The development of sensory circuits is partially guided by sensory experience. In the medial superior olive (MSO), these refinements generate precise coincidence detection to localize sounds in the azimuthal plane. Glycinergic inhibitory inputs to the MSO, which tune the sensitivity to interaural time differences, undergo substantial structural and functional refinements after hearing onset. Whether excitation and calcium signaling in the MSO are similarly affected by the onset of acoustic experience is unresolved. To assess the time window and mechanism of excitatory and calcium-dependent refinements during late postnatal development, we quantified EPSCs and calcium entry in MSO neurons of Mongolian gerbils of either sex raised in a normal and in an activity altered, omnidirectional white noise environment. Global dendritic calcium transients elicited by action potentials disappeared rapidly after hearing onset. Local synaptic calcium transients decreased, leaving a GluR2 lacking AMPAR-mediated influx as the only activity-dependent source in adulthood. Exposure to omnidirectional white noise accelerated the decrease in calcium entry, leaving membrane properties unaffected. Thus, sound-driven activity accelerates the excitatory refinement and shortens the period of activity-dependent calcium signaling around hearing onset. Together with earlier reports, our findings highlight that excitation, inhibition, and biophysical properties are differentially sensitive to distinct features of sensory experience.SIGNIFICANCE STATEMENT Neurons in the medial superior olive, an ultra-fast coincidence detector for sound source localization, acquire their specialized function through refinements during late postnatal development. The refinement of inhibitory inputs that convey sensitivity to relevant interaural time differences is instructed by the experience of sound localization cues. Which cues instruct the refinement of excitatory inputs, calcium signaling, and biophysical properties is unknown. Here we demonstrate a time window for activity- and calcium-dependent refinements limited to shortly after hearing onset. Exposure to omnidirectional white noise, which suppresses sound localization cues but increases overall activity, accelerates the refinement of calcium signaling and excitatory inputs without affecting biophysical membrane properties. Thus, the refinement of excitation, inhibition, and intrinsic properties is instructed by distinct cues.
Collapse
|
15
|
Gillet C, Kurth S, Kuenzel T. Muscarinic modulation of M and h currents in gerbil spherical bushy cells. PLoS One 2020; 15:e0226954. [PMID: 31940388 PMCID: PMC6961914 DOI: 10.1371/journal.pone.0226954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
Descending cholinergic fibers innervate the cochlear nucleus. Spherical bushy cells, principal neurons of the anterior part of the ventral cochlear nucleus, are depolarized by cholinergic agonists on two different time scales. A fast and transient response is mediated by alpha-7 homomeric nicotinic receptors while a slow and long-lasting response is mediated by muscarinic receptors. Spherical bushy cells were shown to express M3 receptors, but the receptor subtypes involved in the slow muscarinic response were not physiologically identified yet. Whole-cell patch clamp recordings combined with pharmacology and immunohistochemistry were performed to identify the muscarinic receptor subtypes and the effector currents involved. Spherical bushy cells also expressed both M1 and M2 receptors. The M1 signal was stronger and mainly somatic while the M2 signal was localized in the neuropil and on the soma of bushy cells. Physiologically, the M-current was observed for the gerbil spherical bushy cells and was inhibited by oxotremorine-M application. Surprisingly, long application of carbachol showed only a transient depolarization. Even though no muscarinic depolarization could be detected, the input resistance increased suggesting a decrease in the cell conductance that matched with the closure of M-channels. The hyperpolarization-activated currents were also affected by muscarinic activation and counteracted the effect of the inactivation of M-current on the membrane potential. We hypothesize that this double muscarinic action might allow adaptation of effects during long durations of cholinergic activation.
Collapse
Affiliation(s)
- Charlène Gillet
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
| | - Stefanie Kurth
- Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
| | - Thomas Kuenzel
- Auditory Neurophysiology Group, Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
- Department of Chemosensation, RWTH Aachen University, Worringerweg, Aachen, Germany
- * E-mail:
| |
Collapse
|
16
|
Kuenzel T. Modulatory influences on time-coding neurons in the ventral cochlear nucleus. Hear Res 2019; 384:107824. [DOI: 10.1016/j.heares.2019.107824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/10/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
|
17
|
Müller MK, Jovanovic S, Keine C, Radulovic T, Rübsamen R, Milenkovic I. Functional Development of Principal Neurons in the Anteroventral Cochlear Nucleus Extends Beyond Hearing Onset. Front Cell Neurosci 2019; 13:119. [PMID: 30983974 PMCID: PMC6447607 DOI: 10.3389/fncel.2019.00119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/11/2019] [Indexed: 01/23/2023] Open
Abstract
Sound information is transduced into graded receptor potential by cochlear hair cells and encoded as discrete action potentials of auditory nerve fibers. In the cochlear nucleus, auditory nerve fibers convey this information through morphologically distinct synaptic terminals onto bushy cells (BCs) and stellate cells (SCs) for processing of different sound features. With expanding use of transgenic mouse models, it is increasingly important to understand the in vivo functional development of these neurons in mice. We characterized the maturation of spontaneous and acoustically evoked activity in BCs and SCs by acquiring single-unit juxtacellular recordings between hearing onset (P12) and young adulthood (P30) of anesthetized CBA/J mice. In both cell types, hearing sensitivity and characteristic frequency (CF) range are mostly adult-like by P14, consistent with rapid maturation of the auditory periphery. In BCs, however, some physiological features like maximal firing rate, dynamic range, temporal response properties, recovery from post-stimulus depression, first spike latency (FSL) and encoding of sinusoid amplitude modulation undergo further maturation up to P18. In SCs, the development of excitatory responses is even more prolonged, indicated by a gradual increase in spontaneous and maximum firing rates up to P30. In the same cell type, broadly tuned acoustically evoked inhibition is immediately effective at hearing onset, covering the low- and high-frequency flanks of the excitatory response area. Together, these data suggest that maturation of auditory processing in the parallel ascending BC and SC streams engages distinct mechanisms at the first central synapses that may differently depend on the early auditory experience.
Collapse
Affiliation(s)
- Maria Katharina Müller
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Sasa Jovanovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Christian Keine
- Carver College of Medicine, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States.,Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Tamara Radulovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Carver College of Medicine, Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
| | - Rudolf Rübsamen
- Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ivan Milenkovic
- Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
18
|
Liu M, Shi R, Hwang H, Han KS, Wong MH, Ren X, Lewis LD, Brown EN, Xu W. SAP102 regulates synaptic AMPAR function through a CNIH-2-dependent mechanism. J Neurophysiol 2018; 120:1578-1586. [PMID: 30067114 PMCID: PMC6230800 DOI: 10.1152/jn.00731.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 11/22/2022] Open
Abstract
The postsynaptic density (PSD)-95-like, disk-large (DLG) membrane-associated guanylate kinase (PSD/DLG-MAGUK) family of proteins scaffold α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) complexes to the postsynaptic compartment and are postulated to orchestrate activity-dependent modulation of synaptic AMPAR functions. SAP102 is a key member of this family, present from early development, before PSD-95 and PSD-93, and throughout life. Here we investigate the role of SAP102 in synaptic transmission using a cell-restricted molecular replacement strategy, where SAP102 is expressed against the background of acute knockdown of endogenous PSD-95. We show that SAP102 rescues the decrease of AMPAR-mediated evoked excitatory postsynaptic currents (AMPAR eEPSCs) and AMPAR miniature EPSC (AMPAR mEPSC) frequency caused by acute knockdown of PSD-95. Further analysis of the mini events revealed that PSD-95-to-SAP102 replacement but not direct manipulation of PSD-95 increases the AMPAR mEPSC decay time. SAP102-mediated rescue of AMPAR eEPSCs requires AMPAR auxiliary subunit cornichon-2, whereas cornichon-2 knockdown did not affect PSD-95-mediated regulation of AMPAR eEPSC. Combining these observations, our data elucidate that PSD-95 and SAP102 differentially influence basic synaptic properties and synaptic current kinetics potentially via different AMPAR auxiliary subunits. NEW & NOTEWORTHY Synaptic scaffold proteins postsynaptic density (PSD)-95-like, disk-large (DLG) membrane-associated guanylate kinase (PSD-MAGUKs) regulate synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) function. However, the functional diversity among different PSD-MAGUKs remains to be categorized. We show that distinct from PSD-95, SAP102 increase the AMPAR synaptic current decay time, and the effect of SAP102 on synaptic AMPAR function requires the AMPAR auxiliary subunit cornichon-2. Our data suggest that PSD-MAGUKs target and modulate different AMPAR complexes to exert specific experience-dependent modification of the excitatory circuit.
Collapse
Affiliation(s)
- Mingna Liu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology , Cambridge, Massachusetts
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Rebecca Shi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology , Cambridge, Massachusetts
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Hongik Hwang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology , Cambridge, Massachusetts
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Kyung Seok Han
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology , Cambridge, Massachusetts
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Man Ho Wong
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Xiaobai Ren
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Laura D Lewis
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
- MIT-Harvard Division of Health Science and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Emery N Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
- MIT-Harvard Division of Health Science and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Weifeng Xu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology , Cambridge, Massachusetts
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| |
Collapse
|
19
|
Pre- and postsynaptic ionotropic glutamate receptors in the auditory system of mammals. Hear Res 2018; 362:1-13. [DOI: 10.1016/j.heares.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 01/22/2023]
|
20
|
Jovanovic S, Radulovic T, Coddou C, Dietz B, Nerlich J, Stojilkovic SS, Rübsamen R, Milenkovic I. Tonotopic action potential tuning of maturing auditory neurons through endogenous ATP. J Physiol 2016; 595:1315-1337. [PMID: 28030754 DOI: 10.1113/jp273272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/02/2016] [Indexed: 01/10/2023] Open
Abstract
KEY POINTS Following the genetically controlled formation of neuronal circuits, early firing activity guides the development of sensory maps in the auditory, visual and somatosensory system. However, it is not clear whether the activity of central auditory neurons is specifically regulated depending on the position within the sensory map. In the ventral cochlear nucleus, the first central station along the auditory pathway, we describe a mechanism through which paracrine ATP signalling enhances firing in a cell-specific and tonotopically-determined manner. Developmental down-regulation of P2X2/3R currents along the tonotopic axis occurs simultaneously with an increase in AMPA receptor currents, suggesting a high-to-low frequency maturation pattern. Facilitated action potential (AP) generation, measured as higher firing rate, shorter EPSP-AP delay in vivo and shorter AP latency in slice experiments, is consistent with increased synaptic efficacy caused by ATP. The long lasting change in intrinsic neuronal excitability is mediated by the heteromeric P2X2/3 receptors. ABSTRACT Synaptic refinement and strengthening are activity-dependent processes that establish orderly arranged cochleotopic maps throughout the central auditory system. The maturation of auditory brainstem circuits is guided by action potentials (APs) arising from the inner hair cells in the developing cochlea. The AP firing of developing central auditory neurons can be modulated by paracrine ATP signalling, as shown for the cochlear nucleus bushy cells and principal neurons in the medial nucleus of the trapezoid body. However, it is not clear whether neuronal activity may be specifically regulated with respect to the nuclear tonotopic position (i.e. sound frequency selectivity). Using slice recordings before hearing onset and in vivo recordings with iontophoretic drug applications after hearing onset, we show that cell-specific purinergic modulation follows a precise tonotopic pattern in the ventral cochlear nucleus of developing gerbils. In high-frequency regions, ATP responsiveness diminished before hearing onset. In low-to-mid frequency regions, ATP modulation persisted after hearing onset in a subset of low-frequency bushy cells (characteristic frequency< 10 kHz). Down-regulation of P2X2/3R currents along the tonotopic axis occurs simultaneously with an increase in AMPA receptor currents, thus suggesting a high-to-low frequency maturation pattern. Facilitated AP generation, measured as higher firing frequency, shorter EPSP-AP delay in vivo, and shorter AP latency in slice experiments, is consistent with increased synaptic efficacy caused by ATP. Finally, by combining recordings and pharmacology in vivo, in slices, and in human embryonic kidney 293 cells, it was shown that the long lasting change in intrinsic neuronal excitability is mediated by the P2X2/3R.
Collapse
Affiliation(s)
- Saša Jovanovic
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Tamara Radulovic
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.,Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Beatrice Dietz
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Jana Nerlich
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.,Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Rudolf Rübsamen
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Ivan Milenkovic
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.,Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Sanchez JT, Quinones K, Otto-Meyer S. Factors Influencing Short-term Synaptic Plasticity in the Avian Cochlear Nucleus Magnocellularis. J Exp Neurosci 2015; 9:11-24. [PMID: 26527054 PMCID: PMC4620996 DOI: 10.4137/jen.s25472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 11/15/2022] Open
Abstract
Defined as reduced neural responses during high rates of activity, synaptic depression is a form of short-term plasticity important for the temporal filtering of sound. In the avian cochlear nucleus magnocellularis (NM), an auditory brainstem structure, mechanisms regulating short-term synaptic depression include pre-, post-, and extrasynaptic factors. Using varied paired-pulse stimulus intervals, we found that the time course of synaptic depression lasts up to four seconds at late-developing NM synapses. Synaptic depression was largely reliant on exogenous Ca2+-dependent probability of presynaptic neurotransmitter release, and to a lesser extent, on the desensitization of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPA-R). Interestingly, although extrasynaptic glutamate clearance did not play a significant role in regulating synaptic depression, blocking glutamate clearance at early-developing synapses altered synaptic dynamics, changing responses from depression to facilitation. These results suggest a developmental shift in the relative reliance on pre-, post-, and extrasynaptic factors in regulating short-term synaptic plasticity in NM.
Collapse
Affiliation(s)
- Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, The Hugh Knowles Hearing Research Center, School of Communication, Northwestern University, Evanston, IL, USA. ; Department of Neurobiology and Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Karla Quinones
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, The Hugh Knowles Hearing Research Center, School of Communication, Northwestern University, Evanston, IL, USA
| | - Sebastian Otto-Meyer
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
22
|
Allam SL, Bouteiller JMC, Hu EY, Ambert N, Greget R, Bischoff S, Baudry M, Berger TW. Synaptic Efficacy as a Function of Ionotropic Receptor Distribution: A Computational Study. PLoS One 2015; 10:e0140333. [PMID: 26480028 PMCID: PMC4610697 DOI: 10.1371/journal.pone.0140333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/24/2015] [Indexed: 11/22/2022] Open
Abstract
Glutamatergic synapses are the most prevalent functional elements of information processing in the brain. Changes in pre-synaptic activity and in the function of various post-synaptic elements contribute to generate a large variety of synaptic responses. Previous studies have explored postsynaptic factors responsible for regulating synaptic strength variations, but have given far less importance to synaptic geometry, and more specifically to the subcellular distribution of ionotropic receptors. We analyzed the functional effects resulting from changing the subsynaptic localization of ionotropic receptors by using a hippocampal synaptic computational framework. The present study was performed using the EONS (Elementary Objects of the Nervous System) synaptic modeling platform, which was specifically developed to explore the roles of subsynaptic elements as well as their interactions, and that of synaptic geometry. More specifically, we determined the effects of changing the localization of ionotropic receptors relative to the presynaptic glutamate release site, on synaptic efficacy and its variations following single pulse and paired-pulse stimulation protocols. The results indicate that changes in synaptic geometry do have consequences on synaptic efficacy and its dynamics.
Collapse
Affiliation(s)
- Sushmita L. Allam
- Center for Neural Engineering, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Jean-Marie C. Bouteiller
- Center for Neural Engineering, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
- Rhenovia Pharma, Mulhouse, France
- * E-mail:
| | - Eric Y. Hu
- Center for Neural Engineering, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | | | | | | | - Michel Baudry
- Rhenovia Pharma, Mulhouse, France
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States of America
| | - Theodore W. Berger
- Center for Neural Engineering, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
23
|
Cohen SM, Tsien RW, Goff DC, Halassa MM. The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr Res 2015; 167:98-107. [PMID: 25583246 PMCID: PMC4724170 DOI: 10.1016/j.schres.2014.12.026] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/25/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023]
Abstract
While the dopamine hypothesis has dominated schizophrenia research for several decades, more recent studies have highlighted the role of fast synaptic transmitters and their receptors in schizophrenia etiology. Here we review evidence that schizophrenia is associated with a reduction in N-methyl-d-aspartate receptor (NMDAR) function. By highlighting postmortem, neuroimaging and electrophysiological studies, we provide evidence for preferential disruption of GABAergic circuits in the context of NMDAR hypo-activity states. The functional relationship between NMDARs and GABAergic neurons is realized at the molecular, cellular, microcircuit and systems levels. A synthesis of findings across these levels explains how NMDA-mediated inhibitory dysfunction may lead to aberrant interactions among brain regions, accounting for key clinical features of schizophrenia. This synthesis of schizophrenia unifies observations from diverse fields and may help chart pathways for developing novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Samuel M. Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Richard W. Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Donald C. Goff
- Department of Psychiatry, NYU Langone Medical Center, 550 First Avenue, New York City, NY 10016, USA
,Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Michael M. Halassa
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
,Department of Psychiatry, NYU Langone Medical Center, 550 First Avenue, New York City, NY 10016, USA
,To whom correspondence should be addressed:
| |
Collapse
|
24
|
Yang Y, Xu-Friedman MA. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus. J Neurophysiol 2015; 113:3634-45. [PMID: 25855696 DOI: 10.1152/jn.00693.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/08/2015] [Indexed: 01/14/2023] Open
Abstract
Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied "endbulb of Held" synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg(2+)) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
25
|
Sanchez J, Ghelani S, Otto-Meyer S. From development to disease: Diverse functions of NMDA-type glutamate receptors in the lower auditory pathway. Neuroscience 2015; 285:248-59. [DOI: 10.1016/j.neuroscience.2014.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/07/2014] [Accepted: 11/16/2014] [Indexed: 01/19/2023]
|
26
|
Allam SL, Ghaderi VS, Bouteiller JMC, Legendre A, Ambert N, Greget R, Bischoff S, Baudry M, Berger TW. A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neuronal spiking. Front Comput Neurosci 2012; 6:70. [PMID: 23060782 PMCID: PMC3461576 DOI: 10.3389/fncom.2012.00070] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/31/2012] [Indexed: 11/26/2022] Open
Abstract
Over the past decades, our view of astrocytes has switched from passive support cells to active processing elements in the brain. The current view is that astrocytes shape neuronal communication and also play an important role in many neurodegenerative diseases. Despite the growing awareness of the importance of astrocytes, the exact mechanisms underlying neuron-astrocyte communication and the physiological consequences of astrocytic-neuronal interactions remain largely unclear. In this work, we define a modeling framework that will permit to address unanswered questions regarding the role of astrocytes. Our computational model of a detailed glutamatergic synapse facilitates the analysis of neural system responses to various stimuli and conditions that are otherwise difficult to obtain experimentally, in particular the readouts at the sub-cellular level. In this paper, we extend a detailed glutamatergic synaptic model, to include astrocytic glutamate transporters. We demonstrate how these glial transporters, responsible for the majority of glutamate uptake, modulate synaptic transmission mediated by ionotropic AMPA and NMDA receptors at glutamatergic synapses. Furthermore, we investigate how these local signaling effects at the synaptic level are translated into varying spatio-temporal patterns of neuron firing. Paired pulse stimulation results reveal that the effect of astrocytic glutamate uptake is more apparent when the input inter-spike interval is sufficiently long to allow the receptors to recover from desensitization. These results suggest an important functional role of astrocytes in spike timing dependent processes and demand further investigation of the molecular basis of certain neurological diseases specifically related to alterations in astrocytic glutamate uptake, such as epilepsy.
Collapse
Affiliation(s)
- Sushmita L Allam
- Department of Biomedical Engineering, University of Southern California Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
An essential role for modulation of hyperpolarization-activated current in the development of binaural temporal precision. J Neurosci 2012; 32:2814-23. [PMID: 22357864 DOI: 10.1523/jneurosci.3882-11.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In sensory circuits of the brain, developmental changes in the expression and modulation of voltage-gated ion channels are a common occurrence, but such changes are often difficult to assign to clear functional roles. We have explored this issue in the binaural neurons of the medial superior olive (MSO), whose temporal precision in detecting the coincidence of binaural inputs dictates the resolution of azimuthal sound localization. We show that in MSO principal neurons of gerbils during the first week of hearing, a hyperpolarization-activated current (I(h)) progressively undergoes a 13-fold increase in maximal conductance, a >10-fold acceleration of kinetics, and, most surprisingly, a 30 mV depolarizing shift in the voltage dependence of activation. This period is associated with an upregulation of the hyperpolarization-activated and cyclic nucleotide-gated (HCN) channel subunits HCN1, HCN2, and HCN4 in the MSO, but only HCN1 and HCN4 were expressed strongly in principal neurons. I(h) recorded in nucleated patches from electrophysiologically mature MSO neurons (>P18) exhibited kinetics and an activation range nearly identical to the I(h) found in whole-cell recordings before hearing onset. These results indicate that the developmental changes in I(h) in MSO neurons can be explained predominantly by modulation from diffusible intracellular factors, and not changes in channel subunit composition. The exceptionally large modulatory changes in I(h), together with refinements in synaptic properties transform the coding strategy from one of summation and integration to the submillisecond coincidence detection known to be required for transmission of sound localization cues.
Collapse
|
28
|
Wu X, Shi M, Wei C, Yang M, Liu Y, Liu Z, Zhang X, Ren W. Potentiation of synaptic strength and intrinsic excitability in the nucleus accumbens after 10 days of morphine withdrawal. J Neurosci Res 2012; 90:1270-83. [PMID: 22388870 DOI: 10.1002/jnr.23025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 11/29/2011] [Accepted: 12/08/2011] [Indexed: 11/11/2022]
Abstract
Neuroadaptations in the nucleus accumbens (NAc) are associated with the development of drug addiction. Plasticity in synaptic strength and intrinsic excitability of NAc medium spiny neurons (MSNs) play critical roles in addiction induced by different classes of abused drugs. However, it is unknown whether morphine exposure influences synaptic strength, intrinsic excitability or both in NAc. Here we show that chronic withdrawal (10 days after the last injection) from repeated morphine exposure elicited potentiation in both glutamatergic synaptic strength and intrinsic excitability of MSNs in NAc shell (NAcSh). The potentiation of synaptic strength was demonstrated by an increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs), a decrease in the paired-pulse ratio (PPR), and an increase in the ratio of α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR)- to N-methyl-D-aspartate receptors (NMDAR)-mediated currents. The potentiation of intrinsic excitability was mediated by inhibition of the sustained potassium currents via extrasynaptic NMDAR activation. The function of the presynaptic group II metabotropic glutamate receptors (mGluR2/3) was downregulated, enhancing the probability of glutamate release on synaptic terminals during chronic morphine withdrawal. Pretreatment with the mGluR2/3 agonist LY379268 completely blocked potentiation of both synaptic strength and intrinsic excitability. These results suggest that chronic morphine withdrawal downregulates mGluR2/3 to induce potentiation of MSN glutamatergic synapse via increased glutamate release, leading to potentiation of intrinsic excitability. Such potentiation of both synaptic strength and intrinsic excitability might contribute to neuroadaptations induced by morphine application.
Collapse
Affiliation(s)
- Xiaobo Wu
- Key Laboratory of Modern Teaching Technology and College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Fleiss B, Parkington HC, Coleman HA, Dickinson H, Yawno T, Castillo-Melendez M, Hirst JJ, Walker DW. Effect of maternal administration of allopregnanolone before birth asphyxia on neonatal hippocampal function in the spiny mouse. Brain Res 2011; 1433:9-19. [PMID: 22169500 DOI: 10.1016/j.brainres.2011.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/30/2011] [Accepted: 11/12/2011] [Indexed: 10/15/2022]
Abstract
Clinically, treatment options where fetal distress is anticipated or identified are limited. Allopregnanolone is an endogenous steroid, that positively modulates the GABA(A) receptor, and that has anti-apoptotic and anti-excitotoxic actions, reducing brain damage in adult animal models of brain injury. We sought to determine if prophylactic treatment of the pregnant female with a single dose of this steroid could reduce birth asphyxia-induced losses in hippocampal function at 5 days of age (P5) in spiny mouse neonates (Acomys cahirinus). At 37 days gestation (term=39 days) and 1h before inducing birth asphyxia, spiny mice dams were injected subcutaneously (0.2 ml) with either 3mg/kg allopregnanolone or 20% w/v β-cyclodextrin vehicle. One hour later, fetuses were either delivered immediately by caesarean section (control group) or exposed to 7.5 min of in utero asphyxia, causing acidosis and hypoxia. At P5, ex vivo hippocampal plasticity was assessed, or brains collected to determine cell proliferation (proliferating cell nuclear antigen; PCNA) or calcium channel expression (inositol trisphosphate receptor type 1; IP(3)R1) using immunohistochemistry. Allopregnanolone partially prevented the decrease in long term potentiation at P5, and the asphyxia-induced increase in IP(3)R1 expression in CA1 pyramidal neurons. There was no effect of allopregnanolone on the asphyxia induced impairment of the input/output (I/O) curve and paired-pulse facilitation (PPF). In control birth pups, maternal allopregnanolone treatment caused significant changes in short term post-synaptic plasticity and also reduced hippocampal proliferation at P5. These findings show that allopregnanolone can modulate hippocampal development and synaptic function in a normoxic or hypoxic environment, possibly by modifying calcium metabolism. Best practice for treatment dose and timing of treatment will need to be carefully considered.
Collapse
Affiliation(s)
- Bobbi Fleiss
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Within the Ca(v)1 family of voltage-gated calcium channels, Ca(v)1.2 and Ca(v)1.3 channels are the predominant subtypes in the brain. Whereas specific functions for each subtype were described in the adult brain, their role in brain development is poorly understood. Here we assess the role of Ca(v)1.3 subunits in the activity-dependent development of the auditory brainstem. We used Ca(v)1.3-deficient (Ca(v)1.3(-/-)) mice because these mice lack cochlea-driven activity that deprives the auditory centers from peripheral input. We found a drastically reduced volume in all auditory brainstem centers (range 25-59%, total 35%), which was manifest before hearing onset. A reduction was not obvious outside the auditory system. The lateral superior olive (LSO) was strikingly malformed in Ca(v)1.3(-/-) mice and had fewer neurons (1/3 less). The remaining LSO neurons displayed normal dendritic trees and received functional glutamatergic input, yet they fired action potentials predominantly with a multiple pattern upon depolarization, in contrast to the single firing pattern prevalent in controls. The latter finding appears to be due to a reduction of dendrototoxin-sensitive potassium conductances, presumably mediated through the K(v)1.2 subtype. Fura2 imaging provided evidence for functional Ca(v)1.3 channels in the LSO of wild-type mice. Our results imply that Ca(v)1.3 channels are indispensable for the development of the central auditory system. We propose that the unique LSO phenotype in Ca(v)1.3(-/-) mice, which hitherto was not described in other hereditary deafness models, is caused by the synergistic contribution of two factors: on-site loss of Ca(v)1.3 channels in the neurons plus lack of peripheral input.
Collapse
|
32
|
Lin KH, Oleskevich S, Taschenberger H. Presynaptic Ca2+ influx and vesicle exocytosis at the mouse endbulb of Held: a comparison of two auditory nerve terminals. J Physiol 2011; 589:4301-20. [PMID: 21746778 DOI: 10.1113/jphysiol.2011.209189] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The functional properties of mammalian presynaptic nerve endings remain elusive since most terminals of the central nervous system are not accessible to direct electrophysiological recordings. In this study, direct recordings were performed for the first time at endbulb of Held terminals to characterize passive membrane properties, voltage-gated Ca(2+) channels (VGCCs) and Ca(2+)-dependent exocytosis. Endbulb of Held terminals arise from endings of auditory nerve fibres contacting spherical bushy cells (SBCs) in the anterior ventral cochlear nucleus (AVCN). These terminals had a high mean input resistance (1.1 G) and a small mean capacitance (4.3 pF). Presynaptic VGCCs were predominantly of the P/Q type (86%) and expressed at a high density with an estimated average number of 6400 channels per terminal. Presynaptic Ca(2+) currents (I(Ca(V))) activated and deactivated rapidly. Simulations of action potential (AP)-driven gating of VGCCs suggests that endbulb APs trigger brief Ca(2+) influx with a mean half-width of 240 μs and a peak amplitude of 0.45 nA which results from the opening of approximately 2600 channels. Unlike Ca(2+) currents at the calyx of Held, I(Ca(V)) of endbulb terminals showed no inactivation during trains of AP-like presynaptic depolarizations. Endbulb terminals are endowed with a large readily releasable vesicle pool (1064 vesicles) of which only a small fraction (<10%) is consumed during a single AP-like stimulus. Fast presynaptic APs together with rapidly gating VGCCs will generate brief intracellular Ca(2+) transients that favour highly synchronous transmitter release. Collectively these characteristics ensure sustained and precise transmission of timing information from auditory stimuli at the endbulbSBC synapse.
Collapse
Affiliation(s)
- Kun-Han Lin
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | | | | |
Collapse
|
33
|
Chanda S, Oh S, Xu-Friedman MA. Calcium imaging of auditory nerve fiber terminals in the cochlear nucleus. J Neurosci Methods 2010; 195:24-9. [PMID: 21108967 DOI: 10.1016/j.jneumeth.2010.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 11/16/2022]
Abstract
One important model for understanding neuronal computation is how auditory information is transformed at the synapses made by auditory nerve (AN) fibers on the bushy cells (BCs) in the anteroventral cochlear nucleus (AVCN). This transformation is influenced by synaptic plasticity, the mechanisms of which have been studied primarily using postsynaptic electrophysiology. However, it is also important to make direct measurements of the presynaptic terminal to consider presynaptic mechanisms. Here we introduce a technique for doing that using calcium imaging of presynaptic AN terminals, by injecting dextran-conjugated fluorophores into the cochlea. To measure the calcium transients, we used calcium-sensitive fluorophores, and measured the changes in fluorescence upon stimulation. As an example of the application of this technique, we showed that activation of GABA(B) receptors reduces presynaptic calcium influx. This technique could be further extended to study the effects of activity- and other neuromodulator-dependent plasticities on AN terminals.
Collapse
Affiliation(s)
- Soham Chanda
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
34
|
Typlt M, Haustein MD, Dietz B, Steinert JR, Witte M, Englitz B, Milenkovic I, Kopp-Scheinpflug C, Forsythe ID, Rübsamen R. Presynaptic and postsynaptic origin of multicomponent extracellular waveforms at the endbulb of Held-spherical bushy cell synapse. Eur J Neurosci 2010; 31:1574-81. [PMID: 20525070 DOI: 10.1111/j.1460-9568.2010.07188.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracellular signals from the endbulb of Held-spherical bushy cell (SBC) synapse exhibit up to three component waves ('P', 'A' and 'B'). Signals lacking the third component (B) are frequently observed but as the origin of each of the components is uncertain, interpretation of this lack of B has been controversial: is it a failure to release transmitter or a failure to generate or propagate an action potential? Our aim was to determine the origin of each component. We combined single- and multiunit in vitro methods in Mongolian gerbils and Wistar rats and used pharmacological tools to modulate glutamate receptors or voltage-gated sodium channels. Simultaneous extra- and intracellular recordings from single SBCs demonstrated a presynaptic origin of the P-component, consistent with data obtained with multielectrode array recordings of local field potentials. The later components (A and B) correspond to the excitatory postsynaptic potential (EPSP) and action potential of the SBC, respectively. These results allow a clear interpretation of in vivo extracellular signals. We conclude that action potential failures occurring at the endbulb-SBC synaptic junction largely reflect failures of the EPSP to trigger an action potential and not failures of synaptic transmission. The data provide the basis for future investigation of convergence of excitatory and inhibitory inputs in modulating transmission at a fully functional neuronal system using physiological stimulation.
Collapse
Affiliation(s)
- Marei Typlt
- Institute of Biology II, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sanchez JT, Wang Y, Rubel EW, Barria A. Development of glutamatergic synaptic transmission in binaural auditory neurons. J Neurophysiol 2010; 104:1774-89. [PMID: 20668278 DOI: 10.1152/jn.00468.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Glutamatergic synaptic transmission is essential for binaural auditory processing in birds and mammals. Using whole cell voltage clamp recordings, we characterized the development of synaptic ionotropic glutamate receptor (iGluR) function from auditory neurons in the chick nucleus laminaris (NL), the first nucleus responsible for binaural processing. We show that synaptic transmission is mediated by AMPA- and N-methyl-d-aspartate (NMDA)-type glutamate receptors (AMPA-R and NMDA-R, respectively) when hearing is first emerging and dendritic morphology is being established across different sound frequency regions. Puff application of glutamate agonists at embryonic day 9 (E9) revealed that both iGluRs are functionally present prior to synapse formation (E10). Between E11 and E19, the amplitude of isolated AMPA-R currents from high-frequency (HF) neurons increased 14-fold. A significant increase in the frequency of spontaneous events is also observed. Additionally, AMPA-R currents become faster and more rectifying, suggesting developmental changes in subunit composition. These developmental changes were similar in all tonotopic regions examined. However, mid- and low-frequency neurons exhibit fewer spontaneous events and evoked AMPA-R currents are smaller, slower, and less rectifying than currents from age-matched HF neurons. The amplitude of isolated NMDA-R currents from HF neurons also increased, reaching a peak at E17 and declining sharply by E19, a trend consistent across tonotopic regions. With age, NMDA-R kinetics become significantly faster, indicating a developmental switch in receptor subunit composition. Dramatic increases in the amplitude and speed of glutamatergic synaptic transmission occurs in NL during embryonic development. These changes are first seen in HF neurons suggesting regulation by peripheral inputs and may be necessary to enhance coincidence detection of binaural auditory information.
Collapse
Affiliation(s)
- Jason Tait Sanchez
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Box 357290, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
36
|
Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse. J Neurosci 2010; 30:4210-20. [PMID: 20335456 DOI: 10.1523/jneurosci.4439-09.2010] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cochlear inner hair cells (IHCs) convert sounds into receptor potentials and via their ribbon synapses into firing rates in auditory nerve fibers. Multivesicular release at individual IHC ribbon synapses activates AMPA-mediated EPSCs with widely ranging amplitudes. The underlying mechanisms and specific role for multivesicular release in encoding sound are not well understood. Here we characterize the waveforms of individual EPSCs recorded from afferent boutons contacting IHCs and compare their characteristics in immature rats (postnatal days 8-11) and hearing rats (postnatal days 19-21). Two types of EPSC waveforms were found in every recording: monophasic EPSCs, with sharp rising phases and monoexponential decays, and multiphasic EPSCs, exhibiting inflections on rising and decaying phases. Multiphasic EPSCs exhibited slower rise times and smaller amplitudes than monophasic EPSCs. Both types of EPSCs had comparable charge transfers, suggesting that they were activated by the release of similar numbers of vesicles, which for multiphasic EPSCs occurred in a less coordinated manner. On average, a higher proportion of larger, monophasic EPSCs was found in hearing compared to immature rats. In addition, EPSCs became significantly faster with age. The developmental increase in size and speed could improve auditory signaling acuity. Multiphasic EPSCs persisted in hearing animals, in some fibers constituting half of the EPSCs. The proportion of monophasic versus multiphasic EPSCs varied widely across fibers, resulting in marked heterogeneity of amplitude distributions. We propose that the relative contribution of two modes of multivesicular release, generating monophasic and multiphasic EPSCs, may underlie fundamental characteristics of auditory nerve fibers.
Collapse
|
37
|
McCool BA, Christian DT, Diaz MR, Läck AK. Glutamate plasticity in the drunken amygdala: the making of an anxious synapse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:205-33. [PMID: 20813244 DOI: 10.1016/s0074-7742(10)91007-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Plasticity at glutamatergic synapses is believed to be the cellular correlate of learning and memory. Classic fear conditioning, for example, is dependent upon NMDA-type glutamate receptor activation in the lateral/basolateral amygdala followed by increased synaptic expression of AMPA-type glutamate receptors. This review provides an extensive comparison between the initiation and expression of glutamatergic plasticity during learning/memory and glutamatergic alterations associated with chronic ethanol exposure and withdrawal. The parallels between these neuro-adaptive processes suggest that long-term ethanol exposure might "chemically condition" amygdala-dependent fear/anxiety via the increased function of pre- and post-synaptic glutamate signaling.
Collapse
Affiliation(s)
- Brian A McCool
- Department of Physiology & Pharmcology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
38
|
Yang S, Tadashi D, Toshihiko K, Shu–Ping C, Wen–Ming W, Ayumi M, Mikiya A, Toshio Y. Optical recordings reveal the differential distribution of glutamatergic transmission in the cochlear and vestibular nuclei in the newborn mouse brainstem. J Otol 2009. [DOI: 10.1016/s1672-2930(09)50021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
39
|
Pliss L, Yang H, Xu-Friedman MA. Context-dependent effects of NMDA receptors on precise timing information at the endbulb of Held in the cochlear nucleus. J Neurophysiol 2009; 102:2627-37. [PMID: 19726731 DOI: 10.1152/jn.00111.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many synapses contain both AMPA receptors (AMPAR) and N-methyl-d-aspartate receptors (NMDAR), but their different roles in synaptic computation are not clear. We address this issue at the auditory nerve fiber synapse (called the endbulb of Held), which is formed on bushy cells of the cochlear nucleus. The endbulb refines and relays precise temporal information to nuclei responsible for sound localization. The endbulb has a number of specializations that aid precise timing, including AMPAR-mediated excitatory postsynaptic currents (EPSCs) with fast kinetics. Voltage-clamp experiments in mouse brain slices revealed that slow NMDAR EPSCs are maintained at mature endbulbs, contributing a peak conductance of around 10% of the AMPAR-mediated EPSC. During repetitive synaptic activity, AMPAR EPSCs depressed and NMDAR EPSCs summated, thereby increasing the relative importance of NMDARs. This could impact temporal precision of bushy cells because of the slow kinetics of NMDARs. We tested this by blocking NMDARs and quantifying bushy cell spike timing in current clamp when single endbulbs were activated. These experiments showed that NMDARs contribute to an increased probability of firing, shorter latency, and reduced jitter. Dynamic-clamp experiments confirmed this effect and showed it was dose-dependent. Bushy cells can receive inputs from multiple endbulbs. When we applied multiple synaptic inputs in dynamic clamp, NMDARs had less impact on spike timing. NMDAR conductances much higher than mature levels could disrupt spiking, which may explain its downregulation during development. Thus mature NMDAR expression can support the conveying of precise temporal information at the endbulb, depending on the stimulus conditions.
Collapse
Affiliation(s)
- Lioudmila Pliss
- Department of Biological Sciences, State University of New York, Buffalo, New York, USA
| | | | | |
Collapse
|
40
|
Steinert JR, Kopp-Scheinpflug C, Baker C, Challiss RAJ, Mistry R, Haustein MD, Griffin SJ, Tong H, Graham BP, Forsythe ID. Nitric oxide is a volume transmitter regulating postsynaptic excitability at a glutamatergic synapse. Neuron 2009; 60:642-56. [PMID: 19038221 DOI: 10.1016/j.neuron.2008.08.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 08/26/2008] [Accepted: 08/29/2008] [Indexed: 01/14/2023]
Abstract
Neuronal nitric oxide synthase (nNOS) is broadly expressed in the brain and associated with synaptic plasticity through NMDAR-mediated calcium influx. However, its physiological activation and the mechanisms by which nitric oxide (NO) influences synaptic transmission have proved elusive. Here, we exploit the unique input-specificity of the calyx of Held to characterize NO modulation at this glutamatergic synapse in the auditory pathway. NO is generated in an activity-dependent manner by MNTB principal neurons receiving a calyceal synaptic input. It acts in the target neuron and adjacent inactive neurons to modulate excitability and synaptic efficacy, inhibiting postsynaptic Kv3 potassium currents (via phosphorylation), reducing EPSCs and so increasing action potential duration and reducing transmission fidelity. We conclude that NO serves as a volume transmitter and slow dynamic modulator, integrating spontaneous and evoked neuronal firing, thereby providing an index of global activity and regulating information transmission across a population of active and inactive neurons.
Collapse
Affiliation(s)
- Joern R Steinert
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang Y, Manis PB. Short-term synaptic depression and recovery at the mature mammalian endbulb of Held synapse in mice. J Neurophysiol 2008; 100:1255-64. [PMID: 18632895 DOI: 10.1152/jn.90715.2008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The endbulb of Held synapses between the auditory nerve fibers (ANF) and cochlear nucleus bushy neurons convey fine temporal information embedded in the incoming acoustic signal. The dynamics of synaptic depression and recovery is a key in regulating synaptic transmission at the endbulb synapse. We studied short-term synaptic depression and recovery in mature (P22-38) CBA mice with stimulation rates that were comparable to sound-driven activities recorded in vivo. Synaptic depression in mature mice is less severe ( approximately 40% at 100 Hz) than reported for immature animals and the depression is predominately due to depletion of releasable vesicles. Recovery from depression depends on the rate of activity and accumulation of intracellular Ca2+ at the presynaptic terminal. With a regular stimulus train at 100 Hz in 2 mM external [Ca2+], the recovery from depletion was slow (tauslow, approximately 2 s). In contrast, a fast (taufast, approximately 25 ms), Ca2+-dependent recovery followed by a slower recovery (tauslow, approximately 2 s) was seen when stimulus rates or external [Ca2+] increased. In normal [Ca2+], recovery from a 100-Hz Poisson-like train is rapid, suggesting that Poisson-like trains produce a higher internal [Ca2+] than regular trains. Moreover, the fast recovery was slowed by approximately twofold in the presence of calmidazolium, a Ca2+/calmodulin inhibitor. Our results suggest that endbulb synapses from high spontaneous firing rate auditory nerve fibers normally operate in a depressed state. The accelerated synaptic recovery during high rates of activity is likely to ensure that reliable synaptic transmission can be achieved at the endbulb synapse.
Collapse
Affiliation(s)
- Yong Wang
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA.
| | | |
Collapse
|
42
|
Cho CH, St-Gelais F, Zhang W, Tomita S, Howe JR. Two families of TARP isoforms that have distinct effects on the kinetic properties of AMPA receptors and synaptic currents. Neuron 2007; 55:890-904. [PMID: 17880893 DOI: 10.1016/j.neuron.2007.08.024] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 08/06/2007] [Accepted: 08/31/2007] [Indexed: 10/22/2022]
Abstract
Transmembrane AMPA receptor regulatory proteins (TARPs) are auxiliary AMPA receptor subunits that regulate both the trafficking and gating properties of AMPA receptors, and different TARP isoforms display distinct expression patterns in brain. Here, we compared the effects of four TARP isoforms on the kinetics of AMPA receptor currents. Each isoform slowed the deactivation of GluR1 currents, but the slowing was greatest with gamma-4 and gamma-8. Isoform-specific differences in desensitization were also observed that correlated with effects on deactivation. TARP isoforms also differentially modulated responses to trains of glutamate applications designed to mimic high-frequency presynaptic firing. Importantly, whereas both stargazin and gamma-4 rescued excitatory synaptic transmission in cerebellar granule cells from stargazer mice, the decay of miniature EPSCs was 2-fold slower in neurons expressing gamma-4. The results show that heterogeneity in the composition of AMPA receptor/TARP complexes contributes to synapse-specific differences in EPSC decays and frequency-dependent modulation of neurotransmission.
Collapse
Affiliation(s)
- Chang-Hoon Cho
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8066, USA
| | | | | | | | | |
Collapse
|
43
|
Weng HR, Chen JH, Pan ZZ, Nie H. Glial glutamate transporter 1 regulates the spatial and temporal coding of glutamatergic synaptic transmission in spinal lamina II neurons. Neuroscience 2007; 149:898-907. [PMID: 17935889 DOI: 10.1016/j.neuroscience.2007.07.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/18/2007] [Accepted: 08/06/2007] [Indexed: 10/22/2022]
Abstract
Glutamatergic synaptic transmission is a dynamic process determined by the amount of glutamate released by presynaptic sites, the clearance of glutamate in the synaptic cleft, and the properties of postsynaptic glutamate receptors. Clearance of glutamate in the synaptic cleft depends on passive diffusion and active uptake by glutamate transporters. In this study, we examined the role of glial glutamate transporter 1 (GLT-1) in spinal sensory processing. Excitatory postsynaptic currents (EPSCs) of substantia gelatinosa neurons recorded from spinal slices of young adult rats were analyzed before and after GLT-1 was pharmacologically blocked by dihydrokainic acid. Inhibition of GLT-1 prolonged the EPSC duration and the EPSC decay phase. The EPSC amplitudes were increased in neurons with weak synaptic input but decreased in neurons with strong synaptic input upon inhibition of GLT-1. We suggest that presynaptic inhibition, desensitization of postsynaptic AMPA receptors, and glutamate "spillover" contributed to the kinetic change of EPSCs induced by the blockade of GLT-1. Thus, GLT-1 is a key component in maintaining the spatial and temporal coding in signal transmission at the glutamatergic synapse in substantia gelatinosa neurons.
Collapse
Affiliation(s)
- H-R Weng
- Department of Anesthesiology and Pain Medicine, The University of Texas M. D. Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 42, Houston, TX 77030-4009, USA.
| | | | | | | |
Collapse
|
44
|
Tang YZ, Carr CE. Development of N-methyl-D-aspartate receptor subunits in avian auditory brainstem. J Comp Neurol 2007; 502:400-13. [PMID: 17366608 PMCID: PMC3268522 DOI: 10.1002/cne.21303] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptor subunit-specific probes were used to characterize developmental changes in the distribution of excitatory amino acid receptors in the chicken's auditory brainstem nuclei. Although NR1 subunit expression does not change greatly during the development of the cochlear nuclei in the chicken (Tang and Carr [2004] Hear. Res 191:79-89), there are significant developmental changes in NR2 subunit expression. We used in situ hybridization against NR1, NR2A, NR2B, NR2C, and NR2D to compare NR1 and NR2 expression during development. All five NMDA subunits were expressed in the auditory brainstem before embryonic day (E) 10, when electrical activity and synaptic responses appear in the nucleus magnocellularis (NM) and the nucleus laminaris (NL). At this time, the dominant form of the receptor appeared to contain NR1 and NR2B. NR2A appeared to replace NR2B by E14, a time that coincides with synaptic refinement and evoked auditory responses. NR2C did not change greatly during auditory development, whereas NR2D increased from E10 and remained at fairly high levels into adulthood. Thus changes in NMDA NR2 receptor subunits may contribute to the development of auditory brainstem responses in the chick.
Collapse
Affiliation(s)
- Ye-Zhong Tang
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
45
|
Ehlers MD, Heine M, Groc L, Lee MC, Choquet D. Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 2007; 54:447-60. [PMID: 17481397 PMCID: PMC1993808 DOI: 10.1016/j.neuron.2007.04.010] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 01/21/2007] [Accepted: 04/10/2007] [Indexed: 11/25/2022]
Abstract
Synaptic activity regulates the postsynaptic accumulation of AMPA receptors over timescales ranging from minutes to days. Indeed, the regulated trafficking and mobility of GluR1 AMPA receptors underlies many forms of synaptic potentiation at glutamatergic synapses throughout the brain. However, the basis for synapse-specific accumulation of GluR1 is unknown. Here we report that synaptic activity locally immobilizes GluR1 AMPA receptors at individual synapses. Using single-molecule tracking together with the silencing of individual presynaptic boutons, we demonstrate that local synaptic activity reduces diffusional exchange of GluR1 between synaptic and extraynaptic domains, resulting in postsynaptic accumulation of GluR1. At neighboring inactive synapses, GluR1 is highly mobile with individual receptors frequently escaping the synapse. Within the synapse, spontaneous activity confines the diffusional movement of GluR1 to restricted subregions of the postsynaptic membrane. Thus, local activity restricts GluR1 mobility on a submicron scale, defining an input-specific mechanism for regulating AMPA receptor composition and abundance.
Collapse
Affiliation(s)
- Michael D Ehlers
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
46
|
McKay SM, Oleskevich S. The role of spontaneous activity in development of the endbulb of Held synapse. Hear Res 2007; 230:53-63. [PMID: 17590547 DOI: 10.1016/j.heares.2007.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2007] [Revised: 04/09/2007] [Accepted: 05/14/2007] [Indexed: 11/24/2022]
Abstract
In the mouse brainstem cochlear nucleus, the auditory nerve to bushy cell synapse (endbulb of Held) is specialised for rapid, high-fidelity transmission. Development of this synapse is modulated by auditory nerve activity. Here we investigate the role of spontaneous auditory nerve activity in synaptic transmission using deafness (dn/dn) mutant mice that have abnormal hair cells and lack spontaneous auditory nerve activity. Evoked and miniature alpha amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor-mediated excitatory post-synaptic currents (eEPSCs, mEPSCs) were compared in deafness and normal mice before the age of hearing onset (postnatal day 7-11: P7-11) using variance-mean, miniature event and tetanic depression analyses. Amplitudes were significantly greater in deafness mice for eEPSCs (2.1-fold), mEPSCs (1.4-fold) and quantal amplitudes (1.5-fold). eEPSCs in deafness mice decayed more rapidly with increasing age, indicating an input-independent transition in post-synaptic AMPA receptor properties. A comparison of normal mice before and after the onset of hearing showed a change in synaptic parameters with an increase in eEPSC (1.7-fold), mEPSC (1.6-fold) and quantal amplitude (1.7-fold) after hearing onset while release probability remained constant (0.5). Overall, the results in deafness mice suggest that synaptic strength is altered in the absence of spontaneous auditory nerve activity.
Collapse
Affiliation(s)
- Sarah M McKay
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
47
|
Patten SA, Ali DW. AMPA receptors associated with zebrafish Mauthner cells switch subunits during development. J Physiol 2007; 581:1043-56. [PMID: 17412769 PMCID: PMC2170824 DOI: 10.1113/jphysiol.2007.129999] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glutamate AMPA receptors (AMPARs) are major excitatory receptors in the vertebrate CNS. In many biological systems there is a developmental speeding in AMPAR kinetics, which occurs either because of a switch in AMPAR subunits or a change in synaptic morphology. We studied the development of AMPAR-mediated miniature excitatory postsynaptic currents (AMPAR-mEPSCs) in zebrafish Mauthner cells (M-cells) to determine the reasons underlying the speeding of AMPA mEPSCs in this preparation. We recorded AMPAR-mEPSCs in zebrafish ranging in age from 33 h postfertilization (hpf) to 72 hpf. We found that the glutamate waveform in the synaptic cleft did not change during development, suggesting that synaptic morphology played little role in shaping the mEPSC. The current-voltage (I-V) relationship was linear at 33 hpf and outwardly rectified in older animals, while AMPAR decay kinetics were slower at positive potentials, compared with negative potentials. The relative change in tau with depolarization was found to be greater at 48 hpf than at 33 hpf. AMPARs in 33 hpf fish had a conductance of approximately 9 pS, and in older fish approximately 15 pS. Finally, the desensitization blocker, cyclothiazide, increased tau by approximately 4-fold in 48 hpf preparations, but only 1.5-fold in 33 hpf fish. These results are consistent with the hypothesis that the major mechanism underlying the developmental speeding in AMPAR kinetics in zebrafish CNS is a switch in receptor subunits. To our knowledge this is the first study to suggest that AMPARs change subunits during development in fish.
Collapse
Affiliation(s)
| | - Declan W Ali
- Department of Biological Sciences, University of AlbertaEdmonton, Alberta, Canada, T6G 2E9
- Centre for Neuroscience, Biological Sciences Building, University of AlbertaEdmonton, Alberta, Canada, T6G 2E9
| |
Collapse
|
48
|
Abstract
The development of synaptic function was examined at auditory nerve synapses in the rostromedial region of the cochlear nucleus magnocellularis of the chick. EPSCs were studied beginning at embryonic day 12 (E12), when synaptic transmission was first observed, through E19. The amplitude of evoked EPSCs produced by AMPA receptor (AMPA-R) increased 30-fold over this age range, whereas NMDA receptor (NMDA-R)-mediated transmission peaked at E14 and then declined almost completely. At E12, >80% of the miniature EPSCs exhibited both receptor components, and <10% were NMDA-R only. With age, the contribution of NMDA-R to miniature EPSCs steadily declined, suggesting that NMDA-R number is gradually reduced at individual postsynaptic sites. Between E12 and E16, the number of axonal inputs to each cell reduced by half. In simultaneous recordings from adjacent neurons, synchronous EPSCs were observed that resulted from spontaneous firing of the same presynaptic fiber. The difference in amplitude of the EPSCs in the two cells was greater in E14 than E12, whereas at E16 synchronous events were no longer observed, suggesting that the weaker input was destined for elimination. The relative amplitude of the NMDA-R component, compared with the AMPA-R component, was larger for the weaker inputs. When elimination was underway, AMPA-R quantal size was much reduced for the weakest terminals. Thus, elimination of auditory nerve terminals and pruning of axonal branches is preceded by a reduction in quantal efficacy.
Collapse
Affiliation(s)
- Tao Lu
- Oregon Hearing Research Center/Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Laurence O. Trussell
- Oregon Hearing Research Center/Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
49
|
Lu Y, Harris JA, Rubel EW. Development of spontaneous miniature EPSCs in mouse AVCN neurons during a critical period of afferent-dependent neuron survival. J Neurophysiol 2006; 97:635-46. [PMID: 17079338 PMCID: PMC1774585 DOI: 10.1152/jn.00915.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During a critical period prior to hearing onset, cochlea ablation leads to massive neuronal death in the mouse anteroventral cochlear nucleus (AVCN), where cell survival is believed to depend on glutamatergic input. We investigated the development of spontaneous miniature excitatory postsynaptic currents (mEPSCs) in AVCN neurons using whole cell patch-clamp techniques during [postnatal day 7 (P7)] and after (P14, P21) this critical period. We also examined the effects of unilateral cochlea ablation on mEPSC development. The two main AVCN neuron types, bushy and stellate cells, were distinguished electrophysiologically. Bushy cell mEPSCs became more frequent and faster between P7 and P14/P21 but with little change in amplitude. Dendritic filtering of mEPSCs was not detected as indicated by the lack of correlation between 10 and 90% rise times and decay time constants. Seven days after cochlea ablation at P7 or P14, mEPSCs in surviving bushy cells were similar to controls, except that rise and decay times were positively correlated (R = 0.31 and 0.14 for surgery at P7 and P14, respectively). Consistent with this evidence for a shift of synaptic activity from the somata to the dendrites, SV2 staining (a synaptic vesicle marker) forms a ring around somata of control but not experimental bushy cells. In contrast, mEPSCs of stellate cells showed few significant changes over these ages with or without cochlea ablation. Taken together, mEPSCs in mouse AVCN bushy cells show dramatic developmental changes across this critical period, and cochlea ablation may lead to the emergence of excitatory synaptic inputs impinging on bushy cell dendrites.
Collapse
Affiliation(s)
| | | | - Edwin W Rubel
- *Correspondence to: EWR at the above address: Telephone: 206-543-8360, Facsimile: 206-221-5685, E-mail:
| |
Collapse
|
50
|
Bonsacquet J, Brugeaud A, Compan V, Desmadryl G, Chabbert C. AMPA type glutamate receptor mediates neurotransmission at turtle vestibular calyx synapse. J Physiol 2006; 576:63-71. [PMID: 16887871 PMCID: PMC1995632 DOI: 10.1113/jphysiol.2006.116467] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glutamate is thought to be the main neurotransmitter at the synapse between the type I vestibular hair cell and its cognate calyx afferent. The present study was designed to identify the type of glutamate receptors involved in neurotransmission at this unusual synapse. Immunocytochemistry showed that AMPA GluR2, NMDA NR1 and NR2A/B subunits of the glutamate receptors were confined to the synaptic contact. We then examined the electrical activity at calyx terminals using direct electrophysiological recordings from intact dendritic terminals in explanted turtle posterior crista. We found that sodium-based action potentials support a background discharge that could be modulated by the mechanical stimulation of the hair bundle of the sensory cells. These activities were prevented by blocking both the mechano-electrical transduction channels and L-type voltage-gated Ca(2+) channels involved in synaptic transmission. Although pharmacological analysis revealed that NMDA receptors could operate, our results show that AMPA receptors are mainly involved in synaptic neurotransmission. We conclude that although both AMPA and NMDA glutamate receptor subunits are present at the calyx synapse, only AMPA receptors appear to be involved in the synaptic transmission between the type I vestibular hair cell and the calyx afferent.
Collapse
Affiliation(s)
- Jérémie Bonsacquet
- INSERM U583, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, BP74 103, 80 Rue Fliche, 34091 Montpellier Cedex 5 France.
| | | | | | | | | |
Collapse
|