1
|
Gando I, Becerra Flores M, Chen IS, Yang HQ, Nakamura TY, Cardozo TJ, Coetzee WA. CL-705G: a novel chemical Kir6.2-specific K ATP channel opener. Front Pharmacol 2023; 14:1197257. [PMID: 37408765 PMCID: PMC10319115 DOI: 10.3389/fphar.2023.1197257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Background: KATP channels have diverse roles, including regulation of insulin secretion and blood flow, and protection against biological stress responses and are excellent therapeutic targets. Different subclasses of KATP channels exist in various tissue types due to the unique assemblies of specific pore-forming (Kir6.x) and accessory (SURx) subunits. The majority of pharmacological openers and blockers act by binding to SURx and are poorly selective against the various KATP channel subclasses. Methods and Results: We used 3D models of the Kir6.2/SUR homotetramers based on existing cryo-EM structures of channels in both the open and closed states to identify a potential agonist binding pocket in a functionally critical area of the channel. Computational docking screens of this pocket with the Chembridge Core chemical library of 492,000 drug-like compounds yielded 15 top-ranked "hits", which were tested for activity against KATP channels using patch clamping and thallium (Tl+) flux assays with a Kir6.2/SUR2A HEK-293 stable cell line. Several of the compounds increased Tl+ fluxes. One of them (CL-705G) opened Kir6.2/SUR2A channels with a similar potency as pinacidil (EC50 of 9 µM and 11 μM, respectively). Remarkably, compound CL-705G had no or minimal effects on other Kir channels, including Kir6.1/SUR2B, Kir2.1, or Kir3.1/Kir3.4 channels, or Na+ currents of TE671 medulloblastoma cells. CL-705G activated Kir6.2Δ36 in the presence of SUR2A, but not when expressed by itself. CL-705G activated Kir6.2/SUR2A channels even after PIP2 depletion. The compound has cardioprotective effects in a cellular model of pharmacological preconditioning. It also partially rescued activity of the gating-defective Kir6.2-R301C mutant that is associated with congenital hyperinsulinism. Conclusion: CL-705G is a new Kir6.2 opener with little cross-reactivity with other channels tested, including the structurally similar Kir6.1. This, to our knowledge, is the first Kir-specific channel opener.
Collapse
Affiliation(s)
- Ivan Gando
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - Manuel Becerra Flores
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - I.-Shan Chen
- Phamacology, Wakayama Medical University, Wakayama, Japan
| | - Hua-Qian Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | | | - Timothy J. Cardozo
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - William A. Coetzee
- Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
2
|
Abstract
Ion channel are embedded in the lipid bilayers of biological membranes. Membrane phospholipids constitute a barrier to ion movement, and they have been considered for a long time as a passive environment for channel proteins. Membrane phospholipids, however, do not only serve as a passive amphipathic environment, but they also modulate channel activity by direct specific lipid-protein interactions. Phosphoinositides are quantitatively minor components of biological membranes, and they play roles in many cellular functions, including membrane traffic, cellular signaling and cytoskeletal organization. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is mainly found in the inner leaflet of the plasma membrane. Its role as a potential ion channel regulator was first appreciated over two decades ago and by now this lipid is a well-established cofactor or regulator of many different ion channels. The past two decades witnessed the steady development of techniques to study ion channel regulation by phosphoinositides with progress culminating in recent cryoEM structures that allowed visualization of how PI(4,5)P2 opens some ion channels. This chapter will provide an overview of the methods to study regulation by phosphoinositides, focusing on plasma membrane ion channels and PI(4,5)P2.
Collapse
|
3
|
PIP 2: A critical regulator of vascular ion channels hiding in plain sight. Proc Natl Acad Sci U S A 2020; 117:20378-20389. [PMID: 32764146 PMCID: PMC7456132 DOI: 10.1073/pnas.2006737117] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2), has long been established as a major contributor to intracellular signaling, primarily by virtue of its role as a substrate for phospholipase C (PLC). Signaling by Gq-protein-coupled receptors triggers PLC-mediated hydrolysis of PIP2 into inositol 1,4,5-trisphosphate and diacylglycerol, which are well known to modulate vascular ion channel activity. Often overlooked, however, is the role PIP2 itself plays in this regulation. Although numerous reports have demonstrated that PIP2 is critical for ion channel regulation, how it impacts vascular function has received scant attention. In this review, we focus on PIP2 as a regulator of ion channels in smooth muscle cells and endothelial cells-the two major classes of vascular cells. We further address the concerted effects of such regulation on vascular function and blood flow control. We close with a consideration of current knowledge regarding disruption of PIP2 regulation of vascular ion channels in disease.
Collapse
|
4
|
da Silva Teixeira S, Harrison K, Uzodike M, Rajapakshe K, Coarfa C, He Y, Xu Y, Sisley S. Vitamin D actions in neurons require the PI3K pathway for both enhancing insulin signaling and rapid depolarizing effects. J Steroid Biochem Mol Biol 2020; 200:105690. [PMID: 32408067 PMCID: PMC7397709 DOI: 10.1016/j.jsbmb.2020.105690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/23/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022]
Abstract
Despite correlations between low vitamin D levels and diabetes incidence/severity, supplementation with vitamin D has not been widely effective in improving glucose parameters. This may be due to a lack of knowledge regarding how low vitamin D levels physiologically affect glucose homeostasis. We have previously shown that the brain may be a critical area for vitamin d-mediated action on peripheral glucose levels. However, the mechanisms for how vitamin D acts in the brain are unknown. We utilized a multimodal approach to determine the mechanisms by which vitamin D may act in the brain. We first performed an unbiased search (RNA-sequencing) for pathways affected by vitamin D. Vitamin D (125-dihydroxyvitamin D3; 1,25D3) delivered directly into the third ventricle of obese animals differentially regulated multiple pathways, including the insulin signaling pathway. The insulin signaling pathway includes PI3K, which is important in the brain for glucose regulation. Since others have shown that vitamin D acts through the PI3K pathway in non-neuronal cells (muscle and bone), we hypothesized that vitamin D may act in neurons through a PI3K-dependent pathway. In a hypothalamic cell-culture model (GT1-7 cells), we demonstrate that 1,25D3 increased phosphorylation of Akt in the presence of insulin. However, this was blocked with pre-treatment of wortmannin, a PI3K inhibitor. 1,25D3 increased gene transcription of several genes within the PI3K pathway, including Irs2 and p85, without affecting expression of InsR or Akt. Since we had previously shown that 1,25D3 has significant effects on neuronal function, we also tested if the PI3K pathway could mediate rapid actions of vitamin D. We found that 1,25D3 increased the firing frequency of neurons through a PI3K-dependent mechanism. Collectively, these data support that vitamin D enhances insulin signaling and neuronal excitability through PI3K dependent processes which involve both transcriptional and membrane-initiated signaling events.
Collapse
Affiliation(s)
- Silvania da Silva Teixeira
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Keisha Harrison
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, United States
| | | | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, United States; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, United States; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, United States; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Stephanie Sisley
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, United States.
| |
Collapse
|
5
|
Palmitoylation of the K ATP channel Kir6.2 subunit promotes channel opening by regulating PIP 2 sensitivity. Proc Natl Acad Sci U S A 2020; 117:10593-10602. [PMID: 32332165 DOI: 10.1073/pnas.1918088117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A physiological role for long-chain acyl-CoA esters to activate ATP-sensitive K+ (KATP) channels is well established. Circulating palmitate is transported into cells and converted to palmitoyl-CoA, which is a substrate for palmitoylation. We found that palmitoyl-CoA, but not palmitic acid, activated the channel when applied acutely. We have altered the palmitoylation state by preincubating cells with micromolar concentrations of palmitic acid or by inhibiting protein thioesterases. With acyl-biotin exchange assays we found that Kir6.2, but not sulfonylurea receptor (SUR)1 or SUR2, was palmitoylated. These interventions increased the KATP channel mean patch current, increased the open time, and decreased the apparent sensitivity to ATP without affecting surface expression. Similar data were obtained in transfected cells, rat insulin-secreting INS-1 cells, and isolated cardiac myocytes. Kir6.2ΔC36, expressed without SUR, was also positively regulated by palmitoylation. Mutagenesis of Kir6.2 Cys166 prevented these effects. Clinical variants in KCNJ11 that affect Cys166 had a similar gain-of-function phenotype, but was more pronounced. Molecular modeling studies suggested that palmitoyl-C166 and selected large hydrophobic mutations make direct hydrophobic contact with Kir6.2-bound PIP2 Patch-clamp studies confirmed that palmitoylation of Kir6.2 at Cys166 enhanced the PIP2 sensitivity of the channel. Physiological relevance is suggested since palmitoylation blunted the regulation of KATP channels by α1-adrenoreceptor stimulation. The Cys166 residue is conserved in some other Kir family members (Kir6.1 and Kir3, but not Kir2), which are also subject to regulated palmitoylation, suggesting a general mechanism to control the open state of certain Kir channels.
Collapse
|
6
|
Harraz OF, Longden TA, Hill-Eubanks D, Nelson MT. PIP 2 depletion promotes TRPV4 channel activity in mouse brain capillary endothelial cells. eLife 2018; 7:38689. [PMID: 30084828 PMCID: PMC6117155 DOI: 10.7554/elife.38689] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023] Open
Abstract
We recently reported that the inward-rectifier Kir2.1 channel in brain capillary endothelial cells (cECs) plays a major role in neurovascular coupling (NVC) by mediating a neuronal activity-dependent, propagating vasodilatory (hyperpolarizing) signal. We further demonstrated that Kir2.1 activity is suppressed by depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2). Whether cECs express depolarizing channels that intersect with Kir2.1-mediated signaling remains unknown. Here, we report that Ca2+/Na+-permeable TRPV4 (transient receptor potential vanilloid 4) channels are expressed in cECs and are tonically inhibited by PIP2. We further demonstrate that depletion of PIP2 by agonists, including putative NVC mediators, that promote PIP2 hydrolysis by signaling through Gq-protein-coupled receptors (GqPCRs) caused simultaneous disinhibition of TRPV4 channels and suppression of Kir2.1 channels. These findings collectively support the concept that GqPCR activation functions as a molecular switch to favor capillary TRPV4 activity over Kir2.1 signaling, an observation with potentially profound significance for the control of cerebral blood flow. Capillaries form branching networks that surround all cells of the body. They allow oxygen and nutrient exchange between blood and tissue, but this is not their only role. Capillaries in the brain form a tight barrier that prevents components carried in the blood from easily reaching the brain compartment. They also detect the activity of neurons and trigger on-demand increases in blood flow to active regions of the brain. This role, revealed only recently, depends upon ion channels on the surface of the capillary cells. Active neurons release potassium ions, which open a type of ion channel called Kir2.1 that allows potassium inside the cell to flow out. This process is repeated in neighboring capillary cells until it reaches an upstream vessel, where it causes the vessel to relax and increase the blood flow. Kir2.1 channels sit astride the membranes of capillary cells, where they can interact with other membrane molecules. One such molecule, called PIP2, plays several roles in relaying signals from the outside to the inside of cells. It also physically interacts with channels in the membrane, including Kir2.1 channels. If PIP2 levels are low, Kir2.1 channel activity decreases. Here, Harraz et al. discovered that capillary cells contain another type of ion channel, called TRPV4, which is also regulated by PIP2. But unlike Kir2.1, its activity increases when PIP2 levels drop. Moreover, TRPV4 channels allow sodium and calcium ions to flow into the cell, which has an effect opposite to that of potassium flowing out of the cell. Capillary cells also have receptor proteins called GqPCRs that are activated by chemical signals released by active neurons in the brain. GqPCRs break down PIP2, so their activity turns Kir2.1 channels off and TRPV4 channels on. This resets the system so that it is ready to respond to new signals from active neurons. GqPCRs work as molecular switches to control the balance between Kir2.1 and TRPV4 channels and turn brain blood flow up and down. GqPCRs and ion channels that depend on PIP2 can also be found in other types of cells. These findings could reveal clues about how signals are switched on and off in different cells. Understanding the role of PIP2 in signaling could also unveil what happens when signaling go wrong.
Collapse
Affiliation(s)
- Osama F Harraz
- Department of Pharmacology, University of Vermont, Burlington, United States
| | - Thomas A Longden
- Department of Pharmacology, University of Vermont, Burlington, United States
| | - David Hill-Eubanks
- Department of Pharmacology, University of Vermont, Burlington, United States
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, United States.,Institute of Cardiovascular Sciences, Manchester, United Kingdom
| |
Collapse
|
7
|
Proks P, Puljung MC, Vedovato N, Sachse G, Mulvaney R, Ashcroft FM. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0426. [PMID: 27377720 PMCID: PMC4938026 DOI: 10.1098/rstb.2015.0426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 11/29/2022] Open
Abstract
KATP channels act as key regulators of electrical excitability by coupling metabolic cues—mainly intracellular adenine nucleotide concentrations—to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’.
Collapse
Affiliation(s)
- Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Michael C Puljung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Natascia Vedovato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Gregor Sachse
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Rachel Mulvaney
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
8
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
9
|
Wang H, Zhuang X, Cai Y, Cheung AY, Jiang L. Apical F-actin-regulated exocytic targeting of NtPPME1 is essential for construction and rigidity of the pollen tube cell wall. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:367-79. [PMID: 23906068 DOI: 10.1111/tpj.12300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 05/03/2023]
Abstract
In tip-confined growing pollen tubes, delivery of newly synthesized cell wall materials to the rapidly expanding apical surface requires spatial organization and temporal regulation of the apical F-actin filament and exocytosis. In this study, we demonstrate that apical F-actin is essential for the rigidity and construction of the pollen tube cell wall by regulating exocytosis of Nicotiana tabacum pectin methylesterase (NtPPME1). Wortmannin disrupts the spatial organization of apical F-actin in the pollen tube tip and inhibits polar targeting of NtPPME1, which subsequently alters the rigidity and pectic composition of the pollen tube cell wall, finally causing growth arrest of the pollen tube. In addition to mechanistically linking cell wall construction and apical F-actin, wortmannin can be used as a useful tool for studying endomembrane trafficking and cytoskeletal organization in pollen tubes.
Collapse
Affiliation(s)
- Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
10
|
Mitsuyama H, Yokoshiki H, Irie Y, Watanabe M, Mizukami K, Tsutsui H. Involvement of the phosphatidylinositol kinase pathway in augmentation of ATP-sensitive K+ channel currents by hypo-osmotic stress in rat ventricular myocytes. Can J Physiol Pharmacol 2013; 91:686-92. [DOI: 10.1139/cjpp-2012-0408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the mechanisms of increase in the efficacy of ATP-sensitive K+ channel (KATP) openings by hypo-osmotic stress. The whole-cell KATP currents (IK,ATP) stimulated by 100 μmol/L pinacidil, a K+ channel opening drug, were significantly augmented during hypo-osmotic stress (189 mOsmol/L) compared with normal conditions (303 mOsmol/L). The EC50 and Emax value for pinacidil-activated IK,ATP (measured at 0 mV) was 154 μmol/L and 844 pA, respectively, in normal solution and 16.6 μmol/L and 1266 pA, respectively, in hypo-osmotic solution. Augmentation of IK,ATP during hypo-osmotic stress was attenuated by wortmannin (50 μmol/L), an inhibitor of phosphatidylinositol 3- and 4-kinases, but not by (i) phalloidin (30 μmol/L), an actin filament stabilizer, (ii) the absence of Ca2+ from the internal and external solutions, and (iii) the presence of creatine phosphate (3 mmol/L), which affects creatine kinase regulation of the KATP channels. In the single-channel recordings, an inside-out patch was made after approximately 5 min exposure of the myocyte to hypo-osmotic solution. However, the IC50 value for ATP under such conditions was not different from that obtained in normal osmotic solution. In conclusion, hypo-osmotic stress could augment cardiac IK,ATP through intracellular mechanisms involving the phosphatidylinositol kinase pathway.
Collapse
Affiliation(s)
- Hirofumi Mitsuyama
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Hisashi Yokoshiki
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Yuki Irie
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Kazuya Mizukami
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
11
|
Wang L, Li W, Kong S, Wu P, Zhang C, Gu L, Wang M, Wang W, Gu R. Insulin-like growth factor-1 (IGF-1) inhibits the basolateral Cl channels in the thick ascending limb of the rat kidney. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1163-9. [PMID: 22575459 DOI: 10.1016/j.bbamcr.2012.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/23/2012] [Accepted: 04/30/2012] [Indexed: 12/17/2022]
Abstract
The aim of the present study is to test the hypothesis that insulin-like-growth factor-1 (IGF-1) plays a role in the regulation of basolateral Cl channels in the thick ascending limb (TAL). The patch-clamp experiments demonstrated that application of IGF-I or insulin inhibited the basolateral 10-pS Cl channels. However, the concentration of insulin required for the inhibition of the Cl channels by 50% (K(1/2)) was ten times higher than those of IGF-1. The inhibitory effect of IGF-I on the 10-pS Cl channels was blocked by suppressing protein tyrosine kinase or by blocking phosphoinositide 3-kinase (PI3K). In contrast, inhibition of phospholipase C (PLC) failed to abolish the inhibitory effect of IGF-1 on the Cl channels in the TAL. Western blot analysis demonstrated that IGF-1 significantly increased the phosphorylation of phospholipid-dependent kinase (PDK) at serine residue 241 (Ser(241)) and AKT at Ser(473) in the isolated medullary TAL. Moreover, inhibition of PI3K with LY294002 abolished the effect of IGF-1 on the phosphorylation of PDK and AKT. The notion that the effect of IGF-1 on the 10-pS Cl channels was induced by stimulation of PDK-AKT-mTOR pathway was further suggested by the finding that rapamycin completely abolished the effect of IGF-1 on the 10-pS Cl channels in the TAL. We conclude that IGF-1 inhibits the basolateral Cl channels by activating PI3K-AKT-mTOR pathways. The inhibitory effect of IGF-1 on the Cl channels may play a role in ameliorating the ischemia-induced renal injury through IGF-1 administration.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Pharmacology, Harbin Medical University, Harbin 150086, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kefaloyianni E, Bao L, Rindler MJ, Hong M, Patel T, Taskin E, Coetzee WA. Measuring and evaluating the role of ATP-sensitive K+ channels in cardiac muscle. J Mol Cell Cardiol 2012; 52:596-607. [PMID: 22245446 DOI: 10.1016/j.yjmcc.2011.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 12/06/2011] [Accepted: 12/23/2011] [Indexed: 11/27/2022]
Abstract
Since ion channels move electrical charge during their activity, they have traditionally been studied using electrophysiological approaches. This was sometimes combined with mathematical models, for example with the description of the ionic mechanisms underlying the initiation and propagation of action potentials in the squid giant axon by Hodgkin and Huxley. The methods for studying ion channels also have strong roots in protein chemistry (limited proteolysis, the use of antibodies, etc.). The advent of the molecular cloning and the identification of genes coding for specific ion channel subunits in the late 1980s introduced a multitude of new techniques with which to study ion channels and the field has been rapidly expanding ever since (e.g. antibody development against specific peptide sequences, mutagenesis, the use of gene targeting in animal models, determination of their protein structures) and new methods are still in development. This review focuses on techniques commonly employed to examine ion channel function in an electrophysiological laboratory. The focus is on the K(ATP) channel, but many of the techniques described are also used to study other ion channels.
Collapse
|
13
|
Abstract
In the retina, light onset hyperpolarizes photoreceptors and depolarizes ON bipolar cells at the sign inverting photoreceptor-ON bipolar cell synapse. Transmission at this synapse is mediated by a signaling cascade comprised of mGluR6, a G-protein containing G(αo), and the cation channel TRP melastatin 1 (TRPM1). This system is thought to be common to both the rod- and ON-cone-driven pathways, which control vision under scotopic and photopic conditions, respectively. In this study, we present evidence that the rod pathway is uniquely susceptible to modulation by PKCα at the rod-rod bipolar cell synapse. Decreased production of DAG (an activator of PKC) by inhibition of PIP₂ (phosphatidylinositol-4,5-bisphosphate) hydrolysis caused depression of the TRPM1 current. Conversely, addition of a DAG analog, 2-acetyl-1-oleoyl-sn-glycerol (OAG), potentiated the current in rod bipolar cells but not in ON-cone bipolar cells. The potentiating effects of OAG were absent both in mutant mice that lack PKCα expression and in wild-type mice in which enzymatic activity of PKCα was pharmacologically inhibited. In addition, we found that, like other members of the TRPM subfamily, TRPM1 current is susceptible to voltage-independent inhibition by intracellular magnesium, and that modulation by PKCα relieves this inhibition, as the potentiating effects of OAG are absent in low intracellular magnesium. We conclude that activation of PKCα initiates a modulatory mechanism at the rod-rod bipolar cell synapse whose function is to reduce inhibition of the TRPM1 current by magnesium, thereby increasing the gain of transmission at this synapse.
Collapse
|
14
|
Proks P, de Wet H, Ashcroft FM. Activation of the K(ATP) channel by Mg-nucleotide interaction with SUR1. ACTA ACUST UNITED AC 2011; 136:389-405. [PMID: 20876358 PMCID: PMC2947056 DOI: 10.1085/jgp.201010475] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mechanism of adenosine triphosphate (ATP)-sensitive potassium (KATP) channel activation by Mg-nucleotides was studied using a mutation (G334D) in the Kir6.2 subunit of the channel that renders KATP channels insensitive to nucleotide inhibition and has no apparent effect on their gating. KATP channels carrying this mutation (Kir6.2-G334D/SUR1 channels) were activated by MgATP and MgADP with an EC50 of 112 and 8 µM, respectively. This activation was largely suppressed by mutation of the Walker A lysines in the nucleotide-binding domains of SUR1: the remaining small (∼10%), slowly developing component of MgATP activation was fully inhibited by the lipid kinase inhibitor LY294002. The EC50 for activation of Kir6.2-G334D/SUR1 currents by MgADP was lower than that for MgATP, and the time course of activation was faster. The poorly hydrolyzable analogue MgATPγS also activated Kir6.2-G334D/SUR1. AMPPCP both failed to activate Kir6.2-G334D/SUR1 and to prevent its activation by MgATP. Maximal stimulatory concentrations of MgATP (10 mM) and MgADP (1 mM) exerted identical effects on the single-channel kinetics: they dramatically elevated the open probability (PO > 0.8), increased the mean open time and the mean burst duration, reduced the frequency and number of interburst closed states, and eliminated the short burst states. By comparing our results with those obtained for wild-type KATP channels, we conclude that the MgADP sensitivity of the wild-type KATP channel can be described quantitatively by a combination of inhibition at Kir6.2 (measured for wild-type channels in the absence of Mg2+) and activation via SUR1 (determined for Kir6.2-G334D/SUR1 channels). However, this is not the case for the effects of MgATP.
Collapse
Affiliation(s)
- Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England, UK
| | | | | |
Collapse
|
15
|
Cardiac sarcolemmal K(ATP) channels: Latest twists in a questing tale! J Mol Cell Cardiol 2009; 48:71-5. [PMID: 19607836 DOI: 10.1016/j.yjmcc.2009.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 06/23/2009] [Accepted: 07/06/2009] [Indexed: 11/24/2022]
Abstract
Reconstitution of K(ATP) channel activity from coexpression of members of the pore-forming inward rectifier gene family (Kir6.1, KCNJ8, and Kir6.2 KCNJ11) with sulfonylurea receptors (SUR1, ABCC8, and SUR2, ABCC9) of the ABCC protein sub-family, has led to the elucidation of many details of channel gating and pore properties, as well as the essential roles of Kir6.2 and SUR2 subunits in generating cardiac ventricular K(ATP). However, despite this extensive body of knowledge, there remain significant holes in our understanding of the physiological role of the cardiac K(ATP) channel, and surprising new findings keep emerging. Recent findings from genetically modified animals include the apparent insensitivity of cardiac sarcolemmal channels to nucleotide levels, and unenvisioned complexities of the subunit make-up of the cardiac channels. This topical review focuses on these new findings and considers their implications.
Collapse
|
16
|
Russ U, Kühner P, Prager R, Stephan D, Bryan J, Quast U. Incomplete dissociation of glibenclamide from wild-type and mutant pancreatic K ATP channels limits their recovery from inhibition. Br J Pharmacol 2009; 156:354-61. [PMID: 19154434 DOI: 10.1111/j.1476-5381.2008.00005.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE The antidiabetic sulphonylurea, glibenclamide, acts by inhibiting the pancreatic ATP-sensitive K(+) (K(ATP)) channel, a tetradimeric complex of K(IR)6.2 and sulphonylurea receptor 1 (K(IR)6.2/SUR1)(4). At room temperature, recovery of channel activity following washout of glibenclamide is very slow and cannot be measured. This study investigates the relation between the recovery of channel activity from glibenclamide inhibition and the dissociation rate of [(3)H]-glibenclamide from the channel at 37 degrees C. EXPERIMENTAL APPROACH K(IR)6.2, K(IR)6.2DeltaN5 or K(IR)6.2DeltaN10 (the latter lacking amino-terminal residues 2-5 or 2-10 respectively) were coexpressed with SUR1 in HEK cells. Dissociation of [(3)H]-glibenclamide from the channel and recovery of channel activity from glibenclamide inhibition were determined at 37 degrees C. KEY RESULTS The dissociation kinetics of [(3)H]-glibenclamide from the wild-type channel followed an exponential decay with a dissociation half-time, t(1/2)(D) = 14 min; however, only limited and slow recovery of channel activity was observed. t(1/2)(D) for K(IR)6.2DeltaN5/SUR1 channels was 5.3 min and recovery of channel activity exhibited a sluggish sigmoidal time course with a half-time, t(1/2)(R) = 12 min. t(1/2)(D) for the DeltaN10 channel was 2.3 min; recovery kinetics were again sigmoidal with t(1/2)(R) approximately 4 min. CONCLUSIONS AND IMPLICATIONS The dissociation of glibenclamide from the truncated channels is the rate-limiting step of channel recovery. The sigmoidal recovery kinetics are in quantitative agreement with a model where glibenclamide must dissociate from all four (or at least three) sites before the channel reopens. It is argued that these conclusions hold also for the wild-type (pancreatic) K(ATP) channel.
Collapse
Affiliation(s)
- U Russ
- Department of Pharmacology and Toxicology, Medical Faculty, University of Tübingen, Wilhelmstrasse 56, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Shimokawa J, Yokoshiki H, Tsutsui H. Impaired activation of ATP-sensitive K+ channels in endocardial myocytes from left ventricular hypertrophy. Am J Physiol Heart Circ Physiol 2007; 293:H3643-9. [PMID: 17921319 DOI: 10.1152/ajpheart.01357.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP-sensitive K(+) (K(ATP)) channels are essential for maintaining the cellular homeostasis against metabolic stress. Myocardial remodeling in various pathologies may alter this adaptive response to such stress. It was reported that transmural electrophysiological heterogeneity exists in ventricular myocardium. Therefore, we hypothesized that the K(ATP) channel properties might be altered in hypertrophied myocytes from endocardium. To test this hypothesis, we determined the K(ATP) channel currents using the perforated patch-clamp technique, open cell-attached patches, and excised inside-out patches in both endocardial and epicardial myocytes isolated from hypertrophied [spontaneous hypertensive rats (SHR)] vs. normal [Wistar-Kyoto rats (WKY)] left ventricle. In endocardial cells, K(ATP) channel currents (I(K,ATP)), produced by 2 mM CN(-) and no glucose at 0 mV, were significantly smaller (P < 0.01), and time required to reach peak currents after onset of K(ATP) channel opening (Time(onset to peak)) was significantly longer (319 +/- 46 vs. 177 +/- 37 s, P = 0.01) in the SHR group (n = 9) than the WKY group (n = 13). However, in epicardial cells, there were no differences in I(K,ATP) and Time(onset to peak) between the groups (SHR, n = 12; WKY, n = 12). The concentration-open probability-response curves obtained during the exposure of open cells and excised patches to exogenous ATP revealed the impaired K(ATP) channel activation in endocardial myocytes from SHR. In conclusion, K(ATP) channel activation under metabolic stress was impaired in endocardial cells from rat hypertrophied left ventricle. The deficit of endocardial K(ATP) channels to decreased intracellular ATP might contribute to the maladaptive response of hypertrophied hearts to ischemia.
Collapse
Affiliation(s)
- Junichi Shimokawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | | | | |
Collapse
|
18
|
Gross ER, Hsu AK, Gross GJ. GSK3β inhibition and KATP channel opening mediate acute opioid-induced cardioprotection at reperfusion. Basic Res Cardiol 2007; 102:341-9. [PMID: 17450314 DOI: 10.1007/s00395-007-0651-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/01/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Both glycogen synthase kinase 3beta (GSK3beta) and the ATP-dependant potassium channel (K(ATP)) mediate opioid-induced cardioprotection (OIC). However, whether direct K(ATP) channel openers induce cardioprotection prior to reperfusion and their signaling cascade position with respect to GSK3beta inhibition is unknown. Therefore, we investigated the role of K(ATP) channel opening at reperfusion in OIC, and the interaction between the GSK signaling axis and K(ATP) channels in cardioprotection.Male Sprague-Dawley rats underwent 30 minutes ischemia with 2 hours of reperfusion and infarct size was determined. Rats given the nonselective opioid agonist, morphine (0.3 mg/kg), or the selective delta opioid agonist, BW373U86 (1.0 mg/kg), 5 minutes prior to reperfusion reduced infarct size (40.3+/-1.6*, 39.7+/-1.9* versus 60.0+/-1.1%, respectively, * P<0.001%). This protection was abrogated with prior administration of the putative sarcolemmal K(ATP) antagonist, HMR-1098 (6 mg/kg), or the putative mitochondrial K(ATP) antagonist, 5-HD (10 mg/kg). The putative sK(ATP) channel opener, P-1075 (1microg/kg) or the putative mK(ATP) channel opener, BMS-191095 (1 mg/kg) given 5 minutes prior to reperfusion also reduced infarct size (41.8+/-2.4*, 43.4+/-1.4*) and protection was abrogated by prior administration of the PI3k inhibitor wortmannin (60.0+/-1.7, 64.0+/-2.6%, respectively, * P<0.001). Cardioprotection afforded by the GSK inhibitor SB216763 (0.6 mg/kg) given 5 minutes prior to reperfusion was also partially blocked by either HMR or 5-HD and completely blocked when HMR and 5-HD were given in combination (40.8+/-1.6*, 50.4+/-1.6;; 49.4+/-1.7;, 61.6+/-1.6%, respectively, * or ; P<0.001). These data indicate that both the sK(ATP) and mK(ATP) channel are involved in acute OIC and the GSK signaling axis regulates cardioprotection via K(ATP) channel opening.
Collapse
Affiliation(s)
- Eric R Gross
- Medical College of Wisconsin, Dept. of Pharmacology and Toxicology, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
19
|
Michailova A, Lorentz W, McCulloch A. Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes. Am J Physiol Cell Physiol 2007; 293:C542-57. [PMID: 17329404 DOI: 10.1152/ajpcell.00148.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049-C2060, 2001). We incorporated equations for Ca(2+) and Mg(2+) buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K(+) channel and L-type Ca(2+) channel, Na(+)-K(+)-ATPase, and sarcolemmal and sarcoplasmic Ca(2+)-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different I(Na), I(to), I(Kr), I(Ks), and I(Kp) channel properties. The results indicate that the ATP-sensitive K(+) channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, P(i), total Mg(2+), Na(+), K(+), Ca(2+), and pH diastolic levels are normal. The model predicts that only K(ATP) ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the K(ATP) channel opening through metabolic interactions with the endogenous PI cascade (PIP(2), PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes.
Collapse
Affiliation(s)
- Anushka Michailova
- Dept of Bioengineering, PFBH 241, University of California San Diego, La Jolla, CA 92093-0412, USA.
| | | | | |
Collapse
|
20
|
Xie LH, John SA, Ribalet B, Weiss JN. Long polyamines act as cofactors in PIP2 activation of inward rectifier potassium (Kir2.1) channels. ACTA ACUST UNITED AC 2006; 126:541-9. [PMID: 16316973 PMCID: PMC2266595 DOI: 10.1085/jgp.200509380] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphatidylinosital-4,5-bisphosphate (PIP2) acts as an essential factor regulating the activity of all Kir channels. In most Kir members, the dependence on PIP2 is modulated by other factors, such as protein kinases (in Kir1), Gβγ (in Kir3), and the sulfonylurea receptor (in Kir6). So far, however, no regulator has been identified in Kir2 channels. Here we show that polyamines, which cause inward rectification by selectively blocking outward current, also regulate the interaction of PIP2 with Kir2.1 channels to maintain channel availability. Using spermine and diamines as polyamine analogs, we demonstrate that both spontaneous and PIP2 antibody–induced rundown of Kir2.1 channels in excised inside-out patches was markedly slowed by long polyamines; in contrast, polyamines with shorter chain length were ineffective. In K188Q mutant channels, which have a low PIP2 affinity, application PIP2 (10 μM) was unable to activate channel activity in the absence of polyamines, but markedly activated channels in the presence of long diamines. Using neomycin as a measure of PIP2 affinity, we found that long polyamines were capable of strengthening either the wild type or K188Q channels' interaction with PIP2. The negatively charged D172 residue inside the transmembrane pore region was critical for the shift of channel–PIP2 binding affinity by long polyamines. Sustained pore block by polyamines was neither sufficient nor necessary for this effect. We conclude that long polyamines serve a dual role as both blockers and coactivators (with PIP2) of Kir2.1 channels.
Collapse
Affiliation(s)
- Lai-Hua Xie
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
21
|
Zhang Z, Okawa H, Wang Y, Liman ER. Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 2005; 280:39185-92. [PMID: 16186107 DOI: 10.1074/jbc.m506965200] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPM4 is a Ca(2+)-activated nonselective cation channel that regulates membrane potential in response to intracellular Ca(2+) signaling. In lymphocytes it plays an essential role in shaping the pattern of intracellular Ca(2+) oscillations that lead to cytokine secretion. To better understand its role in this and other physiological processes, we investigated mechanisms by which TRPM4 is regulated. TRPM4 was expressed in ChoK1 cells, and currents were measured in excised patches. Under these conditions, TRPM4 currents were activated by micromolar concentrations of cytoplasmic Ca(2+) and progressively desensitized. Here we show that desensitization can be explained by a loss of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) from the channels. Poly-l-lysine, a PI(4,5)P(2) scavenger, caused rapid desensitization, whereas MgATP, at concentrations that activate lipid kinases, promoted recovery of TRPM4 currents. Application of exogenous PI(4,5)P(2) to the intracellular surface of the patch restored the properties of TRPM4 currents. Our results suggest that PI(4,5)P(2) acts to uncouple channel opening from changes in the transmembrane potential, allowing current activation at physiological voltages. These data argue that hydrolysis of PI(4,5)P(2) underlies desensitization of TRPM4 and support the idea that PI(4,5)P(2) is a general regulator for the gating of TRPM ion channels.
Collapse
Affiliation(s)
- Zheng Zhang
- Division of Neurobiology, Department of Biological Sciences and Program in Neuroscience, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
22
|
Ford CP, Stemkowski PL, Smith PA. Possible role of phosphatidylinositol 4,5, bisphosphate in luteinizing hormone releasing hormone-mediated M-current inhibition in bullfrog sympathetic neurons. Eur J Neurosci 2004; 20:2990-8. [PMID: 15579153 DOI: 10.1111/j.1460-9568.2004.03786.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Luteinizing hormone releasing hormone (LHRH) is a physiological modulator of neuronal excitability in bullfrog sympathetic ganglia (BFSG). Actions of LHRH involve suppression of the noninactivating, voltage-dependent M-type K+ channel conductance (gM). We found, using whole-cell recordings from these neurons, that LHRH-induced suppression of gM was attenuated by the phospholipase C (PLC) inhibitor U73122 (10 microM) but not by the inactive isomer U73343 (10 microM). Buffering internal Ca2+ to 117 nM with intracellular 20 mM BAPTA + 8 mM Ca2+ or to < 10 nM with intracellular 20 mM BAPTA + 0.4 mM Ca2+ did not attenuate LHRH-induced gM suppression. Suppression of gM by LHRH was not antagonized by the inositol 1,4,5 trisphosphate (InsP3) receptor antagonist heparin (approximately 300 microM). Preventing phosphatidylinositol-4,5-bisphosphate (PIP2) synthesis by blocking phosphatidylinositol-4-kinase with wortmannin (10 microM) or with the nonhydrolysable ATP analogue AMP-PNP (3 mM) prolonged recovery of LHRH-induced gM suppression. This effect was not produced by blocking phosphatidyl inositol-3-kinase with LY294002 (10 microM). Rundown of gM was attenuated when cells were dialysed with 240 microM di-octanoyl PIP2 or 240 microM di-octanoyl phosphatidylinositol-3,4,5-trisphosphate (PIP3) but not with 240 microM di-octanoyl phosphatidylcholine. LHRH-induced gM suppression was competitively antagonized by dialysis with 240 microM di-octanoyl PIP2, but not with di-octanoyl phosphatidylcholine. These results would be expected if LHRH-induced gM suppression reflects a PLC-mediated decrease in plasma membrane PIP2 levels.
Collapse
Affiliation(s)
- Christopher P Ford
- Centre for Neuroscience and Department of Pharmacology, 9.75 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | |
Collapse
|
23
|
Abstract
We previously reported that cloned human ether-à-go-go-related gene (HERG) K+ channels are regulated by changes in phosphatidylinositol 4,5-bisphosphate (PIP2) concentration. Here we investigated the molecular determinants of PIP2 interactions with HERG channel protein. To establish the molecular nature of the PIP2-HERG interaction, we examined a segment of the HERG COOH terminus with a high concentration of positively charged amino acids (nos. 883–894) as a possible site of interaction with negatively charged PIP2. When we excised deletion-HERG (D-HERG) or mutated methionine-substituted-HERG (M-HERG) this segment of HERG to neutralize the amino acid charge, the mutant channels produced current that was indistinguishable from wild-type HERG. Elevating internal PIP2, however, no longer accelerated the activation kinetics of the mutant HERG. Moreover, PIP2-dependent hyperpolarizing shifts in the voltage dependence of activation were abolished with both mutants. PIP2 effects on channel-inactivation kinetics remained intact, which suggests an uncoupling of inactivation and activation regulation by PIP2. The specific binding of radiolabeled PIP2 to both mutant channel proteins was nearly abolished. Stimulation of α1A-adrenergic receptors produced a reduction in current amplitude of the rapidly activating delayed rectifier K+ current (the current carried by ERG protein) from rabbit ventricular myocytes. The α-adrenergic-induced current reduction was accentuated by PKC blockers and also unmasked a depolarizing shift in the voltage dependence of activation, which supports the conclusion that receptor activation of PLC results in PIP2 consumption that alters channel activity. These results support a physiological role for PIP2 regulation of the rapidly activating delayed rectifier K+ current during autonomic stimulation and localize a site of interaction to the COOH-terminal tail of the HERG K+ channel.
Collapse
Affiliation(s)
- Jin-Song Bian
- Department of Pharmacology, National University of Singapore
| | | | | |
Collapse
|
24
|
Endoh T. Characterization of modulatory effects of postsynaptic metabotropic glutamate receptors on calcium currents in rat nucleus tractus solitarius. Brain Res 2004; 1024:212-24. [PMID: 15451384 DOI: 10.1016/j.brainres.2004.07.074] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2004] [Indexed: 02/07/2023]
Abstract
It is well known that metabotropic glutamate receptors (mGluRs) have multiple actions on neuronal excitability mediated by G-protein-coupled receptors, although the exact mechanisms by which these actions occur are not understood. This study examines the effects of mGluRs agonists on voltage-dependent Ca2+ channels (VDCCs) currents (ICa) in the nucleus tractus solitarius (NTS) of rats using patch-clamp recording methods. An application of (RS)-3,5-dihydroxyphenylglycine (DHPG, Group I mGluR agonist) caused both facilitation and inhibition of L-type and N/P/Q-types ICa, respectively. Neither (2S, 2'R, 3'R)-2-(2', 3'-dicarboxycyclopropyl)glycine (DCG, Group II mGluRs agonist) nor L-(+)-2-amino-4-phosphonobutyric acid (AP-4, Group III mGluRs agonist) nor (RS)-2-chloro-5-hydroxyphenylglycine (CHPG, mGluR5 agonist) modulated ICa. Intracellular dialysis of the Gq/11-protein antibody and Gi-protein antibody attenuated the DHPG-induced facilitation and inhibition, respectively. The phospholipase C (PLC) inhibitor, as well as inhibition of either the protein kinase C (PKC) or inositol-1,4,5-trisphosphate (IP3) attenuated the DHPG-induced facilitation of ICa but not a DHPG-induced inhibition. Application of a strong depolarizing voltage prepulse attenuated the DHPG-induced inhibition of ICa. These results indicate that mGluR1 facilitates L-type VDCCs via Gq/11-protein involving PKC including IP3 formation. On the other hand, mGluR1 inhibits N- and P/Q-types VDCCs via Gi-protein betagamma subunits.
Collapse
Affiliation(s)
- Takayuki Endoh
- Department of Physiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan
| |
Collapse
|
25
|
Ding WG, Toyoda F, Matsuura H. Regulation of cardiac IKs potassium current by membrane phosphatidylinositol 4,5-bisphosphate. J Biol Chem 2004; 279:50726-34. [PMID: 15364935 DOI: 10.1074/jbc.m409374200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of the slowly activating component of delayed rectifier K+ current (IKs) by membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns-(4,5)P2) was examined in guinea pig atrial myocytes using the whole-cell patch clamp method. IKs was elicited by depolarizing voltage steps given from a holding potential of -50 mV, and the effect of various test reagents on IKs was assessed by measuring the amplitude of tail current elicited upon return to the holding potential following a 2-s depolarization to +30 mV. Intracellular application of 50 microM wortmannin through a recording pipette evoked a progressive increase in IKs over a 10-15-min period to 208.5 +/- 14.6% (n = 9) of initial magnitude obtained shortly after rupture of the patch membrane. Intracellular application of anti-PtdIns(4,5)P2 monoclonal antibody also increased the amplitude of IKs to 198.4 +/- 19.9% (n = 5). In contrast, intracellular loading with exogenous PtdIns(4,5)P2 at 10 and 100 mum produced a marked decrease in the amplitude of IKs to 54.3 +/- 3.8% (n = 5) and 44.8 +/- 8.2% (n = 5), respectively. Intracellular application of neomycin (50 microM) or aluminum (50 microM) evoked an increase in the amplitude of IKs to 161.0 +/- 13.5% (n = 4) and 150.0 +/- 8.2% (n = 4), respectively. These results strongly suggest that IKs channel is inhibited by endogenous membrane PtdIns(4,5)P2 through the electrostatic interaction with the negatively charged head group on PtdIns(4,5)P2. Potentiation of IKs by P2Y receptor stimulation with 50 microM ATP was almost totally abolished when PtdIns(4,5)P2 was included in the pipette solution, suggesting that depletion of membrane PtdIns(4,5)P2 is involved in the potentiation of IKs by P2Y receptor stimulation. Thus, membrane PtdIns(4,5)P2 may act as an important physiological regulator of IKs in guinea pig atrial myocytes.
Collapse
Affiliation(s)
- Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | | | | |
Collapse
|
26
|
LaDisa JF, Krolikowski JG, Pagel PS, Warltier DC, Kersten JR. Cardioprotection by glucose-insulin-potassium: dependence on KATP channel opening and blood glucose concentration before ischemia. Am J Physiol Heart Circ Physiol 2004; 287:H601-7. [PMID: 15044191 DOI: 10.1152/ajpheart.00122.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We tested the hypothesis that glucose-insulin-potassium (GIK)-induced protection against myocardial infarction depends on ATP-dependent K(+) (K(ATP)) channel activation and is abolished by hyperglycemia before the ischemia. Dogs were subjected to a 60-min coronary artery occlusion and 3-h reperfusion in the absence or presence of GIK (25% dextrose; 50 IU insulin/l; 80 mM/l KCl infused at 1.5 ml x kg(-1) x h(-1)) beginning 75 min before coronary artery occlusion or 5 min before reperfusion. The role of K(ATP) channels was evaluated by pretreatment with glyburide (0.1 mg/kg). The efficacy of GIK was investigated with increases in blood glucose (BG) concentrations to 300 or 600 mg/dl or experimental diabetes (alloxan/streptozotocin). Infarct size (IS) was 29 +/- 2% of the area at risk in control experiments. GIK decreased (P < 0.05) IS when administered beginning 5 min before reperfusion. This protective action was independent of BG (13 +/- 2 and 12 +/- 2% of area at risk; BG = 80 or 600 mg/dl, respectively) but was abolished in dogs receiving glyburide (30 +/- 4%), hyperglycemia before ischemia (27 +/- 4%), or diabetes (25 +/- 3%). IS was unchanged by GIK when administered before ischemia independent of BG (31 +/- 3, 27 +/- 2, and 35 +/- 3%; BG = 80, 300, and 600 mg/dl, respectively). The insulin component of GIK promotes cardioprotection by K(ATP) channel activation. However, glucose decreases K(ATP) channel activity, and this effect predominates when hyperglycemia is present before ischemia.
Collapse
Affiliation(s)
- John F LaDisa
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
27
|
Rousset M, Cens T, Gouin-Charnet A, Scamps F, Charnet P. Ca2+ and phosphatidylinositol 4,5-bisphosphate stabilize a Gbeta gamma-sensitive state of Ca V2 Ca 2+ channels. J Biol Chem 2004; 279:14619-30. [PMID: 14722074 DOI: 10.1074/jbc.m313284200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Direct interactions between G-protein betagamma subunits and N- or P/Q-type Ca(2+) channels mediate the inhibitory action of several neurotransmitters in the brain. Membrane potential, channel phosphorylation, or auxiliary subunit association tightly regulate these interactions and the consequent inhibition of Ca(2+) current. We now provide evidence that intracellular Ca(2+) concentration and phosphoinositides play a stabilizing role in this direct voltage-dependent inhibition. Lowering resting cytosolic Ca(2+) concentration in Xenopus oocytes expressing Ca(V)2Ca(2+) channels strongly decreased basal as well as phasic, agonist-dependent inhibition of Ca(2+) channels by G-proteins. Decreasing phosphoinositide levels also suppressed G-protein inhibition and completely occluded the effects of a subsequent injection of Ca(2+) chelator. Similar regulations are observed in mouse dorsal root ganglia neurons. Alteration of G-protein block by these agents is independent of protein phosphorylation, cytoskeleton dynamics, and GTPase or GDP/GTP exchange activity, suggesting a direct action at the level of the Ca(2+) channel/Gbetagamma-protein interaction. Moreover, affinity binding experiments of intracellular loops of the Ca(V)2.1 Ca(2+) channels to different phospholipids revealed specific interactions between the C-terminal tail of the channel and phosphoinositides. Taken together these data indicate that a Ca(2+)-sensitive interaction of the C-terminal tail of P/Q channels with the plasma membrane is important for G-protein regulation.
Collapse
Affiliation(s)
- Matthieu Rousset
- Centre de Recherche de Biochimie Macromoléculaire, CNRS-FRE 2593, 1919 Route de Mende, 34293 Montpellier, France
| | | | | | | | | |
Collapse
|
28
|
Seino S, Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 81:133-76. [PMID: 12565699 DOI: 10.1016/s0079-6107(02)00053-6] [Citation(s) in RCA: 379] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ATP-sensitive potassium (K(ATP)) channels are present in many tissues, including pancreatic islet cells, heart, skeletal muscle, vascular smooth muscle, and brain, in which they couple the cell metabolic state to its membrane potential, playing a crucial role in various cellular functions. The K(ATP) channel is a hetero-octamer comprising two subunits: the pore-forming subunit Kir6.x (Kir6.1 or Kir6.2) and the regulatory subunit sulfonylurea receptor SUR (SUR1 or SUR2). Kir6.x belongs to the inward rectifier K(+) channel family; SUR belongs to the ATP-binding cassette protein superfamily. Heterologous expression of differing combinations of Kir6.1 or Kir6.2 and SUR1 or SUR2 variant (SUR2A or SUR2B) reconstitute different types of K(ATP) channels with distinct electrophysiological properties and nucleotide and pharmacological sensitivities corresponding to the various K(ATP) channels in native tissues. The physiological and pathophysiological roles of K(ATP) channels have been studied primarily using K(ATP) channel blockers and K(+) channel openers, but there is no direct evidence on the role of the K(ATP) channels in many important cellular responses. In addition to the analyses of naturally occurring mutations of the genes in humans, determination of the phenotypes of mice generated by genetic manipulation has been successful in clarifying the function of various gene products. Recently, various genetically engineered mice, including mice lacking K(ATP) channels (knockout mice) and mice expressing various mutant K(ATP) channels (transgenic mice), have been generated. In this review, we focus on the physiological and pathophysiological roles of K(ATP) channels learned from genetic manipulation of mice and naturally occurring mutations in humans.
Collapse
Affiliation(s)
- Susumu Seino
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8760, Japan.
| | | |
Collapse
|
29
|
Takano M, Kuratomi S. Regulation of cardiac inwardly rectifying potassium channels by membrane lipid metabolism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 81:67-79. [PMID: 12475570 DOI: 10.1016/s0079-6107(02)00048-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Types and distributions of inwardly rectifying potassium (Kir) channels are one of the major determinants of the electrophysiological properties of cardiac myocytes. Kir2.1 (classical inward rectifier K(+) channel), Kir6.2/SUR2A (ATP-sensitive K(+) channel) and Kir3.1/3.4 (muscarinic K(+) channels) in cardiac myocytes are commonly upregulated by a membrane lipid, phosphatidylinositol 4,5-bisphosphates (PIP(2)). PIP(2) interaction sites appear to be conserved by positively charged amino acid residues and the putative alpha-helix in the C-terminals of Kir channels. PIP(2) level in the plasma membrane is regulated by the agonist stimulation. Kir channels in the cardiac myocytes seem to be actively regulated by means of the change in PIP(2) level rather than by downstream signal transduction pathways.
Collapse
Affiliation(s)
- Makoto Takano
- Department of Physiology and Biophysics, Graduate School of Medicine, Kyoto University, Japan.
| | | |
Collapse
|
30
|
Lu M, Hebert SC, Giebisch G. Hydrolyzable ATP and PIP(2) modulate the small-conductance K+ channel in apical membranes of rat cortical-collecting duct (CCD). J Gen Physiol 2002; 120:603-15. [PMID: 12407074 PMCID: PMC2229550 DOI: 10.1085/jgp.20028677] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small-conductance K+ channel (SK) in the apical membrane of the cortical-collecting duct (CCD) is regulated by adenosine triphosphate (ATP) and phosphorylation-dephosphorylation processes. When expressed in Xenopus oocytes, ROMK, a cloned K+ channel similar to the native SK channel, can be stimulated by phosphatidylinositol bisphosphate (PIP2), which is produced by phosphoinositide kinases from phosphatidylinositol. However, the effects of PIP2 on SK channel activity are not known. In the present study, we investigated the mechanism by which hydrolyzable ATP prevented run-down of SK channel activity in excised apical patches of principal cells from rat CCD. Channel run-down was significantly delayed by pretreatment with hydrolyzable Mg-ATP, but ATP gamma S and AMP-PNP had no effect. Addition of alkaline phosphatase also resulted in loss of channel activity. After run-down, SK channel activity rapidly increased upon addition of PIP2. Exposure of inside-out patches to phosphoinositide kinase inhibitors (LY294002, quercetin or wortmannin) decreased channel activity by 74% in the presence of Mg-ATP. PIP2 added to excised patches reactivated SK channels in the presence of these phosphoinositide kinase inhibitors. The protein kinase A inhibitor, PKI, reduced channel activity by 36% in the presence of Mg-ATP. PIP2 was also shown to modulate the inhibitory effects of extracellular and cytosolic ATP. We conclude that both ATP-dependent formation of PIP2 through membrane-bound phosphoinositide kinases and phosphorylation of SK by PKA play important roles in modulating SK channel activity.
Collapse
Affiliation(s)
- Ming Lu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
31
|
Haruna T, Yoshida H, Nakamura TY, Xie LH, Otani H, Ninomiya T, Takano M, Coetzee WA, Horie M. Alpha1-adrenoceptor-mediated breakdown of phosphatidylinositol 4,5-bisphosphate inhibits pinacidil-activated ATP-sensitive K+ currents in rat ventricular myocytes. Circ Res 2002; 91:232-9. [PMID: 12169649 DOI: 10.1161/01.res.0000029971.60214.49] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) stimulates ATP-sensitive K+ (K(ATP)) channel activity. Because phospholipase C (PLC) hydrolyzes membrane-bound PIP2, which in turn may potentially decrease K(ATP) channel activity, we investigated the effects of the alpha1-adrenoceptor-G(q)-PLC signal transduction axis on pinacidil-activated K(ATP) channel activity in adult rat and neonatal mouse ventricular myocytes. The alpha1-adrenoceptor agonist methoxamine (MTX) reversibly inhibited the pinacidil-activated K(ATP) current in a concentration-dependent manner (IC50 20.9+/-6.6 micromol/L). This inhibition did not occur when the specific alpha1-adrenoceptor antagonist, prazosin, was present. An involvement of G proteins is suggested by the ability of GDPbetaS to prevent this response. Blockade of PLC by U-73122 (2 micromol/L) or neomycin (2 mmol/L) attenuated the MTX-induced inhibition of K(ATP) channel activity. In contrast, the MTX response was unaffected by protein kinase C inhibition or stimulation by H-7 (100 micro mol/L) or phorbol 12,13-didecanoate. The MTX-induced inhibition became irreversible in the presence of wortmannin (20 micro mol/L), an inhibitor of phosphatidylinositol-4 kinase, which is expected to prevent membrane PIP2 replenishment. In excised inside-out patch membranes, pinacidil induced a significantly rightward shift of ATP sensitivity of the channel. This phenomenon was reversed by pretreatment of myocytes with MTX. Direct visualization of PIP2 subcellular distribution using a PLCdelta pleckstrin homology domain-green fluorescent protein fusion constructs revealed reversible translocation of green fluorescent protein fluorescence from the membrane to the cytosol after alpha1-adrenoceptor stimulation. Our data demonstrate that alpha1-adrenoceptor stimulation reduces the membrane PIP2 level, which in turn inhibits pinacidil-activated K(ATP) channels.
Collapse
Affiliation(s)
- Tetsuya Haruna
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Oketani N, Kakei M, Ichinari K, Okamura M, Miyamura A, Nakazaki M, Ito S, Tei C. Regulation of K(ATP) channels by P(2Y) purinoceptors coupled to PIP(2) metabolism in guinea pig ventricular cells. Am J Physiol Heart Circ Physiol 2002; 282:H757-65. [PMID: 11788427 DOI: 10.1152/ajpheart.00246.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used patch-clamp techniques to elucidate the regulatory mechanisms of ATP-sensitive K(+) (K(ATP)) channels by stimulation of P(2) purinoceptors in guinea pig ventricular myocytes. Extracellular ATP at 0.1 mM transiently inhibited by 90.5 +/- 5.0% the whole cell K(ATP) channel current evoked by a reduction in intracellular ATP concentration to 0.5 mM and exposure to 30 microM pinacidil. ADP and AMP (both 1 mM) also decreased the current by 42.8 +/- 9.3% and 9.4 +/- 4.8%, respectively, but adenosine did not, even at 10 mM. ATP-induced channel inhibition was hardly observed in the presence of 0.2 mM suramin, 0.2 mM guanosine 5'-O-(2-thiodiphosphate), or 0.1 mM compound 48/80, whereas it was not influenced by the presence of 0.1 microM staurosporine or 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid in the pipette. In the presence of 10 microM wortmannin or the absence of ATP in the cytosol, the ATP-induced channel inhibition was irreversible. Phosphatidylinositol 4,5-bisphosphate (PIP(2)) at 0.1 mM in the outside-out patch pipette prevented ATP-induced channel inhibition. The half-maximal internal ATP concentrations for inhibition of channel activity determined in inside-out membrane patches were 13.8 microM in the presence and 1.12 mM in the absence of 0.1 mM ATP at the external side. It is concluded that activity of K(ATP) channels is modulated by extracellular ATP by a mechanism involving P(2Y) purinoceptors coupled to GTP-binding proteins associated with reduction of the sarcolemmal PIP(2) concentration via stimulation of phospholipase C.
Collapse
Affiliation(s)
- Naoya Oketani
- First Department of Internal Medicine, Faculty of Medicine, Kagoshima University, Kagoshima 890-8520, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bian J, Cui J, McDonald TV. HERG K(+) channel activity is regulated by changes in phosphatidyl inositol 4,5-bisphosphate. Circ Res 2001; 89:1168-76. [PMID: 11739282 DOI: 10.1161/hh2401.101375] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autonomic stimulation controls heart rate and myocardial excitability and may underlie the precipitation of both acquired and hereditary arrhythmias. Changes in phosphatidyl inositol bisphosphate (PIP2) concentration results from activation of several muscarinic and adrenergic receptors. We sought to investigate whether PIP2 changes could alter HERG K(+) channel activity in a manner similar to that seen with inward rectifier channels. PIP2 (10 micromol/L) internally dialyzed increased the K(+) current amplitude and shifted the voltage-dependence of activation in a hyperpolarizing direction. Elevated PIP2 accelerated activation and slowed inactivation kinetics. When 10 micromol/L PIP2 was applied to excised patches, no significant change in single channel conductance occurred, indicating that PIP2-dependent effects were primarily due to altered channel gating. PIP2 significantly attenuated the run-down of HERG channel activity that we normally observe after patch excision, suggesting that channel run-down is due, in part, to membrane depletion of PIP2. Inclusion of a neutralizing anti-PIP2 monoclonal antibody in whole cell pipette solution produced the opposite effects of PIP2. The physiological relevance of PIP2-HERG interactions is supported by our finding that phenylephrine reduced the K(+) current density in cells coexpressing alpha1A-receptor and HERG. The effects of alpha-adrenergic stimulation, however, were prevented by excess PIP2 in internal solutions but not by internal Ca(2+) buffering nor PKC inhibition, suggesting that the mechanism is due to G-protein-coupled receptor stimulation of PLC resulting in the consumption of endogenous PIP2. Thus, dynamic regulation of HERG K(+) channels may be achieved via receptor-mediated changes in PIP2 concentrations.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Animals
- Antibodies, Monoclonal/pharmacology
- CHO Cells
- Calcium/metabolism
- Cation Transport Proteins
- Cricetinae
- DNA-Binding Proteins
- Dose-Response Relationship, Drug
- ERG1 Potassium Channel
- Ether-A-Go-Go Potassium Channels
- GTP-Binding Proteins/metabolism
- Gadolinium/pharmacology
- Humans
- Intracellular Fluid/metabolism
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Lanthanum/pharmacology
- Membrane Potentials/drug effects
- Patch-Clamp Techniques
- Phenylephrine/pharmacology
- Phosphatidylinositol 4,5-Diphosphate/antagonists & inhibitors
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Phosphatidylinositol 4,5-Diphosphate/pharmacology
- Potassium/metabolism
- Potassium Channels/genetics
- Potassium Channels/metabolism
- Potassium Channels, Voltage-Gated
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Trans-Activators
- Transcriptional Regulator ERG
- Transfection
Collapse
Affiliation(s)
- J Bian
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
34
|
Quignard JF, Mironneau J, Carricaburu V, Fournier B, Babich A, Nurnberg B, Mironneau C, Macrez N. Phosphoinositide 3-kinase gamma mediates angiotensin II-induced stimulation of L-type calcium channels in vascular myocytes. J Biol Chem 2001; 276:32545-51. [PMID: 11443116 DOI: 10.1074/jbc.m102582200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous results have shown that in rat portal vein myocytes the betagamma dimer of the G(13) protein transduces the angiotensin II-induced stimulation of calcium channels and increase in intracellular Ca(2+) concentration through activation of phosphoinositide 3-kinase (PI3K). In the present work we determined which class I PI3K isoforms were involved in this regulation. Western blot analysis indicated that rat portal vein myocytes expressed only PI3Kalpha and PI3Kgamma and no other class I PI3K isoforms. In the intracellular presence of an anti-p110gamma antibody infused by the patch clamp pipette, both angiotensin II- and Gbetagamma-mediated stimulation of Ca(2+) channel current were inhibited, whereas intracellular application of an anti-p110alpha antibody had no effect. The anti-PI3Kgamma antibody also inhibited the angiotensin II- and Gbetagamma-induced production of phosphatidylinositol 3,4,5-trisphosphate. In Indo-1 loaded cells, the angiotensin II-induced increase in [Ca(2+)](i) was inhibited by intracellular application of the anti-PI3Kgamma antibody, whereas the anti-PI3Kalpha antibody had no effect. The specificity of the anti-PI3Kgamma antibody used in functional experiments was ascertained by showing that this antibody did not recognize recombinant PI3Kalpha in Western blot experiments. Moreover, anti-PI3Kgamma antibody inhibited the stimulatory effect of intracellularly infused recombinant PI3Kgamma on Ca(2+) channel current without altering the effect of recombinant PI3Kalpha. Our results show that, although both PI3Kgamma and PI3Kalpha are expressed in vascular myocytes, the angiotensin II-induced stimulation of vascular L-type calcium channel and increase of [Ca(2+)](i) involves only the PI3Kgamma isoform.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Antibodies/pharmacology
- Barium/pharmacology
- Blotting, Western
- Calcium/metabolism
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/physiology
- Cell Membrane/drug effects
- Cell Membrane/enzymology
- Cell Membrane/physiology
- Class Ib Phosphatidylinositol 3-Kinase
- In Vitro Techniques
- Isoenzymes/isolation & purification
- Isoenzymes/metabolism
- Kinetics
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Microsomes/enzymology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Patch-Clamp Techniques
- Phorbol 12,13-Dibutyrate/pharmacology
- Phosphatidylinositol 3-Kinases/isolation & purification
- Phosphatidylinositol 3-Kinases/metabolism
- Portal Vein/physiology
- Protein Subunits
- Rats
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- J F Quignard
- Laboratoire de Signalisation et Interactions Cellulaires, CNRS UMR 5017, Université Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Loussouarn G, Pike LJ, Ashcroft FM, Makhina EN, Nichols CG. Dynamic sensitivity of ATP-sensitive K(+) channels to ATP. J Biol Chem 2001; 276:29098-103. [PMID: 11395495 DOI: 10.1074/jbc.m102365200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP and MgADP regulate K(ATP) channel activity and hence potentially couple cellular metabolism to membrane electrical activity in various cell types. Using recombinant K(ATP) channels that lack sensitivity to MgADP, expressed in COSm6 cells, we demonstrate that similar on-cell activity can be observed with widely varying apparent submembrane [ATP] ([ATP](sub)). Metabolic inhibition leads to a biphasic change in the channel activity; activity first increases, presumably in response to a fast decrease in [ATP](sub), and then declines. The secondary decrease in channel activity reflects a marked increase in ATP sensitivity and is correlated with a fall in polyphosphoinositides (PPIs), including phosphatidylinositol 4,5-bisphosphate, probed using equilibrium labeling of cells with [(3)H]myo-inositol. Both ATP sensitivity and PPIs rapidly recover following removal of metabolic inhibition, and in both cases recovery is blocked by wortmannin. These data are consistent with metabolism having a dual effect on K(ATP) channel activity: rapid activation of channels because of relief of ATP inhibition and much slower reduction of channel activity mediated by a fall in PPIs. These two mechanisms constitute a feedback system that will tend to render K(ATP) channel activity transiently responsive to a change in [ATP](sub) over a wide range of steady state concentrations.
Collapse
Affiliation(s)
- G Loussouarn
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
36
|
Song DK, Ashcroft FM. ATP modulation of ATP-sensitive potassium channel ATP sensitivity varies with the type of SUR subunit. J Biol Chem 2001; 276:7143-9. [PMID: 11115512 DOI: 10.1074/jbc.m009959200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels comprise Kir and SUR subunits. Using recombinant K(ATP) channels expressed in Xenopus oocytes, we observed that MgATP (100 microm) block of Kir6.2/SUR2A currents gradually declined with time, whereas inhibition of Kir6.2/SUR1 or Kir6.2DeltaC36 currents did not change. The decline in Kir6.2/SUR2A ATP sensitivity was not observed in Mg(2+) free solution and was blocked by the phosphatidylinositol (PI) 3-kinase inhibitors LY 294002 (10 microm) and wortmannin (100 microm), and by neomycin (100 microm). These results suggest that a MgATP-dependent synthesis of membrane phospholipids produces a secondary decrease in the ATP sensitivity of Kir6.2/SUR2A. Direct application of the phospholipids PI 4,5-bisphosphate and PI 3,4,5-trisphosphate in the presence of 100 microm MgATP activated all three types of channel, but the response was faster for Kir6.2/SUR2A. Chimeric studies indicate that the different responses of Kir6.2/SUR2A and Kir6.2/SUR1 are mediated by the first six transmembrane domains of SUR. The MgATP-dependent loss of ATP sensitivity of Kir6.2/SUR2A was enhanced by the actin filament disrupter cytochalasin and blocked by phalloidin (which stabilizes the cytoskeleton). Phalloidin did not block the effect of PI 3,4,5-trisphosphate. This suggests that MgATP may cause disruption of the cytoskeleton, leading to enhanced membrane phospholipid levels (or better targeting to the K(ATP) channel) and thus to decreased channel ATP sensitivity.
Collapse
Affiliation(s)
- D K Song
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, United Kingdom
| | | |
Collapse
|
37
|
Okamura M, Kakei M, Ichinari K, Miyamura A, Oketani N, Koriyama N, Tei C. State-dependent modification of ATP-sensitive K+ channels by phosphatidylinositol 4,5-bisphosphate. Am J Physiol Cell Physiol 2001; 280:C303-8. [PMID: 11208525 DOI: 10.1152/ajpcell.2001.280.2.c303] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
With inside-out patch recordings in ventricular myocytes from the hearts of guinea pigs, we studied ATP-sensitive K+ (K(ATP)) channels activated by phosphatidylinositol 4,5-bisphosphate (PIP2) with respect to sensitivity to ATP when in either a rundown state (RS) or a non-rundown state (NRS). Rundown of K(ATP) channels was induced by exposure either to ATP-free solution or to ATP-free solution containing 19 microM Ca2+. Exposure of membrane patches to 10 microM PIP2 reactivated channels with both types of rundown. The reactivation by PIP2 did not require ATP in the bath. The IC50 of channels recovered from RS and before the rundown was 37.1 and 31.1 microM, respectively. PIP2 irreversibly increased the mean current when the channel was in the NRS. This was associated with a shift of IC50 to 250.6 microM after PIP2 exposure. PIP2 activates NRS K(ATP) channels by decreasing their sensitivity to ATP, whereas PIP2 reactivates RS-K(ATP) channels independently of ATP without changing ATP sensitivity.
Collapse
Affiliation(s)
- M Okamura
- First Department of Internal Medicine, Faculty of Medicine, Kagoshima University, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Fan Z, Neff RA. Susceptibility of ATP-sensitive K+ channels to cell stress through mediation of phosphoinositides as examined by photoirradiation. J Physiol 2000; 529 Pt 3:707-21. [PMID: 11118500 PMCID: PMC2270230 DOI: 10.1111/j.1469-7793.2000.00707.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cell stress is implicated in a number of pathological states of metabolism, such as ischaemia, reperfusion and apoptosis in heart, neurons and other tissues. While it is known that the ATP-sensitive K+ (KATP) channel plays a role during metabolic abnormality, little information is available about the direct response of this channel to cell stress. Using photoirradiation stimulation, we studied the effects of cell stress on both native and cloned KATP channels. Single KATP channel currents were recorded from cell-attached and inside-out patches of rat ventricular myocytes and COS-1 cells coexpressing SUR2 and Kir6.2. KATP channel activity increased within < 1 min upon irradiation. The activity resulted from increased maximal open probability and decreased ATP inhibition. The effects remained after the irradiation was stopped. Irradiation also affected the channels formed only by Kir6.2DeltaC35. The irradiation-induced activation was comparable to that induced by phosphoinositides. Analysis of phosphatidylinositol composition revealed an elevated phosphatidylinositol bisphosphate level with irradiation. Wortmannin, an inhibitor of phosphatidylinositol kinases, decreased both the irradiation-induced channel activity and the production of phosphatidylinositol bisphosphates. Radical scavengers also reduced the irradiation-induced activation, suggesting a role for free radicals, an immediate product of photoirradiation. We conclude that photoirradiation can modify the single-channel properties of KATP, which appears to be mediated by phosphoinositides. Our study suggests that cellular stress may be linked with KATP channels, and we offer a putative mechanism for such a linkage.
Collapse
Affiliation(s)
- Z Fan
- The Department of Physiology, University of Tennessee, College of Medicine, Memphis, TN 38163, USA.
| | | |
Collapse
|
39
|
Baukrowitz T, Fakler B. KATP channels gated by intracellular nucleotides and phospholipids. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5842-8. [PMID: 10998043 DOI: 10.1046/j.1432-1327.2000.01672.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The KATP channel is a heterooctamer composed of two different subunits, four inwardly rectifying K+ channel subunits, either Kir6. 1 or Kir6.2, and four sulfonylurea receptors (SUR), which belong to the family of ABC transporters. This unusual molecular architecture is related to the complex gating behaviour of these channels. Intracellular ATP inhibits KATP channels by binding to the Kir6.x subunits, whereas Mg-ADP increases channel activity by a hydrolysis reaction at the SUR. This ATP/ADP dependence allows KATP channels to link metabolism to excitability, which is important for many physiological functions, such as insulin secretion and cell protection during periods of ischemic stress. Recent work has uncovered a new class of regulatory molecules for KATP channel gating. Membrane phospholipids such as phosphoinositol 4, 5-bisphosphate and phosphatidylinositiol 4-monophosphate were found to interact with KATP channels resulting in increased open probability and markedly reduced ATP sensitivity. The membrane concentration of these phospholipids is regulated by a set of enzymes comprising phospholipases, phospholipid phosphatases and phospholipid kinases providing a possible mechanism for control of cell excitability through signal transduction pathways that modulate activity of these enzymes. This review discusses the mechanisms and molecular determinants that underlie gating of KATP channel by nucleotides and phospholipids and their physiological implications.
Collapse
|
40
|
Baukrowitz T, Fakler B. K(ATP) channels: linker between phospholipid metabolism and excitability. Biochem Pharmacol 2000; 60:735-40. [PMID: 10930527 DOI: 10.1016/s0006-2952(00)00267-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels couple electrical activity to cellular metabolism via their inhibition by intracellular ATP. When examined in excised patches, ATP concentrations required for half-maximal inhibition (IC(50)) varied among tissues and were reported to be as low as 10 microM. This set up a puzzling question on how activation of K(ATP) channels can occur under physiological conditions, where the cytoplasmic concentration of ATP is much higher than that required for channel inhibition. A new twist was added to this puzzle when two recent reports showed that phospholipids such as phosphatidylinositol-4,5-bisphosphate (PIP(2)) and phosphatidyl-4-phosphate (PIP) are able to shift ATP-sensitivity of K(ATP) channels from the micro- into the millimolar range and thus provide a mechanism for physiological activation of the channels. This commentary describes how phospholipids control ATP inhibition of K(ATP) channels and how this mechanism is regulated effectively by receptor-mediated stimulation of phospholipase C.
Collapse
Affiliation(s)
- T Baukrowitz
- Department of Physiology II, University of Tübingen, Germany
| | | |
Collapse
|
41
|
Ribalet B, John SA, Weiss JN. Regulation of cloned ATP-sensitive K channels by phosphorylation, MgADP, and phosphatidylinositol bisphosphate (PIP(2)): a study of channel rundown and reactivation. J Gen Physiol 2000; 116:391-410. [PMID: 10962016 PMCID: PMC2233681 DOI: 10.1085/jgp.116.3.391] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2000] [Accepted: 07/24/2000] [Indexed: 11/20/2022] Open
Abstract
Kir6.2 channels linked to the green fluorescent protein (GFP) (Kir6. 2-GFP) have been expressed alone or with the sulfonylurea receptor SUR1 in HEK293 cells to study the regulation of K(ATP) channels by adenine nucleotides, phosphatidylinositol bisphosphate (PIP(2)), and phosphorylation. Upon excision of inside-out patches into a Ca(2+)- and MgATP-free solution, the activity of Kir6.2-GFP+SUR1 channels spontaneously ran down, first quickly within a minute, and then more slowly over tens of minutes. In contrast, under the same conditions, the activity of Kir6.2-GFP alone exhibited only slow rundown. Thus, fast rundown is specific to Kir6.2-GFP+SUR1 and involves SUR1, while slow rundown is a property of both Kir6.2-GFP and Kir6.2-GFP+SUR1 channels and is due, at least in part, to Kir6.2 alone. Kir6. 2-GFP+SUR1 fast phase of rundown was of variable amplitude and led to increased ATP sensitivity. Excising patches into a solution containing MgADP prevented this phenomenon, suggesting that fast rundown involves loss of MgADP-dependent stimulation conferred by SUR1. With both Kir6.2-GFP and Kir6.2-GFP+SUR1, the slow phase of rundown led to further increase in ATP sensitivity. Ca(2+) accelerated this process, suggesting a role for PIP(2) hydrolysis mediated by a Ca(2+)-dependent phospholipase C. PIP(2) could reactivate channel activity after a brief exposure to Ca(2+), but not after prolonged exposure. However, in both cases, PIP(2) reversed the increase in ATP sensitivity, indicating that PIP(2) lowers the ATP sensitivity by increasing P(o) as well as by decreasing the channel affinity for ATP. With Kir6.2-GFP+SUR1, slow rundown also caused loss of MgADP stimulation and sulfonylurea inhibition, suggesting functional uncoupling of SUR1 from Kir6.2-GFP. Ca(2+) facilitated the loss of sensitivity to MgADP, and thus uncoupling of the two subunits. The nonselective protein kinase inhibitor H-7 and the selective PKC inhibitor peptide 19-36 evoked, within 5-15 min, increased ATP sensitivity and loss of reactivation by PIP(2) and MgADP. Phosphorylation of Kir6.2 may thus be required for the channel to remain PIP(2) responsive, while phosphorylation of Kir6.2 and/or SUR1 is required for functional coupling. In summary, short-term regulation of Kir6.2+SUR1 channels involves MgADP, while long-term regulation requires PIP(2) and phosphorylation.
Collapse
Affiliation(s)
- B Ribalet
- Department of Physiology, Cardiovascular Research Laboratory, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
42
|
Miyamura A, Kakei M, Ichinari K, Okamura M, Oketani N, Tei C. On the mechanism of ADP-induced alteration of sulphonylurea sensitivity in cardiac ATP-sensitive K(+) channels. Br J Pharmacol 2000; 130:1411-7. [PMID: 10903984 PMCID: PMC1572183 DOI: 10.1038/sj.bjp.0703423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. To study the mechanism of regulation of sulphonylurea sensitivity in ATP-sensitive K(+) (K(ATP)) channels, we used the inside-out patch clamp technique in guinea-pig ventricular myocytes. 2. In the absence of nucleotides, the half maximal concentration of tolbutamide inhibition of K(ATP) channels (IC(50)) was 0.4 mM, and it decreased to 0.1 mM when 0.1 mM ATP was added. 3. Increasing the ADP concentration from 0 to 0.1 and 0.3 mM in the absence of ATP shifted the IC(50) from 0.4 to 5.3 and 11.4 mM, respectively. Increasing the ADP concentration further to 1 and 3 mM conversely reduced the IC(50) to 9.5 and 4.4 mM, respectively. 4. In the absence of Mg(2+) and ADP, the IC(50) was calculated to 16.6 mM which was found to be less, 12.3, 5.1 and 2.5 mM, respectively, when the ADP concentration was increased to 0.1, 0.3 and 1 mM. 5. The IC(50)s for tolbutamide obtained at various concentrations of ADP in the presence of Mg(2+) were best fitted by equations reflecting a model that assumed two binding sites for ADP; one is a high affinity site that reduces the sensitivity to the sulphonylurea, while the other is a low affinity site that increases such sensitivity. Dissociation constants calculated for ADP to sites 1 and 2 were 2.6 microM and 46.7 mM, respectively. In the absence of Mg(2+), data were fitted by equations corresponding to a single site model (site 2); the dissociation constant for ADP was 25.0 mM. 6. It is concluded that ADP modifies tolbutamide sensitivity by binding to two sites. The high affinity site is strongly Mg(2+)-dependent, whereas the low affinity site is Mg(2+)-independent.
Collapse
Affiliation(s)
- A Miyamura
- First Department of Internal Medicine, Faculty of Medicine, Kagoshima University, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Xie LH, Horie M, Takano M. Phospholipase C-linked receptors regulate the ATP-sensitive potassium channel by means of phosphatidylinositol 4,5-bisphosphate metabolism. Proc Natl Acad Sci U S A 1999; 96:15292-7. [PMID: 10611378 PMCID: PMC24813 DOI: 10.1073/pnas.96.26.15292] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/1999] [Indexed: 11/18/2022] Open
Abstract
In the COS7 cells transfected with cDNAs of the Kir6.2, SUR2A, and M(1) muscarinic receptors, we activated the ATP-sensitive potassium (K(ATP)) channel with a K(+) channel opener and recorded the whole-cell K(ATP) current. The K(ATP) current was reversibly inhibited by the stimulation of the M(1) receptor, which is linked to phospholipase C (PLC) by the G(q) protein. The receptor-mediated inhibition was observed even when protein kinase C (PKC) was inhibited by H-7 or by chelating intracellular Ca(2+) with 10 mM 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate (BAPTA) included in the pipette solution. However, the receptor-mediated inhibition was blocked by U-73122, a PLC inhibitor. M(1)-receptor stimulation failed to inhibit the K(ATP) current activated by the injection of exogenous phosphatidylinositol 4,5-bisphosphate (PIP(2)) through the whole-cell patch pipette. The receptor-mediated inhibition became irreversible when the replenishment of PIP(2) was blocked by wortmannin (an inhibitor of phosphatidylinositol kinases), or by including adenosine 5'-[beta,gamma-imido]triphosphate (AMPPNP, a nonhydrolyzable ATP analogue) in the pipette solution. In inside-out patch experiments, the ATP sensitivity of the K(ATP) channel was significantly higher when the M(1) receptor in the patch membrane was stimulated by acetylcholine. The stimulatory effect of pinacidil was also attenuated under this condition. We postulate that stimulation of PLC-linked receptors inhibited the K(ATP) channel by increasing the ATP sensitivity, not through PKC activation, but most probably through changing PIP(2) levels.
Collapse
Affiliation(s)
- L H Xie
- Department of Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
44
|
Fan Z, Makielski JC. Phosphoinositides decrease ATP sensitivity of the cardiac ATP-sensitive K(+) channel. A molecular probe for the mechanism of ATP-sensitive inhibition. J Gen Physiol 1999; 114:251-69. [PMID: 10436001 PMCID: PMC2230641 DOI: 10.1085/jgp.114.2.251] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anionic phospholipids modulate the activity of inwardly rectifying potassium channels (Fan, Z., and J.C. Makielski. 1997. J. Biol. Chem. 272:5388-5395). The effect of phosphoinositides on adenosine triphosphate (ATP) inhibition of ATP-sensitive potassium channel (K(ATP)) currents was investigated using the inside-out patch clamp technique in cardiac myocytes and in COS-1 cells in which the cardiac isoform of the sulfonylurea receptor, SUR2, was coexpressed with the inwardly rectifying channel Kir6.2. Phosphoinositides (1 mg/ml) increased the open probability of K(ATP) in low [ATP] (1 microM) within 30 s. Phosphoinositides desensitized ATP inhibition with a longer onset period (>3 min), activating channels inhibited by ATP (1 mM). Phosphoinositides treatment for 10 min shifted the half-inhibitory [ATP] (K(i)) from 35 microM to 16 mM. At the single-channel level, increased [ATP] caused a shorter mean open time and a longer mean closed time. Phosphoinositides prolonged the mean open time, shortened the mean closed time, and weakened the [ATP] dependence of these parameters resulting in a higher open probability at any given [ATP]. The apparent rate constants for ATP binding were estimated to be 0.8 and 0.02 mM(-1) ms(-1) before and after 5-min treatment with phosphoinositides, which corresponds to a K(i) of 35 microM and 5.8 mM, respectively. Phosphoinositides failed to desensitize adenosine inhibition of K(ATP). In the presence of SUR2, phosphoinositides attenuated MgATP antagonism of ATP inhibition. Kir6.2DeltaC35, a truncated Kir6.2 that functions without SUR2, also exhibited phosphoinositide desensitization of ATP inhibition. These data suggest that (a) phosphoinositides strongly compete with ATP at a binding site residing on Kir6.2; (b) electrostatic interaction is a characteristic property of this competition; and (c) in conjunction with SUR2, phosphoinositides render additional, complex effects on ATP inhibition. We propose a model of the ATP binding site involving positively charged residues on the COOH-terminus of Kir6.2, with which phosphoinositides interact to desensitize ATP inhibition.
Collapse
Affiliation(s)
- Z Fan
- Department of Physiology, University of Tennessee, College of Medicine, Memphis, Tennessee 38163, USA.
| | | |
Collapse
|