1
|
Zhang S, Daniels DA, Ivanov S, Jurgensen L, Müller LM, Versaw WK, Harrison MJ. A genetically encoded biosensor reveals spatiotemporal variation in cellular phosphate content in Brachypodium distachyon mycorrhizal roots. THE NEW PHYTOLOGIST 2022; 234:1817-1831. [PMID: 35274313 PMCID: PMC9790424 DOI: 10.1111/nph.18081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is accompanied by alterations to root cell metabolism and physiology, and to the pathways of orthophosphate (Pi) entry into the root, which increase with Pi delivery to cortical cells via arbuscules. How AM symbiosis influences the Pi content and Pi response dynamics of cells in the root cortex and epidermis is unknown. Using fluorescence resonance energy transfer (FRET)-based Pi biosensors, we mapped the relative cytosolic and plastidic Pi content of Brachypodium distachyon mycorrhizal root cells, analyzed responses to extracellular Pi and traced extraradical hyphae-mediated Pi transfer to colonized cells. Colonized cortical cells had a higher cytosolic Pi content relative to noncolonized cortical and epidermal cells, while plastidic Pi content was highest in cells at the infection front. Pi application to the entire mycorrhizal root resulted in transient changes in cytosolic Pi that differed in direction and magnitude depending on cell type and arbuscule status; cells with mature arbuscules showed a substantial transient increase in cytosolic Pi while those with collapsed arbuscules showed a decrease. Directed Pi application to extraradical hyphae resulted in measurable changes in cytosolic Pi of colonized cells 18 h after application. Our experiments reveal that cells within a mycorrhizal root vary in Pi content and Pi response dynamics.
Collapse
Affiliation(s)
- Shiqi Zhang
- Boyce Thompson Institute533 Tower RoadIthacaNY14853USA
| | | | - Sergey Ivanov
- Boyce Thompson Institute533 Tower RoadIthacaNY14853USA
| | | | | | - Wayne K. Versaw
- Department of BiologyTexas A&M UniversityCollege StationTX77843USA
| | | |
Collapse
|
2
|
Wang D, Dong W, Murray J, Wang E. Innovation and appropriation in mycorrhizal and rhizobial Symbioses. THE PLANT CELL 2022; 34:1573-1599. [PMID: 35157080 PMCID: PMC9048890 DOI: 10.1093/plcell/koac039] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 05/20/2023]
Abstract
Most land plants benefit from endosymbiotic interactions with mycorrhizal fungi, including legumes and some nonlegumes that also interact with endosymbiotic nitrogen (N)-fixing bacteria to form nodules. In addition to these helpful interactions, plants are continuously exposed to would-be pathogenic microbes: discriminating between friends and foes is a major determinant of plant survival. Recent breakthroughs have revealed how some key signals from pathogens and symbionts are distinguished. Once this checkpoint has been passed and a compatible symbiont is recognized, the plant coordinates the sequential development of two types of specialized structures in the host. The first serves to mediate infection, and the second, which appears later, serves as sophisticated intracellular nutrient exchange interfaces. The overlap in both the signaling pathways and downstream infection components of these symbioses reflects their evolutionary relatedness and the common requirements of these two interactions. However, the different outputs of the symbioses, phosphate uptake versus N fixation, require fundamentally different components and physical environments and necessitated the recruitment of different master regulators, NODULE INCEPTION-LIKE PROTEINS, and PHOSPHATE STARVATION RESPONSES, for nodulation and mycorrhization, respectively.
Collapse
Affiliation(s)
- Dapeng Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wentao Dong
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Ertao Wang
- Authors for correspondence: (E.W) and (J.M.)
| |
Collapse
|
3
|
Nguyen CT, Saito K. Role of Cell Wall Polyphosphates in Phosphorus Transfer at the Arbuscular Interface in Mycorrhizas. FRONTIERS IN PLANT SCIENCE 2021; 12:725939. [PMID: 34616416 PMCID: PMC8488203 DOI: 10.3389/fpls.2021.725939] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/20/2021] [Indexed: 06/01/2023]
Abstract
Arbuscular mycorrhizal fungi provide plants with soil mineral nutrients, particularly phosphorus. In this symbiotic association, the arbuscular interface is the main site for nutrient exchange. To understand phosphorus transfer at the interface, we analyzed the subcellular localization of polyphosphate (polyP) in mature arbuscules of Rhizophagus irregularis colonizing roots of Lotus japonicus wild-type (WT) and H+-ATPase ha1-1 mutant, which is defective in phosphorus acquisition through the mycorrhizal pathway. In both, the WT and the ha1-1 mutant, polyP accumulated in the cell walls of trunk hyphae and inside fine branch modules close to the trunk hyphae. However, many fine branches lacked polyP. In the mutant, most fine branch modules showed polyP signals compared to the WT. Notably, polyP was also observed in the cell walls of some fine branches formed in the ha1-1 mutant, indicating phosphorus release from fungal cells to the apoplastic regions. Intense acid phosphatase (ACP) activity was detected in the periarbuscular spaces around the fine branches. Furthermore, double staining of ACP activity and polyP revealed that these had contrasting distribution patterns in arbuscules. These observations suggest that polyP in fungal cell walls and apoplastic phosphatases may play an important role in phosphorus transfer at the symbiotic interface in arbuscules.
Collapse
Affiliation(s)
- Cuc Thi Nguyen
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Faculty of Agriculture and Forestry, Dalat University, Dalat, Vietnam
| | - Katsuharu Saito
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| |
Collapse
|
4
|
Kameoka H, Maeda T, Okuma N, Kawaguchi M. Structure-Specific Regulation of Nutrient Transport and Metabolism in Arbuscular Mycorrhizal Fungi. PLANT & CELL PHYSIOLOGY 2019; 60:2272-2281. [PMID: 31241164 DOI: 10.1093/pcp/pcz122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiotic relationships with most land plants, mainly for the purpose of nutrient exchange. Many studies have revealed the regulation of processes in AMF, such as nutrient absorption from soil, metabolism and exchange with host plants, and the genes involved. However, the spatial regulation of the genes within the structures comprising each developmental stage is not well understood. Here, we demonstrate the structure-specific transcriptome of the model AMF species, Rhizophagus irregularis. We performed an ultra-low input RNA-seq analysis, SMART-seq2, comparing five extraradical structures, germ tubes, runner hyphae, branched absorbing structures (BAS), immature spores and mature spores. In addition, we reanalyzed the recently reported RNA-seq data comparing intraradical mycelium and arbuscule. Our analyses captured the distinct features of each structure and revealed the structure-specific expression patterns of genes related to nutrient transport and metabolism. Of note, the transcriptional profiles suggest distinct functions of BAS in nutrient absorption. These findings provide a comprehensive dataset to advance our understanding of the transcriptional dynamics of fungal nutrition in this symbiotic system.
Collapse
Affiliation(s)
- Hiromu Kameoka
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| | - Taro Maeda
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| | - Nao Okuma
- The Graduate University for Advanced Studies, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
5
|
Abstract
Phosphorous is important for life but often limiting for plants. The symbiotic pathway of phosphate uptake via arbuscular mycorrhizal fungi (AMF) is evolutionarily ancient and today occurs in natural and agricultural ecosystems alike. Plants capable of this symbiosis can obtain up to all of the phosphate from symbiotic fungi, and this offers potential means to develop crops less dependent on unsustainable P fertilizers. Here, we review the mechanisms and insights gleaned from the fine-tuned signal exchanges that orchestrate the intimate mutualistic symbiosis between plants and AMF. As the currency of trade, nutrients have signaling functions beyond being the nutritional goal of mutualism. We propose that such signaling roles and metabolic reprogramming may represent commitments for a mutualistic symbiosis that act across the stages of symbiosis development.
Collapse
Affiliation(s)
- Chai Hao Chiu
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Uta Paszkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
6
|
Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Cartes P, Borie F, Cornejo P. Arbuscular mycorrhiza effects on plant performance under osmotic stress. MYCORRHIZA 2017; 27:639-657. [PMID: 28647757 DOI: 10.1007/s00572-017-0784-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/05/2017] [Indexed: 05/27/2023]
Abstract
At present, drought and soil salinity are among the most severe environmental stresses that affect the growth of plants through marked reduction of water uptake which lowers water potential, leading to osmotic stress. In general, osmotic stress causes a series of morphological, physiological, biochemical, and molecular changes that affect plant performance. Several studies have found that diverse types of soil microorganisms improve plant growth, especially when plants are under stressful conditions. Most important are the arbuscular mycorrhizal fungi (AMF) which form arbuscular mycorrhizas (AM) with approximately 80% of plant species and are present in almost all terrestrial ecosystems. Beyond the well-known role of AM in improving plant nutrient uptake, the contributions of AM to plants coping with osmotic stress merit analysis. With this review, we describe the principal direct and indirect mechanisms by which AM modify plant responses to osmotic stress, highlighting the role of AM in photosynthetic activity, water use efficiency, osmoprotectant production, antioxidant activities, and gene expression. We also discuss the potential for using AMF to improve plant performance under osmotic stress conditions and the lines of research needed to optimize AM use in plant production.
Collapse
Affiliation(s)
- Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
- Centro de Investigación y Desarrollo en Recursos Hídricos (CIDERH), Universidad Arturo Prat, Vivar 493, 3er piso, Iquique, Chile
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Jorge Olave
- Centro de Investigación y Desarrollo en Recursos Hídricos (CIDERH), Universidad Arturo Prat, Vivar 493, 3er piso, Iquique, Chile
| | - Paula Cartes
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Fernando Borie
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Pablo Cornejo
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|
7
|
Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep 2017; 7:4686. [PMID: 28680077 PMCID: PMC5498536 DOI: 10.1038/s41598-017-04959-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/17/2017] [Indexed: 11/23/2022] Open
Abstract
A major challenge for agriculture is to provide sufficient plant nutrients such as phosphorus (P) to meet the global food demand. The sufficiency of P is a concern because of it's essential role in plant growth, the finite availability of P-rock for fertilizer production and the poor plant availability of soil P. This study investigated whether biofertilizers and bioenhancers, such as arbuscular mycorrhizal fungi (AMF) and their associated bacteria could enhance growth and P uptake in maize. Plants were grown with or without mycorrhizas in compartmented pots with radioactive P tracers and were inoculated with each of 10 selected bacteria isolated from AMF spores. Root colonization by AMF produced large plant growth responses, while seven bacterial strains further facilitated root growth and P uptake by promoting the development of AMF extraradical mycelium. Among the tested strains, Streptomyces sp. W94 produced the largest increases in uptake and translocation of 33P, while Streptomyces sp. W77 highly enhanced hyphal length specific uptake of 33P. The positive relationship between AMF-mediated P absorption and shoot P content was significantly influenced by the bacteria inoculants and such results emphasize the potential importance of managing both AMF and their microbiota for improving P acquisition by crops.
Collapse
Affiliation(s)
- Fabio Battini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, 56124, Italy.
| | - Mette Grønlund
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, DK-2800, Kgs., Denmark
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, 56124, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, 56124, Italy
| | - Iver Jakobsen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, DK-2800, Kgs., Denmark
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
8
|
Stanić M, Križak S, Jovanović M, Pajić T, Ćirić A, Žižić M, Zakrzewska J, Antić TC, Todorović N, Živić M. Growth inhibition of fungus Phycomyces blakesleeanus by anion channel inhibitors anthracene-9-carboxylic and niflumic acid attained through decrease in cellular respiration and energy metabolites. MICROBIOLOGY-SGM 2017; 163:364-372. [PMID: 28100310 DOI: 10.1099/mic.0.000429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Increasing resistance of fungal strains to known fungicides has prompted identification of new candidates for fungicides among substances previously used for other purposes. We have tested the effects of known anion channel inhibitors anthracene-9-carboxylic acid (A9C) and niflumic acid (NFA) on growth, energy metabolism and anionic current of mycelium of fungus Phycomyces blakesleeanus. Both inhibitors significantly decreased growth and respiration of mycelium, but complete inhibition was only achieved by 100 and 500 µM NFA for growth and respiration, respectively. A9C had no effect on respiration of human NCI-H460 cell line and very little effect on cucumber root sprout clippings, which nominates this inhibitor for further investigation as a potential new fungicide. Effects of A9C and NFA on respiration of isolated mitochondria of P. blakesleeanus were significantly smaller, which indicates that their inhibitory effect on respiration of mycelium is indirect. NMR spectroscopy showed that both A9C and NFA decrease the levels of ATP and polyphosphates in the mycelium of P. blakesleeanus, but only A9C caused intracellular acidification. Outwardly rectifying, fast inactivating instantaneous anionic current (ORIC) was also reduced to 33±5 and 21±3 % of its pre-treatment size by A9C and NFA, respectively, but only in the absence of ATP. It can be assumed from our results that the regulation of ORIC is tightly linked to cellular energy metabolism in P. blakesleeanus, and the decrease in ATP and polyphosphate levels could be a direct cause of growth inhibition.
Collapse
Affiliation(s)
- Marina Stanić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Strahinja Križak
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Mirna Jovanović
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tanja Pajić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Ana Ćirić
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Milan Žižić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Joanna Zakrzewska
- Institute of General and Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Tijana Cvetić Antić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Nataša Todorović
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Miroslav Živić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Kikuchi Y, Hijikata N, Ohtomo R, Handa Y, Kawaguchi M, Saito K, Masuta C, Ezawa T. Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. THE NEW PHYTOLOGIST 2016; 211:1202-8. [PMID: 27136716 DOI: 10.1111/nph.14016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/13/2016] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal fungi translocate polyphosphate through hyphae over a long distance to deliver to the host. More than three decades ago, suppression of host transpiration was found to decelerate phosphate delivery of the fungal symbiont, leading us to hypothesize that transpiration provides a primary driving force for polyphosphate translocation, probably via creating hyphal water flow in which fungal aquaporin(s) may be involved. The impact of transpiration suppression on polyphosphate translocation through hyphae of Rhizophagus clarus was evaluated. An aquaporin gene expressed in intraradical mycelia was characterized and knocked down by virus-induced gene silencing to investigate the involvement of the gene in polyphosphate translocation. Rhizophagus clarus aquaporin 3 (RcAQP3) that was most highly expressed in intraradical mycelia encodes an aquaglyceroporin responsible for water transport across the plasma membrane. Knockdown of RcAQP3 as well as the suppression of host transpiration decelerated polyphosphate translocation in proportion to the levels of knockdown and suppression, respectively. These results provide the first insight into the mechanism underlying long-distance polyphosphate translocation in mycorrhizal associations at the molecular level, in which host transpiration and the fungal aquaporin play key roles. A hypothetical model of the translocation is proposed for further elucidation of the mechanism.
Collapse
Affiliation(s)
- Yusuke Kikuchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Nowaki Hijikata
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Ryo Ohtomo
- National Agriculture and Food Research Organization, Hokkaido Agricultural Research Center, Sapporo, 062-8555, Japan
| | - Yoshihiro Handa
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Katsuharu Saito
- Faculty of Agriculture, Shinshu University, Minamiminowa, 399-4598, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Tatsuhiro Ezawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
10
|
Mensah JA, Koch AM, Antunes PM, Kiers ET, Hart M, Bücking H. High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. MYCORRHIZA 2015; 25:533-46. [PMID: 25708401 DOI: 10.1007/s00572-015-0631-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 02/02/2015] [Indexed: 05/20/2023]
Abstract
Plant growth responses following colonization with different isolates of a single species of an arbuscular mycorrhizal (AM) fungus can range from highly beneficial to detrimental, but the reasons for this high within-species diversity are currently unknown. To examine whether differences in growth and nutritional benefits are related to the phosphate (P) metabolism of the fungal symbiont, the effect of 31 different isolates from 10 AM fungal morphospecies on the P and nitrogen (N) nutrition of Medicago sativa and the P allocation among different P pools was examined. Based on differences in the mycorrhizal growth response, high, medium, and low performance isolates were distinguished. Plant growth benefit was positively correlated to the mycorrhizal effect on P and N nutrition. High performance isolates increased plant biomass by more than 170 % and contributed substantially to both P and N nutrition, whereas the effect of medium performance isolates particularly on the N nutrition of the host was significantly lower. Roots colonized by high performance isolates were characterized by relatively low tissue concentrations of inorganic P and short-chain polyphosphates and a high ratio between long- to short-chain polyphosphates. The high performance isolates belonged to different morphospecies and genera, indicating that the ability to contribute to P and N nutrition is widespread within the Glomeromycota and that differences in symbiotic performance and P metabolism are not specific for individual fungal morphospecies.
Collapse
Affiliation(s)
- Jerry A Mensah
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Alexander M Koch
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, V1V 1V7, Canada
| | - Pedro M Antunes
- Department of Biology, Algoma University, Sault Ste. Marie, Ontario, P6A 2G4, Canada
| | - E Toby Kiers
- Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Miranda Hart
- Department of Biology, University of British Columbia Okanagan, Kelowna, British Columbia, V1V 1V7, Canada
| | - Heike Bücking
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
11
|
Konvalinková T, Püschel D, Janoušková M, Gryndler M, Jansa J. Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2015; 6:65. [PMID: 25763002 PMCID: PMC4327418 DOI: 10.3389/fpls.2015.00065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/25/2015] [Indexed: 05/22/2023]
Abstract
Plant and fungal partners in arbuscular mycorrhizal symbiosis trade mineral nutrients for carbon, with the outcome of this relationship for plant growth and nutrition being highly context-dependent and changing with the availability of resources as well as with the specific requirements of the different partners. Here we studied how the model legume Medicago truncatula, inoculated or not with a mycorrhizal fungus Rhizophagus irregularis, responded to a gradient of light intensities applied over different periods of time, in terms of growth, phosphorus nutrition and the levels of root colonization by the mycorrhizal fungus. Short-term (6 d) shading, depending on its intensity, resulted in a rapid decline of phosphorus uptake to the shoots of mycorrhizal plants and simultaneous accumulation of phosphorus in the roots (most likely in the fungal tissues), as compared to the non-mycorrhizal controls. There was, however, no significant change in the levels of mycorrhizal colonization of roots due to short-term shading. Long-term (38 d) shading, depending on its intensity, provoked a multitude of plant compensatory mechanisms, which were further boosted by the mycorrhizal symbiosis. Mycorrhizal growth- and phosphorus uptake benefits, however, vanished at 10% of the full light intensity applied over a long-term. Levels of root colonization by the mycorrhizal fungus were significantly reduced by long-term shading. Our results indicate that even short periods of shade could have important consequences for the functioning of mycorrhizal symbiosis in terms of phosphorus transfer between the fungus and the plants, without any apparent changes in root colonization parameters or mycorrhizal growth response, and call for more focused research on temporal dynamics of mycorrhizal functioning under changing environmental conditions.
Collapse
Affiliation(s)
- Tereza Konvalinková
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - David Püschel
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
- Department of Mycorrhizal Symbioses, Institute of Botany, Academy of Sciences of the Czech RepublicPrůhonice, Czech Republic
| | - Martina Janoušková
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
- Department of Mycorrhizal Symbioses, Institute of Botany, Academy of Sciences of the Czech RepublicPrůhonice, Czech Republic
| | - Milan Gryndler
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| |
Collapse
|
12
|
Funamoto R, Saito K, Oyaizu H, Aono T, Saito M. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita. MYCORRHIZA 2015; 25:55-60. [PMID: 24838377 DOI: 10.1007/s00572-014-0588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Rintaro Funamoto
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | | | | | | | | |
Collapse
|
13
|
Kikuchi Y, Hijikata N, Yokoyama K, Ohtomo R, Handa Y, Kawaguchi M, Saito K, Ezawa T. Polyphosphate accumulation is driven by transcriptome alterations that lead to near-synchronous and near-equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. THE NEW PHYTOLOGIST 2014; 204:638-649. [PMID: 25039900 DOI: 10.1111/nph.12937] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/11/2014] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi accumulate a massive amount of phosphate as polyphosphate to deliver to the host, but the underlying physiological and molecular mechanisms have yet to be elucidated. In the present study, the dynamics of cationic components during polyphosphate accumulation were investigated in conjunction with transcriptome analysis. Rhizophagus sp. HR1 was grown with Lotus japonicus under phosphorus-deficient conditions, and extraradical mycelia were harvested after phosphate application at prescribed intervals. Levels of polyphosphate, inorganic cations and amino acids were measured, and RNA-Seq was performed on the Illumina platform. Phosphate application triggered not only polyphosphate accumulation but also near-synchronous and near-equivalent uptake of Na(+) , K(+) , Ca(2+) and Mg(2+) , whereas no distinct changes in the levels of amino acids were observed. During polyphosphate accumulation, the genes responsible for mineral uptake, phosphate and nitrogen metabolism and the maintenance of cellular homeostasis were up-regulated. The results suggest that inorganic cations play a major role in neutralizing the negative charge of polyphosphate, and these processes are achieved by the orchestrated regulation of gene expression. Our findings provide, for the first time, a global picture of the cellular response to increased phosphate availability, which is the initial process of nutrient delivery in the associations.
Collapse
Affiliation(s)
- Yusuke Kikuchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Nowaki Hijikata
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kaede Yokoyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Ryo Ohtomo
- National Agriculture and Food Research Organization, Hokkaido Agricultural Research Center, Sapporo, 062-8555, Japan
| | - Yoshihiro Handa
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Katsuharu Saito
- Faculty of Agriculture, Shinshu University, Minamiminowa, 399-4598, Japan
| | - Tatsuhiro Ezawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
14
|
Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, Da Silva C, Gomez SK, Koul R, Ferrol N, Fiorilli V, Formey D, Franken P, Helber N, Hijri M, Lanfranco L, Lindquist E, Liu Y, Malbreil M, Morin E, Poulain J, Shapiro H, van Tuinen D, Waschke A, Azcón-Aguilar C, Bécard G, Bonfante P, Harrison MJ, Küster H, Lammers P, Paszkowski U, Requena N, Rensing SA, Roux C, Sanders IR, Shachar-Hill Y, Tuskan G, Young JPW, Gianinazzi-Pearson V, Martin F. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. THE NEW PHYTOLOGIST 2012; 193:755-769. [PMID: 22092242 DOI: 10.1111/j.1469-8137.2011.03948.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
• The arbuscular mycorrhizal symbiosis is arguably the most ecologically important eukaryotic symbiosis, yet it is poorly understood at the molecular level. To provide novel insights into the molecular basis of symbiosis-associated traits, we report the first genome-wide analysis of the transcriptome from Glomus intraradices DAOM 197198. • We generated a set of 25,906 nonredundant virtual transcripts (NRVTs) transcribed in germinated spores, extraradical mycelium and symbiotic roots using Sanger and 454 sequencing. NRVTs were used to construct an oligoarray for investigating gene expression. • We identified transcripts coding for the meiotic recombination machinery, as well as meiosis-specific proteins, suggesting that the lack of a known sexual cycle in G. intraradices is not a result of major deletions of genes essential for sexual reproduction and meiosis. Induced expression of genes encoding membrane transporters and small secreted proteins in intraradical mycelium, together with the lack of expression of hydrolytic enzymes acting on plant cell wall polysaccharides, are all features of G. intraradices that are shared with ectomycorrhizal symbionts and obligate biotrophic pathogens. • Our results illuminate the genetic basis of symbiosis-related traits of the most ancient lineage of plant biotrophs, advancing future research on these agriculturally and ecologically important symbionts.
Collapse
Affiliation(s)
- E Tisserant
- Institut National de la Recherche Agronomique (INRA), UMR 1136 INRA/University Henri Poincaré, Interactions Arbres/Micro-organismes, Centre de Nancy, 54280 Champenoux, France
| | - A Kohler
- Institut National de la Recherche Agronomique (INRA), UMR 1136 INRA/University Henri Poincaré, Interactions Arbres/Micro-organismes, Centre de Nancy, 54280 Champenoux, France
| | - P Dozolme-Seddas
- UMR 1088 INRA/5184 CNRS/Burgundy University Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065 Dijon, France
| | - R Balestrini
- Istituto per la Protezione delle Piante del CNR, sez. di Torino and Dipartimento di Biologia Vegetale, Universita` degli Studi di Torino, Viale Mattioli, 25, 10125 Torino, Italy
| | - K Benabdellah
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda, 1, 18008 Granada, Spain
| | - A Colard
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
- ETH Zürich, Plant Pathology, Universitätsstrasse 3, CH-8092 Zürich, Switzerland
| | - D Croll
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
- ETH Zürich, Plant Pathology, Universitätsstrasse 3, CH-8092 Zürich, Switzerland
| | - C Da Silva
- CEA, IG, Genoscope, 2 rue Gaston Crémieux CP5702, F-91057 Evry, France
| | - S K Gomez
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853-1801, USA
| | - R Koul
- Department of Chemistry and Biochemistry, New Mexico State University, Department 3MLS, PO Box 3001, Las Cruces, NM 88003-8001, USA
| | - N Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda, 1, 18008 Granada, Spain
| | - V Fiorilli
- Istituto per la Protezione delle Piante del CNR, sez. di Torino and Dipartimento di Biologia Vegetale, Universita` degli Studi di Torino, Viale Mattioli, 25, 10125 Torino, Italy
| | - D Formey
- Université de Toulouse & CNRS, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
| | - Ph Franken
- Leibniz-Institute of Vegetable and Ornamental Crops, Department of Plant Nutrition, Theodor-Echtermeyer-Weg 1, D-14979 Grossbeeren, Germany
| | - N Helber
- Karlsruhe Institute of Technology, Botanical Institute, Plant-Microbial Interaction, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | - M Hijri
- Institut de la Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, Que., Canada H1X 2B2
| | - L Lanfranco
- Istituto per la Protezione delle Piante del CNR, sez. di Torino and Dipartimento di Biologia Vegetale, Universita` degli Studi di Torino, Viale Mattioli, 25, 10125 Torino, Italy
| | - E Lindquist
- Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Y Liu
- UMR 1088 INRA/5184 CNRS/Burgundy University Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065 Dijon, France
| | - M Malbreil
- Université de Toulouse & CNRS, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
| | - E Morin
- Institut National de la Recherche Agronomique (INRA), UMR 1136 INRA/University Henri Poincaré, Interactions Arbres/Micro-organismes, Centre de Nancy, 54280 Champenoux, France
| | - J Poulain
- CEA, IG, Genoscope, 2 rue Gaston Crémieux CP5702, F-91057 Evry, France
| | - H Shapiro
- Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - D van Tuinen
- UMR 1088 INRA/5184 CNRS/Burgundy University Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065 Dijon, France
| | - A Waschke
- Leibniz-Institute of Vegetable and Ornamental Crops, Department of Plant Nutrition, Theodor-Echtermeyer-Weg 1, D-14979 Grossbeeren, Germany
| | - C Azcón-Aguilar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda, 1, 18008 Granada, Spain
| | - G Bécard
- Université de Toulouse & CNRS, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
| | - P Bonfante
- Istituto per la Protezione delle Piante del CNR, sez. di Torino and Dipartimento di Biologia Vegetale, Universita` degli Studi di Torino, Viale Mattioli, 25, 10125 Torino, Italy
| | - M J Harrison
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853-1801, USA
| | - H Küster
- Institut für Pflanzengenetik, Naturwissenschaftliche Fakultät, Leibniz Universität Hannover, D-30419 Hannover, Germany
| | - P Lammers
- Department of Chemistry and Biochemistry, New Mexico State University, Department 3MLS, PO Box 3001, Las Cruces, NM 88003-8001, USA
| | - U Paszkowski
- Department de Biologie Moléculaire Végétale, Université de Lausanne, Biophore, 4419, CH-1015 Lausanne, Switzerland
| | - N Requena
- Karlsruhe Institute of Technology, Botanical Institute, Plant-Microbial Interaction, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | - S A Rensing
- BIOSS Centre for Biological Signalling Studies, Freiburg Initiative for Systems Biology and Faculty of Biology, University of Freiburg, Hauptstr. 1, D-79104 Freiburg, Germany
| | - C Roux
- Université de Toulouse & CNRS, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
| | - I R Sanders
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Y Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312, USA
| | - G Tuskan
- Oak Ridge National Laboratory, BioSciences, PO Box 2008, Oak Ridge, TN 37831, USA
| | - J P W Young
- Department of Biology, University of York, York YO10 5DD, UK
| | - V Gianinazzi-Pearson
- UMR 1088 INRA/5184 CNRS/Burgundy University Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065 Dijon, France
| | - F Martin
- Institut National de la Recherche Agronomique (INRA), UMR 1136 INRA/University Henri Poincaré, Interactions Arbres/Micro-organismes, Centre de Nancy, 54280 Champenoux, France
| |
Collapse
|
15
|
Javot H, Penmetsa RV, Breuillin F, Bhattarai KK, Noar RD, Gomez SK, Zhang Q, Cook DR, Harrison MJ. Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:954-65. [PMID: 21848683 DOI: 10.1111/j.1365-313x.2011.04746.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants acquire essential mineral nutrients such as phosphorus (P) and nitrogen (N) directly from the soil, but the majority of the vascular plants also gain access to these mineral nutrients through endosymbiotic associations with arbuscular mycorrhizal (AM) fungi. In AM symbiosis, the fungi deliver P and N to the root through branched hyphae called arbuscules. Previously we identified MtPT4, a Medicago truncatula phosphate transporter located in the periarbuscular membrane that is essential for symbiotic phosphate transport and for maintenance of the symbiosis. In mtpt4 mutants arbuscule degeneration occurs prematurely and symbiosis fails. Here, we show that premature arbuscule degeneration occurs in mtpt4 mutants even when the fungus has access to carbon from a nurse plant. Thus, carbon limitation is unlikely to be the primary cause of fungal death. Surprisingly, premature arbuscule degeneration is suppressed if mtpt4 mutants are deprived of nitrogen. In mtpt4 mutants with a low N status, arbuscule lifespan does not differ from that of the wild type, colonization of the mtpt4 root system occurs as in the wild type and the fungus completes its life cycle. Sulphur is another essential macronutrient delivered to the plant by the AM fungus; however, suppression of premature arbuscule degeneration does not occur in sulphur-deprived mtpt4 plants. The mtpt4 arbuscule phenotype is strongly correlated with shoot N levels. Analyses of an mtpt4-2 sunn-1 double mutant indicates that SUNN, required for N-mediated autoregulation of nodulation, is not involved. Together, the data reveal an unexpected role for N in the regulation of arbuscule lifespan in AM symbiosis.
Collapse
Affiliation(s)
- Hélène Javot
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bünemann EK, Prusisz B, Ehlers K. Characterization of Phosphorus Forms in Soil Microorganisms. SOIL BIOLOGY 2011. [DOI: 10.1007/978-3-642-15271-9_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Smith SE, Smith FA. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:227-50. [PMID: 21391813 DOI: 10.1146/annurev-arplant-042110-103846] [Citation(s) in RCA: 574] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Root systems of most land plants form arbuscular mycorrhizal (AM) symbioses in the field, and these contribute to nutrient uptake. AM roots have two pathways for nutrient absorption, directly through the root epidermis and root hairs and via AM fungal hyphae into root cortical cells, where arbuscules or hyphal coils provide symbiotic interfaces. New physiological and molecular evidence shows that for phosphorus the mycorrhizal pathway (MP) is operational regardless of plant growth responses (positive or negative). Amounts delivered cannot be determined from plant nutrient contents because when responses are negative the contribution of the direct pathway (DP) is reduced. Nitrogen (N) is also delivered to roots via an MP, but the contribution to total N requirement and the costs to the plant are not clear. The functional interplay between activities of the DP and MP has important implications for consideration of AM symbioses in ecological, agronomic, and evolutionary contexts.
Collapse
Affiliation(s)
- Sally E Smith
- Soils Group, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
18
|
Verbruggen E, Toby Kiers E. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 2010; 3:547-60. [PMID: 25567946 PMCID: PMC3352509 DOI: 10.1111/j.1752-4571.2010.00145.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/11/2010] [Indexed: 12/11/2022] Open
Abstract
The root systems of most agronomic crops are colonized by diverse assemblages of arbuscular mycorrhizal fungi (AMF), varying in the functional benefits (e.g. nutrient transfer, pathogen protection, water uptake) provided to hosts. Little is known about the evolutionary processes that shape the composition of these fungal assemblages, nor is it known whether more diverse assemblages are beneficial to crop productivity. In this review we aim to identify the evolutionary selection pressures that shape AMF diversity in agricultural systems and explore whether promotion of AMF diversity can convincingly be linked to increases in agricultural productivity and/or sustainability. We then ask whether farmers can (and should) actively modify evolutionary selection pressures to increase AMF functioning. We focus on three agriculturally imposed selection regimes: tillage, fertilization, and continuous monoculture. We find that the uniform nature of these practices strongly selects for dominance of few AMF species. These species exhibit predictable, generally non-beneficial traits, namely heavy investment in reproduction at the expense of nutrient scavenging and transfer processes that are beneficial for hosts. A number of focus-points are given based on empirical and theoretical evidence that could be utilized to slow down negative selection pressures on AMF functioning, therein increasing crop benefit.
Collapse
Affiliation(s)
- Erik Verbruggen
- Department of Ecological Science, Faculty of Earth of Life Sciences, VU University Amsterdam, The Netherlands
| | - E Toby Kiers
- Department of Ecological Science, Faculty of Earth of Life Sciences, VU University Amsterdam, The Netherlands ; Department of Plant, Soil and Insect Science, University of Massachusetts at Amherst Amherst, MA, USA
| |
Collapse
|
19
|
Hijikata N, Murase M, Tani C, Ohtomo R, Osaki M, Ezawa T. Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus. THE NEW PHYTOLOGIST 2010; 186:285-289. [PMID: 20409186 DOI: 10.1111/j.1469-8137.2009.03168.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Nowaki Hijikata
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589 Japan
| | | | | | | | | | | |
Collapse
|
20
|
Tani C, Ohtomo R, Osaki M, Kuga Y, Ezawa T. ATP-dependent but proton gradient-independent polyphosphate-synthesizing activity in extraradical hyphae of an arbuscular mycorrhizal fungus. Appl Environ Microbiol 2009; 75:7044-50. [PMID: 19767467 PMCID: PMC2786526 DOI: 10.1128/aem.01519-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 09/10/2009] [Indexed: 11/20/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi benefit their host plants by supplying phosphate obtained from the soil. Polyphosphate is thought to act as the key intermediate in this process, but little is currently understood about how polyphosphate is synthesized or translocated within arbuscular mycorrhizas. Glomus sp. strain HR1 was grown with marigold in a mesh bag compartment system, and extraradical hyphae were harvested and fractionated by density gradient centrifugation. Using this approach, three distinct layers were obtained: layers 1 and 2 were composed of amorphous and membranous materials, together with mitochondria, lipid bodies, and electron-opaque bodies, and layer 3 was composed mainly of partially broken hyphae and fragmented cell walls. The polyphosphate kinase/luciferase system, a highly sensitive polyphosphate detection method, enabled the detection of polyphosphate-synthesizing activity in layer 2 in the presence of ATP. This activity was inhibited by vanadate but not by bafilomycin A(1) or a protonophore, suggesting that ATP may not energize the reaction through H(+)-ATPase but may act as a direct substrate in the reaction. This report represents the first demonstration that AM fungi possess polyphosphate-synthesizing activity that is localized in the organelle fraction and not in the cytosol or at the plasma membrane.
Collapse
Affiliation(s)
- Chiharu Tani
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan, NARO-NILGS, Nasushiobara, Tochigi 329-2793, Japan, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi Hiroshima, Hiroshima 739-8521, Japan
| | - Ryo Ohtomo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan, NARO-NILGS, Nasushiobara, Tochigi 329-2793, Japan, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi Hiroshima, Hiroshima 739-8521, Japan
| | - Mitsuru Osaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan, NARO-NILGS, Nasushiobara, Tochigi 329-2793, Japan, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi Hiroshima, Hiroshima 739-8521, Japan
| | - Yukari Kuga
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan, NARO-NILGS, Nasushiobara, Tochigi 329-2793, Japan, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi Hiroshima, Hiroshima 739-8521, Japan
| | - Tatsuhiro Ezawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan, NARO-NILGS, Nasushiobara, Tochigi 329-2793, Japan, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
21
|
Ohtomo R, Sekiguchi Y, Kojima T, Saito M. Different chain length specificity among three polyphosphate quantification methods. Anal Biochem 2008; 383:210-6. [DOI: 10.1016/j.ab.2008.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 11/16/2022]
|
22
|
de Boulois HD, Joner EJ, Leyval C, Jakobsen I, Chen BD, Roos P, Thiry Y, Rufyikiri G, Delvaux B, Declerck S. Role and influence of mycorrhizal fungi on radiocesium accumulation by plants. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2008; 99:785-800. [PMID: 18055077 DOI: 10.1016/j.jenvrad.2007.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2007] [Indexed: 05/25/2023]
Abstract
This review summarizes current knowledge on the contribution of mycorrhizal fungi to radiocesium immobilization and plant accumulation. These root symbionts develop extended hyphae in soils and readily contribute to the soil-to-plant transfer of some nutrients. Available data show that ecto-mycorrhizal (ECM) fungi can accumulate high concentration of radiocesium in their extraradical phase while radiocesium uptake and accumulation by arbuscular mycorrhizal (AM) fungi is limited. Yet, both ECM and AM fungi can transport radiocesium to their host plants, but this transport is low. In addition, mycorrhizal fungi could thus either store radiocesium in their intraradical phase or limit its root-to-shoot translocation. The review discusses the impact of soil characteristics, and fungal and plant transporters on radiocesium uptake and accumulation in plants, as well as the potential role of mycorrhizal fungi in phytoremediation strategies.
Collapse
Affiliation(s)
- H Dupré de Boulois
- Université catholique de Louvain, Unité de Microbiologie, Croix du Sud 3, 1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ryan MH, McCully ME, Huang CX. Relative amounts of soluble and insoluble forms of phosphorus and other elements in intraradical hyphae and arbuscules of arbuscular mycorrhizas. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:457-464. [PMID: 32689373 DOI: 10.1071/fp06242] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 04/04/2007] [Indexed: 06/11/2023]
Abstract
Transport of phosphorus (P) into host plants and its release to root cells is an important function of arbuscular mycorrhizal fungi (AMF). However, relatively little is known about the forms and water solubilities of P compounds in specific locations in the intraradical fungal structures. We determined concentrations and solubility of P components in these structures in white clover (Trifolium repens L.). Plants were grown in the field (colonised by indigenous AMF) or in the glasshouse (inoculated with Glomus intraradices). Mycorrhizas were cryo-fixed in liquid nitrogen immediately (control) or after treatments designed to destroy cell membranes and extract solubles. Thirty to 70% of total P in hyphae and 100% in arbuscules was not extracted. The unextracted proportion of P was higher in the inoculated plants suggesting an environmental effect. It is proposed that the large component of non-extractable P in the arbuscules is involved in the tight regulation of inorganic P release to the host cells. In control roots magnesium, potassium and P were present in hyphae in molar ratios 1 : 2 : 4, further evidence that this relationship may be universal for AMF, and that other P-balancing cations are present but undetectable by the analytical technique.
Collapse
Affiliation(s)
- Megan H Ryan
- School of Plant Biology M081, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | | | - Cheng X Huang
- Electron Microscopy Unit, Research School of Biological Sciences, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
24
|
Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 2007; 104:1720-5. [PMID: 17242358 PMCID: PMC1785290 DOI: 10.1073/pnas.0608136104] [Citation(s) in RCA: 399] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Indexed: 11/18/2022] Open
Abstract
The arbuscular mycorrhizal (AM) symbiosis is a mutualistic endosymbiosis formed by plant roots and AM fungi. Most vascular flowering plants have the ability to form these associations, which have a significant impact on plant health and consequently on ecosystem function. Nutrient exchange is a central feature of the AM symbiosis, and AM fungi obtain carbon from their plant host while assisting the plant with the acquisition of phosphorus (as phosphate) from the soil. In the AM symbiosis, the fungus delivers P(i) to the root through specialized hyphae called arbuscules. The molecular mechanisms of P(i) and carbon transfer in the symbiosis are largely unknown, as are the mechanisms by which the plant regulates the symbiosis in response to its nutrient status. Plants possess many classes of P(i) transport proteins, including a unique clade (Pht1, subfamily I), members of which are expressed only in the AM symbiosis. Here, we show that MtPT4, a Medicago truncatula member of subfamily I, is essential for the acquisition of P(i) delivered by the AM fungus. However, more significantly, MtPT4 function is critical for AM symbiosis. Loss of MtPT4 function leads to premature death of the arbuscules; the fungus is unable to proliferate within the root, and symbiosis is terminated. Thus, P(i) transport is not only a benefit for the plant but is also a requirement for the AM symbiosis.
Collapse
Affiliation(s)
- Hélène Javot
- *Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14850; and
| | - R. Varma Penmetsa
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616
| | - Nadia Terzaghi
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616
| | - Douglas R. Cook
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616
| | - Maria J. Harrison
- *Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14850; and
| |
Collapse
|
25
|
Kiers ET, van der Heijden MGA. Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology 2006; 87:1627-36. [PMID: 16922314 DOI: 10.1890/0012-9658(2006)87[1627:msitam]2.0.co;2] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The 450-million-year-old symbiosis between the majority of land plants and arbuscular mycorrhizal fungi (AMF) is one of the most ancient, abundant, and ecologically important mutualisms on Earth. Yet, the evolutionary stability of mycorrhizal associations is still poorly understood, as it follows none of the constraints thought to stabilize cooperation in other well-known mutualisms. The capacity of both host and symbiont to simultaneously interact with several partners introduces a unique dilemma; detecting and punishing those exploiting the mutualism becomes increasingly difficult if these individuals can continue to access resources from alternative sources. Here, we explore four hypotheses to explain evolutionary cooperation in the arbuscular mycorrhizal symbiosis: (1) pseudo-vertical transmission and spatial structuring of plant and fungal populations leading to local adaptation of partners; (2) luxury resource exchange in which plants trade surplus carbon for excess fungal nutrients; (3) partner choice allowing partners to associate with better cooperators; and (4) host and symbiont sanctions which actively reward good partners and punish less cooperative ones. We propose that mycorrhizal cooperation is promoted by an exchange of surplus resources between partners and enforced through sanctions by one or both partners. These mechanisms may allow plant and fungal genotypes to discriminate against individuals employing exploitative strategies, promoting patterns of partner choice. Together these selection pressures provide a framework for understanding the stabilization of mycorrhizal cooperation over evolutionary time.
Collapse
Affiliation(s)
- E Toby Kiers
- Institute of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| | | |
Collapse
|
26
|
Fritz M, Jakobsen I, Lyngkjær MF, Thordal-Christensen H, Pons-Kühnemann J. Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. MYCORRHIZA 2006; 16:413-419. [PMID: 16614816 DOI: 10.1007/s00572-006-0051-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 03/07/2006] [Indexed: 05/04/2023]
Abstract
Mycorrhiza frequently leads to the control of root pathogens, but appears to have the opposite effect on leaf pathogens. In this study, we studied mycorrhizal effects on the development of early blight in tomato (Solanum lycopersicum) caused by the necrotrophic fungus Alternaria solani. Alternaria-induced necrosis and chlorosis of all leaves were studied in mycorrhizal and non-mycorrhizal plants over time course and at different soil P levels. Mycorrhizal tomato plants had significantly less A. solani symptoms than non-mycorrhizal plants, but neither plant growth nor phosphate uptake was enhanced by mycorrhizas. An increased P supply had no effect on disease severity in non-mycorrhizal plants, but led to a higher disease severity in mycorrhizal plants. This was parallel to a P-supply-induced reduction in mycorrhiza formation. The protective effect of mycorrhizas towards development of A. solani has some parallels to induced systemic resistance, mediated by rhizobacteria: both biocontrol agents are root-associated organisms and both are effective against necrotrophic pathogens. The possible mechanisms involved are discussed.
Collapse
Affiliation(s)
- Maendy Fritz
- Biometry and Population Genetics, Justus-Liebig-Universität Gießen, IFZ, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany.
| | - Iver Jakobsen
- Biosystems Department, Risø National Laboratory, Roskilde, Denmark
| | | | - Hans Thordal-Christensen
- Department of Agricultural Sciences, The Royal Veterinary and Agricultural University, Copenhagen, Denmark
| | - Jörn Pons-Kühnemann
- Biometry and Population Genetics, Justus-Liebig-Universität Gießen, IFZ, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany
| |
Collapse
|
27
|
Ohtomo R, Saito M. Polyphosphate dynamics in mycorrhizal roots during colonization of an arbuscular mycorrhizal fungus. THE NEW PHYTOLOGIST 2005; 167:571-8. [PMID: 15998407 DOI: 10.1111/j.1469-8137.2005.01425.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Inorganic polyphosphate (poly P) has been considered to be a translocatable form of phosphate (Pi) in arbuscular mycorrhizal fungi (AMF). Here we examined time-course changes in poly P content during the AMF colonization process. Onion (Allium cepa) plants were cultured with or without inoculation with Gigaspora margarita for 2-8 wk with periodic sampling. Poly P in the extracts, purified through gel filtration, was quantified by the reverse reaction of polyphosphate kinase. The length of poly P in mycorrhizal roots appeared to be shorter than in extraradical hyphae or in spores of the AMF, indicating that AMF depolymerize poly P before providing Pi to the host. The poly P content increased as colonization proceeded, and was highly correlated with the weight of the colonized roots. These results support the model that AMF supply Pi to the host through the poly P pool, and that the poly P content of a mycorrhizal root can be a good indicator of the Pi-supplying activity of AMF.
Collapse
Affiliation(s)
- Ryo Ohtomo
- National Institute of Livestock and Grassland Science, 768 Senbon-matsu, Nasu-shiobara, Tochigi, 329-2793 Japan.
| | | |
Collapse
|
28
|
Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:236-50. [PMID: 15807785 DOI: 10.1111/j.1365-313x.2005.02364.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Solanaceous species are among the >200 000 plant species worldwide forming a mycorrhiza, that is, a root living in symbiosis with soil-borne arbuscular-mycorrhizal (AM) fungi. An important parameter of this symbiosis, which is vital for ecosystem productivity, agriculture, and horticulture, is the transfer of phosphate (Pi) from the AM fungus to the plant, facilitated by plasma membrane-spanning Pi transporter proteins. The first mycorrhiza-specific plant Pi transporter to be identified, was StPT3 from potato [Nature414 (2004) 462]. Here, we describe novel Pi transporters from the solanaceous species tomato, LePT4, and its orthologue StPT4 from potato, both being members of the Pht1 family of plant Pi transporters. Phylogenetic tree analysis demonstrates clustering of both LePT4 and StPT4 with the mycorrhiza-specific Pi transporter from Medicago truncatula [Plant Cell, 14 (2002) 2413] and rice [Proc. Natl Acad. Sci. USA, 99 (2002) 13324], respectively, but not with StPT3, indicating that two non-orthologous mycorrhiza-responsive genes encoding Pi transporters are co-expressed in the Solanaceae. The cloned promoter regions from both genes, LePT4 and StPT4, exhibit a high degree of sequence identity and were shown to direct expression exclusively in colonized cells when fused to the GUS reporter gene, in accordance with the abundance of LePT4 and StPT4 transcripts in mycorrhized roots. Furthermore, extensive sequencing of StPT4-like clones and subsequent expression analysis in potato and tomato revealed the presence of a close paralogue of StPT4 and LePT4, named StPT5 and LePT5, respectively, representing a third Pi transport system in solanaceous species which is upregulated upon AM fungal colonization of roots. Knock out of LePT4 in the tomato cv. MicroTom indicated considerable redundancy between LePT4 and other Pi transporters in tomato.
Collapse
Affiliation(s)
- Réka Nagy
- Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Plant Biochemistry & Physiology Group, Experimental Station Eschikon 33, CH-8315 Lindau, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Karandashov V, Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas. TRENDS IN PLANT SCIENCE 2005; 10:22-9. [PMID: 15642520 DOI: 10.1016/j.tplants.2004.12.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arbuscular mycorrhizal fungi colonize the root systems of most land plants and modulate plant growth by enhancing the availability of nutrients, mainly phosphorus, for plant nutrition. Recently identified genes encoding mycorrhiza-specific plant phosphate transporters have enabled fundamental problems in arbuscular mycorrhizal symbiosis research to be addressed. Because phosphate transport is a key feature of this symbiosis, the study of phosphate transport mechanisms and their gene regulation will further our understanding of the intimate interaction between the two symbiotic partners.
Collapse
Affiliation(s)
- Vladimir Karandashov
- Federal Institute of Technology Zurich, Institute of Plant Sciences, Experimental Station Eschikon 33, 8315 Lindau, Switzerland
| | | |
Collapse
|