1
|
Ramos Aguila LC, Sánchez Moreano JP, Akutse KS, Bamisile BS, Liu J, Haider FU, Ashraf HJ, Wang L. Comprehensive genome-wide identification and expression profiling of ADF gene family in Citrus sinensis, induced by endophytic colonization of Beauveria bassiana. Int J Biol Macromol 2023; 225:886-898. [PMID: 36403770 DOI: 10.1016/j.ijbiomac.2022.11.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022]
Abstract
Endophytic entomopathogenic species are known to systematically colonize host plants and form symbiotic associations that benefit the plants they live with. The actin-depolymerizing factors (ADFs) are a group of gene family that regulate growth, development, and defense-related functions in plants. Systematic studies of ADF family at the genome-wide level and their expression in response to endophytic colonization are essential to understand its functions but are currently lacking in this field. 14ADF genes were identified and characterized in the Citrus sinensis genome. The ADF genes of C. sinensis were classified into five groups according to the phylogenetic analysis of plant ADFs. Additionally, the cis-acting analysis revealed that these genes play essential role in plant growth/development, phytohormone, and biotic and abiotic responses; and the expression analysis showed that the symbiotic interactions generate a significant expression regulation level of ADF genes in leaves, stems and roots, compared to controls; thus enhancing seedlings' growth. Additionally, the 3D structures of the ADF domain were highly conserved during evolution. These results will be helpful for further functional validation of ADFs candidate genes and provide important insights into the vegetative growth, development and stress tolerance of C. sinensis in responses to endophytic colonization by B. bassiana.
Collapse
Affiliation(s)
- Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jessica Paola Sánchez Moreano
- Carrera de Agroecología, Facultad de Ciencias Socio-Ambientales, Universidad Regional Amazónica Ikiam, Tena 150102, Ecuador
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O. Box 30772-00100, Kenya
| | - Bamisope Steve Bamisile
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hafiza Javaira Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Kabange NR, Mun BG, Lee SM, Kwon Y, Lee D, Lee GM, Yun BW, Lee JH. Nitric oxide: A core signaling molecule under elevated GHGs (CO 2, CH 4, N 2O, O 3)-mediated abiotic stress in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:994149. [PMID: 36407609 PMCID: PMC9667792 DOI: 10.3389/fpls.2022.994149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Nitric oxide (NO), an ancient molecule with multiple roles in plants, has gained momentum and continues to govern plant biosciences-related research. NO, known to be involved in diverse physiological and biological processes, is a central molecule mediating cellular redox homeostasis under abiotic and biotic stresses. NO signaling interacts with various signaling networks to govern the adaptive response mechanism towards stress tolerance. Although diverging views question the role of plants in the current greenhouse gases (GHGs) budget, it is widely accepted that plants contribute, in one way or another, to the release of GHGs (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and ozone (O3)) to the atmosphere, with CH4 and N2O being the most abundant, and occur simultaneously. Studies support that elevated concentrations of GHGs trigger similar signaling pathways to that observed in commonly studied abiotic stresses. In the process, NO plays a forefront role, in which the nitrogen metabolism is tightly related. Regardless of their beneficial roles in plants at a certain level of accumulation, high concentrations of CO2, CH4, and N2O-mediating stress in plants exacerbate the production of reactive oxygen (ROS) and nitrogen (RNS) species. This review assesses and discusses the current knowledge of NO signaling and its interaction with other signaling pathways, here focusing on the reported calcium (Ca2+) and hormonal signaling, under elevated GHGs along with the associated mechanisms underlying GHGs-induced stress in plants.
Collapse
Affiliation(s)
- Nkulu Rolly Kabange
- Department of Southern Area Crop Science, National Institute of Crop Science Rural Development Administration (RDA), Miryang, South Korea
| | - Bong-Gyu Mun
- Laboratory of Molecular Pathology and Plant Functional Genomics, Kyungpook National University, Daegu, South Korea
| | - So-Myeong Lee
- Department of Southern Area Crop Science, National Institute of Crop Science Rural Development Administration (RDA), Miryang, South Korea
| | - Youngho Kwon
- Department of Southern Area Crop Science, National Institute of Crop Science Rural Development Administration (RDA), Miryang, South Korea
| | - Dasol Lee
- Laboratory of Molecular Pathology and Plant Functional Genomics, Kyungpook National University, Daegu, South Korea
| | - Geun-Mo Lee
- Laboratory of Molecular Pathology and Plant Functional Genomics, Kyungpook National University, Daegu, South Korea
| | - Byung-Wook Yun
- Laboratory of Molecular Pathology and Plant Functional Genomics, Kyungpook National University, Daegu, South Korea
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science Rural Development Administration (RDA), Miryang, South Korea
| |
Collapse
|
3
|
Kumar S, Lande NV, Barua P, Pareek A, Chakraborty S, Chakraborty N. Proteomic dissection of rice cytoskeleton reveals the dominance of microtubule and microfilament proteins, and novel components in the cytoskeleton-bound polysome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:75-86. [PMID: 34861586 DOI: 10.1016/j.plaphy.2021.11.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The plant cytoskeleton persistently undergoes remodeling to achieve its roles in supporting cell division, differentiation, cell expansion and organelle transport. However, the links between cell metabolism and cytoskeletal networks, particularly how the proteinaceous components execute such processes remain poorly understood. We investigated the cytoskeletal proteome landscape of rice to gain better understanding of such events. Proteins were extracted from highly enriched cytoskeletal fraction of four-week-old rice seedlings, and the purity of the fraction was stringently monitored. A total of 2577 non-redundant proteins were identified using both gel-based and gel-free approaches, which constitutes the most comprehensive dataset, thus far, for plant cytoskeleton. The data set includes both microtubule and microfilament-associated proteins and their binding proteins comprising hypothetical as well as novel cytoskeletal proteins. Further, various in-silico analyses were performed, and the proteins were functionally classified on the basis of their gene ontology. The catalogued proteins were validated through their sequence analysis. Extensive comparative analysis of our dataset with the non-redundant set of cytoskeletal proteins across plant species affirms unique as well as overlapping candidates. Together, these findings unveil new insights of how cytoskeletons undergo dynamic remodeling in rice to drive seedling development processes in rapidly changing in planta environment.
Collapse
Affiliation(s)
- Sunil Kumar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Akanksha Pareek
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
4
|
Xu K, Zhao Y, Zhao S, Liu H, Wang W, Zhang S, Yang X. Genome-Wide Identification and Low Temperature Responsive Pattern of Actin Depolymerizing Factor (ADF) Gene Family in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:618984. [PMID: 33719289 PMCID: PMC7943747 DOI: 10.3389/fpls.2021.618984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/05/2021] [Indexed: 05/07/2023]
Abstract
The actin depolymerizing factor (ADF) gene family, which is conserved in eukaryotes, is important for plant development, growth, and stress responses. Cold stress restricts wheat growth, development, and distribution. However, genome-wide identification and functional analysis of the ADF family in wheat is limited. Further, because of the promising role of ADF genes in cold response, there is need for an understanding of the function of this family on wheat under cold stress. In this study, 25 ADF genes (TaADFs) were identified in the wheat genome and they are distributed on 15 chromosomes. The TaADF gene structures, duplication events, encoded conversed motifs, and cis-acting elements were investigated. Expression profiles derived from RNA-seq data and real-time quantitative PCR analysis revealed the tissue- and temporal-specific TaADF expression patterns. In addition, the expression levels of TaADF13/16/17/18/20/21/22 were significantly affected by cold acclimation or freezing conditions. Overexpression of TaADF16 increased the freezing tolerance of transgenic Arabidopsis, possibly because of enhanced ROS scavenging and changes to the osmotic regulation in cells. The expression levels of seven cold-responsive genes were up-regulated in the transgenic Arabidopsis plants, regardless of whether the plants were exposed to low temperature. These findings provide fundamental information about the wheat ADF genes and may help to elucidate the regulatory effects of the encoded proteins on plant development and responses to low-temperature stress.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Yong Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Sihang Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Haodong Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Weiwei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - Shuhua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Xueju Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
5
|
Buitimea-Cantúa GV, Marsch-Martinez N, Ríos-Chavez P, Méndez-Bravo A, Molina-Torres J. Global gene expression analyses of the alkamide-producing plant Heliopsis longipes supports a polyketide synthase-mediated biosynthesis pathway. PeerJ 2020; 8:e10074. [PMID: 33033663 PMCID: PMC7521342 DOI: 10.7717/peerj.10074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/10/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Alkamides are plant-specific bioactive molecules. They are low molecular weight N-substituted α-unsaturated acyl amides that display biological explicit activities in different organisms from bacteria, fungi, insects to mammals and plants. The acyl chain has been proposed to be biosynthesized from a fatty acid; however, this has not been demonstrated yet. Heliopsis longipes (Asteraceae) accumulates in root a C10 alkamide called affinin in its roots, but not in leaves. The closely related species Heliopsis annua does not produce alkamides. To elucidate the biosynthetic pathway of the alkamides acyl chain, a comparative global gene expression analysis contrasting roots and leaves of both species was performed. METHODS Transcriptomics analysis allowed to identify genes highly expressed in H. longipes roots, but not in tissues and species that do not accumulate alkamides. The first domain searched was the Ketosynthase (KS) domain. The phylogenetic analysis using sequences of the KS domain of FAS and PKS from different organisms, revealed that KS domains of the differentially expressed transcripts in H. longipes roots and the KS domain found in transcripts of Echinacea purpurea, another alkamides producer species, were grouped together with a high bootstrap value of 100%, sharing great similarity. Among the annotated transcripts, we found some coding for the enzymatic domains KS, AT, ACP, DH, OR and TE, which presented higher expression in H. longipes roots than in leaves. The expression level of these genes was further evaluated by qRT-PCR. All unigenes tested showed higher expression in H. longipes roots than in any the other samples. Based on this and considering that the acyl chain of affinin presents unsaturated bonds at even C numbers, we propose a new putative biosynthesis pathway mediated by a four modules polyketide synthase (PKS). RESULTS The global gene expression analysis led to the selection of a set of candidate genes involved in the biosynthesis of the acyl chain of affinin, suggesting that it may be performed by a non-iterative, partially reductive, four module type I PKS complex (PKS alk) previously thought to be absent from the plant kingdom.
Collapse
Affiliation(s)
| | - Nayelli Marsch-Martinez
- Department of Biotecnologia y Bioquímica, CINVESTAV Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | - Patricia Ríos-Chavez
- Instituto de Investigaciones Químico-Biológicas, Universidad de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
| | - Alfonso Méndez-Bravo
- Laboratorio Nacional de Análisis y Síntesis Ecológica, CONACYT – Escuela Nacional de Estudios Superiores, Morelia, Michoacan, Mexico
| | - Jorge Molina-Torres
- Department of Biotecnologia y Bioquímica, CINVESTAV Unidad Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
6
|
González-Gutiérrez AG, Verdín J, Rodríguez-Garay B. Simple Whole-Mount Staining Protocol of F-Actin for Studies of the Female Gametophyte in Agavoideae and Other Crassinucellate Ovules. FRONTIERS IN PLANT SCIENCE 2020; 11:384. [PMID: 32328076 PMCID: PMC7161591 DOI: 10.3389/fpls.2020.00384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/17/2020] [Indexed: 05/28/2023]
Abstract
During plant sexual reproduction, F-actin takes part in the elongation of the pollen tube and the movement of sperm cells along with it. Moreover, F-actin is involved in the transport of sperm cells throughout the embryo sac when double fertilization occurs. Different techniques for analysis of F-actin in plant cells have been developed: from classical actin-immunolocalization in fixed tissues to genetically tagged actin with fluorescent proteins for live imaging of cells. Despite the implementation of live cell imaging tools, fixed plant tissue methods for cytoskeletal studies remain an essential tool for genetically intractable systems. Also, most of the work on live imaging of the cytoskeleton has been conducted on cells located on the plant's surface, such as epidermal cells, trichomes, and root hairs. In cells situated in the plant's interior, especially those from plant species with thicker organ systems, it is necessary to utilize conventional sectioning and permeabilization methods to allow the label access to the cytoskeleton. Studies about the role of F-actin cytoskeleton during double fertilization in plants with crassinucellate ovules (e.g., Agave, Yucca, Polianthes, Prochnyantes, and Manfreda) remain scarce due to the difficulties to access the female gametophyte. Here, we have developed a straightforward method for analysis of F-actin in the female gametophyte of different Agavoideae sub-family species. The procedure includes the fixation of whole ovules with formaldehyde, followed by membrane permeabilization with cold acetone, a prolonged staining step with rhodamine-phalloidin, and Hoechst 33342 as a counterstain and two final steps of dehydration of samples in increasing-concentration series of cold isopropanol and clarification of tissues with methyl salicylate. This technique allows the analysis of a large number of samples in a short period, cell positioning relative to neighbor cells is maintained, and, with the help of a confocal microscope, reconstruction of a single 3D image of F-actin structures into the embryo sac can be obtained.
Collapse
Affiliation(s)
- Alejandra G González-Gutiérrez
- Unidad de Biotecnología Vegetal, CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
| | - Jorge Verdín
- Unidad de Biotecnología Industrial, CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
| | - Benjamín Rodríguez-Garay
- Unidad de Biotecnología Vegetal, CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
| |
Collapse
|
7
|
Rui Y, Dinneny JR. A wall with integrity: surveillance and maintenance of the plant cell wall under stress. THE NEW PHYTOLOGIST 2020; 225:1428-1439. [PMID: 31486535 DOI: 10.1111/nph.16166] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/16/2019] [Indexed: 05/21/2023]
Abstract
The structural and functional integrity of the cell wall needs to be constantly monitored and fine-tuned to allow for growth while preventing mechanical failure. Many studies have advanced our understanding of the pathways that contribute to cell wall biosynthesis and how these pathways are regulated by external and internal cues. Recent evidence also supports a model in which certain aspects of the wall itself may act as growth-regulating signals. Molecular components of the signaling pathways that sense and maintain cell wall integrity have begun to be revealed, including signals arising in the wall, sensors that detect changes at the cell surface, and downstream signal transduction modules. Abiotic and biotic stress conditions provide new contexts for the study of cell wall integrity, but the nature and consequences of wall disruptions due to various stressors require further investigation. A deeper understanding of cell wall signaling will provide insights into the growth regulatory mechanisms that allow plants to survive in changing environments.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
8
|
Blume YB. A journey through a plant cytoskeleton: Hot spots in signaling and functioning. Cell Biol Int 2019; 44:1262-1266. [PMID: 31486567 DOI: 10.1002/cbin.11224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 01/20/2023]
Abstract
This survey paper contains a brief analysis of publications included in the special issue of the scientific journal Cell Biology International titled "Plant Cytoskeleton Structure, Dynamics and Functions". The manuscripts in this special issue reflect some new aspects of plant cytoskeleton organization, signaling and functioning, and results from different Ukrainian research groups, and focuses on bringing together scientists working across different instrumental scales.
Collapse
Affiliation(s)
- Yaroslav B Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2a, Kyiv, 04123, Ukraine
| |
Collapse
|
9
|
Blume YB. A JOURNEY THROUGH PLANT CYTOSKELETON: HOT SPOTS IN SIGNALING AND FUNCTIONING. Cell Biol Int 2019; 43:978-982. [PMID: 31415134 DOI: 10.1002/cbin.11210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yaroslav B Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho Str., 2a, Kyiv, 04123, Ukraine
| |
Collapse
|
10
|
Yoon MY, Kim MY, Ha J, Lee T, Kim KD, Lee SH. QTL Analysis of Resistance to High-Intensity UV-B Irradiation in Soybean ( Glycine max [L.] Merr.). Int J Mol Sci 2019; 20:E3287. [PMID: 31277435 PMCID: PMC6651677 DOI: 10.3390/ijms20133287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 11/17/2022] Open
Abstract
High-intensity ultraviolet-B (UV-B) irradiation is a complex abiotic stressor resulting in excessive light exposure, heat, and dehydration, thereby affecting crop yields. In the present study, we identified quantitative trait loci (QTLs) for resistance to high-intensity UV-B irradiation in soybean (Glycine max [L.]). We used a genotyping-by-sequencing approach using an F6 recombinant inbred line (RIL) population derived from a cross between Cheongja 3 (UV-B sensitive) and Buseok (UV-B resistant). We evaluated the degree of leaf damage by high-intensity UV-B radiation in the RIL population and identified four QTLs, UVBR12-1, 6-1, 10-1, and 14-1, for UV-B stress resistance, together explaining 20% of the observed phenotypic variation. The genomic regions containing UVBR12-1 and UVBR6-1 and their syntenic blocks included other known biotic and abiotic stress-related QTLs. The QTL with the highest logarithm of odds (LOD) score of 3.76 was UVBR12-1 on Chromosome 12, containing two genes encoding spectrin beta chain, brain (SPTBN, Glyma.12g088600) and bZIP transcription factor21/TGACG motif-binding 9 (bZIP TF21/TGA9, Glyma.12g088700). Their amino acid sequences did not differ between the mapping parents, but both genes were significantly upregulated by UV-B stress in Buseok but not in Cheongja 3. Among five genes in UVBR6-1 on Chromosome 6, Glyma.06g319700 (encoding a leucine-rich repeat family protein) had two nonsynonymous single nucleotide polymorphisms differentiating the parental lines. Our findings offer powerful genetic resources for efficient and precise breeding programs aimed at developing resistant soybean cultivars to multiple stresses. Furthermore, functional validation of the candidate genes will improve our understanding of UV-B stress defense mechanisms.
Collapse
Affiliation(s)
- Min Young Yoon
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Moon Young Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Jungmin Ha
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Taeyoung Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | | | - Suk-Ha Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
11
|
Michmizos D, Hilioti Z. A roadmap towards a functional paradigm for learning & memory in plants. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:209-215. [PMID: 30537608 DOI: 10.1016/j.jplph.2018.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/15/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
In plants, the acquisition, processing and storage of empirical information can result in the modification of their behavior according to the nature of the stimulus, and yet this area of research remained relatively understudied until recently. As the body of evidence supporting the inclusion of plants among the higher organisms demonstrating the adaptations to accomplish these tasks keeps increasing, the resistance by traditional botanists and agricultural scientists, who were at first cautious in allowing the application of animal models onto plant physiology and development, subsides. However, the debate retains much of its heat, a good part of it originating from the controversial use of nervous system terms to describe plant processes. By focusing on the latest findings on the cellular and molecular mechanisms underlying the well established processes of Learning and Memory, recognizing what has been accomplished and what remains to be explored, and without seeking to bootstrap neuronal characteristics where none are to be found, a roadmap guiding towards a comprehensive paradigm for Learning and Memory in plants begins to emerge. Meanwhile the applications of the new field of Plant Gnosophysiology look as promising as ever.
Collapse
Affiliation(s)
- Dimitrios Michmizos
- Dept. of Agriculture, Crop Production & Rural Environment, University of Thessaly, Fytokos st, Volos, Magnesia, 384 46, Greece.
| | - Zoe Hilioti
- Institute of Applied Biosciences, Center for Research & Technology (CERTH), Thessaloniki, Greece
| |
Collapse
|
12
|
Sengupta S, Mangu V, Sanchez L, Bedre R, Joshi R, Rajasekaran K, Baisakh N. An actin-depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2), is superior to its rice homolog (OsADF2) in conferring drought and salt tolerance when constitutively overexpressed in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:188-205. [PMID: 29851294 PMCID: PMC6330539 DOI: 10.1111/pbi.12957] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 05/20/2023]
Abstract
Actin-depolymerizing factors (ADFs) maintain the cellular actin network dynamics by regulating severing and disassembly of actin filaments in response to environmental cues. An ADF isolated from a monocot halophyte, Spartina alterniflora (SaADF2), imparted significantly higher level of drought and salinity tolerance when expressed in rice than its rice homologue OsADF2. SaADF2 differs from OsADF2 by a few amino acid residues, including a substitution in the regulatory phosphorylation site serine-6, which accounted for its weak interaction with OsCDPK6 (calcium-dependent protein kinase), thus resulting in an increased efficacy of SaADF2 and enhanced cellular actin dynamics. SaADF2 overexpression preserved the actin filament organization better in rice protoplasts under desiccation stress. The predicted tertiary structure of SaADF2 showed a longer F-loop than OsADF2 that could have contributed to higher actin-binding affinity and rapid F-actin depolymerization in vitro by SaADF2. Rice transgenics constitutively overexpressing SaADF2 (SaADF2-OE) showed better growth, relative water content, and photosynthetic and agronomic yield under drought conditions than wild-type (WT) and OsADF2 overexpressers (OsADF2-OE). SaADF2-OE preserved intact grana structure after prolonged drought stress, whereas WT and OsADF2-OE presented highly damaged and disorganized grana stacking. The possible role of ADF2 in transactivation was hypothesized from the comparative transcriptome analyses, which showed significant differential expression of stress-related genes including interacting partners of ADF2 in overexpressers. Identification of a complex, differential interactome decorating or regulating stress-modulated cytoskeleton driven by ADF isoforms will lead us to key pathways that could be potential target for genome engineering to improve abiotic stress tolerance in agricultural crops.
Collapse
Affiliation(s)
- Sonali Sengupta
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Venkata Mangu
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Luis Sanchez
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Escuela Superior Politécnica del LitoralCentro de Investigaciones Biotecnológicas del EcuadorGuayaquilEcuador
| | - Renesh Bedre
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Texas A&M AgriLife Research and Extension CenterWeslacoTXUSA
| | - Rohit Joshi
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | | | - Niranjan Baisakh
- School of PlantEnvironmental and Soil SciencesLouisiana State University Agricultural CenterBaton RougeLAUSA
| |
Collapse
|
13
|
Selection and validation of reference genes for quantitative gene expression analyses in black locust (Robinia pseudoacacia L.) using real-time quantitative PCR. PLoS One 2018. [PMID: 29529054 PMCID: PMC5846725 DOI: 10.1371/journal.pone.0193076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Black locust (Robinia pseudoacacia L.) is an easy to raise, fast growing, medium-sized deciduous tree species highly tolerant to harsh eco-conditions, i.e., drought and harsh winters, and it is widely adaptable to sandy, loamy, and marshy soils. The basis for this adaptability remains to be investigated at the transcriptomic level using real-time quantitative PCR (qPCR). Selection of a reliable gene for the normalization of qPCR data is important for obtaining accurate results in gene expression. The goal of this study was to identify an appropriate reference gene from 12 candidate genes for gene expression analysis in black locust exposed to various stressors such as abscisic acid (ABA), NaCl, polyethylene glycol (PEG) and varying temperatures. In GeNorm and NormFinder analyses, ACT (actin) and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) gene expression were the most stable in all conditions except heat stress, but in BestKeeper analysis, GAPDH and helicase gene expression were the most stable under NaCl and heat stress. In contrast, ACT and GAPDH were highest under abscisic acid (ABA), GAPDH and βTUB (beta tubulin) under cold stress, and helicase and EF1α (elongation factor 1 alpha) under PEG stress. We found that the most stable reference gene combination for all conditions was ACT and GAPDH. Additionally, the expression pattern of NAC2 (a transcription factor) and BGL2 in different tissues and under different stress conditions was analyzed relative to ACT and GAPDH and UBQ (ubiquitin) the least stably expressed gene. NAC2 and BGL2 both had highest expression in flowers and pods under ABA stress at 48h. This study provides useful reference genes for future gene expression studies in black locust.
Collapse
|
14
|
Plohovska SH, Krasylenko YA, Yemets AI. Nitric oxide modulates actin filament organization in
Arabidopsis thaliana
primary root cells at low temperatures. Cell Biol Int 2018; 43:1020-1030. [DOI: 10.1002/cbin.10931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Svitlana H. Plohovska
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineOsipovskogo St., 2aKyiv04123 Ukraine
| | - Yuliya A. Krasylenko
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineOsipovskogo St., 2aKyiv04123 Ukraine
| | - Alla I. Yemets
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineOsipovskogo St., 2aKyiv04123 Ukraine
| |
Collapse
|
15
|
The effect of CaCl 2 marination on the tenderizing pathway of goose meat during conditioning. Food Res Int 2017; 102:487-492. [PMID: 29195976 DOI: 10.1016/j.foodres.2017.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 11/22/2022]
Abstract
In order to figure out the effect of CaCl2 on the tenderizing pathway of goose meat, breast muscles of thirty-two Eastern Zhejiang White Geese were divided into three treatments: the control, 150 and 300mM CaCl2. Shear force, myofibrillar fraction index (MFI), actin filaments and F-actin, G-actin and tropomodulins (Tmods) levels were investigated during 168h. Results showed that 300mM treatment had lower shear force at 48, 96 and 168h and higher MFI at 24, 48, 96 and 168h than the control. The rate of actin filaments disruption, the decrease of F-actin, the degradation of Tmods, the increase of G-actin in 300mM treatment was faster than 150mM treatment; the rate in the control was the slowest among treatments. CaCl2 accelerated the transformation of F-actin into G-actin. We concluded that CaCl2 tenderized goose meat by depolymerizing actin filaments and cleaving Tmods.
Collapse
|
16
|
Kordyum EL, Shevchenko GV, Brykov VO. Cytoskeleton during aerenchyma formation in plants. Cell Biol Int 2017; 43:991-998. [DOI: 10.1002/cbin.10814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/28/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Elizabeth L. Kordyum
- M.G. Kholodny Institute of BotanyNational Academy of Sciences of UkraineKyiv Ukraine
| | - Galina V. Shevchenko
- M.G. Kholodny Institute of BotanyNational Academy of Sciences of UkraineKyiv Ukraine
| | - Vasyl O. Brykov
- M.G. Kholodny Institute of BotanyNational Academy of Sciences of UkraineKyiv Ukraine
| |
Collapse
|
17
|
Klubicová K, Uvácková L, Danchenko M, Nemecek P, Skultéty L, Salaj J, Salaj T. Insights into the early stage of Pinus nigra Arn. somatic embryogenesis using discovery proteomics. J Proteomics 2017; 169:99-111. [PMID: 28526530 DOI: 10.1016/j.jprot.2017.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/12/2017] [Accepted: 05/15/2017] [Indexed: 12/22/2022]
Abstract
The somatic embryogenesis in conifers represents a suitable model of plant regeneration system facilitating studies of fundamental aspects of an early development as well as in vitro micropropagation. The aim of our study was to deeper understand the somatic embryogenesis in the conifer tree Pinus nigra Arn. Comparative proteomic analysis based on 2D-PAGE in 1) proliferating embryogenic tissues (E) initiated from immature zygotic embryos, 2) non-embryogenic calli (NEC) initiated from cotyledons of somatic seedlings of the same genotypes, 3) embryogenic tissues that lost the maturation capacity (E-L) of two cell lines (E362, E366). Investigated pine tissues showed distinct structural features. The 24 protein spots were altered in both cell lines in comparison of embryogenic and non-embryogenic tissues. These proteins are involved in disease and defence mechanism, energy metabolism and biosynthesis of cell wall components. Two of three protein spots detected only in embryogenic form of both cell lines are similar to water deficit inducible protein LP3, the third remains uncharacterised. The loss of the maturation capacity was accompanied by changes in 35 and 38 protein spots in 362 and 366 cell lines, respectively. Only two of them were altered in both cell lines, suggesting non-uniform process of ageing. BIOLOGICAL SIGNIFICANCE Somatic embryogenesis in conifers represents an experimental system for the study of early plant development as well as a biotechnological tool for large-scale micropropagation. The obtained results give a new insight into the process of somatic embryogenesis of a conifer Pinus nigra Arn. by revealing differences at proteomic levels among in vitro cultured tissues characterised by different embryogenic potential. Microscopic investigations have also shown differences in the structural organisation of studied tissues.
Collapse
Affiliation(s)
- Katarína Klubicová
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07 Nitra, Slovakia.
| | - Lubica Uvácková
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07 Nitra, Slovakia; Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, 917 01 Trnava, Slovakia
| | - Maksym Danchenko
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Peter Nemecek
- Department of Chemistry, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, 917 01 Trnava, Slovakia
| | - Ludovít Skultéty
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Ján Salaj
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07 Nitra, Slovakia
| | - Terézia Salaj
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07 Nitra, Slovakia
| |
Collapse
|
18
|
Domżalska L, Kędracka-Krok S, Jankowska U, Grzyb M, Sobczak M, Rybczyński JJ, Mikuła A. Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:61-76. [PMID: 28330564 DOI: 10.1016/j.plantsci.2017.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/17/2017] [Accepted: 01/28/2017] [Indexed: 05/22/2023]
Abstract
Using cyto-morphological analysis of somatic embryogenesis (SE) in the tree fern Cyathea delgadii as a guide, we performed a comparative proteomic analysis in stipe explants undergoing direct SE. Plant material was cultured on hormone-free medium supplemented with 2% sucrose. Phenol extracted proteins were separated using two-dimensional gel electrophoresis (2-DE) and mass spectrometry was performed for protein identification. A total number of 114 differentially regulated proteins was identified during early SE, i.e. when the first cell divisions started and several-cell pro-embryos were formed. Proteins were assigned to seven functional categories: carbohydrate metabolism, protein metabolism, cell organization, defense and stress responses, amino acid metabolism, purine metabolism, and fatty acid metabolism. Carbohydrate and protein metabolism were found to be the most sensitive SE functions with the greatest number of alterations in the intensity of spots in gel. Differences, especially in non-enzymatic and structural protein abundance, are indicative for cell organization, including cytoskeleton rearrangement and changes in cell wall components. The highest induced changes concern those enzymes related to fatty acid metabolism. Global analysis of the proteome reveals several proteins that can represent markers for the first 16days of SE induction and expression in fern. The findings of this research improve the understanding of molecular processes involved in direct SE in C. delgadii.
Collapse
Affiliation(s)
- Lucyna Domżalska
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Urszula Jankowska
- Department of Structural Biology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Małgorzata Grzyb
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland
| | - Mirosław Sobczak
- Department of Botany, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Jan J Rybczyński
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland
| | - Anna Mikuła
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland.
| |
Collapse
|
19
|
Khatun K, Robin AHK, Park JI, Kim CK, Lim KB, Kim MB, Lee DJ, Nou IS, Chung MY. Genome-Wide Identification, Characterization and Expression Profiling of ADF Family Genes in Solanum lycopersicum L. Genes (Basel) 2016; 7:E79. [PMID: 27690110 PMCID: PMC5083918 DOI: 10.3390/genes7100079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/12/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022] Open
Abstract
The actin depolymerizing factor (ADF) proteins have growth, development, defense-related and growth regulatory functions in plants. The present study used genome-wide analysis to investigate ADF family genes in tomato. Eleven tomato ADF genes were identified and differential expression patterns were found in different organs. SlADF6 was preferentially expressed in roots, suggesting its function in root development. SlADF1, SlADF3 and SlADF10 were predominately expressed in the flowers compared to the other organs and specifically in the stamen compared to other flower parts, indicating their potential roles in pollen development. The comparatively higher expression of SlADF3 and SlADF11 at early fruit developmental stages might implicate them in determining final fruit size. SlADF5 and SlADF8 had relatively higher levels of expression five days after the breaker stage of fruit development, suggesting their possible role in fruit ripening. Notably, six genes were induced by cold and heat, seven by drought, five by NaCl, and four each by abscisic acid (ABA), jasmonic acid (JA) and wounding treatments. The differential expression patterns of the SlADF genes under different types of stresses suggested their function in stress tolerance in tomato plants. Our results will be helpful for the functional characterization of ADF genes during organ and fruit development of tomato under different stresses.
Collapse
Affiliation(s)
- Khadiza Khatun
- Department of Agricultural Industry Economy and Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
| | - Arif Hasan Khan Robin
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu 702-701, Korea.
| | - Ki-Byung Lim
- Department of Horticultural Science, Kyungpook National University, Daegu 702-701, Korea.
| | - Min-Bae Kim
- Department of Agricultural Industry Economy and Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
| | - Do-Jin Lee
- Department of Agricultural Industry Economy and Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
| | - Ill Sup Nou
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
| | - Mi-Young Chung
- Department of Agricultural Industry Economy and Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950, Korea.
| |
Collapse
|
20
|
Kamal AHM, Komatsu S. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions. Mol Biol Rep 2016; 43:73-89. [PMID: 26754663 DOI: 10.1007/s11033-015-3940-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/31/2015] [Indexed: 01/15/2023]
Abstract
To know the molecular systems basically flooding conditions in soybean, biophoton emission measurements and proteomic analyses were carried out for flooding-stressed roots under light and dark conditions. Photon emission was analyzed using a photon counter. Gel-free quantitative proteomics were performed to identify significant changes proteins using the nano LC-MS along with SIEVE software. Biophoton emissions were significantly increased in both light and dark conditions after flooding stress, but gradually decreased with continued flooding exposure compared to the control plants. Among the 120 significantly identified proteins in the roots of soybean plants, 73 and 19 proteins were decreased and increased in the light condition, respectively, and 4 and 24 proteins were increased and decreased, respectively, in the dark condition. The proteins were mainly functionally grouped into cell organization, protein degradation/synthesis, and glycolysis. The highly abundant lactate/malate dehydrogenase proteins were decreased in flooding-stressed roots exposed to light, whereas the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme was increased in both light and dark conditions. Notably, however, specific enzyme assays revealed that the activities of these enzymes and biophoton emission were sharply increased after 3 days of flooding stress. This finding suggests that the source of biophoton emission in roots might involve the chemical excitation of electron or proton through enzymatic or non-enzymatic oxidation and reduction reactions. Moreover, the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme may play important roles in responses in flooding stress of soybean under the light condition and as a contributing factor to biophoton emission.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba, 305-8518, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba, 305-8518, Japan.
| |
Collapse
|
21
|
Rasool KG, Khan MA, Aldawood AS, Tufail M, Mukhtar M, Takeda M. Identification of Proteins Modulated in the Date Palm Stem Infested with Red Palm Weevil (Rhynchophorus ferrugineus Oliv.) Using Two Dimensional Differential Gel Electrophoresis and Mass Spectrometry. Int J Mol Sci 2015; 16:19326-46. [PMID: 26287180 PMCID: PMC4581299 DOI: 10.3390/ijms160819326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022] Open
Abstract
A state of the art proteomic methodology using Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI TOF) has been employed to characterize peptides modulated in the date palm stem subsequent to infestation with red palm weevil (RPW). Our analyses revealed 32 differentially expressed peptides associated with RPW infestation in date palm stem. To identify RPW infestation associated peptides (I), artificially wounded plants (W) were used as additional control beside uninfested plants, a conventional control (C). A constant unique pattern of differential expression in infested (I), wounded (W) stem samples compared to control (C) was observed. The upregulated proteins showed relative fold intensity in order of I > W and downregulated spots trend as W > I, a quite interesting pattern. This study also reveals that artificially wounding of date palm stem affects almost the same proteins as infestation; however, relative intensity is quite lower than in infested samples both in up and downregulated spots. All 32 differentially expressed spots were subjected to MALDI-TOF analysis for their identification and we were able to match 21 proteins in the already existing databases. Relatively significant modulated expression pattern of a number of peptides in infested plants predicts the possibility of developing a quick and reliable molecular methodology for detecting plants infested with date palm.
Collapse
Affiliation(s)
- Khawaja Ghulam Rasool
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | - Muhammad Altaf Khan
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman Saad Aldawood
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Muhammad Tufail
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | - Muhammad Mukhtar
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah 10021, United Arab Emirates.
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
22
|
Abstract
Advances in microscopy techniques applied to living cells have dramatically transformed our view of the actin cytoskeleton as a framework for cellular processes. Conventional fluorescence imaging and static analyses are useful for quantifying cellular architecture and the network of filaments that support vesicle trafficking, organelle movement, and response to biotic stress. However, new imaging techniques have revealed remarkably dynamic features of individual actin filaments and the mechanisms that underpin their construction and turnover. In this review, we briefly summarize knowledge about actin and actin-binding proteins in plant systems. We focus on the quantitative properties of the turnover of individual actin filaments, highlight actin-binding proteins that participate in actin dynamics, and summarize the current genetic evidence that has been used to dissect specific aspects of the stochastic dynamics model. Finally, we describe some signaling pathways in which recent data implicate changes in actin filament dynamics and the associated cytoplasmic responses.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences and
| | | | | |
Collapse
|
23
|
Sudo K, Park JI, Sakazono S, Masuko-Suzuki H, Osaka M, Kawagishi M, Fujita K, Maruoka M, Nanjo H, Suzuki G, Suwabe K, Watanabe M. Demonstration in vivo of the role of Arabidopsis PLIM2 actin-binding proteins during pollination. Genes Genet Syst 2014; 88:279-87. [PMID: 24694391 DOI: 10.1266/ggs.88.279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In plant reproduction, pollination is the initial key process in bringing together the male and female gametophytes. When a pollen grain lands on the surface of the stigma, information is exchanged between the pollen and stigmatic cell to determine whether the pollen grain will be accepted or rejected. If it is accepted, the stigmatic papilla cell supplies water and other resources to the pollen for germination and pollen tube elongation. Cellular processes involving actin are essential for pollen germination and tube growth, and actin-binding proteins regulate these processes by interacting with actin filaments to assemble cytoskeletal structures and actin networks. LIM proteins, which belong to a subfamily of cysteine-rich proteins, are a family of actin-binding proteins in plants, and are considered to be important for formation of the actin cytoskeleton and maintenance of its dynamics. Although the physiological and biochemical characteristics of LIMs have been elucidated in vitro in a variety of cell types, their exact role in pollen germination and pollen tube growth during pollination remained unclear. In this manuscript, we focus on the pollen-specific LIM proteins, AtPLIM2a and AtPLIM2c, and define their biological function during pollination in Arabidopsis thaliana. The atplim2a/atplim2c double knockdown RNAi plants showed a reduced pollen germination, approximately one-fifth of wild type, and slower pollen tube growth in the pistil, that is 80.4 μm/hr compared to 140.8 μm/hr in wild type. These defects led to an occasional unfertilized ovule at the bottom of the silique in RNAi plants. Our data provide direct evidence of the biological function of LIM proteins during pollination as actin-binding proteins, modulating cytoskeletal structures and actin networks, and their consequent importance in seed production.
Collapse
Affiliation(s)
- Keisuke Sudo
- Laboratory of Plant Reproductive Genetics, Graduate School of Life Sciences, Tohoku University
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
van Bel AJE, Furch ACU, Will T, Buxa SV, Musetti R, Hafke JB. Spread the news: systemic dissemination and local impact of Ca²⁺ signals along the phloem pathway. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1761-87. [PMID: 24482370 DOI: 10.1093/jxb/ert425] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We explored the idea of whether electropotential waves (EPWs) primarily act as vehicles for systemic spread of Ca(2+) signals. EPW-associated Ca(2+) influx may trigger generation and amplification of countless long-distance signals along the phloem pathway given the fact that gating of Ca(2+)-permeable channels is a universal response to biotic and abiotic challenges. Despite fundamental differences, both action and variation potentials are associated with a sudden Ca(2+) influx. Both EPWs probably disperse in the lateral direction, which could be of essential functional significance. A vast set of Ca(2+)-permeable channels, some of which have been localized, is required for Ca(2+)-modulated events in sieve elements. There, Ca(2+)-permeable channels are clustered and create so-called Ca(2+) hotspots, which play a pivotal role in sieve element occlusion. Occlusion mechanisms play a central part in the interaction between plants and phytopathogens (e.g. aphids or phytoplasmas) and in transient re-organization of the vascular symplasm. It is argued that Ca(2+)-triggered systemic signalling occurs in partly overlapping waves. The forefront of EPWs may be accompanied by a burst of free Ca(2+) ions and Ca(2+)-binding proteins in the sieve tube sap, with a far-reaching impact on target cells. Lateral dispersion of EPWs may induce diverse Ca(2+) influx and handling patterns (Ca(2+) signatures) in various cell types lining the sieve tubes. As a result, a variety of cascades may trigger the fabrication of signals such as phytohormones, proteins, or RNA species released into the sap stream after product-related lag times. Moreover, transient reorganization of the vascular symplasm could modify cascades in disjunct vascular cells.
Collapse
Affiliation(s)
- Aart J E van Bel
- Institute of General Botany, Justus-Liebig University, Senckenbergstrasse 17, D-35390 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Pleskot R, Li J, Zárský V, Potocký M, Staiger CJ. Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. TRENDS IN PLANT SCIENCE 2013; 18:496-504. [PMID: 23664415 DOI: 10.1016/j.tplants.2013.04.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/02/2013] [Accepted: 04/08/2013] [Indexed: 05/20/2023]
Abstract
Plants respond to diverse biotic and abiotic stimuli as well as to endogenous developmental cues. Many of these stimuli result in altered activity of phospholipase D (PLD), an enzyme that hydrolyzes structural phospholipids producing phosphatidic acid (PA). PA is a key signaling intermediate in animals, but its targets in plants are relatively uncharacterized. Recent studies have demonstrated that the cytoskeleton is a major target of PLD-PA signaling and identified a positive feedback loop between actin turnover and PLD activity. Moreover, two cytoskeletal proteins, capping protein and MAP65-1, have been identified as PA-binding proteins regulating actin and microtubule organization and dynamics. In this review, we highlight the role of the PLD-PA module as an important hub for housekeeping and stress-induced regulation of membrane-associated cytoskeletal dynamics.
Collapse
Affiliation(s)
- Roman Pleskot
- Institute of Experimental Botany v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
26
|
Kurenda A, Pieczywek PM, Adamiak A, Zdunek A. Effect of Cytochalasin B, Lantrunculin B, Colchicine, Cycloheximid, Dimethyl Sulfoxide and Ion Channel Inhibitors on Biospeckle Activity in Apple Tissue. FOOD BIOPHYS 2013; 8:290-296. [PMID: 24273469 PMCID: PMC3825619 DOI: 10.1007/s11483-013-9302-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/03/2013] [Indexed: 11/25/2022]
Abstract
The biospeckle phenomenon is used for non-destructive monitoring the quality of fresh fruits and vegetables, but in the case of plant tissues there is a lack of experimentally confirmed information about the biological origin of the biospeckle activity (BA). As a main sources of BA, processes associated with the movement inside the cell, such as cytoplasmic streaming, organelle movement and intra- and extracellular transport mechanisms, are considered. The aim of this study is to investigate the effect of metabolism inhibitors, connected with intracellular movement such as cytochalasin B, lantrunculin B, colchicine, cycloheximid, dimethyl sulfoxide (DMSO) and mixture of ion channel inhibitors, injected into apples, on BA. Two methods of BA analysis based on cross-correlation coefficient and Laser Speckle Contrast Analysis (LASCA) were used. DMSO, lantrunculin B and mixture of ion channel inhibitors have a significant effect on BA, and approximately 74 % of BA of apple tissue is potentially caused by biological processes. Results indicate that the functioning of actin microfilaments and ion channels significantly affect BA.
Collapse
Affiliation(s)
- Andrzej Kurenda
- Department of Microstructure and Mechanics of Biomaterials, Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin 27, Poland
| | - Piotr M. Pieczywek
- Department of Microstructure and Mechanics of Biomaterials, Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin 27, Poland
| | - Anna Adamiak
- Department of Microstructure and Mechanics of Biomaterials, Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin 27, Poland
| | - Artur Zdunek
- Department of Microstructure and Mechanics of Biomaterials, Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin 27, Poland
| |
Collapse
|
27
|
Hafke JB, Ehlers K, Föller J, Höll SR, Becker S, van Bel AJE. Involvement of the sieve element cytoskeleton in electrical responses to cold shocks. PLANT PHYSIOLOGY 2013; 162:707-19. [PMID: 23624858 PMCID: PMC3668064 DOI: 10.1104/pp.113.216218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study dealt with the visualization of the sieve element (SE) cytoskeleton and its involvement in electrical responses to local cold shocks, exemplifying the role of the cytoskeleton in Ca(2+)-triggered signal cascades in SEs. High-affinity fluorescent phalloidin as well as immunocytochemistry using anti-actin antibodies demonstrated a fully developed parietal actin meshwork in SEs. The involvement of the cytoskeleton in electrical responses and forisome conformation changes as indicators of Ca(2+) influx was investigated by the application of cold shocks in the presence of diverse actin disruptors (latrunculin A and cytochalasin D). Under control conditions, cold shocks elicited a graded initial voltage transient, ΔV1, reduced by external La(3+) in keeping with the involvement of Ca(2+) channels, and a second voltage transient, ΔV2. Cytochalasin D had no effect on ΔV1, while ΔV1 was significantly reduced with 500 nm latrunculin A. Forisome dispersion was triggered by cold shocks of 4°C or greater, which was indicative of an all-or-none behavior. Forisome dispersion was suppressed by incubation with latrunculin A. In conclusion, the cytoskeleton controls cold shock-induced Ca(2+) influx into SEs, leading to forisome dispersion and sieve plate occlusion in fava bean (Vicia faba).
Collapse
Affiliation(s)
- Jens B Hafke
- Plant Cell Physiology Group, Institute of Plant Physiology, Justus-Liebig-University, D-35390 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Xu C, Liu Z, Zhang L, Zhao C, Yuan S, Zhang F. Organization of actin cytoskeleton during meiosis I in a wheat thermo-sensitive genic male sterile line. PROTOPLASMA 2013; 250:415-422. [PMID: 22350736 DOI: 10.1007/s00709-012-0386-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/30/2012] [Indexed: 05/31/2023]
Abstract
BS366 is a thermo-sensitive male sterile line of wheat (Triticum aestivum L.) for two-line hybrid breeding, which exhibits aberrant meiotic cytokinesis under low temperature. Through transcriptome analysis, a possible regulatory role for plant actin cytoskeleton was suggested. However, the organization of actin cytoskeleton in meiosis has been poorly understood so far. Here, fixed microsporocytes during meiosis were labeled with tetramethylrhodamine isothiocyanate-phalloidin and 4',6-diamidino-2-phenylindole. Quantities of fluorescent micrographs were captured using a confocal microscope, including the transient state from metaphase to telophase. We observed that actin filaments were abundant in typical kariokinetic spindle, central spindle (parallel microtubules or actin fibers between two separated chromosomes in anaphase), and phragmoplast. Interestingly, we identified the Chinese lantern-shaped actin phragmoplast in wheat meiosis for the first time. Under low temperature, phragmoplast actin filaments were chaotic and normal cell plate failed to form. These data provide new insights into the organization of actin filaments during male meiosis of plant and support a role of actin cytoskeleton in bringing about thermo-sensitive male sterility in wheat.
Collapse
Affiliation(s)
- Chenguang Xu
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | | | | | | | | | | |
Collapse
|
29
|
Calcium as a Trigger and Regulator of Systemic Alarms and Signals along the Phloem Pathway. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Huang YC, Huang WL, Hong CY, Lur HS, Chang MC. Comprehensive analysis of differentially expressed rice actin depolymerizing factor gene family and heterologous overexpression of OsADF3 confers Arabidopsis Thaliana drought tolerance. RICE (NEW YORK, N.Y.) 2012; 5:33. [PMID: 24279948 PMCID: PMC4883719 DOI: 10.1186/1939-8433-5-33] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 11/21/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Actin depolymerizing factors (ADFs) are small actin-binding proteins. Many higher-plant ADFs has been known to involve in plant growth, development and pathogen defense. However, in rice the temporal and spatial expression of OsADF gene family and their relationship with abiotic stresses tolerance is still unknown. RESULTS Here we reported the first comprehensive gene expression profile analysis of OsADF gene family. The OsADF genes showed distinct and overlapping gene expression patterns at different growth stages, tissues and abiotic stresses. We also demonstrated that both OsADF1 and OsADF3 proteins were localized in the nucleus. OsADF1 and OsADF3 were preferentially expressed in vascular tissues. Under ABA or abiotic stress treatments, OsADF3::GUS activity was enhanced in lateral roots and root tips. Ectopically overexpressed OsADF3 conferred the mannitol- and drought-stress tolerance of transgenic Arabidopsis seedlings by increasing germination rate, primary root length and survival. Several drought-tolerance responsive genes (RD22, ABF4, DREB2A, RD29A, PIP1; 4 and PIP2; 6) were upregulated in transgenic Arabidopsis under drought stress. CONCLUSIONS These results suggested that OsADF gene family may participate in plant abiotic stresses response or tolerance and would facilitate functional validation of other OsADF genes.
Collapse
Affiliation(s)
- Ya-Chen Huang
- />Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106 Taiwan Republic of China
| | - Wen-Lii Huang
- />Department of Agronomy, National Chiayi University, No.300 Syuefu Rd., Chiayi, 60004 Taiwan Republic of China
| | - Chwan-Yang Hong
- />Department of Agriculture Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106 Taiwan Republic of China
| | - Hur-Shen Lur
- />Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106 Taiwan Republic of China
| | - Men-Chi Chang
- />Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106 Taiwan Republic of China
| |
Collapse
|
31
|
Li J, Sun J, Yang Y, Guo S, Glick BR. Identification of hypoxic-responsive proteins in cucumber roots using a proteomic approach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 51:74-80. [PMID: 22153242 DOI: 10.1016/j.plaphy.2011.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/18/2011] [Indexed: 05/04/2023]
Abstract
To elaborate the mechanisms of response of cucumber (Cucumis sativus L. cv.) seedlings to hypoxic stress, plants were grown under either normoxic conditions or hypoxic stress. As expected, plant biomass was significantly reduced under hypoxic stress. Proteomic profiles of cucumber roots were studied at 72 h after treatment; 316 and 425 protein spots were detected on polyacrylamide gels from normoxic and hypoxic-treated plants, respectively. Compared with normoxic-treated plants, protein abundance of 22 proteins was significantly upregulated while protein abundance of 12 proteins decreased in the hypoxic-treated plants. Twenty one of the proteins whose abundance was altered were identified by MALDI-TOF/TOF MS analysis, and categorized into classes corresponding to energy and metabolism proteins, transcription factor proteins, defense stress proteins, structural proteins and regulatory proteins. Under hypoxic stress, glycolysis was induced; energy was channeled to primary metabolism, while secondary pathways and nitrogen metabolism pathways were inhibited. Cucumber plants scavenged reactive oxygen species by antioxidase, and increased Acyl-[acyl-carrier-protein] desaturase which defend against reactive oxygen species damage to plant cell structure. This study provides insight that may facilitate a better understanding of the response mechanisms of cucumber plant to hypoxic stress.
Collapse
Affiliation(s)
- Jing Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
32
|
Wongchai C, Chaidee A, Pfeiffer W. Multivariate analyses of salt stress and metabolite sensing in auto- and heterotroph Chenopodium cell suspensions. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:129-141. [PMID: 21974771 DOI: 10.1111/j.1438-8677.2011.00487.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Global warming increases plant salt stress via evaporation after irrigation, but how plant cells sense salt stress remains unknown. Here, we searched for correlation-based targets of salt stress sensing in Chenopodium rubrum cell suspension cultures. We proposed a linkage between the sensing of salt stress and the sensing of distinct metabolites. Consequently, we analysed various extracellular pH signals in autotroph and heterotroph cell suspensions. Our search included signals after 52 treatments: salt and osmotic stress, ion channel inhibitors (amiloride, quinidine), salt-sensing modulators (proline), amino acids, carboxylic acids and regulators (salicylic acid, 2,4-dichlorphenoxyacetic acid). Multivariate analyses revealed hirarchical clusters of signals and five principal components of extracellular proton flux. The principal component correlated with salt stress was an antagonism of γ-aminobutyric and salicylic acid, confirming involvement of acid-sensing ion channels (ASICs) in salt stress sensing. Proline, short non-substituted mono-carboxylic acids (C2-C6), lactic acid and amiloride characterised the four uncorrelated principal components of proton flux. The proline-associated principal component included an antagonism of 2,4-dichlorphenoxyacetic acid and a set of amino acids (hydrophobic, polar, acidic, basic). The five principal components captured 100% of variance of extracellular proton flux. Thus, a bias-free, functional high-throughput screening was established to extract new clusters of response elements and potential signalling pathways, and to serve as a core for quantitative meta-analysis in plant biology. The eigenvectors reorient research, associating proline with development instead of salt stress, and the proof of existence of multiple components of proton flux can help to resolve controversy about the acid growth theory.
Collapse
Affiliation(s)
- C Wongchai
- Fachbereich Zellbiologie, Abteilung Pflanzenphysiologie, Universität Salzburg, Salzburg, Austria
| | | | | |
Collapse
|
33
|
Abstract
"All things flow and change…even in the stillest matter there is unseen flux and movement." Attributed to Heraclitus (530-470 BC), from The Story of Philosophy by Will Durant. Heraclitus, a Greek philosopher, was thinking on a much larger scale than molecular signaling; however, his visionary comments are an important reminder for those studying signaling today. Even in unstimulated cells, signaling pathways are in constant metabolic flux and provide basal signals that travel throughout the organism. In addition, negatively charged phospholipids, such as the polyphosphorylated inositol phospholipids, provide a circuit board of on/off switches for attracting or repelling proteins that define the membranes of the cell. This template of charged phospholipids is sensitive to discrete changes and metabolic fluxes-e.g., in pH and cations-which contribute to the oscillating signals in the cell. The inherent complexities of a constantly fluctuating system make understanding how plants integrate and process signals challenging. In this review we discuss one aspect of lipid signaling: the inositol family of negatively charged phospholipids and their functions as molecular sensors and regulators of metabolic flux in plants.
Collapse
Affiliation(s)
- Wendy F Boss
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695-7649, USA.
| | | |
Collapse
|
34
|
Yemets AI, Krasylenko YA, Lytvyn DI, Sheremet YA, Blume YB. Nitric oxide signalling via cytoskeleton in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:545-54. [PMID: 21893251 DOI: 10.1016/j.plantsci.2011.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/25/2011] [Accepted: 04/27/2011] [Indexed: 05/19/2023]
Abstract
Nitric oxide (NO) in plant cell mediates processes of growth and development starting from seed germination to pollination, as well as biotic and abiotic stress tolerance. However, proper understanding of the molecular mechanisms of NO signalling in plants has just begun to emerge. Accumulated evidence suggests that in eukaryotic cells NO regulates functions of proteins by their post-translational modifications, namely tyrosine nitration and S-nitrosylation. Among the candidates for NO-downstream effectors are cytoskeletal proteins because of their involvement in many processes regulated by NO. This review discusses new insights in plant NO signalling focused mainly on the involvement of cytoskeleton components into NO-cascades. Herein, examples of NO-related post-translational modifications of cytoskeletal proteins, and also indirect NO impact, are discussed. Special attention is paid to plant α-tubulin tyrosine nitration as an emerging topic in plant NO research.
Collapse
Affiliation(s)
- Alla I Yemets
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osipovskogo Str., 2a, Kyiv 04123, Ukraine.
| | | | | | | | | |
Collapse
|
35
|
Tang Z, Zhang L, Yang D, Zhao C, Zheng Y. Cold stress contributes to aberrant cytokinesis during male meiosis I in a wheat thermosensitive genic male sterile line. PLANT, CELL & ENVIRONMENT 2011; 34:389-405. [PMID: 21062315 DOI: 10.1111/j.1365-3040.2010.02250.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The male sterility of a wheat thermosensitive genic male sterile (TGMS) line is strictly controlled by temperature. When the TGMS line BS366 was exposed to 10 °C from the pollen mother cell stage to the meiosis stage, a few pollen grains were formed and devoid of starch. We report here a large-scale transcriptomic study using the Affymetrix wheat GeneChip to follow gene expression in BS366 line anthers in response to cold stress. Notably, many cytoskeletal signaling components were gradually induced in response to cold stress in BS366 line anthers. However, the cytoskeleton-associated genes that play key roles in the dynamic organization of the cytoskeleton were dramatically repressed. Histological studies revealed that the separation of dyads occurred abnormally during male meiosis I, indicating defective male meiotic cytokinesis. Fluorescence labelling and subcellular histological observations revealed that the phragmoplast was defectively formed and the cell plate was abnormally assembled during meiosis I under cold stress. Based on the transcriptomic analysis and observations of characterized histological changes, our results suggest that cold stress repressed transcription of cytoskeleton dynamic factors and subsequently caused the defective cytokinesis during meiosis I. The results may explain the male sterility caused by low temperature in wheat TGMS lines.
Collapse
Affiliation(s)
- Zonghui Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
36
|
Papuga J, Hoffmann C, Dieterle M, Moes D, Moreau F, Tholl S, Steinmetz A, Thomas C. Arabidopsis LIM proteins: a family of actin bundlers with distinct expression patterns and modes of regulation. THE PLANT CELL 2010; 22:3034-52. [PMID: 20817848 PMCID: PMC2965535 DOI: 10.1105/tpc.110.075960] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/04/2010] [Accepted: 08/19/2010] [Indexed: 05/18/2023]
Abstract
Recently, a number of two LIM-domain containing proteins (LIMs) have been reported to trigger the formation of actin bundles, a major higher-order cytoskeletal assembly. Here, we analyzed the six Arabidopsis thaliana LIM proteins. Promoter-β-glucuronidase reporter studies revealed that WLIM1, WLIM2a, and WLIM2b are widely expressed, whereas PLIM2a, PLIM2b, and PLIM2c are predominantly expressed in pollen. LIM-green fluorescent protein (GFP) fusions all decorated the actin cytoskeleton and increased actin bundle thickness in transgenic plants and in vitro, although with different affinities and efficiencies. Remarkably, the activities of WLIMs were calcium and pH independent, whereas those of PLIMs were inhibited by high pH and, in the case of PLIM2c, by high [Ca(2+)]. Domain analysis showed that the C-terminal domain is key for the responsiveness of PLIM2c to pH and calcium. Regulation of LIM by pH was further analyzed in vivo by tracking GFP-WLIM1 and GFP-PLIM2c during intracellular pH modifications. Cytoplasmic alkalinization specifically promoted release of GFP-PLIM2c but not GFP-WLIM1, from filamentous actin. Consistent with these data, GFP-PLIM2c decorated long actin bundles in the pollen tube shank, a region of relatively low pH. Together, our data support a prominent role of Arabidopsis LIM proteins in the regulation of actin cytoskeleton organization and dynamics in sporophytic tissues and pollen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Clément Thomas
- Centre de Recherche Public-Santé, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
37
|
Pleskot R, Potocký M, Pejchar P, Linek J, Bezvoda R, Martinec J, Valentová O, Novotná Z, Zárský V. Mutual regulation of plant phospholipase D and the actin cytoskeleton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:494-507. [PMID: 20149133 DOI: 10.1111/j.1365-313x.2010.04168.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Membrane lipids and cytoskeleton dynamics are intimately inter-connected in the eukaryotic cell; however, only recently have the molecular mechanisms operating at this interface in plant cells been addressed experimentally. Phospholipase D (PLD) and its product phosphatidic acid (PA) were discovered to be important regulators in the membrane-cytoskeleton interface in eukaryotes. Here we report the mechanistic details of plant PLD-actin interactions. Inhibition of PLD by n-butanol compromises pollen tube actin, and PA rescues the detrimental effect of n-butanol on F-actin, showing clearly the importance of the PLD-PA interaction for pollen tube F-actin dynamics. From various candidate tobacco PLDs isoforms, we identified NtPLDbeta1 as a regulatory partner of actin, by both activity and in vitro interaction assays. Similarly to published data, the activity of tobacco PIP(2)-dependent PLD (PLDbeta) is specifically enhanced by F-actin and inhibited by G-actin. We then identified the NtPLDbeta1 domain responsible for actin interactions. Using sequence- and structure-based analysis, together with site-directed mutagenesis, we identified Asn323 and Thr382 of NtPLDbeta1 as the crucial amino acids in the actin-interacting fold. The effect of antisense-mediated suppression of NtPLDbeta1 or NtPLDdelta on pollen tube F-actin dynamics shows that NtPLDbeta1 is the active partner in PLD-actin interplay. The positive feedback loop created by activation of PLDbeta by F-actin and of F-actin by PA provides an important mechanism to locally increase membrane-F-actin dynamics in the cortex of plant cells.
Collapse
Affiliation(s)
- Roman Pleskot
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 263, 165 02 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang C, Zhang L, Yuan M, Ge Y, Liu Y, Fan J, Ruan Y, Cui Z, Tong S, Zhang S. The microfilament cytoskeleton plays a vital role in salt and osmotic stress tolerance in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:70-8. [PMID: 20653889 DOI: 10.1111/j.1438-8677.2009.00201.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although recent studies have suggested that the microfilament (MF) cytoskeleton of plant cells participates in the response to salt stress, it remains unclear as to whether the MF cytoskeleton actually plays an active role in a plant's ability to withstand salt stress. In the present study, we report for the first time the role of MFs in salt tolerance of Arabidopsis thaliana. Our experiments revealed that Arabidopsis seedlings treated with 150 mm NaCl maintained MF assembly and bundle formation, whereas treatment with 250 mm NaCl initially induced MF assembly but subsequently caused MF disassembly. A corresponding change in the fluorescence intensity of MFs was also observed; that is, a sustained rise in fluorescence intensity in seedlings exposed to 150 mm NaCl and an initial rise and subsequent fall in seedlings exposed to 250 mm NaCl. These results suggest that MF assembly and bundles are induced early after salt stress treatment, while MF polymerization disappears after high salt stress. Facilitation of MF assembly with phalloidin rescued wild-type seedlings from death, whereas blocking MFs assembly with latrunculin A and cytochalasin D resulted in few survivors under salt stress. Pre-treatment of seedlings with phalloidin also clearly increased plant ability to withstand salt stress. MF assembly increased survival of Arabidopsis salt-sensitive sos2 mutants under salt stress and rescued defective sos2 mutants. Polymerization of MFs and its role in promoting survival was also found in plants exposed to osmotic stress. These findings suggest that the MF cytoskeleton participates and plays a vital role in responses to salt and osmotic stress in Arabidopsis.
Collapse
Affiliation(s)
- C Wang
- Biological Science and Technology College, Shenyang Agricultural University, Shenyang, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Anielska-Mazur A, Bernaś T, Gabryś H. In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP. Correlation with light-activated chloroplast responses. BMC PLANT BIOLOGY 2009; 9:64. [PMID: 19480655 PMCID: PMC2702303 DOI: 10.1186/1471-2229-9-64] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/29/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND The actin cytoskeleton is involved in the responses of plants to environmental signals. Actin bundles play the role of tracks in chloroplast movements activated by light. Chloroplasts redistribute in response to blue light in the mesophyll cells of Nicotiana tabacum. The aim of this work was to study the relationship between chloroplast responses and the organization of actin cytoskeleton in living tobacco cells. Chloroplast movements were measured photometrically as changes in light transmission through the leaves. The actin cytoskeleton, labeled with plastin-GFP, was visualised by confocal microscopy. RESULTS The actin cytoskeleton was affected by strong blue and red light. No blue light specific actin reorganization was detected. EGTA and trifluoperazine strongly inhibited chloroplast responses and disrupted the integrity of the cytoskeleton. This disruption was reversible by Ca(2+) or Mg(2+). Additionally, the effect of trifluoperazine was reversible by light. Wortmannin, an inhibitor of phosphoinositide kinases, potently inhibited chloroplast responses but did not influence the actin cytoskeleton at the same concentration. Also this inhibition was reversed by Ca(2+) and Mg(2+). Magnesium ions were equally or more effective than Ca(2+) in restoring chloroplast motility after treatment with EGTA, trifluoperazine or wortmannin. CONCLUSION The architecture of the actin cytoskeleton in the mesophyll of tobacco is significantly modulated by strong light. This modulation does not affect the direction of chloroplast redistribution in the cell. Calcium ions have multiple functions in the mechanism of the movements. Our results suggest also that Mg(2+) is a regulatory molecule cooperating with Ca(2+) in the signaling pathway of blue light-induced tobacco chloroplast movements.
Collapse
Affiliation(s)
- Anna Anielska-Mazur
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Tytus Bernaś
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, Silesian University, Jagiellońska 26/28, 40-032 Katowice, Poland
| | - Halina Gabryś
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
40
|
Shi FM, Yao LL, Pei BL, Zhou Q, Li XL, Li Y, Li YZ. Cortical microtubule as a sensor and target of nitric oxide signal during the defence responses to Verticillium dahliae toxins in Arabidopsis. PLANT, CELL & ENVIRONMENT 2009; 32:428-438. [PMID: 19183295 DOI: 10.1111/j.1365-3040.2009.01939.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The molecular mechanisms of signal transduction of plants in response to Verticillium dahliae (VD) are not known. Here, we show that Arabidopsis reacts to VD-toxins with a rapid burst of nitric oxide (NO) and cortical microtubule destabilization. VD-toxins treatment triggered a disruption of cortical microtubules network. This disruption can be influenced by NO production. However, cortical microtubule disruptions were not involved in regulating the NO production. The results indicated that NO may act as an upstream signalling molecule to trigger the depolymerization of cortical microtubule. Cortical microtubules may act as a target of NO signal and as a sensor to mediate the activation of PR-1 gene expression. These results suggested that NO production and cortical microtubule dynamics appeared to be parts of the important signalling system and are involved in the defence mechanisms to VD-toxins in Arabidopsis.
Collapse
Affiliation(s)
- Fu-Mei Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Faulkner CR, Blackman LM, Collings DA, Cordwell SJ, Overall RL. Anti-tropomyosin antibodies co-localise with actin microfilaments and label plasmodesmata. Eur J Cell Biol 2009; 88:357-69. [PMID: 19328591 DOI: 10.1016/j.ejcb.2009.02.184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 01/28/2009] [Accepted: 02/02/2009] [Indexed: 01/14/2023] Open
Abstract
The actin cytoskeleton and associated actin-binding proteins form a complex network involved in a number of fundamental cellular processes including intracellular trafficking. In plants, both actin and myosin have been localised to plasmodesmata, and thus it is likely that other actin-binding proteins are also associated with plasmodesmata structure or function. A 75-kDa protein, enriched in plasmodesmata-rich cell wall extracts from the green alga Chara corallina, was sequenced and found to contain three peptides with similarity to the animal actin-binding protein tropomyosin. Western blot analysis with anti-tropomyosin antibodies confirmed the identity of this 75-kDa protein as a tropomyosin-like protein and further identified an additional 55-kDa protein, while immunofluorescence microscopy localised the antibodies to plasmodesmata and to the subcortical actin bundles and associated structures. The anti-tropomyosin antibodies detected a single protein at 42.5 kDa in Arabidopsis thaliana extracts and two proteins at 58.5 and 54 kDa in leek extracts, and these localised to plasmodesmata and the cell plate in A. thaliana and to plasmodesmata in leek tissue. Tropomyosin is an actin-binding protein thought to be involved in a range of functions associated with the actin cytoskeleton, including the regulation of myosin binding to actin filaments, but to date no tropomyosin-like proteins have been conclusively identified in plant genomes. Our data suggests that a tropomyosin-like protein is associated with plasmodesmata.
Collapse
Affiliation(s)
- Christine R Faulkner
- School of Biological Sciences, Macleay Building A12, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
42
|
Sinclair A, Schenkel M, Mathur J. Signaling to the Actin Cytoskeleton During Cell Morphogenesis and Patterning. SIGNALING IN PLANTS 2009. [DOI: 10.1007/978-3-540-89228-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Chaidee A, Foissner I, Pfeiffer W. Cell-specific association of heat shock-induced proton flux with actin ring formation in Chenopodium cells: comparison of auto- and heterotroph cultures. PROTOPLASMA 2008; 234:33-50. [PMID: 18807117 DOI: 10.1007/s00709-008-0013-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 08/11/2008] [Indexed: 05/03/2023]
Abstract
A comparison of the responses of extracellular pH, buffering capacity and actin cytoskeleton in autotroph and heterotroph Chenopodium rubrum cells to heat shock revealed cell-specific reactions: alkalinization caused by the heat shock at 25-35 degrees C was higher in heterotroph cells and characterized by heat shock-induced changes in the actin cytoskeleton and ring formation at 35-37 degrees C. Rings (diameter up to 3 mum) disappeared and extracellular pH recovered after the heat-shocked cells were transferred into control medium. At 41 degrees C, no rings but a network of coarse actin filaments were induced; at higher temperatures, fragmentation of the actin cytoskeleton and release of buffering compounds occurred, indicating sudden membrane leakage at 45-47 degrees C. The calcium chelator EGTA [ethylene-glycol-bis(beta-aminoethyl-ether)-N,N,N',N'-tetraacetic-acid] increased the frequency of heat shock-induced rings. Ionophore (10 microM nigericin) and the sodium/proton antiport blocker [100 microM 5-(N-ethyl-N-isopropyl)-amiloride] mimicked the effect of the 37 degrees C heat shock. The cytoskeleton inhibitors latrunculin B, cytochalasin D and 2,3-butanedione monoxime inhibited ring formation but not alkalinization. In autotroph cells, the treatment with nigericin (10 microM) produced rings, although the actin cytoskeleton was not affected by temperatures up to 45 degrees C. We conclude that Chenopodium cells express a specific temperature sensor that has ascendancy over the organization of the actin cytoskeleton; this is probably a temperature- and potential-sensitive proton-transporting mechanism that is dependent on the culture conditions of the heterotroph cells.
Collapse
Affiliation(s)
- Anchalee Chaidee
- Department of Botany, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|
44
|
Gao XQ, Chen J, Wei PC, Ren F, Chen J, Wang XC. Array and distribution of actin filaments in guard cells contribute to the determination of stomatal aperture. PLANT CELL REPORTS 2008; 27:1655-65. [PMID: 18612643 DOI: 10.1007/s00299-008-0581-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/16/2008] [Accepted: 06/20/2008] [Indexed: 05/20/2023]
Abstract
Actin filaments in guard cells and their dynamics function in regulating stomatal movement. In this study, the array and distribution of actin filaments in guard cells during stomatal movement were studied with two vital labeling, microinjection of alexa-phalloidin in Vicia faba and expression of GFP-mTn in tobacco. We found that the random array of actin filaments in the most of the closed stomata changed to a ring-like array after stomatal open. And actin filaments, which were throughout the cytoplasm of guard cells of closed stomata (even distribution), were mainly found in the cortical cytoplasm in the case of open stomata (cortical distribution). These results revealed that the random array and even distribution of actin filaments in guard cells may be required for keeping the closed stomata; similarly, the ring-like array and cortical distribution of actin filaments function in sustaining open stomata. Furthermore, we found that actin depolymerization, the trait of moving stomata, facilitates the transformation of actin array and distribution with stomatal movement. So, the depolymerization of actin filaments was favorable for the changes of actin array and distribution in guard cells and thus facilitated stomatal movement.
Collapse
Affiliation(s)
- Xin-Qi Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University 100094, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Choi Y, Lee Y, Jeon BW, Staiger CJ, Lee Y. Phosphatidylinositol 3- and 4-phosphate modulate actin filament reorganization in guard cells of day flower. PLANT, CELL & ENVIRONMENT 2008; 31:366-77. [PMID: 18088331 DOI: 10.1111/j.1365-3040.2007.01769.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Phosphatidylinositol 3-kinases (PtdIns 3-kinases) that produce phosphatidylinositol (3,4,5) triphosphate (PtdIns(3,4,5)P(3)) are considered to be important regulators of actin dynamics in animal cells. In plants, neither PtdIns(3,4,5)P(3) nor the enzyme that produces this lipid has been reported. However, a PtdIns 3-kinase that produces phosphatidylinositol 3-phosphate (PtdIns3P) has been identified, suggesting that PtdIns3P, instead of PtdIns(3,4,5)P(3), regulates actin dynamics in plant cells. Phosphatidylinositol 4-kinase (PtdIns 4-kinase) is closely associated with the actin cytoskeleton in plant cells, suggesting a role for this lipid kinase and its product phosphatidylinositol 4-phosphate (PtdIns4P) in actin-related processes. Here, we investigated whether or not PtdIns3P or PtdIns4P plays a role in actin reorganization induced by a plant hormone abscisic acid (ABA) in guard cells of day flower (Commelina communis). ABA-induced changes in actin filaments were inhibited by LY294002 (LY) and wortmannin (WM), inhibitors of PtdIns3P and PtdIns4P synthesis. Expression of PtdIns3P- and PtdIns4P-binding domains also inhibited ABA-induced actin reorganization in a manner similar to LY and WM. These results suggest that PtdIns3P and PtdIns4P regulate actin dynamics in guard cells. Furthermore, we demonstrate that PtdIns3P exerts its effect on actin dynamics, at least in part, via generation of reactive oxygen species (ROS) in response to ABA.
Collapse
Affiliation(s)
- Yunjung Choi
- Division of Molecular and Life Sciences, POSTECH, Pohang 790-784, Korea
| | | | | | | | | |
Collapse
|
46
|
Suri SS, Dhindsa RS. A heat-activated MAP kinase (HAMK) as a mediator of heat shock response in tobacco cells. PLANT, CELL & ENVIRONMENT 2008; 31:218-26. [PMID: 17996015 DOI: 10.1111/j.1365-3040.2007.01754.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A heat-activated MAP kinase (HAMK), immunologically related to the extracellular signal-regulated kinase (ERK) super-family of protein kinases, has been identified in BY2 cells of tobacco. The activation of HAMK at 37 degrees C was transient and detected within 2 min and reached a maximum level within 5 min. Ca(2+) chelators and channel blockers, and the known inhibitors of MEK, a MAP kinase kinase, prevented the heat activation of HAMK. This suggests that HAMK activation is part of a heat-triggered MAP kinase cascade that requires Ca(2+) influx. The heat shock protein HSP70 accumulated at 37 degrees C, but not when HAMK activation was prevented with the inhibitors of MEK or with Ca(2+) chelators or channel blockers. As previously shown for heat activation of HAMK, heat-induced accumulation of HSP70 requires membrane fluidization and reorganization of cytoskeleton. We concluded that heat-triggered HAMK cascade might play an essential role in the launching of heat shock response and hsp gene expression in tobacco cells.
Collapse
Affiliation(s)
- Sarabjeet S Suri
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
47
|
Chavarría-Krauser A, Nagel KA, Palme K, Schurr U, Walter A, Scharr H. Spatio-temporal quantification of differential growth processes in root growth zones based on a novel combination of image sequence processing and refined concepts describing curvature production. THE NEW PHYTOLOGIST 2008; 177:811-821. [PMID: 18069960 DOI: 10.1111/j.1469-8137.2007.02299.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Differential growth processes in root and shoot growth zones are governed by the transport kinetics of auxin and other plant hormones. While gene expression and protein localization of hormone transport facilitators are currently being unraveled using state-of-the-art techniques of live cell imaging, the quantitative analysis of growth reactions is lagging behind because of a lack of suitable methods. A noninvasive technique, based on digital image sequence processing, for visualizing and quantifying highly resolved spatio-temporal root growth processes was applied in the model plant Arabidopsis thaliana and was adapted to provide precise information on differential curvature production activity within the root growth zone. Comparison of root gravitropic curvature kinetics in wild-type and mutant plants altered in a facilitator for auxin translocation allowed the determination of differences in the location and in the temporal response of curvature along the growth zone between the investigated plant lines. The findings of the quantitative growth analysis performed here confirm the proposed action of the investigated transport facilitator. The procedure developed here for the investigation of differential growth processes is a valuable tool for characterizing the phenomenology of a wide range of shoot and root growth movements and hence facilitates elucidation of their molecular characterization.
Collapse
Affiliation(s)
- Andrés Chavarría-Krauser
- ICG-3 (Phytosphäre), Forschungszentrum Jülich, D-52425 Jülich, Germany
- Institut für Angewandte Mathematik, Universität Heidelberg, INF 294, D-69120 Heidelberg, Germany
- Gravitationsbiologie, Institut fur Molekulare Physiologie und Biotechnologie der Pflanzen, Universitat Bonn, D-53115 Bonn, Germany
| | - Kerstin A Nagel
- ICG-3 (Phytosphäre), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Klaus Palme
- Institut für Biologie II, Universität Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany
| | - Ulrich Schurr
- ICG-3 (Phytosphäre), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Achim Walter
- ICG-3 (Phytosphäre), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Hanno Scharr
- ICG-3 (Phytosphäre), Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
48
|
Mortimer JC, Laohavisit A, Macpherson N, Webb A, Brownlee C, Battey NH, Davies JM. Annexins: multifunctional components of growth and adaptation. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:533-44. [PMID: 18267940 DOI: 10.1093/jxb/erm344] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant annexins are ubiquitous, soluble proteins capable of Ca(2+)-dependent and Ca(2+)-independent binding to endomembranes and the plasma membrane. Some members of this multigene family are capable of binding to F-actin, hydrolysing ATP and GTP, acting as peroxidases or cation channels. These multifunctional proteins are distributed throughout the plant and throughout the life cycle. Their expression and intracellular localization are under developmental and environmental control. The in vitro properties of annexins and their known, dynamic distribution patterns suggest that they could be central regulators or effectors of plant growth and stress signalling. Potentially, they could operate in signalling pathways involving cytosolic free calcium and reactive oxygen species.
Collapse
Affiliation(s)
- Jennifer C Mortimer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Balasubramanian R, Karve A, Kandasamy M, Meagher RB, Moore BD. A role for F-actin in hexokinase-mediated glucose signaling. PLANT PHYSIOLOGY 2007; 145:1423-34. [PMID: 17965176 PMCID: PMC2151701 DOI: 10.1104/pp.107.108704] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 10/22/2007] [Indexed: 05/17/2023]
Abstract
HEXOKINASE1 (HXK1) from Arabidopsis (Arabidopsis thaliana) has dual roles in glucose (Glc) signaling and in Glc phosphorylation. The cellular context, though, for HXK1 function in either process is not well understood. Here we have shown that within normal experimental detection limits, AtHXK1 is localized continuously to mitochondria. Two mitochondrial porin proteins were identified as capable of binding to overexpressed HXK1 protein, both in vivo and in vitro. We also found that AtHXK1 can be associated with its structural homolog, F-actin, based on their coimmunoprecipitation from transgenic plants that overexpress HXK1-FLAG or from transient expression assays, and based on their localization in leaf cells after cryofixation. This association might be functionally important because Glc signaling in protoplast transient expression assays is compromised by disruption of F-actin. We also demonstrate that Glc treatment of Arabidopsis seedlings rapidly and reversibly disrupts fine mesh actin filaments. The possible roles of actin in HXK-dependent Glc signaling are discussed.
Collapse
|
50
|
Merret R, Cirioni JR, Bach TJ, Hemmerlin A. A serine involved in actin-dependent subcellular localization of a stress-induced tobacco BY-2 hydroxymethylglutaryl-CoA reductase isoform. FEBS Lett 2007; 581:5295-99. [PMID: 18028913 DOI: 10.1016/j.febslet.2007.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/25/2007] [Accepted: 10/12/2007] [Indexed: 10/22/2022]
Abstract
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) is unique in the first part of the cytoplasmic isoprenoid pathway, as it contains a membrane domain that includes ER-specific retention motifs. When fused to GFP, this domain targets two tobacco BY-2 HMGR isoforms differentially. While the first isoform is ER-localized, a second stress-induced one forms globular structures connected by tubular structures. A serine positioned upstream of the ER retention motif seems to be implicated in this specific subcellular localization. Surprisingly, these structures are closely connected to F-actin, and their intactness is dependent upon the integrity of the filaments or the action of a calmodulin antagonist.
Collapse
Affiliation(s)
- Rémy Merret
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, Université Louis Pasteur, Département Isoprénoïdes, 28 Rue Goethe, F-67083 Strasbourg, France
| | | | | | | |
Collapse
|