1
|
Lazar A, Griffiths RI, Goodall T, Norton LR, Mushinski RM, Bending GD. Regional scale diversity and distribution of soil inhabiting Tetracladium. ENVIRONMENTAL MICROBIOME 2024; 19:111. [PMID: 39696703 DOI: 10.1186/s40793-024-00646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/17/2024] [Indexed: 12/20/2024]
Abstract
The genus Tetracladium has historically been regarded as an aquatic hyphomycete. However, sequencing of terrestrial ecosystems has shown that Tetracladium species might also be terrestrial soil and plant-inhabiting fungi. The diversity of Tetracladium species, their distribution across ecosystems, and the factors that shape community composition remain largely unknown. Using internal transcribed spacer (ITS) amplicon sequencing, we investigated the spatial distribution of Tetracladium in 970 soil samples representing the major ecosystems found across the British landscape. Species of the genus were found in 57% of the samples and across all vegetation types. The Tetracladium sequences we recovered included species common in aquatic ecosystems. However, we found five additional clades that clustered with environmental sequences previously found in terrestrial environments. The community composition of the Tetracladium OTUs was mainly related to vegetation type and soil pH. Strikingly, both taxon richness and overall abundance were highest in arable soils and showed positive relationships with soil pH. T. maxilliforme and a taxon of environmental sequences, Tetracladium group 1, was the biggest group, had the most relative abundance across ecosystems and was found in all vegetation types. Overall, this study provides insights into the community composition patterns of Tetracladium in terrestrial ecosystems and highlights the importance of vegetation characteristics in shaping Tetracladium communities.
Collapse
Affiliation(s)
- Anna Lazar
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Robert I Griffiths
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Tim Goodall
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Lisa R Norton
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Ryan M Mushinski
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Gary D Bending
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
2
|
Delaux PM, Gutjahr C. Evolution of small molecule-mediated regulation of arbuscular mycorrhiza symbiosis. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230369. [PMID: 39343030 PMCID: PMC11439497 DOI: 10.1098/rstb.2023.0369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 10/01/2024] Open
Abstract
The arbuscular mycorrhizal (AM) symbiosis formed by most extant land plants with symbiotic fungi evolved 450 Ma. AM promotes plant growth by improving mineral nutrient and water uptake, while the symbiotic fungi obtain carbon in return. A number of plant genes regulating the steps leading to an efficient symbiosis have been identified; however, our understanding of the metabolic processes involved in the symbiosis and how they were wired to symbiosis regulation during plant evolution remains limited. Among them, the exchange of chemical signals, the activation of dedicated biosynthesis pathways and the production of secondary metabolites regulating late stages of the AM symbiosis begin to be well described across several land plant clades. Here, we review our current understanding of these processes and propose future directions to fully grasp the phylogenetic distribution and role played by small molecules during this ancient plant symbiosis. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, 31326 Castanet-Tolosan, France
| | - Caroline Gutjahr
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam-Golm14476, Germany
| |
Collapse
|
3
|
Lazar A, Phillips RP, Kivlin S, Bending GD, Mushinski RM. Understanding the ecological versatility of Tetracladium species in temperate forest soils. Environ Microbiol 2024; 26:e70001. [PMID: 39496275 DOI: 10.1111/1462-2920.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024]
Abstract
Although Tetracladium species have traditionally been studied as aquatic saprotrophs, the growing number of metagenomic and metabarcoding reports detecting them in soil environments raises important questions about their ecological adaptability and versatility. We investigated the factors associated with the relative abundance, diversity and ecological dynamics of Tetracladium in temperate forest soils. Through amplicon sequencing of soil samples collected from 54 stands in six forest sites across the eastern United States, we identified 29 distinct Amplicon Sequence Variants (ASVs) representing Tetracladium, with large differences in relative abundance and small changes in ASV community composition among sites. Tetracladium richness was positively related to soil pH, soil temperature, total sulphur and silt content, and negatively related to plant litter quality, such as the lignin-to-nitrogen ratio and the lignocellulose index. Co-occurrence network analysis indicated negative relationships between Tetracladium and other abundant fungal groups, including ectomycorrhizal and arbuscular mycorrhizal fungi. Collectively, our findings highlight the ecological significance of Tetracladium in temperate forest soils and emphasize the importance of site-specific factors and microbial interactions in shaping their distribution patterns and ecological dynamics.
Collapse
Affiliation(s)
- Anna Lazar
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Stephanie Kivlin
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|
4
|
Yotsui I, Matsui H, Miyauchi S, Iwakawa H, Melkonian K, Schlüter T, Michavila S, Kanazawa T, Nomura Y, Stolze SC, Jeon HW, Yan Y, Harzen A, Sugano SS, Shirakawa M, Nishihama R, Ichihashi Y, Ibanez SG, Shirasu K, Ueda T, Kohchi T, Nakagami H. LysM-mediated signaling in Marchantia polymorpha highlights the conservation of pattern-triggered immunity in land plants. Curr Biol 2023; 33:3732-3746.e8. [PMID: 37619565 DOI: 10.1016/j.cub.2023.07.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Pattern-recognition receptor (PRR)-triggered immunity (PTI) wards off a wide range of pathogenic microbes, playing a pivotal role in angiosperms. The model liverwort Marchantia polymorpha triggers defense-related gene expression upon sensing components of bacterial and fungal extracts, suggesting the existence of PTI in this plant model. However, the molecular components of the putative PTI in M. polymorpha and the significance of PTI in bryophytes have not yet been described. We here show that M. polymorpha has four lysin motif (LysM)-domain-containing receptor homologs, two of which, LysM-receptor-like kinase (LYK) MpLYK1 and LYK-related (LYR) MpLYR, are responsible for sensing chitin and peptidoglycan fragments, triggering a series of characteristic immune responses. Comprehensive phosphoproteomic analysis of M. polymorpha in response to chitin treatment identified regulatory proteins that potentially shape LysM-mediated PTI. The identified proteins included homologs of well-described PTI components in angiosperms as well as proteins whose roles in PTI are not yet determined, including the blue-light receptor phototropin MpPHOT. We revealed that MpPHOT is required for negative feedback of defense-related gene expression during PTI. Taken together, this study outlines the basic framework of LysM-mediated PTI in M. polymorpha and highlights conserved elements and new aspects of pattern-triggered immunity in land plants.
Collapse
Affiliation(s)
- Izumi Yotsui
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan; Department of BioScience, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Hidenori Matsui
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan; Graduate School of Environmental and Life Sciences, Okayama University, Okayama 700-8530, Japan
| | - Shingo Miyauchi
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; Okinawa Institute of Science and Technology Graduate University, Onna 904-0495, Okinawa, Japan
| | - Hidekazu Iwakawa
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan
| | | | - Titus Schlüter
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Santiago Michavila
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan; Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan
| | | | - Hyung-Woo Jeon
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Yijia Yan
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Anne Harzen
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Shigeo S Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan
| | - Makoto Shirakawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Nara, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan; RIKEN BioResource Research Center, Tsukuba 305-0074, Ibaraki, Japan
| | - Selena Gimenez Ibanez
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan; Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| |
Collapse
|
5
|
Lazar A, Mushinski RM, Bending GD. Landscape scale ecology of Tetracladium spp. fungal root endophytes. ENVIRONMENTAL MICROBIOME 2022; 17:40. [PMID: 35879740 PMCID: PMC9310467 DOI: 10.1186/s40793-022-00431-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The genus Tetracladium De Wild. (Ascomycota) has been traditionally regarded as a group of Ingoldian fungi or aquatic hyphomycetes-a polyphyletic group of phylogenetically diverse fungi which grow on decaying leaves and plant litter in streams. Recent sequencing evidence has shown that Tetracladium spp. may also exist as root endophytes in terrestrial environments, and furthermore may have beneficial effects on the health and growth of their host. However, the diversity of Tetracladium spp. communities in terrestrial systems and the factors which shape their distribution are largely unknown. RESULTS Using a fungal community internal transcribed spacer amplicon dataset from 37 UK Brassica napus fields we found that soils contained diverse Tetracladium spp., most of which represent previously uncharacterised clades. The two most abundant operational taxonomic units (OTUs), related to previously described aquatic T. furcatum and T. maxilliforme, were enriched in roots relative to bulk and rhizosphere soil. For both taxa, relative abundance in roots, but not rhizosphere or bulk soil was correlated with B. napus yield. The relative abundance of T. furcatum and T. maxilliforme OTUs across compartments showed very similar responses with respect to agricultural management practices and soil characteristics. The factors shaping the relative abundance of OTUs homologous to T. furcatum and T. maxilliforme OTUs in roots were assessed using linear regression and structural equation modelling. Relative abundance of T. maxilliforme and T. furcatum in roots increased with pH, concentrations of phosphorus, and increased rotation frequency of oilseed rape. It decreased with increased soil water content, concentrations of extractable phosphorus, chromium, and iron. CONCLUSIONS The genus Tetracladium as a root colonising endophyte is a diverse and widely distributed part of the oilseed rape microbiome that positively correlates to crop yield. The main drivers of its community composition are crop management practices and soil nutrients.
Collapse
Affiliation(s)
- Anna Lazar
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Ryan M Mushinski
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Gary D Bending
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
6
|
Iwakawa H, Melkonian K, Schlüter T, Jeon HW, Nishihama R, Motose H, Nakagami H. Agrobacterium-Mediated Transient Transformation of Marchantia Liverworts. PLANT & CELL PHYSIOLOGY 2021; 62:1718-1727. [PMID: 34383076 DOI: 10.1093/pcp/pcab126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Agrobacterium-mediated transient gene expression is a rapid and useful approach for characterizing functions of gene products in planta. However, the practicability of the method in the model liverwort Marchantia polymorpha has not yet been thoroughly described. Here we report a simple and robust method for Agrobacterium-mediated transient transformation of Marchantia thalli and its applicability. When thalli of M. polymorpha were co-cultured with Agrobacterium tumefaciens carrying β-glucuronidase (GUS) genes, GUS staining was observed primarily in assimilatory filaments and rhizoids. GUS activity was detected 2 days after infection and saturated 3 days after infection. We were able to transiently co-express fluorescently tagged proteins with proper localizations. Furthermore, we demonstrate that our method can be used as a novel pathosystem to study liverwort-bacteria interactions. We also provide evidence that air chambers support bacterial colonization.
Collapse
Affiliation(s)
- Hidekazu Iwakawa
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Katharina Melkonian
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Titus Schlüter
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Hyung-Woo Jeon
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroyasu Motose
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| |
Collapse
|
7
|
Poveda J. Marchantia polymorpha subsp. ruderalis (Bischl. & Boissel.-Dub.)-arbuscular mycorrhizal fungi interaction: beneficial or harmful? Symbiosis 2020. [DOI: 10.1007/s13199-020-00708-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Sandoz FA, Bindschedler S, Dauphin B, Farinelli L, Grant JR, Hervé V. Biotic and abiotic factors shape arbuscular mycorrhizal fungal communities associated with the roots of the widespread fern Botrychium lunaria (Ophioglossaceae). ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:342-354. [PMID: 32216046 DOI: 10.1111/1758-2229.12840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) play central roles in terrestrial ecosystems by interacting with both above and belowground communities as well as by influencing edaphic properties. The AMF communities associated with the roots of the fern Botrychium lunaria (Ophioglossaceae) were sampled in four transects at 2400 m a.s.l. in the Swiss Alps and analyzed using metabarcoding. Members of five Glomeromycota genera were identified across the 71 samples. Our analyses revealed the existence of a core microbiome composed of four abundant Glomus operational taxonomic units (OTUs), as well as a low OTU turnover between samples. The AMF communities were not spatially structured, which contrasts with most studies on AMF associated with angiosperms. pH, microbial connectivity and humus cover significantly shaped AMF beta diversity but only explained a minor fraction of variation in beta diversity. AMF OTUs associations were found to be significant by both cohesion and co-occurrence analyses, suggesting a role for fungus-fungus interactions in AMF community assembly. In particular, OTU co-occurrences were more frequent between different genera than among the same genus, rising the hypothesis of functional complementarity among the AMF associated to B. lunaria. Altogether, our results provide new insights into the ecology of fern symbionts in alpine grasslands.
Collapse
Affiliation(s)
- Frédéric Alexandre Sandoz
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Conservatoire et Jardin botaniques de la Ville de Genève, Chambésy-Genève, Switzerland
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Benjamin Dauphin
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Jason R Grant
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
9
|
Matsui H, Iwakawa H, Hyon GS, Yotsui I, Katou S, Monte I, Nishihama R, Franzen R, Solano R, Nakagami H. Isolation of Natural Fungal Pathogens from Marchantia polymorpha Reveals Antagonism between Salicylic Acid and Jasmonate during Liverwort-Fungus Interactions. PLANT & CELL PHYSIOLOGY 2020; 61:265-275. [PMID: 31560390 DOI: 10.1093/pcp/pcz187] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/15/2019] [Indexed: 05/16/2023]
Abstract
The evolution of adaptive interactions with beneficial, neutral and detrimental microbes was one of the key features enabling plant terrestrialization. Extensive studies have revealed conserved and unique molecular mechanisms underlying plant-microbe interactions across different plant species; however, most insights gleaned to date have been limited to seed plants. The liverwort Marchantia polymorpha, a descendant of early diverging land plants, is gaining in popularity as an advantageous model system to understand land plant evolution. However, studying evolutionary molecular plant-microbe interactions in this model is hampered by the small number of pathogens known to infect M. polymorpha. Here, we describe four pathogenic fungal strains, Irpex lacteus Marchantia-infectious (MI)1, Phaeophlebiopsis peniophoroides MI2, Bjerkandera adusta MI3 and B. adusta MI4, isolated from diseased M. polymorpha. We demonstrate that salicylic acid (SA) treatment of M. polymorpha promotes infection of the I. lacteus MI1 that is likely to adopt a necrotrophic lifestyle, while this effect is suppressed by co-treatment with the bioactive jasmonate in M. polymorpha, dinor-cis-12-oxo-phytodienoic acid (dn-OPDA), suggesting that antagonistic interactions between SA and oxylipin pathways during plant-fungus interactions are ancient and were established already in liverworts.
Collapse
Affiliation(s)
- Hidenori Matsui
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
| | - Hidekazu Iwakawa
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Gang-Su Hyon
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
| | - Izumi Yotsui
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
| | - Shinpei Katou
- Faculty of Agriculture, Shinshu University, Minamiminowa 8304, Nagano, 399-4598 Japan
| | - Isabel Monte
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Rainer Franzen
- Central Microscopy, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
10
|
Chaudhary S, Gupta P, Srivastava S, Adholeya A. Understanding dynamics of Rhizophagus irregularis ontogenesis in axenically developed coculture through basic and advanced microscopic techniques. J Basic Microbiol 2019; 59:767-774. [PMID: 31074496 DOI: 10.1002/jobm.201900138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/21/2022]
Abstract
Detailed information on structural changes that occur during ontogenesis of Rhizophagus irregularis in axenically developed coculture is limited. Our study aims to investigate the series of events that occur during mycorrhizal ontogenesis under axenic condition through basic and advanced microscopic techniques followed by comparison among these to identify the suitable technique for rapid and detailed analysis of mycorrhizal structures. Three stages were identified in mycorrhizal ontogenesis from initiation (preinfection stage of hyphae; its branching, infection and appressoria formation; epidermal opening; and hyphal entry), progression (arbuscular development; hyphal coils and vesicles) to maturity (extraradical spores). Scanning electron microscopy was found to be an efficient tool for studying spatial three-dimensional progression. Adding to the advantages of advanced microscopy, potential of autofluorescence to explore the stages of symbiosis nondestructively was also established. We also report imaging of ultrathin sections by bright field microscopy to provide finer details at subcellular interface. Owing to the merits of nondestructive sampling, ease of sample preparation, autofluorescence (no dye required), no use of toxic chemicals, rapid analysis and in depth characterization confocal laser scanning microscopy was identified as the most preferred technique. The method thus developed can be used for detailed structural inquisition of mycorrhizal symbiosis both in in planta and in an in vitro system.
Collapse
Affiliation(s)
- Shikha Chaudhary
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute (TERI), Gwal Pahari, Gurugram, Haryana, India
| | - Priyanka Gupta
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute (TERI), Gwal Pahari, Gurugram, Haryana, India
| | - Shivani Srivastava
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute (TERI), Gwal Pahari, Gurugram, Haryana, India
| | - Alok Adholeya
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute (TERI), Gwal Pahari, Gurugram, Haryana, India
| |
Collapse
|
11
|
Koivusaari P, Tejesvi MV, Tolkkinen M, Markkola A, Mykrä H, Pirttilä AM. Fungi Originating From Tree Leaves Contribute to Fungal Diversity of Litter in Streams. Front Microbiol 2019; 10:651. [PMID: 31001228 PMCID: PMC6454979 DOI: 10.3389/fmicb.2019.00651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/14/2019] [Indexed: 01/03/2023] Open
Abstract
Biomass production and decomposition are key processes in ecology, where plants are primarily responsible for production and microbes act in decomposition. Trees harbor foliar microfungi living on and inside leaf tissues, epiphytes, and endophytes, respectively. Early researchers hypothesized that all fungal endophytes are parasites or latent saprophytes, which slowly colonize the leaf tissues for decomposition. While this has been proven for some strains in the terrestrial environment, it is not known whether foliar microfungi from terrestrial origin can survive or perform decomposition in the aquatic environment. On the other hand, aquatic hyphomycetes, fungi which decompose organic material in stream environments, have been suggested to have a plant-associated life phase. Our aim was to study how much the fungal communities of leaves and litter submerged in streams overlap. Ergosterol content on litter, which is an estimator of fungal biomass, was 5-14 times higher in submerged litter than in senescent leaves, indicating active fungal colonization. Leaves generally harbored a different microbiome prior to than after submergence in streams. The Chao1 richness was significantly higher (93.7 vs. 60.7, p = 0.004) and there were more observed operational taxonomic units (OTUs) (78.3 vs. 47.4, p = 0.004) in senescent leaves than in stream-immersed litter. There were more Leotiomycetes (9%, p = 0.014) in the litter. We identified a group of 35 fungi (65%) with both plant- and water-associated lifestyles. Of these, eight taxa had no previous references to water, such as lichenicolous fungi. Six OTUs were classified within Glomeromycota, known as obligate root symbionts with no previous records from leaves. Five members of Basidiomycota, which are rare in aquatic environments, were identified in the stream-immersed litter only. Overall, our study demonstrates that foliar microfungi contribute to fungal diversity in submerged litter.
Collapse
Affiliation(s)
| | - Mysore V Tejesvi
- Ecology and Genetics, University of Oulu, Oulu, Finland.,Chain Antimicrobials Oy, Oulu, Finland
| | | | | | - Heikki Mykrä
- Freshwater Centre, Finnish Environment Institute, Oulu, Finland
| | | |
Collapse
|
12
|
Bi K, Chen T, He Z, Gao Z, Zhao Y, Fu Y, Cheng J, Xie J, Jiang D. Proto-oncogenes in a eukaryotic unicellular organism play essential roles in plasmodial growth in host cells. BMC Genomics 2018; 19:881. [PMID: 30522435 PMCID: PMC6282348 DOI: 10.1186/s12864-018-5307-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The eukaryotic unicellular protist Plasmodiophora brassicae is an endocellular parasite of cruciferous plants. In host cortical cells, this protist develops a unicellular structure that is termed the plasmodium. The plasmodium is actually a multinucleated cell, which subsequently splits and forms resting spores. The mechanism for the growth of this endocellular parasite in host cell is unclear. RESULTS Here, combining de novo genome sequence and transcriptome analysis of strain ZJ-1, we identified top five significant enriched KEGG pathways of differentially expressed genes (DEGs), namely translation, cell growth and death, cell communication, cell motility and cancers. We detected 171 proto-oncogenes from the genome of P. brassicae that were implicated in cancer-related pathways, of which 46 were differential expression genes. Three predicted proto-oncogenes (Pb-Raf1, Pb-Raf2, and Pb-MYB), which showed homology to the human proto-oncogenes Raf and MYB, were specifically activated during the plasmodial growth in host cortical cells, demonstrating their involvement in the multinucleate development stage of the unicellular protist organism. Gene networks involved in the tumorigenic-related signaling transduction pathways and the activation of 12 core genes were identified. Inhibition of phosphoinositol-3-kinase relieved the clubroot symptom and significantly suppressed the development process of plasmodia. CONCLUSIONS Proto-oncogene-related regulatory mechanisms play an important role in the plasmodial growth of P. brassicae.
Collapse
Affiliation(s)
- Kai Bi
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Tao Chen
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Zhangchao He
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Zhixiao Gao
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Yanping Fu
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jiasen Cheng
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jiatao Xie
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
13
|
Korotkin HB, Swenie RA, Miettinen O, Budke JM, Chen KH, Lutzoni F, Smith ME, Matheny PB. Stable isotope analyses reveal previously unknown trophic mode diversity in the Hymenochaetales. AMERICAN JOURNAL OF BOTANY 2018; 105:1869-1887. [PMID: 30368779 DOI: 10.1002/ajb2.1183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY The Hymenochaetales are dominated by lignicolous saprotrophic fungi involved in wood decay. However, the group also includes bryophilous and terricolous taxa, but their modes of nutrition are not clear. Here, we investigate patterns of carbon and nitrogen utilization in numerous non-lignicolous Hymenochaetales and provide a phylogenetic context in which these non-canonical ecological guilds arose. METHODS We combined stable isotope analyses of δ13 C and δ15 N and phylogenetic analyses to explore assignment and evolution of nutritional modes. Clustering procedures and statistical tests were performed to assign trophic modes to Hymenochaetales and test for differences between varying ecologies. Genomes of Hymenochaetales were mined for presence of enzymes involved in plant cell wall and lignin degradation and sucrolytic activity. KEY RESULTS Three different trophic clusters were detected - biotrophic, saprotrophic, and a second biotrophic cluster including many bryophilous Hymenochaetales and mosses. Non-lignicolous Hymenochaetales are generally biotrophic. All lignicolous Hymenochaetales clustered as saprotrophic and most terricolous Hymenochaetales clustered as ectomycorrhizal. Overall, at least 15 species of Hymenochaetales are inferred as biotrophic. Bryophilous species of Rickenella can degrade plant cell walls and lignin, and cleave sucrose to glucose consistent with a parasitic or endophytic life style. CONCLUSIONS Most non-lignicolous Hymenochaetales are biotrophic. Stable isotope values of many bryophilous Hymenochaetales cluster as ectomycorrhizal or in a biotrophic cluster indicative of parasitism or an endophytic life style. Overall, trophic mode diversity in the Hymenochaetales is greater than anticipated, and non-lignicolous ecological traits and biotrophic modes of nutrition are evolutionarily derived features.
Collapse
Affiliation(s)
- Hailee B Korotkin
- Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, Tennessee, 37996, USA
| | - Rachel A Swenie
- Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, Tennessee, 37996, USA
| | - Otto Miettinen
- Botanical Museum, Finnish Museum of Natural History, University of Helsinki, PO Box 7, FI-00014, Finland
| | - Jessica M Budke
- Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, Tennessee, 37996, USA
| | - Ko-Hsuan Chen
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708, USA
| | - François Lutzoni
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708, USA
| | - Matthew E Smith
- Institute of Food and Agricultural Sciences, Plant Pathology, University of Florida, 2550 Hull Road, Gainesville, Florida, 32611, USA
| | - P Brandon Matheny
- Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
14
|
Rimington WR, Pressel S, Duckett JG, Field KJ, Read DJ, Bidartondo MI. Ancient plants with ancient fungi: liverworts associate with early-diverging arbuscular mycorrhizal fungi. Proc Biol Sci 2018; 285:20181600. [PMID: 30305437 PMCID: PMC6191707 DOI: 10.1098/rspb.2018.1600] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/21/2018] [Indexed: 01/12/2023] Open
Abstract
Arbuscular mycorrhizas are widespread in land plants including liverworts, some of the closest living relatives of the first plants to colonize land 500 million years ago (MYA). Previous investigations reported near-exclusive colonization of liverworts by the most recently evolved arbuscular mycorrhizal fungi, the Glomeraceae, indicating a recent acquisition from flowering plants at odds with the widely held notion that arbuscular mycorrhizal-like associations in liverworts represent the ancestral symbiotic condition in land plants. We performed an analysis of symbiotic fungi in 674 globally collected liverworts using molecular phylogenetics and electron microscopy. Here, we show every order of arbuscular mycorrhizal fungi colonizes early-diverging liverworts, with non-Glomeraceae being at least 10 times more common than in flowering plants. Arbuscular mycorrhizal fungi in liverworts and other ancient plant lineages (hornworts, lycopods, and ferns) were delimited into 58 taxa and 36 singletons, of which at least 43 are novel and specific to liverworts. The discovery that early plant lineages are colonized by early-diverging fungi supports the hypothesis that arbuscular mycorrhizas are an ancestral symbiosis for all land plants.
Collapse
Affiliation(s)
- William R Rimington
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Life Sciences Department, Algae, Fungi and Plants Division, Natural History Museum, London SW7 5BD, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
| | - Silvia Pressel
- Life Sciences Department, Algae, Fungi and Plants Division, Natural History Museum, London SW7 5BD, UK
| | - Jeffrey G Duckett
- Life Sciences Department, Algae, Fungi and Plants Division, Natural History Museum, London SW7 5BD, UK
| | - Katie J Field
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David J Read
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Martin I Bidartondo
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
| |
Collapse
|
15
|
Podmore C, Hogg ID, Drayton GM, Barratt BIP, Scott IAW, Foottit RG, Teulon DAJ, Bulman SR. Study of COI sequences from endemic New Zealand aphids highlights high mitochondrial DNA diversity in Rhopalosiphina (Hemiptera: Aphididae). NEW ZEALAND JOURNAL OF ZOOLOGY 2018. [DOI: 10.1080/03014223.2018.1510843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Colleen Podmore
- Analytica Laboratories, Ruakura Research Centre, Hamilton, New Zealand
- Environmental Research Institute, School of Science, University of Waikato, New Zealand
| | - Ian D. Hogg
- Environmental Research Institute, School of Science, University of Waikato, New Zealand
- Polar Knowledge Canada, Canadian High Arctic Research Station, Cambridge Bay, Nunavut, Canada
| | | | - Barbara I. P. Barratt
- AgResearch Invermay Agricultural Centre, Mosgiel, New Zealand
- Better Border Biosecurity (B3), Lincoln, New Zealand
| | - Ian A. W. Scott
- New Zealand Institute for Plant & Food Research Ltd, Christchurch, New Zealand
| | - Robert G. Foottit
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre and Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, Canada
| | - David A. J. Teulon
- New Zealand Institute for Plant & Food Research Ltd, Christchurch, New Zealand
- Better Border Biosecurity (B3), Lincoln, New Zealand
| | - Simon R. Bulman
- New Zealand Institute for Plant & Food Research Ltd, Christchurch, New Zealand
- Better Border Biosecurity (B3), Lincoln, New Zealand
| |
Collapse
|
16
|
Alcaraz LD, Peimbert M, Barajas HR, Dorantes-Acosta AE, Bowman JL, Arteaga-Vázquez MA. Marchantia liverworts as a proxy to plants' basal microbiomes. Sci Rep 2018; 8:12712. [PMID: 30140076 DOI: 10.1101/103861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/13/2018] [Indexed: 05/26/2023] Open
Abstract
Microbiomes influence plant establishment, development, nutrient acquisition, pathogen defense, and health. Plant microbiomes are shaped by interactions between the microbes and a selection process of host plants that distinguishes between pathogens, commensals, symbionts and transient bacteria. In this work, we explore the microbiomes through massive sequencing of the 16S rRNA genes of microbiomes two Marchantia species of liverworts. We compared microbiomes from M. polymorpha and M. paleacea plants collected in the wild relative to their soils substrates and from plants grown in vitro that were established from gemmae obtained from the same populations of wild plants. Our experimental setup allowed identification of microbes found in both native and in vitro Marchantia species. The main OTUs (97% identity) in Marchantia microbiomes were assigned to the following genera: Methylobacterium, Rhizobium, Paenibacillus, Lysobacter, Pirellula, Steroidobacter, and Bryobacter. The assigned genera correspond to bacteria capable of plant-growth promotion, complex exudate degradation, nitrogen fixation, methylotrophs, and disease-suppressive bacteria, all hosted in the relatively simple anatomy of the plant. Based on their long evolutionary history Marchantia is a promising model to study not only long-term relationships between plants and their microbes but also the transgenerational contribution of microbiomes to plant development and their response to environmental changes.
Collapse
Affiliation(s)
- Luis D Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, 04510, Coyoacán, Mexico City, Mexico.
| | - Mariana Peimbert
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, 05348, Mexico City, Mexico
| | - Hugo R Barajas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, 04510, Coyoacán, Mexico City, Mexico
| | - Ana E Dorantes-Acosta
- University of Veracruz, Institute for Biotechnology and Applied Ecology (INBIOTECA), Avenida de las Culturas Veracruzanas 101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, Mexico
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Mario A Arteaga-Vázquez
- University of Veracruz, Institute for Biotechnology and Applied Ecology (INBIOTECA), Avenida de las Culturas Veracruzanas 101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, Mexico.
| |
Collapse
|
17
|
Alcaraz LD, Peimbert M, Barajas HR, Dorantes-Acosta AE, Bowman JL, Arteaga-Vázquez MA. Marchantia liverworts as a proxy to plants' basal microbiomes. Sci Rep 2018; 8:12712. [PMID: 30140076 PMCID: PMC6107579 DOI: 10.1038/s41598-018-31168-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/13/2018] [Indexed: 02/01/2023] Open
Abstract
Microbiomes influence plant establishment, development, nutrient acquisition, pathogen defense, and health. Plant microbiomes are shaped by interactions between the microbes and a selection process of host plants that distinguishes between pathogens, commensals, symbionts and transient bacteria. In this work, we explore the microbiomes through massive sequencing of the 16S rRNA genes of microbiomes two Marchantia species of liverworts. We compared microbiomes from M. polymorpha and M. paleacea plants collected in the wild relative to their soils substrates and from plants grown in vitro that were established from gemmae obtained from the same populations of wild plants. Our experimental setup allowed identification of microbes found in both native and in vitro Marchantia species. The main OTUs (97% identity) in Marchantia microbiomes were assigned to the following genera: Methylobacterium, Rhizobium, Paenibacillus, Lysobacter, Pirellula, Steroidobacter, and Bryobacter. The assigned genera correspond to bacteria capable of plant-growth promotion, complex exudate degradation, nitrogen fixation, methylotrophs, and disease-suppressive bacteria, all hosted in the relatively simple anatomy of the plant. Based on their long evolutionary history Marchantia is a promising model to study not only long-term relationships between plants and their microbes but also the transgenerational contribution of microbiomes to plant development and their response to environmental changes.
Collapse
Affiliation(s)
- Luis D Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, 04510, Coyoacán, Mexico City, Mexico.
| | - Mariana Peimbert
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, 05348, Mexico City, Mexico
| | - Hugo R Barajas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, 04510, Coyoacán, Mexico City, Mexico
| | - Ana E Dorantes-Acosta
- University of Veracruz, Institute for Biotechnology and Applied Ecology (INBIOTECA), Avenida de las Culturas Veracruzanas 101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, Mexico
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Mario A Arteaga-Vázquez
- University of Veracruz, Institute for Biotechnology and Applied Ecology (INBIOTECA), Avenida de las Culturas Veracruzanas 101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, Mexico.
| |
Collapse
|
18
|
Nelson JM, Hauser DA, Hinson R, Shaw AJ. A novel experimental system using the liverwort Marchantia polymorpha and its fungal endophytes reveals diverse and context-dependent effects. THE NEW PHYTOLOGIST 2018; 218:1217-1232. [PMID: 29411387 DOI: 10.1111/nph.15012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/21/2017] [Indexed: 06/08/2023]
Abstract
Fungal symbioses are ubiquitous in plants, but their effects have mostly been studied in seed plants. This study aimed to assess the diversity of fungal endophyte effects in a bryophyte and identify factors contributing to the variability of outcomes in these interactions. Fungal endophyte cultures and axenic liverwort clones were isolated from wild populations of the liverwort, Marchantia polymorpha. These collections were combined in a gnotobiotic system to test the effects of fungal isolates on the growth rates of hosts under laboratory conditions. Under the experimental conditions, fungi isolated from M. polymorpha ranged from aggressively pathogenic to strongly growth-promoting, but the majority of isolates caused no detectable change in host growth. Growth promotion by selected fungi depended on nutrient concentrations and was inhibited by coinoculation with multiple fungi. The M. polymorpha endophyte system expands the resources for this model liverwort. The experiments presented here demonstrate a wealth of diversity in fungal interactions even in a host reported to lack standard mycorrhizal symbiosis. In addition, they show that some known pathogens of vascular plants live in M. polymorpha and can confer benefits to this nonvascular host. This highlights the importance of studying endophyte effects across the plant tree of life.
Collapse
Affiliation(s)
| | - Duncan A Hauser
- Duke University Department of Biology, Durham, NC, 27708, USA
| | - Rosemary Hinson
- Duke University Department of Biology, Durham, NC, 27708, USA
| | - A Jonathan Shaw
- Duke University Department of Biology, Durham, NC, 27708, USA
| |
Collapse
|
19
|
Nagy LG, Tóth R, Kiss E, Slot J, Gácser A, Kovács GM. Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0036-2016. [PMID: 28820115 PMCID: PMC11687519 DOI: 10.1128/microbiolspec.funk-0036-2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Indexed: 01/13/2023] Open
Abstract
The fungal lineage is one of the three large eukaryotic lineages that dominate terrestrial ecosystems. They share a common ancestor with animals in the eukaryotic supergroup Opisthokonta and have a deeper common ancestry with plants, yet several phenotypes, such as morphological, physiological, or nutritional traits, make them unique among all living organisms. This article provides an overview of some of the most important fungal traits, how they evolve, and what major genes and gene families contribute to their development. The traits highlighted here represent just a sample of the characteristics that have evolved in fungi, including polarized multicellular growth, fruiting body development, dimorphism, secondary metabolism, wood decay, and mycorrhizae. However, a great number of other important traits also underlie the evolution of the taxonomically and phenotypically hyperdiverse fungal kingdom, which could fill up a volume on its own. After reviewing the evolution of these six well-studied traits in fungi, we discuss how the recurrent evolution of phenotypic similarity, that is, convergent evolution in the broad sense, has shaped their phylogenetic distribution in extant species.
Collapse
Affiliation(s)
- László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HAS, Szeged, Hungary
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Enikő Kiss
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HAS, Szeged, Hungary
| | - Jason Slot
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Plant Protection Institute, Center for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
20
|
Renny M, Acosta MC, Cofré N, Domínguez LS, Bidartondo MI, Sérsic AN. Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae). ANNALS OF BOTANY 2017; 119:1279-1294. [PMID: 28398457 PMCID: PMC5604589 DOI: 10.1093/aob/mcx023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/14/2017] [Indexed: 05/30/2023]
Abstract
Background and Aims Arachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora 's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. Methods Arachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Key Results Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Conclusions Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern.
Collapse
Affiliation(s)
- Mauricio Renny
- Instituto Multidisciplinario de Biología Vegetal, IMBIV, UNC-CONICET, Edificio de Investigaciones Biológicas y Tecnológicas, Vélez Sársfield 1611, 5000 Córdoba, Argentina
| | - M. Cristina Acosta
- Instituto Multidisciplinario de Biología Vegetal, IMBIV, UNC-CONICET, Edificio de Investigaciones Biológicas y Tecnológicas, Vélez Sársfield 1611, 5000 Córdoba, Argentina
| | - Noelia Cofré
- Instituto Multidisciplinario de Biología Vegetal, IMBIV, UNC-CONICET, Edificio de Investigaciones Biológicas y Tecnológicas, Vélez Sársfield 1611, 5000 Córdoba, Argentina
| | - Laura S. Domínguez
- Instituto Multidisciplinario de Biología Vegetal, IMBIV, UNC-CONICET, Edificio de Investigaciones Biológicas y Tecnológicas, Vélez Sársfield 1611, 5000 Córdoba, Argentina
| | - Martin I. Bidartondo
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew TW9 3DS, UK
| | - Alicia N. Sérsic
- Instituto Multidisciplinario de Biología Vegetal, IMBIV, UNC-CONICET, Edificio de Investigaciones Biológicas y Tecnológicas, Vélez Sársfield 1611, 5000 Córdoba, Argentina
| |
Collapse
|
21
|
Kamel L, Tang N, Malbreil M, San Clemente H, Le Marquer M, Roux C, Frei dit Frey N. The Comparison of Expressed Candidate Secreted Proteins from Two Arbuscular Mycorrhizal Fungi Unravels Common and Specific Molecular Tools to Invade Different Host Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:124. [PMID: 28223991 PMCID: PMC5293756 DOI: 10.3389/fpls.2017.00124] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/20/2017] [Indexed: 05/19/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF), belonging to the fungal phylum Glomeromycota, form mutualistic symbioses with roots of almost 80% of land plants. The release of genomic data from the ubiquitous AMF Rhizophagus irregularis revealed that this species possesses a large set of putative secreted proteins (RiSPs) that could be of major importance for establishing the symbiosis. In the present study, we aimed to identify SPs involved in the establishment of AM symbiosis based on comparative gene expression analyses. We first curated the secretome of the R. irregularis DAOM 197198 strain based on two available genomic assemblies. Then we analyzed the expression patterns of the putative RiSPs obtained from the fungus in symbiotic association with three phylogenetically distant host plants-a monocot, a dicot and a liverwort-in comparison with non-symbiotic stages. We found that 33 out of 84 RiSPs induced in planta were commonly up-regulated in these three hosts. Most of these common RiSPs are small proteins of unknown function that may represent putative host non-specific effector proteins. We further investigated the expressed secretome of Gigaspora rosea, an AM fungal species phylogenetically distant from R. irregularis. G. rosea also presents original symbiotic features, a narrower host spectrum and a restrictive geographic distribution compared to R. irregularis. Interestingly, when analyzing up-regulated G. rosea SPs (GrSPs) in different hosts, a higher ratio of host-specific GrSPs was found compared to RiSPs. Such difference of expression patterns may mirror the restrained host spectrum of G. rosea compared to R. irregularis. Finally, we identified a set of conserved SPs, commonly up-regulated by both fungi in all hosts tested, that could correspond to common keys of AMF to colonize host plants. Our data thus highlight the specificities of two distant AM fungi and help in understanding their conserved and specific strategies to invade different hosts.
Collapse
Affiliation(s)
- Laurent Kamel
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
- Agronutrition, Laboratoire de BiotechnologiesLabege, France
| | - Nianwu Tang
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Mathilde Malbreil
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Morgane Le Marquer
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Nicolas Frei dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| |
Collapse
|
22
|
Srivastava S, Conlan XA, Cahill DM, Adholeya A. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots of Ocimum basilicum in an in vitro co-culture system. MYCORRHIZA 2016; 26:919-930. [PMID: 27485855 DOI: 10.1007/s00572-016-0721-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/05/2016] [Indexed: 05/14/2023]
Abstract
Arbuscular mycorrhiza is a symbiotic association formed between plant roots and soil borne fungi that alter and at times improve the production of secondary metabolites. Detailed information is available on mycorrhizal development and its influence on plants grown under various edapho-climatic conditions, however, very little is known about their influence on transformed roots that are rich reserves of secondary metabolites. This raises the question of how mycorrhizal colonization progresses in transformed roots grown in vitro and whether the mycorrhizal fungus presence influences the production of secondary metabolites. To fully understand mycorrhizal ontogenesis and its effect on root morphology, root biomass, total phenolics, rosmarinic acid, caffeic acid and antioxidant production under in vitro conditions, a co-culture was developed between three Agrobacterium rhizogenes-derived, elite-transformed root lines of Ocimum basilicum and Rhizophagus irregularis. We found that mycorrhizal ontogenesis in transformed roots was similar to mycorrhizal roots obtained from an in planta system. Mycorrhizal establishment was also found to be transformed root line-specific. Colonization of transformed roots increased the concentration of rosmarinic acid, caffeic acid and antioxidant production while no effect was observed on root morphological traits and biomass. Enhancement of total phenolics and rosmarinic acid in the three mycorrhizal transformed root lines was found to be transformed root line-specific and age dependent. We reveal the potential of R. irregularis as a biotic elicitor in vitro and propose its incorporation into commercial in vitro secondary metabolite production via transformed roots.
Collapse
Affiliation(s)
- Shivani Srivastava
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi, 110003, India
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, (Waurn Ponds Campus), Deakin University, Geelong, Australia, 75 Pigdons Road, Locked Bag 20000, Geelong, VIC, 3220, Australia
| | - Xavier A Conlan
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, (Waurn Ponds Campus), Deakin University, Geelong, Australia, 75 Pigdons Road, Locked Bag 20000, Geelong, VIC, 3220, Australia
| | - David M Cahill
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, (Waurn Ponds Campus), Deakin University, Geelong, Australia, 75 Pigdons Road, Locked Bag 20000, Geelong, VIC, 3220, Australia
| | - Alok Adholeya
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi, 110003, India.
| |
Collapse
|
23
|
|
24
|
Bowman JL, Araki T, Arteaga-Vazquez MA, Berger F, Dolan L, Haseloff J, Ishizaki K, Kyozuka J, Lin SS, Nagasaki H, Nakagami H, Nakajima K, Nakamura Y, Ohashi-Ito K, Sawa S, Shimamura M, Solano R, Tsukaya H, Ueda T, Watanabe Y, Yamato KT, Zachgo S, Kohchi T. The Naming of Names: Guidelines for Gene Nomenclature in Marchantia. PLANT & CELL PHYSIOLOGY 2016; 57:257-61. [PMID: 26644462 PMCID: PMC4788412 DOI: 10.1093/pcp/pcv193] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/25/2015] [Indexed: 05/20/2023]
Abstract
While Marchantia polymorpha has been utilized as a model system to investigate fundamental biological questions for over almost two centuries, there is renewed interest in M. polymorpha as a model genetic organism in the genomics era. Here we outline community guidelines for M. polymorpha gene and transgene nomenclature, and we anticipate that these guidelines will promote consistency and reduce both redundancy and confusion in the scientific literature.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Mario A Arteaga-Vazquez
- University of Veracruz, Institute for Biotechnology and Applied Ecology (INBIOTECA), Avenida de las Culturas Veracruzanas 101, Colonia Emiliano Zapata 91090, Xalapa, Veracruz, México
| | - Frederic Berger
- Gregor Mendel Institute, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501 Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577 Japan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taiwan
| | - Hideki Nagasaki
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Keiji Nakajima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, 411-8540 Japan
| | - Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033 Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555 Japan
| | - Masaki Shimamura
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagami-yama, Higashi Hiroshima, Hiroshima, 739-8526 Japan
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnologia-CSIC, C/ Darwin, 3, Campus Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033 Japan Okazaki Institute for Integrative Bioscience, National Institute of Natural Sciences, 5-1, Higashiyama, Okazaki, Aichi, 444-8787 Japan
| | - Takashi Ueda
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro, Tokyo, 153-8902 Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kinki University, Nishimitani, Kinokawa, Wakayama, 649-6493 Japan
| | - Sabine Zachgo
- University of Osnabrück, Botany Department, Barbarastr. 11, D-49076 Osnabrück, Germany
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
25
|
Yang H, Dai Y, Xu M, Zhang Q, Bian X, Tang J, Chen X. Metadata-mining of 18S rDNA sequences reveals that “everything is not everywhere” for glomeromycotan fungi. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1116-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
26
|
The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Sci Rep 2015; 5:11153. [PMID: 26084520 PMCID: PMC4471660 DOI: 10.1038/srep11153] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/14/2015] [Indexed: 12/11/2022] Open
Abstract
Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5 Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots. We report a protein (PbGH3) that can modify auxin and jasmonic acid. Plasmodiophorids contain chitin in cell walls of the resilient resting spores. If recognized, chitin can trigger defense responses in plants. Interestingly, chitin-related enzymes of Plasmodiophorids built specific families and the carbohydrate/chitin binding (CBM18) domain is enriched in the Plasmodiophorid secretome. Plasmodiophorids chitin synthases belong to two families, which were present before the split of the eukaryotic Stramenopiles/Alveolates/Rhizaria/Plantae and Metazoa/Fungi/Amoebozoa megagroups, suggesting chitin synthesis to be an ancient feature of eukaryotes. This exemplifies the importance of genomic data from unexplored eukaryotic groups, such as the Plasmodiophorids, to decipher evolutionary relationships and gene diversification of early eukaryotes.
Collapse
|
27
|
Strullu-Derrien C, Kenrick P, Pressel S, Duckett JG, Rioult JP, Strullu DG. Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights into ancestral plant-fungus symbioses. THE NEW PHYTOLOGIST 2014; 203:964-79. [PMID: 24750009 DOI: 10.1111/nph.12805] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/04/2014] [Indexed: 05/13/2023]
Abstract
Fungi (Eumycota) form close associations with plants, with which they have co-existed since the dawn of life on land, but their diversity in early terrestrial ecosystems is still poorly understood. We studied petrographic sections of exceptionally well-preserved petrified plants from the 407 million yr-old Rhynie Chert (Scotland, UK). For comparative purposes, we illustrate fungal associations in four extant lower land plants. We document two new endophytes in the plant Horneophyton lignieri: Palaeoglomus boullardii (sp. nov. Glomeromycota) colonizes parenchyma in a discontinuous zone of the outer cortex of the aerial axes, forming arbuscule-like structures, vesicles and spores; Palaeoendogone gwynne-vaughaniae (gen. nov., sp. nov. Mucoromycotina) colonizes parenchyma in the basal part of the plant, where it is present in intercellular spaces and as intracellular coils but absent from rhizoids. Critical comparisons between the newly discovered Horneophyton endophytes, fungi previously described from the Rhynie Chert and fungal colonization in extant lower land plants reveal several features characteristic of both Mucoromycotina and Glomeromycota. A reappraisal of fungal associations in early land plants indicates that they are more diverse than assumed hitherto, overturning the long-held paradigm that the early endophytes were exclusively Glomeromycota.
Collapse
Affiliation(s)
- Christine Strullu-Derrien
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK; Laboratoire Mycorhizes, Faculté des Sciences, Université d'Angers, 49045, Angers Cedex, France
| | | | | | | | | | | |
Collapse
|
28
|
Graham L, Lewis LA, Taylor W, Wellman C, Cook M. Early Terrestrialization: Transition from Algal to Bryophyte Grade. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-94-007-6988-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
29
|
Gutjahr C, Paszkowski U. Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. FRONTIERS IN PLANT SCIENCE 2013; 4:204. [PMID: 23785383 PMCID: PMC3684781 DOI: 10.3389/fpls.2013.00204] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/31/2013] [Indexed: 05/18/2023]
Abstract
In nature, the root systems of most plants develop intimate symbioses with glomeromycotan fungi that assist in the acquisition of mineral nutrients and water through uptake from the soil and direct delivery into the root cortex. Root systems are endowed with a strong, environment-responsive architectural plasticity that also manifests itself during the establishment of arbuscular mycorrhizal (AM) symbioses, predominantly in lateral root proliferation. In this review, we collect evidence for the idea that AM-induced root system remodeling is regulated at several levels: by AM fungal signaling molecules and by changes in plant nutrient status and distribution within the root system.
Collapse
Affiliation(s)
| | - Uta Paszkowski
- Department of Plant Sciences, University of CambridgeCambridge, UK
| |
Collapse
|
30
|
Rath M, Weber HC, Imhof S. Morpho-anatomical and molecular characterization of the mycorrhizas of European Polygala species. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:548-557. [PMID: 23252767 DOI: 10.1111/j.1438-8677.2012.00680.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/28/2012] [Indexed: 06/01/2023]
Abstract
The mycorrhizas of 12 species of Polygala (Polygalaceae), including herbs, subshrubs and one shrub, collected from Germany, Mallorca (Spain) and Malta, were investigated by morpho-anatomical and molecular methods. Aseptate hyphae, arbuscules and vesicles indicate an arbuscular mycorrhiza in all species examined. Hyphal spread in Polygala is predominantly, but not exclusively, intracellular and comprises three characteristic stages of colonization: (i) intracellular, linear hyphal growth in a cascading manner after penetration towards the penultimate parenchyma layer (layer 2), (ii) initially linear hyphal growth in the cells of layer 2 from where hyphal branches repeatedly penetrate the anatomically distinct innermost parenchyma layer (layer 1), forming arbuscule-like structures therein which are subject to degeneration, (iii) more branches from the linear hyphae in layer 2 develop, but coil and make contact to the layer outside layer 2 (layer 3) in which arbuscule-like structures similar to those in layer 1 form and degenerate. This general colonization pattern differs in details between the species, and critical comparisons, in particular between the woody P. myrtifolia, the herbaceous Polygala spp. and the mycoheterotrophic Epirixanthes spp. (Polygalaceae) suggest an evolutionary shift of mycorrhizal features within the family towards an optimization of plant benefit through the fungus. Based on the molecular marker 18S rDNA mycorrhizal fungi detected in roots of Polygala spp. are largely restricted to five clades of Glomeraceae 1 (Glomus Group A). This result rejects the hypothesis of a strict symbiotic specificity in Polygalaceae but may stimulate a discussion on functionally compatible groups of fungi.
Collapse
Affiliation(s)
- M Rath
- Spezielle Botanik und Mykologie, Fachbereich Biologie, Philipps-Universität Marburg, Marburg, Germany.
| | | | | |
Collapse
|
31
|
|
32
|
Delaux PM, Xie X, Timme RE, Puech-Pages V, Dunand C, Lecompte E, Delwiche CF, Yoneyama K, Bécard G, Séjalon-Delmas N. Origin of strigolactones in the green lineage. THE NEW PHYTOLOGIST 2012; 195:857-871. [PMID: 22738134 DOI: 10.1111/j.1469-8137.2012.04209.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The aims of this study were to investigate the appearance of strigolactones in the green lineage and to determine the primitive function of these molecules. We measured the strigolactone content of several isolated liverworts, mosses, charophyte and chlorophyte green algae using a sensitive biological assay and LC-MS/MS analyses. In parallel, sequence comparison of strigolactone-related genes and phylogenetic analyses were performed using available genomic data and newly sequenced expressed sequence tags. The primitive function of strigolactones was determined by exogenous application of the synthetic strigolactone analog, GR24, and by mutant phenotyping. Liverworts, the most basal Embryophytes and Charales, one of the closest green algal relatives to Embryophytes, produce strigolactones, whereas several other species of green algae do not. We showed that GR24 stimulates rhizoid elongation of Charales, liverworts and mosses, and rescues the phenotype of the strigolactone-deficient Ppccd8 mutant of Physcomitrella patens. These findings demonstrate that the first function of strigolactones was not to promote arbuscular mycorrhizal symbiosis. Rather, they suggest that the strigolactones appeared earlier in the streptophyte lineage to control rhizoid elongation. They may have been conserved in basal Embryophytes for this role and then recruited for the stimulation of colonization by glomeromycotan fungi.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
| | - Xiaonan Xie
- Weed Science Centre, Utsunomiya University, Utsunomiya 321-8505, Japan
| | - Ruth E Timme
- Cell Biology and Molecular Genetics, 2108 Biosciences Research Bldg., and the Maryland Agricultural Experiment Station, University of Maryland, College Park, MD 20742, USA
| | - Virginie Puech-Pages
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
| | - Emilie Lecompte
- Université de Toulouse, UPS, EDB (Laboratoire Evolution et Diversité Biologique), 118 route de Narbonne, F-31062, Toulouse, France
- CNRS, EDB (Laboratoire Evolution et Diversité Biologique), F-31062, Toulouse, France
| | - Charles F Delwiche
- Cell Biology and Molecular Genetics, 2108 Biosciences Research Bldg., and the Maryland Agricultural Experiment Station, University of Maryland, College Park, MD 20742, USA
| | - Koichi Yoneyama
- Weed Science Centre, Utsunomiya University, Utsunomiya 321-8505, Japan
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
| | - Nathalie Séjalon-Delmas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
- Present address: UMR5245 ECOLAB, ENSAT, Av de l'Agrobiopole, F-31326 Auzeville, Castanet-Tolosan, France
| |
Collapse
|
33
|
The thalloid liverwort Plagiochasma rupestre supports arbuscular mycorrhiza-like symbiosis in vitro. World J Microbiol Biotechnol 2012; 28:3393-7. [DOI: 10.1007/s11274-012-1146-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/04/2012] [Indexed: 10/28/2022]
|
34
|
Desirò A, Naumann M, Epis S, Novero M, Bandi C, Genre A, Bonfante P. Mollicutes-related endobacteria thrive inside liverwort-associated arbuscular mycorrhizal fungi. Environ Microbiol 2012; 15:822-36. [PMID: 22830931 DOI: 10.1111/j.1462-2920.2012.02833.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) can host Gram-positive endobacteria (BLOs) in their cytoplasm. These have been identified as Mollicutes-related microbes based on an inventory of AMF spores from fungal collections. Bacteria-like organisms (BLOs) of unknown identity have also been reported in the cytoplasm of AMF associated with liverworts, the earliest-diverged extant lineage of land plants. A combination of morphological, molecular and phylogenetic analyses revealed that three samples of two liverwort species (Conocephalum conicum and Lunularia cruciata) growing spontaneously in a botanical garden harboured AMF belonging to Glomerales, and these, in turn, hosted coccoid BLOs. 16S rDNA sequences from these BLOs clustered with the Mollicutes sequences identified from the spore collections but revealed the presence of novel phylotypes. Electron microscopy and fluorescence in situ hybridization (FISH) confirmed the presence of BLOs inside the cytoplasm of AMF hyphae colonizing the liverwort thalli. The high genetic variability of BLOs in liverwort-AMF associations thriving in the same ecological niche raises questions about the mechanisms underlying such diversity.
Collapse
Affiliation(s)
- Alessandro Desirò
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Jones VA, Dolan L. The evolution of root hairs and rhizoids. ANNALS OF BOTANY 2012; 110:205-12. [PMID: 22730024 PMCID: PMC3394659 DOI: 10.1093/aob/mcs136] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/28/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Almost all land plants develop tip-growing filamentous cells at the interface between the plant and substrate (the soil). Root hairs form on the surface of roots of sporophytes (the multicellular diploid phase of the life cycle) in vascular plants. Rhizoids develop on the free-living gametophytes of vascular and non-vascular plants and on both gametophytes and sporophytes of the extinct rhyniophytes. Extant lycophytes (clubmosses and quillworts) and monilophytes (ferns and horsetails) develop both free-living gametophytes and free-living sporophytes. These gametophytes and sporophytes grow in close contact with the soil and develop rhizoids and root hairs, respectively. SCOPE Here we review the development and function of rhizoids and root hairs in extant groups of land plants. Root hairs are important for the uptake of nutrients with limited mobility in the soil such as phosphate. Rhizoids have a variety of functions including water transport and adhesion to surfaces in some mosses and liverworts. CONCLUSIONS A similar gene regulatory network controls the development of rhizoids in moss gametophytes and root hairs on the roots of vascular plant sporophytes. It is likely that this gene regulatory network first operated in the gametophyte of the earliest land plants. We propose that later it functioned in sporophytes as the diploid phase evolved a free-living habit and developed an interface with the soil. This transference of gene function from gametophyte to sporophyte could provide a mechanism that, at least in part, explains the increase in morphological diversity of sporophytes that occurred during the radiation of land plants in the Devonian Period.
Collapse
Affiliation(s)
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
36
|
Seed Plant Mitochondrial Genomes: Complexity Evolving. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Genomics of Biotrophic, Plant-infecting Plasmodiophorids Using In Vitro Dual Cultures. Protist 2011; 162:449-61. [DOI: 10.1016/j.protis.2010.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/09/2010] [Indexed: 11/22/2022]
|
38
|
Arbuscular mycorrhizal fungi in roots of non-photosynthetic plants, Sciaphila japonica and Sciaphila tosaensis (Triuridaceae). MYCOSCIENCE 2011. [DOI: 10.1007/s10267-010-0084-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
McNeill M, Phillips C, Young S, Shah F, Aalders L, Bell N, Gerard E, Littlejohn R. Transportation of nonindigenous species via soil on international aircraft passengers’ footwear. Biol Invasions 2011. [DOI: 10.1007/s10530-011-9964-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 2010; 1:103. [PMID: 21045821 DOI: 10.1038/ncomms1105] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 10/05/2010] [Indexed: 11/08/2022] Open
Abstract
Over 35 years ago, it was hypothesized that mutualistic symbiotic soil fungi assisted land plants in their initial colonization of terrestrial environments. This important idea has become increasingly established with palaeobotanical and molecular investigations dating the interactions between arbuscular mycorrhizal fungi (AMF) and land plants to at least 400 Ma, but the functioning of analogous partnerships in 'lower' land plants remains unknown. In this study, we show with multifactorial experiments that colonization of a complex thalloid liverwort, a member of the most ancient extant clade of land plants, with AMF significantly promotes photosynthetic carbon uptake, growth and asexual reproduction. Plant fitness increased through fungal-enhanced acquisition of phosphorus and nitrogen from soil, with each plant supporting 100-400 m of AMF mycelia. A simulated CO(2)-rich atmosphere, similar to that of the Palaeozoic when land plants originated, significantly amplified the net benefits of AMF and likely selection pressures for establishment of the symbiosis. Our analyses provide essential missing functional evidence supporting AMF symbionts as drivers of plant terrestrialization in early Palaeozoic land ecosystems.
Collapse
|
41
|
Ryszka P, Błaszkowski J, Jurkiewicz A, Turnau K. Arbuscular mycorrhiza of Arnica montana under field conditions--conventional and molecular studies. MYCORRHIZA 2010; 20:551-557. [PMID: 20195874 DOI: 10.1007/s00572-010-0302-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 01/29/2010] [Indexed: 05/28/2023]
Abstract
Two distinct populations of Arnica montana, an endangered medicinal plant, were studied under field conditions. The material was investigated using microscopic and molecular methods. The analyzed plants were always found to be mycorrhizal. Nineteen arbuscular mycorrhizal fungal DNA sequences were obtained from the roots. They were related to Glomus Group A, but most did not match any known species. Some showed a degree of similarity to fungi colonizing liverworts. Conventional analysis of spores isolated from soil samples allowed to identify different fungal taxa: Glomus macrocarpum, Glomus mosseae, Acaulospora lacunosa, and Scutellospora dipurpurescens. Their spores were also isolated from trap cultures.
Collapse
Affiliation(s)
- Przemysław Ryszka
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | | | | | | |
Collapse
|
42
|
Opik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). THE NEW PHYTOLOGIST 2010; 188:223-41. [PMID: 20561207 DOI: 10.1111/j.1469-8137.2010.03334.x] [Citation(s) in RCA: 516] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Here, we describe a new database, MaarjAM, that summarizes publicly available Glomeromycota DNA sequence data and associated metadata. The goal of the database is to facilitate the description of distribution and richness patterns in this group of fungi. • Small subunit (SSU) rRNA gene sequences and available metadata were collated from all suitable taxonomic and ecological publications. These data have been made accessible in an open-access database (http://maarjam.botany.ut.ee). • Two hundred and eighty-two SSU rRNA gene virtual taxa (VT) were described based on a comprehensive phylogenetic analysis of all collated Glomeromycota sequences. Two-thirds of VT showed limited distribution ranges, occurring in single current or historic continents or climatic zones. Those VT that associated with a taxonomically wide range of host plants also tended to have a wide geographical distribution, and vice versa. No relationships were detected between VT richness and latitude, elevation or vascular plant richness. • The collated Glomeromycota molecular diversity data suggest limited distribution ranges in most Glomeromycota taxa and a positive relationship between the width of a taxon's geographical range and its host taxonomic range. Inconsistencies between molecular and traditional taxonomy of Glomeromycota, and shortage of data from major continents and ecosystems, are highlighted.
Collapse
Affiliation(s)
- M Opik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., 51005 Tartu, Estonia.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bonfante P, Selosse MA. A glimpse into the past of land plants and of their mycorrhizal affairs: from fossils to evo-devo. THE NEW PHYTOLOGIST 2010; 186:267-270. [PMID: 20409182 DOI: 10.1111/j.1469-8137.2010.03196.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Paola Bonfante
- Dipartimento di Biologia Vegetale dell'Università di Torino and Istituto per la Protezione delle Piante del CNR, Sezione di Torino, Viale Mattioli, 25, 10125 Torino, Italy
| | | |
Collapse
|
44
|
Wang B, Yeun LH, Xue JY, Liu Y, Ané JM, Qiu YL. Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. THE NEW PHYTOLOGIST 2010; 186:514-25. [PMID: 20059702 DOI: 10.1111/j.1469-8137.2009.03137.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
*The colonization of land by plants fundamentally altered environmental conditions on earth. Plant-mycorrhizal fungus symbiosis likely played a key role in this process by assisting plants to absorb water and nutrients from soil. *Here, in a diverse set of land plants, we investigated the evolutionary histories and functional conservation of three genes required for mycorrhiza formation in legumes and rice (Oryza sativa), DMI1, DMI3 and IPD3. *The genes were isolated from nearly all major plant lineages. Phylogenetic analyses showed that they had been vertically inherited since the origin of land plants. Further, cross-species mutant rescue experiments demonstrated that DMI3 genes from liverworts and hornworts could rescue Medicago truncatula dmi3 mutants for mycorrhiza formation. Yeast two-hybrid assays also showed that bryophyte DMI3 proteins could bind to downstream-acting M. trunculata IPD3 protein. Finally, molecular evolutionary analyses revealed that these genes were under purifying selection for maintenance of their ancestral functions in all mycorrhizal plant lineages. *These results indicate that the mycorrhizal genes were present in the common ancestor of land plants, and that their functions were largely conserved during land plant evolution. The evidence presented here strongly suggests that plant-mycorrhizal fungus symbiosis was one of the key processes that contributed to the origin of land flora.
Collapse
Affiliation(s)
- Bin Wang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
45
|
Preussing M, Nebel M, Oberwinkler F, Weiss M. Diverging diversity patterns in the Tulasnella (Basidiomycota, Tulasnellales) mycobionts of Aneura pinguis (Marchantiophyta, Metzgeriales) from Europe and Ecuador. MYCORRHIZA 2010; 20:147-159. [PMID: 19730896 DOI: 10.1007/s00572-009-0275-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 08/16/2009] [Indexed: 05/28/2023]
Abstract
Aneura pinguis (Aneuraceae) is a cosmopolitan thalloid liverwort that shows a specific mycorrhiza-like interaction with basidiomycetes. To date, tropical specimens have not been studied in great depth. Samples of A. pinguis were collected from 48 individuals in one plot in South Ecuador and 54 individuals in five European countries. Light and transmission electron microscopy and molecular analyses based on nuclear rDNA coding for the ribosomal large subunit (nucLSU) and from the 5.8s-ITS2 regions were carried out to identify the associated mycobionts and to study their phylogenetic relationships. Microscopic and ultrastructural investigations of the fungal colonisation showed a high congruence between the European and the Ecuadorian sites and confirmed previous results. Tulasnellales are the only mycobionts that could be detected from ultrastructural characters with certainty. Molecular phylogenetic analysis indicated the presence of tulasnelloid fungi from at least 13 distinct clades. The composition of the communities of tulasnelloid fungi in A. pinguis differs between Ecuador and Europe. The diversity of tulasnelloid fungal partners was much higher at the Ecuadorian site.
Collapse
MESH Headings
- Basidiomycota/classification
- Basidiomycota/cytology
- Basidiomycota/genetics
- Basidiomycota/isolation & purification
- Biodiversity
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Ecuador
- Europe
- Hepatophyta/microbiology
- Microscopy
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Mycorrhizae/growth & development
- RNA, Ribosomal, 5.8S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Markus Preussing
- State Museum of Natural History, Rosenstein 1, Stuttgart, Germany.
| | | | | | | |
Collapse
|
46
|
Graham LE, Cook ME, Hanson DT, Pigg KB, Graham JM. Structural, physiological, and stable carbon isotopic evidence that the enigmatic Paleozoic fossil Prototaxites formed from rolled liverwort mats. AMERICAN JOURNAL OF BOTANY 2010; 97:268-275. [PMID: 21622387 DOI: 10.3732/ajb.0900322] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
New structural, nutritional, and stable carbon isotope data may resolve a long-standing mystery-the biological affinities of the fossil Prototaxites, the largest organism on land during the Late Silurian to Late Devonian (420-370 Ma). The tree trunk-shaped specimens, of varying dimensions but consistent tubular anatomy, first formed prior to vascular plant dominance. Hence, Prototaxites has been proposed to represent giant algae, fungi, or lichens, despite incompatible biochemical and anatomical observations. Our comparative analyses instead indicate that Prototaxites formed from partially degraded, wind-, gravity-, or water-rolled mats of mixotrophic liverworts having fungal and cyanobacterial associates, much like the modern liverwort genus Marchantia. We propose that the fossil body is largely derived from abundant, highly degradation-resistant, tubular rhizoids of marchantioid liverworts, intermixed with tubular microbial elements. Our concept explains previously puzzling fossil features and is consistent with evidence for liverworts and microbial associates in Ordovician-Devonian deposits, extensive ancient and modern marchantioid mats, and modern associations of liverworts with cyanobacteria and diverse types of fungi. Our interpretation indicates that liverworts were important components of Devonian ecosystems, that some macrofossils and microfossils previously attributed to "nematophytes" actually represent remains of ancient liverworts, and that mixotrophy and microbial associations were features of early land plants.
Collapse
Affiliation(s)
- Linda E Graham
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706-1381 USA
| | | | | | | | | |
Collapse
|
47
|
Hata S, Kobae Y, Banba M. Interactions Between Plants and Arbuscular Mycorrhizal Fungi. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:1-48. [DOI: 10.1016/s1937-6448(10)81001-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Honrubia M. Las micorrizas: una relación planta-hongo que dura más de 400 millones de años. ANALES DEL JARDÍN BOTÁNICO DE MADRID 2009; 66:133-144. [DOI: 10.3989/ajbm.2226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
49
|
Bulman SR, Visnovsky SB, Hall IR, Guerin-Laguette A, Wang Y. Molecular and morphological identification of truffle-producing Tuber species in New Zealand. Mycol Prog 2009. [DOI: 10.1007/s11557-009-0626-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Winther JL, Friedman WE. Phylogenetic affinity of arbuscular mycorrhizal symbionts in Psilotum nudum. JOURNAL OF PLANT RESEARCH 2009; 122:485-496. [PMID: 19513803 DOI: 10.1007/s10265-009-0234-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 03/11/2009] [Indexed: 05/27/2023]
Abstract
Many lineages of land plants (from lycopsids to angiosperms) have non-photosynthetic life cycle phases that involve obligate mycoheterotrophic arbuscular mycorrhizal (AM) associations where the plant host gains organic carbon through glomalean symbionts. Our goal was to isolate and phylogenetically identify the AM fungi associated with both the autotrophic and underground mycoheterotrophic life cycle phases of Psilotum nudum. Phylogenetic analyses recovered 11 fungal phylotypes in four diverse clades of Glomus A that form AM associations with P. nudum mycoheterotrophic gametophytes and autotrophic sporophytes, and angiosperm roots found in the same greenhouse pots. The correspondence of identities of AM symbionts in P. nudum sporophytes, gametophytes and neighboring angiosperms provides compelling evidence that photosynthetic heterospecific and conspecific plants can serve as the ultimate sources of fixed carbon for mycoheterotrophic gametophytes of P. nudum, and that the transfer of carbon occurs via shared fungal networks. Moreover, broader phylogenetic analyses suggest greenhouse Psilotum populations, like field-surveyed populations of mycoheterotrophic plants, form AM associations with restricted clades of Glomus A. The phylogenetic affinities and distribution of Glomus A symbionts indicate that P. nudum greenhouse populations have the potential to be exploited as an experimental system to further study the physiology, ecology and evolution of mycoheterotrophic AM associations.
Collapse
Affiliation(s)
- Jennifer L Winther
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|