1
|
Blatt MR. A charged existence: A century of transmembrane ion transport in plants. PLANT PHYSIOLOGY 2024; 195:79-110. [PMID: 38163639 PMCID: PMC11060664 DOI: 10.1093/plphys/kiad630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
If the past century marked the birth of membrane transport as a focus for research in plants, the past 50 years has seen the field mature from arcane interest to a central pillar of plant physiology. Ion transport across plant membranes accounts for roughly 30% of the metabolic energy consumed by a plant cell, and it underpins virtually every aspect of plant biology, from mineral nutrition, cell expansion, and development to auxin polarity, fertilization, plant pathogen defense, and senescence. The means to quantify ion flux through individual transporters, even single channel proteins, became widely available as voltage clamp methods expanded from giant algal cells to the fungus Neurospora crassa in the 1970s and the cells of angiosperms in the 1980s. Here, I touch briefly on some key aspects of the development of modern electrophysiology with a focus on the guard cells of stomata, now without dispute the premier plant cell model for ion transport and its regulation. Guard cells have proven to be a crucible for many technical and conceptual developments that have since emerged into the mainstream of plant science. Their study continues to provide fundamental insights and carries much importance for the global challenges that face us today.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
2
|
Hawkins TJ, Kopischke M, Duckney PJ, Rybak K, Mentlak DA, Kroon JTM, Bui MT, Richardson AC, Casey M, Alexander A, De Jaeger G, Kalde M, Moore I, Dagdas Y, Hussey PJ, Robatzek S. NET4 and RabG3 link actin to the tonoplast and facilitate cytoskeletal remodelling during stomatal immunity. Nat Commun 2023; 14:5848. [PMID: 37730720 PMCID: PMC10511709 DOI: 10.1038/s41467-023-41337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Members of the NETWORKED (NET) family are involved in actin-membrane interactions. Here we show that two members of the NET family, NET4A and NET4B, are essential for normal guard cell actin reorganization, which is a process critical for stomatal closure in plant immunity. NET4 proteins interact with F-actin and with members of the Rab7 GTPase RABG3 family through two distinct domains, allowing for simultaneous localization to actin filaments and the tonoplast. NET4 proteins interact with GTP-bound, active RABG3 members, suggesting their function being downstream effectors. We also show that RABG3b is critical for stomatal closure induced by microbial patterns. Taken together, we conclude that the actin cytoskeletal remodelling during stomatal closure involves a molecular link between actin filaments and the tonoplast, which is mediated by the NET4-RABG3b interaction. We propose that stomatal closure to microbial patterns involves the coordinated action of immune-triggered osmotic changes and actin cytoskeletal remodelling likely driving compact vacuolar morphologies.
Collapse
Affiliation(s)
- Timothy J Hawkins
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Michaela Kopischke
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
- LMU Munich Biocenter, Großhadener Strasse 4, 82152, Planegg, DE, Germany
| | - Patrick J Duckney
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Katarzyna Rybak
- LMU Munich Biocenter, Großhadener Strasse 4, 82152, Planegg, DE, Germany
| | - David A Mentlak
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Johan T M Kroon
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Mai Thu Bui
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, AUT, Austria
| | | | - Mary Casey
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Geert De Jaeger
- VIB-University Ghent, Center for Plant System Biology, Technologiepark 927, 9052, Ghent, BE, Belgium
| | - Monika Kalde
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, OX1 3RB, UK
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, OX1 3RB, UK
| | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, AUT, Austria
| | - Patrick J Hussey
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK.
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
- LMU Munich Biocenter, Großhadener Strasse 4, 82152, Planegg, DE, Germany.
| |
Collapse
|
3
|
Takatsuka H, Higaki T, Ito M. At the Nexus between Cytoskeleton and Vacuole: How Plant Cytoskeletons Govern the Dynamics of Large Vacuoles. Int J Mol Sci 2023; 24:4143. [PMID: 36835552 PMCID: PMC9967756 DOI: 10.3390/ijms24044143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Large vacuoles are a predominant cell organelle throughout the plant body. They maximally account for over 90% of cell volume and generate turgor pressure that acts as a driving force of cell growth, which is essential for plant development. The plant vacuole also acts as a reservoir for sequestering waste products and apoptotic enzymes, thereby enabling plants to rapidly respond to fluctuating environments. Vacuoles undergo dynamic transformation through repeated enlargement, fusion, fragmentation, invagination, and constriction, eventually resulting in the typical 3-dimensional complex structure in each cell type. Previous studies have indicated that such dynamic transformations of plant vacuoles are governed by the plant cytoskeletons, which consist of F-actin and microtubules. However, the molecular mechanism of cytoskeleton-mediated vacuolar modifications remains largely unclear. Here we first review the behavior of cytoskeletons and vacuoles during plant development and in response to environmental stresses, and then introduce candidates that potentially play pivotal roles in the vacuole-cytoskeleton nexus. Finally, we discuss factors hampering the advances in this research field and their possible solutions using the currently available cutting-edge technologies.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
4
|
Biel A, Moser M, Groves NR, Meier I. Distinct Roles for KASH Proteins SINE1 and SINE2 in Guard Cell Actin Reorganization, Calcium Oscillations, and Vacuolar Remodeling. FRONTIERS IN PLANT SCIENCE 2022; 13:784342. [PMID: 35599883 PMCID: PMC9120628 DOI: 10.3389/fpls.2022.784342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex is a protein complex spanning the inner and outer membranes of the nuclear envelope. Outer nuclear membrane KASH proteins interact in the nuclear envelope lumen with inner nuclear membrane SUN proteins. The paralogous Arabidopsis KASH proteins SINE1 and SINE2 function during stomatal dynamics induced by light-dark transitions and ABA. Previous studies have shown F-actin organization, cytoplasmic calcium (Ca2+) oscillations, and vacuolar morphology changes are involved in ABA-induced stomatal closure. Here, we show that SINE1 and SINE2 are both required for actin pattern changes during ABA-induced stomatal closure, but influence different, temporally distinguishable steps. External Ca2+ partially overrides the mutant defects. ABA-induced cytoplasmic Ca2+ oscillations are diminished in sine2-1 but not sine1-1, and this defect can be rescued by both exogenous Ca2+ and F-actin depolymerization. We show first evidence for nuclear Ca2+ oscillations during ABA-induced stomatal closure, which are disrupted in sine2-1. Vacuolar fragmentation is impaired in both mutants and is partially rescued by F-actin depolymerization. Together, these data indicate distinct roles for SINE1 and SINE2 upstream of this network of players involved in ABA-based stomatal closure, suggesting a role for the nuclear surface in guard cell ABA signaling.
Collapse
Affiliation(s)
- Alecia Biel
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Morgan Moser
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Norman R. Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Li Y, Zhang X, Zhang Y, Ren H. Controlling the Gate: The Functions of the Cytoskeleton in Stomatal Movement. FRONTIERS IN PLANT SCIENCE 2022; 13:849729. [PMID: 35283892 PMCID: PMC8905143 DOI: 10.3389/fpls.2022.849729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 05/03/2023]
Abstract
Stomata are specialized epidermal structures composed of two guard cells and are involved in gas and water exchange between plants and the environment and pathogen entry into the plant interior. Stomatal movement is a response to many internal and external stimuli to increase adaptability to environmental change. The cytoskeleton, including actin filaments and microtubules, is highly dynamic in guard cells during stomatal movement, and the destruction of the cytoskeleton interferes with stomatal movement. In this review, we discuss recent progress on the organization and dynamics of actin filaments and microtubule network in guard cells, and we pay special attention to cytoskeletal-associated protein-mediated cytoskeletal rearrangements during stomatal movement. We also discuss the potential mechanisms of stomatal movement in relation to the cytoskeleton and attempt to provide a foundation for further research in this field.
Collapse
Affiliation(s)
- Yihao Li
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Xin Zhang
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- *Correspondence: Yi Zhang,
| | - Haiyun Ren
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- Haiyun Ren,
| |
Collapse
|
6
|
Ou X, Li T, Zhao Y, Chang Y, Wu L, Chen G, Day B, Jiang K. Calcium-dependent ABA signaling functions in stomatal immunity by regulating rapid SA responses in guard cells. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153585. [PMID: 34894596 DOI: 10.1016/j.jplph.2021.153585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Stomatal immunity is mediated by ABA, an osmotic stress-responsive phytohormone that closes stomata via calcium-dependent and -independent signaling pathways. However, the functional involvement of ABA signal transducers in stomatal immunity remains poorly understood. Here, we demonstrate that stomatal immunity was compromised in mutants of the ABA signaling core. We also found that it is a subset of calcium-dependent protein kinases (CPK4/5/6), but not the calcium-independent kinase OST1, that relay the stomatal immune signaling. Surface-inoculated bacteria caused an endogenous ABA-dependent induction of local SA responses, whilst expression of the ABA biosynthetic genes and the ABA levels were not affected in leaf epidermis. Furthermore, flg22-elicited ROS burst was attenuated by mutations in CPK4 and CPK5, and pathogen-induced SA production in leaf epidermis was compromised in cpk4, cpk5, and cpk6 mutants. Our results suggest that CPKs function in stomatal immunity through fine-tuning apoplastic ROS levels as well as reinforcing the localized SA signal in guard cells. It is also envisioned that ABA mediates stomatal responses to biotic and abiotic stresses via two distinct but partially overlapping signaling modules.
Collapse
Affiliation(s)
- Xiaobin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Tianqi Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Yuankai Chang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Lihong Wu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Guoqingzi Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
7
|
MPK3- and MPK6-mediated VLN3 phosphorylation regulates actin dynamics during stomatal immunity in Arabidopsis. Nat Commun 2021; 12:6474. [PMID: 34753953 PMCID: PMC8578381 DOI: 10.1038/s41467-021-26827-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Upon perception of pathogens, plants can rapidly close their stomata to restrict pathogen entry into internal tissue, leading to stomatal immunity as one aspect of innate immune responses. The actin cytoskeleton is required for plant defense against microbial invaders. However, the precise functions of host actin during plant immunity remain largely unknown. Here, we report that Arabidopsis villin3 (VLN3) is critical for plant resistance to bacteria by regulating stomatal immunity. Our in vitro and in vivo phosphorylation assays show that VLN3 is a physiological substrate of two pathogen-responsive mitogen-activated protein kinases, MPK3/6. Quantitative analyses of actin dynamics and genetic studies reveal that VLN3 phosphorylation by MPK3/6 modulates actin remodeling to activate stomatal defense in Arabidopsis. Plants can rapidly close stomata to restrict pathogen entry into leaves. Here the authors show that phosphorylation of villin3 by mitogen-activated protein kinases modulates actin remodeling to activate stomatal defense in Arabidopsis.
Collapse
|
8
|
Wang X, Mao T. Understanding the functions and mechanisms of plant cytoskeleton in response to environmental signals. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:86-96. [PMID: 31542697 DOI: 10.1016/j.pbi.2019.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/12/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Plants perceive multiple physiological and environmental signals in order to fine-tune their growth and development. The highly dynamic plant cytoskeleton, including actin and microtubule networks, can rapidly alter their organization, stability and dynamics in response to internal and external stimuli, which is considered vital for plant growth and adaptation to the environment. The cytoskeleton-associated proteins have been shown to be key regulatory molecules in mediating cytoskeleton reorganization in response to multiple environmental signals, such as light, salt, drought and biotic stimuli. Recent findings, including our studies, have expanded knowledge about the functions and underlying mechanisms of the plant cytoskeleton in environmental adaptation.
Collapse
Affiliation(s)
- Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Huang L, Chen L, Wang L, Yang Y, Rao Y, Ren D, Dai L, Gao Y, Zou W, Lu X, Zhang G, Zhu L, Hu J, Chen G, Shen L, Dong G, Gao Z, Guo L, Qian Q, Zeng D. A Nck-associated protein 1-like protein affects drought sensitivity by its involvement in leaf epidermal development and stomatal closure in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:884-897. [PMID: 30771248 PMCID: PMC6849750 DOI: 10.1111/tpj.14288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 05/05/2023]
Abstract
Water deficit is a major environmental threat affecting crop yields worldwide. In this study, a drought stress-sensitive mutant drought sensitive 8 (ds8) was identified in rice (Oryza sativa L.). The DS8 gene was cloned using a map-based approach. Further analysis revealed that DS8 encoded a Nck-associated protein 1 (NAP1)-like protein, a component of the SCAR/WAVE complex, which played a vital role in actin filament nucleation activity. The mutant exhibited changes in leaf cuticle development. Functional analysis revealed that the mutation of DS8 increased stomatal density and impaired stomatal closure activity. The distorted actin filaments in the mutant led to a defect in abscisic acid (ABA)-mediated stomatal closure and increased ABA accumulation. All these resulted in excessive water loss in ds8 leaves. Notably, antisense transgenic lines also exhibited increased drought sensitivity, along with impaired stomatal closure and elevated ABA levels. These findings suggest that DS8 affects drought sensitivity by influencing actin filament activity.
Collapse
Affiliation(s)
- Lichao Huang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Long Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Lan Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Yaolong Yang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Yuchun Rao
- College of Chemistry and Life SciencesZhejiang Normal UniversityJinhua321004China
| | - Deyong Ren
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Liping Dai
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Yihong Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Weiwei Zou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Xueli Lu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Guangheng Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Li Zhu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Jiang Hu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Guang Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Lan Shen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Guojun Dong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Zhenyu Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Longbiao Guo
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Dali Zeng
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| |
Collapse
|
10
|
Qian D, Xiang Y. Actin Cytoskeleton as Actor in Upstream and Downstream of Calcium Signaling in Plant Cells. Int J Mol Sci 2019; 20:ijms20061403. [PMID: 30897737 PMCID: PMC6471457 DOI: 10.3390/ijms20061403] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/04/2023] Open
Abstract
In plant cells, calcium (Ca2+) serves as a versatile intracellular messenger, participating in several fundamental and important biological processes. Recent studies have shown that the actin cytoskeleton is not only an upstream regulator of Ca2+ signaling, but also a downstream regulator. Ca2+ has been shown to regulates actin dynamics and rearrangements via different mechanisms in plants, and on this basis, the upstream signaling encoded within the Ca2+ transient can be decoded. Moreover, actin dynamics have also been proposed to act as an upstream of Ca2+, adjust Ca2+ oscillations, and establish cytosolic Ca2+ ([Ca2+]cyt) gradients in plant cells. In the current review, we focus on the advances in uncovering the relationship between the actin cytoskeleton and calcium in plant cells and summarize our current understanding of this relationship.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
11
|
Qian D, Zhang Z, He J, Zhang P, Ou X, Li T, Niu L, Nan Q, Niu Y, He W, An L, Jiang K, Xiang Y. Arabidopsis ADF5 promotes stomatal closure by regulating actin cytoskeleton remodeling in response to ABA and drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:435-446. [PMID: 30476276 PMCID: PMC6322581 DOI: 10.1093/jxb/ery385] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/01/2018] [Indexed: 05/20/2023]
Abstract
Stomatal movement plays an essential role in plant responses to drought stress, and the actin cytoskeleton and abscisic acid (ABA) are two important components of this process. Little is known about the mechanism underlying actin cytoskeleton remodeling and the dynamic changes occurring during stomatal movement in response to drought stress/ABA signaling. Actin-depolymerizing factors (ADFs) are conserved actin severing/depolymerizing proteins in eukaryotes, and in angiosperms ADFs have evolved actin-bundling activity. Here, we reveal that the transcriptional expression of neofunctionalized Arabidopsis ADF5 was induced by drought stress and ABA treatment. Furthermore, we demonstrated that ADF5 loss-of-function mutations increased water loss from detached leaves, reduced plant survival rates after drought stress, and delayed stomatal closure by regulating actin cytoskeleton remodeling via its F-actin-bundling activity. Biochemical assays revealed that an ABF/AREB transcription factor, DPBF3, could bind to the ADF5 promoter and activate its transcription via the ABA-responsive element core motif ACGT/C. Taken together, our findings indicate that ADF5 participates in drought stress by regulating stomatal closure, and may also serve as a potential downstream target of the drought stress/ABA signaling pathway via members of the ABF/AREB transcription factors family.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhe Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juanxia He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Pan Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaobin Ou
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tian Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lipan Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qiong Nan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenliang He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Correspondence:
| |
Collapse
|
12
|
Yu Q, Ren JJ, Kong LJ, Wang XL. Actin filaments regulate the adhesion between the plasma membrane and the cell wall of tobacco guard cells. PROTOPLASMA 2018; 255:235-245. [PMID: 28803402 DOI: 10.1007/s00709-017-1149-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
During the opening and closing of stomata, guard cells undergo rapid and reversible changes in their volume and shape, which affects the adhesion of the plasma membrane (PM) to the cell wall (CW). The dynamics of actin filaments in guard cells are involved in stomatal movement by regulating structural changes and intracellular signaling. However, it is unclear whether actin dynamics regulate the adhesion of the PM to the CW. In this study, we investigated the relationship between actin dynamics and PM-CW adhesion by the hyperosmotic-induced plasmolysis of tobacco guard cells. We found that actin filaments in guard cells were depolymerized during mannitol-induced plasmolysis. The inhibition of actin dynamics by treatment with latrunculin B or jasplakinolide and the disruption of the adhesion between the PM and the CW by treatment with RGDS peptide (Arg-Gly-Asp-Ser) enhanced guard cell plasmolysis. However, treatment with latrunculin B alleviated the RGDS peptide-induced plasmolysis and endocytosis. Our results reveal that the actin depolymerization is involved in the regulation of the PW-CW adhesion during hyperosmotic-induced plasmolysis in tobacco guard cells.
Collapse
Affiliation(s)
- Qin Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Jing-Jing Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lan-Jing Kong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiu-Ling Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
13
|
Daloso DM, Medeiros DB, Dos Anjos L, Yoshida T, Araújo WL, Fernie AR. Metabolism within the specialized guard cells of plants. THE NEW PHYTOLOGIST 2017; 216:1018-1033. [PMID: 28984366 DOI: 10.1111/nph.14823] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/21/2017] [Indexed: 05/21/2023]
Abstract
Contents 1018 I. 1018 II. 1019 III. 1022 IV. 1025 V. 1026 VI. 1029 1030 References 1030 SUMMARY: Stomata are leaf epidermal structures consisting of two guard cells surrounding a pore. Changes in the aperture of this pore regulate plant water-use efficiency, defined as gain of C by photosynthesis per leaf water transpired. Stomatal aperture is actively regulated by reversible changes in guard cell osmolyte content. Despite the fact that guard cells can photosynthesize on their own, the accumulation of mesophyll-derived metabolites can seemingly act as signals which contribute to the regulation of stomatal movement. It has been shown that malate can act as a signalling molecule and a counter-ion of potassium, a well-established osmolyte that accumulates in the vacuole of guard cells during stomatal opening. By contrast, their efflux from guard cells is an important mechanism during stomatal closure. It has been hypothesized that the breakdown of starch, sucrose and lipids is an important mechanism during stomatal opening, which may be related to ATP production through glycolysis and mitochondrial metabolism, and/or accumulation of osmolytes such as sugars and malate. However, experimental evidence supporting this theory is lacking. Here we highlight the particularities of guard cell metabolism and discuss this in the context of the guard cells themselves and their interaction with the mesophyll cells.
Collapse
Affiliation(s)
- Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60451-970, Brasil
| | - David B Medeiros
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brasil
| | - Letícia Dos Anjos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, 60451-970, Brasil
| | - Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brasil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
14
|
Zhang TY, Li FC, Fan CM, Li X, Zhang FF, He JM. Role and interrelationship of MEK1-MPK6 cascade, hydrogen peroxide and nitric oxide in darkness-induced stomatal closure. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:190-199. [PMID: 28716416 DOI: 10.1016/j.plantsci.2017.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/13/2017] [Accepted: 06/23/2017] [Indexed: 05/20/2023]
Abstract
Pharmacological data have suggested the involvement of mitogen-activated protein kinase (MPK) cascades in dark-induced stomatal closure, but which specific MPK cascade participates in the darkness guard cell signaling and its relationship with hydrogen peroxide (H2O2) and nitric oxide (NO) remain unclear. In this paper, we observed that darkness induced activation of MPK6 in leaves of wild-type Arabidopsis (Arabidopsis thaliana) and mutants for nitrate reductase 1 (NIA1), but this effect was inhibited in mutants for MPK Kinase 1 (MEK1) and ATRBOHD/F. Mutants for MEK1, MPK6 and NIA1 showed defect of dark-induced NO production in guard cells and stomatal closure, but were normal in the dark-induced H2O2 generation, while stomata of mutant AtrbohD/F showed defect of dark-induced H2O2 and NO production and subsequent closure. Moreover, exogenous NO rescued the defect of dark-induced stomatal closure in mutants of AtrbohD/F, mek1 and mpk6, while exogenous H2O2 could not rescue the defect of dark-induced stomatal closure in mutants of mek1, mpk6 and nia1. These genetic and biochemical evidences not only show that MEK1-MPK6 cascade, AtRBOHD/F-dependent H2O2 and NIA1-dependent NO are all involved in dark-induced stomatal closure in Arabidopsis, also indicate that MEK1-MPK6 cascade functions via working downstream of H2O2 and upstream of NO.
Collapse
Affiliation(s)
- Teng-Yue Zhang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Feng-Chen Li
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Cai-Ming Fan
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xuan Li
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Fang-Fang Zhang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jun-Min He
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
15
|
Zhao S, Jiang Y, Zhao Y, Huang S, Yuan M, Zhao Y, Guo Y. CASEIN KINASE1-LIKE PROTEIN2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor. THE PLANT CELL 2016; 28:1422-39. [PMID: 27268429 PMCID: PMC4944410 DOI: 10.1105/tpc.16.00078] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/06/2016] [Indexed: 05/03/2023]
Abstract
The opening and closing of stomata are crucial for plant photosynthesis and transpiration. Actin filaments undergo dynamic reorganization during stomatal closure, but the underlying mechanism for this cytoskeletal reorganization remains largely unclear. In this study, we identified and characterized Arabidopsis thaliana casein kinase 1-like protein 2 (CKL2), which responds to abscisic acid (ABA) treatment and participates in ABA- and drought-induced stomatal closure. Although CKL2 does not bind to actin filaments directly and has no effect on actin assembly in vitro, it colocalizes with and stabilizes actin filaments in guard cells. Further investigation revealed that CKL2 physically interacts with and phosphorylates actin depolymerizing factor 4 (ADF4) and inhibits its activity in actin filament disassembly. During ABA-induced stomatal closure, deletion of CKL2 in Arabidopsis alters actin reorganization in stomata and renders stomatal closure less sensitive to ABA, whereas deletion of ADF4 impairs the disassembly of actin filaments and causes stomatal closure to be more sensitive to ABA Deletion of ADF4 in the ckl2 mutant partially recues its ABA-insensitive stomatal closure phenotype. Moreover, Arabidopsis ADFs from subclass I are targets of CKL2 in vitro. Thus, our results suggest that CKL2 regulates actin filament reorganization and stomatal closure mainly through phosphorylation of ADF.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuxiang Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Yang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanxiu Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Dharni S, Srivastava AK, Samad A, Patra DD. Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. bourbon) grown on tannery sludge amended soil. CHEMOSPHERE 2014; 117:433-439. [PMID: 25194330 DOI: 10.1016/j.chemosphere.2014.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 06/03/2023]
Abstract
Bacterial strains PsF84 and PsF610 were isolated from tannery sludge polluted soil, Jajmau, Kanpur, India. 16S rRNA gene sequence and phylogenetic analysis confirmed the taxonomic affiliation of PsF84 as Pseudomonas monteilii and PsF610 as Pseudomonas plecoglossicida. A greenhouse study was carried out with rose-scented geranium (Pelargonium graveolenscv. bourbon) grown in soil treated with tannery sludge in different proportions viz. soil: sludge ratio of 100:0, 25:75, 50:50, 75:25 and 0:100 to evaluate the effects of bacterial inoculation on the heavy metal uptake. The isolates solubilized inorganic phosphorus and were capable of producing indole acetic acid (IAA) and siderophore. The isolate PsF84 increased the dry biomass of shoot by 44%, root by 48%, essential oil yield 43% and chlorophyll by 31% respectively over uninoculated control. The corresponding increase with the isolate PsF610 were 38%, 40%, 39% and 28%, respectively. Scanning electron microscopic (SEM) studies reveal that the Cr(VI) accumulation resulted in breakdown of vascular bundles and sequesters Cr(VI) in roots. The glandular trichomes (GT) were investigated using SEM studies as these glands are probably the main site of essential oil synthesis. Owing to its wide action spectrum, these isolates could serve as an effective metal sequestering and bioinoculants due to the production of IAA, siderophore and solubilization of phosphate for geranium in metal-stressed soil. The present study has provided a new insight into the phytoremediation of metal-contaminated soil.
Collapse
Affiliation(s)
- Seema Dharni
- Agronomy and Soil Science Division, CSIR-CIMAP, Lucknow 226015, India.
| | | | - Abdul Samad
- Crop Protection Division, CSIR-CIMAP, Lucknow 226015, India.
| | | |
Collapse
|
17
|
Khanna R, Li J, Tseng TS, Schroeder JI, Ehrhardt DW, Briggs WR. COP1 jointly modulates cytoskeletal processes and electrophysiological responses required for stomatal closure. MOLECULAR PLANT 2014; 7:1441-1454. [PMID: 25151660 PMCID: PMC4153439 DOI: 10.1093/mp/ssu065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/20/2014] [Indexed: 05/20/2023]
Abstract
Reorganization of the cortical microtubule cytoskeleton is critical for guard cell function. Here, we investigate how environmental and hormonal signals cause these rearrangements and find that COP1, a RING-finger-type ubiquitin E3 ligase, is required for degradation of tubulin, likely by the 26S proteasome. This degradation is required for stomatal closing. In addition to regulating the cytoskeleton, we show that cop1 mutation impaired the activity of S-type anion channels, which are critical for stomatal closure. Thus, COP1 is revealed as a potential coordinator of cytoskeletal and electrophysiological activities required for guard cell function.
Collapse
Affiliation(s)
- Rajnish Khanna
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Junlin Li
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA; Present address: College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tong-Seung Tseng
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Julian I Schroeder
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Winslow R Briggs
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Li X, Li JH, Wang W, Chen NZ, Ma TS, Xi YN, Zhang XL, Lin HF, Bai Y, Huang SJ, Chen YL. ARP2/3 complex-mediated actin dynamics is required for hydrogen peroxide-induced stomatal closure in Arabidopsis. PLANT, CELL & ENVIRONMENT 2014; 37:1548-60. [PMID: 24372484 DOI: 10.1111/pce.12259] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/21/2013] [Accepted: 12/08/2013] [Indexed: 05/03/2023]
Abstract
Multiple cellular events like dynamic actin reorganization and hydrogen peroxide (H(2)O(2)) production were demonstrated to be involved in abscisic acid (ABA)-induced stomatal closure. However, the relationship between them as well as the underlying mechanisms remains poorly understood. Here, we showed that H(2)O(2) generation is indispensable for ABA induction of actin reorganization in guard cells of Arabidopsis that requires the presence of ARP2/3 complex. H(2)O(2) -induced stomatal closure was delayed in the mutants of arpc4 and arpc5, and the rate of actin reorganization was slowed down in arpc4 and arpc5 in response to H(2)O(2), suggesting that ARP2/3-mediated actin nucleation is required for H(2)O(2) -induced actin cytoskeleton remodelling. Furthermore, the expression of H(2)O(2) biosynthetic related gene AtrbohD and the accumulation of H(2)O(2) was delayed in response to ABA in arpc4 and arpc5, demonstrating that misregulated actin dynamics affects H(2)O(2) production upon ABA treatment. These results support a possible causal relation between the production of H(2)O(2) and actin dynamics in ABA-mediated guard cell signalling: ABA triggers H(2)O(2) generation that causes the reorganization of the actin cytoskeleton partially mediated by ARP2/3 complex, and ARP2/3 complex-mediated actin dynamics may feedback regulate H(2)O(2) production.
Collapse
Affiliation(s)
- Xin Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhou X, Graumann K, Wirthmueller L, Jones JDG, Meier I. Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants. J Cell Biol 2014; 205:677-92. [PMID: 24891605 PMCID: PMC4050730 DOI: 10.1083/jcb.201401138] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/17/2014] [Indexed: 11/22/2022] Open
Abstract
Although a plethora of nuclear envelope (NE) transmembrane proteins (NETs) have been identified in opisthokonts, plant NETs are largely unknown. The only known NET homologues in plants are Sad1/UNC-84 (SUN) proteins, which bind Klarsicht/ANC-1/Syne-1 homology (KASH) proteins. Therefore, de novo identification of plant NETs is necessary. Based on similarities between opisthokont KASH proteins and the only known plant KASH proteins, WPP domain-interacting proteins, we used a computational method to identify the KASH subset of plant NETs. Ten potential plant KASH protein families were identified, and five candidates from four of these families were verified for their NE localization, depending on SUN domain interaction. Of those, Arabidopsis thaliana SINE1 is involved in actin-dependent nuclear positioning in guard cells, whereas its paralogue SINE2 contributes to innate immunity against an oomycete pathogen. This study dramatically expands our knowledge of plant KASH proteins and suggests that plants and opisthokonts have recruited different KASH proteins to perform NE regulatory functions.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 OBP, England, UK
| | | | | | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
20
|
Anschütz U, Becker D, Shabala S. Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:670-87. [PMID: 24635902 DOI: 10.1016/j.jplph.2014.01.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 05/18/2023]
Abstract
Partially and fully completed plant genome sequencing projects in both lower and higher plants allow drawing a comprehensive picture of the molecular and structural diversities of plant potassium transporter genes and their encoded proteins. While the early focus of the research in this field was aimed on the structure-function studies and understanding of the molecular mechanisms underlying K(+) transport, availability of Arabidopsis thaliana mutant collections in combination with micro-array techniques have significantly advanced our understanding of K(+) channel physiology, providing novel insights into the transcriptional regulation of potassium homeostasis in plants. More recently, posttranslational regulation of potassium transport systems has moved into the center stage of potassium transport research. The current review is focused on the most exciting developments in this field. By summarizing recent work on potassium transporter regulation we show that potassium transport in general, and potassium channels in particular, represent important targets and are mediators of the cellular responses during different developmental stages in a plant's life cycle. We show that regulation of intracellular K(+) homeostasis is essential to mediate plant adaptive responses to a broad range of abiotic and biotic stresses including drought, salinity, and oxidative stress. We further link post-translational regulation of K(+) channels with programmed cell death and show that K(+) plays a critical role in controlling the latter process. Thus, is appears that K(+) is not just the essential nutrient required to support optimal plant growth and yield but is also an important signaling agent mediating a wide range of plant adaptive responses to environment.
Collapse
Affiliation(s)
- Uta Anschütz
- University of Wuerzburg, Plant Molecular Biology & Biophysics, Wuerzburg, Germany
| | - Dirk Becker
- University of Wuerzburg, Plant Molecular Biology & Biophysics, Wuerzburg, Germany.
| | - Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Australia
| |
Collapse
|
21
|
Janda M, Matoušková J, Burketová L, Valentová O. Interconnection between actin cytoskeleton and plant defense signaling. PLANT SIGNALING & BEHAVIOR 2014; 9:e976486. [PMID: 25482795 PMCID: PMC4622444 DOI: 10.4161/15592324.2014.976486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 06/01/2023]
Abstract
Actin cytoskeleton is the fundamental structural component of eukaryotic cells. It has a role in numerous elementary cellular processes such as reproduction, development and also in response to abiotic and biotic stimuli. Remarkably, the role of actin cytoskeleton in plant response to pathogens is getting to be under magnifying glass. Based on microscopic studies, most of the data showed, that actin plays an important role in formation of physiological barrier in the site of infection. Actin dynamics is involved in the transport of antimicrobial compounds and cell wall fortifying components (e.g. callose) to the site of infection. Also the role in PTI (pathogen triggered immunity) and ETI (effector triggered immunity) was recently indicated. On the other hand much less is known about the transcriptome reprogramming upon changes in actin dynamics. Our recently published results showed that drugs inhibiting actin polymerization (latrunculin B, cytochalasin E) cause the induction of genes which are involved in salicylic acid (SA) signaling pathway. In this addendum we would like to highlight in more details current state of knowledge concerning the involvement of actin dynamics in plant defense signaling.
Collapse
Affiliation(s)
- Martin Janda
- Department of Biochemistry and Microbiology; Institute of Chemical Technology Prague; Prague, Czech Republic
- Laboratory of Pathological Plant Physiology; Institute of Experimental Botany AS CR; Prague, Czech Republic
| | - Jindřiška Matoušková
- Department of Biochemistry and Microbiology; Institute of Chemical Technology Prague; Prague, Czech Republic
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology; Institute of Experimental Botany AS CR; Prague, Czech Republic
| | - Olga Valentová
- Department of Biochemistry and Microbiology; Institute of Chemical Technology Prague; Prague, Czech Republic
| |
Collapse
|
22
|
Abstract
Abscisic acid (ABA) is one of the major phytohormones and regulates various processes in the plant life cycle, for example, seed development and abiotic/biotic stress responses. Recent studies have made significant progress in elucidating ABA signaling and established a simple ABA signaling model consisting of three core components: PYR/PYL/RCAR receptors, 2C-type protein phosphatases, and SnRK2 protein kinases. This model highlights the importance of protein phosphorylation mediated by SnRK2, but the downstream substrates of SnRK2 remain to be determined to complete the model. Previous studies have identified several SnRK2 substrates involving transcription factors and ion channels. Recently, SnRK2 substrates have been further surveyed by a phosphoproteomic approach, giving new insights on the SnRK2 downstream pathway. Other protein kinases, e.g., Ca(2+)-dependent protein kinase (CDPK) and mitogen-activated protein kinase (MAPK), have been identified as ABA signaling factors. Some evidence suggests that the SnRK2 pathway partially interacts with CDPK or MAPK pathways. In this chapter, recent advances in ABA signaling study are summarized, primarily focusing on two major protein kinases, SnRK2 and MAPK. Challenges for further study of the ABA-dependent protein phosphorylation network are also discussed.
Collapse
Affiliation(s)
- Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Tsukuba, Japan.
| |
Collapse
|
23
|
Chen DH, Acharya BR, Liu W, Zhang W. Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks. PLANTS (BASEL, SWITZERLAND) 2013; 2:615-34. [PMID: 27137395 PMCID: PMC4844389 DOI: 10.3390/plants2040615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/17/2022]
Abstract
Calcium (Ca(2+)) plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen.
Collapse
Affiliation(s)
- Dong-Hua Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| | - Biswa R Acharya
- Biology Department, Penn State University, University Park, PA 16802, USA.
| | - Wei Liu
- High-Tech Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China.
| | - Wei Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
24
|
Li LJ, Ren F, Gao XQ, Wei PC, Wang XC. The reorganization of actin filaments is required for vacuolar fusion of guard cells during stomatal opening in Arabidopsis. PLANT, CELL & ENVIRONMENT 2013; 36:484-97. [PMID: 22891733 DOI: 10.1111/j.1365-3040.2012.02592.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The reorganization of actin filaments (AFs) and vacuoles in guard cells is involved in the regulation of stomatal movement. However, it remains unclear whether there is any interaction between the reorganization of AFs and vacuolar changes during stomatal movement. Here, we report the relationship between the reorganization of AFs and vacuolar fusion revealed in pharmacological experiments, and characterizing stomatal opening in actin-related protein 2 (arp2) and arp3 mutants. Our results show that cytochalasin-D-induced depolymerization or phalloidin-induced stabilization of AFs leads to an increase in small unfused vacuoles during stomatal opening in wild-type (WT) Arabidopsis plants. Light-induced stomatal opening is retarded and vacuolar fusion in guard cells is impaired in the mutants, in which the reorganization and the dynamic parameters of AFs are aberrant compared with those of the WT. In WT, AFs tightly surround the small separated vacuoles, forming a ring that encircles the boundary membranes of vacuoles partly fused during stomatal opening. In contrast, in the mutants, most AFs and actin patches accumulate abnormally around the nuclei of the guard cells, which probably further impair vacuolar fusion and retard stomatal opening. Our results suggest that the reorganization of AFs regulates vacuolar fusion in guard cells during stomatal opening.
Collapse
Affiliation(s)
- Li-Juan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
25
|
Thomas C. Bundling actin filaments from membranes: some novel players. FRONTIERS IN PLANT SCIENCE 2012; 3:188. [PMID: 22936939 PMCID: PMC3426786 DOI: 10.3389/fpls.2012.00188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/01/2012] [Indexed: 05/04/2023]
Abstract
Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling.
Collapse
Affiliation(s)
- Clément Thomas
- Laboratory of Molecular and Cellular Oncology, Department of Oncology, Public Research Centre for Health (CRP-Santé)Luxembourg, Luxembourg
| |
Collapse
|
26
|
Liu SG, Zhu DZ, Chen GH, Gao XQ, Zhang XS. Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress. PLANT CELL REPORTS 2012; 31:1219-26. [PMID: 22383108 DOI: 10.1007/s00299-012-1242-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/02/2012] [Accepted: 02/17/2012] [Indexed: 05/11/2023]
Abstract
UNLABELLED Changes in actin dynamics represent the primary response of the plant cell to extracellular signaling. Recent studies have now revealed that actin remodeling is involved in abiotic stress tolerance in plants. In our current study, the relationship between the changes in actin dynamics and the reactive oxygen species (ROS) level at the initial stages of salt stress was investigated in the elongation zone of the Arabidopsis root tip. We found that a 200 mM NaCl treatment disrupted the dynamics of the actin filaments within 10 min and increased the ROS levels in the elongation zone cells of the Arabidopsis root tip. We further found that the NADPH oxidase activity inhibitor, diphenyleneiodonium, treatment blocked this ROS increase under salt stress conditions. The roles of actin dynamics and the NADPH oxidases in ROS generation were further analyzed using the actin-specific agents, latrunculin B (Lat-B) and jasplakinolide (Jasp), and mutants of Arabidopsis NADPH oxidase AtrbohC. Lat-B and Jasp promote actin depolymerization and polymerization, respectively, and both were found to enhance the ROS levels following NaCl treatment. However, this response was abolished in the atrbohC mutants. Our present results thus demonstrate that actin dynamics are involved in regulating the ROS level in Arabidopsis root under salt stress conditions. KEY MESSAGE Salt stress disrupts the dynamics of the actin filaments in Arabidopsis in the short term which are involved in regulating the ROS levels that arise under salt stress conditions via the actions of the AtrbohC.
Collapse
Affiliation(s)
- Shang Gang Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | | | | | | | | |
Collapse
|
27
|
Seung D, Risopatron JPM, Jones BJ, Marc J. Circadian clock-dependent gating in ABA signalling networks. PROTOPLASMA 2012; 249:445-57. [PMID: 21773710 DOI: 10.1007/s00709-011-0304-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/01/2011] [Indexed: 05/08/2023]
Abstract
Plant growth and development are intimately attuned to fluctuations in environmental variables such as light, temperature and water availability. A broad range of signalling and dynamic response mechanisms allows them to adjust their physiology so that growth and reproductive capacity are optimised for the prevailing conditions. Many of the response mechanisms are mediated by the plant hormones. The hormone abscisic acid (ABA) plays a dominant role in fundamental processes such as seed dormancy and germination, regulation of stomatal movements and enhancing drought tolerance in response to the osmotic stresses that result from water deficit, salinity and freezing. Whereas plants maintain a constant vigilance, there is emerging evidence that the capacity to respond is gated by the circadian clock so that it varies with diurnal fluctuations in light, temperature and water status. Clock regulation enables plants to anticipate regular diurnal fluctuations and thereby presumably to maximise metabolic efficiency. Circadian clock-dependent gating appears to regulate the ABA signalling network at numerous points, including metabolism, transport, perception and activity of the hormone. In this review, we summarise the basic principles and recent progress in elucidating the molecular mechanisms of circadian gating of the ABA response network and how it can affect fundamental processes in plant growth and development.
Collapse
Affiliation(s)
- David Seung
- School of Biological Sciences, The University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
28
|
Signal convergence through the lenses of MAP kinases: paradigms of stress and hormone signaling in plants. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1207-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Liu Y. Roles of mitogen-activated protein kinase cascades in ABA signaling. PLANT CELL REPORTS 2012; 31:1-12. [PMID: 21870109 DOI: 10.1007/s00299-011-1130-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 07/23/2011] [Accepted: 07/23/2011] [Indexed: 05/06/2023]
Abstract
Abscisic acid (ABA) is a universal hormone in higher plants and plays a major role in various aspects of plant stress, growth, and development. Mitogen-activated protein kinase (MAPK) cascades are key signaling modules for responding to various extracellular stimuli in plants. The available data suggest that MAPK cascades are involved in some ABA responses, including antioxidant defense, guard cell signaling, and seed germination. Some MAPK phosphatases have also been demonstrated to be implicated in ABA responses. The goal of this review is to piece together the findings concerning MAPK cascades in ABA signaling. Questions and further perspectives of the roles played by MAPK cascades in ABA signaling are also furnished.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China.
| |
Collapse
|
30
|
|
31
|
Zhang L, Xi D, Li S, Gao Z, Zhao S, Shi J, Wu C, Guo X. A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. PLANT MOLECULAR BIOLOGY 2011; 77:17-31. [PMID: 21590508 DOI: 10.1007/s11103-011-9788-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/08/2011] [Indexed: 05/22/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in mediating biotic and abiotic stress responses. In plants, MAPKs are classified into four major groups (A-D) according to their sequence homology and conserved phosphorylation motifs. Compared with well-studied MAPKs in groups A and B, little is known about group C. In this study, we functionally characterised a stress-responsive group C MAPK gene (GhMPK2) from cotton (Gossypium hirsutum). Northern blot analysis indicated that GhMPK2 was induced by abscisic acid (ABA) and abiotic stresses, such as NaCl, PEG, and dehydration. Subcellular localization analysis suggested that GhMPK2 may activate its specific targets in the nucleus. Constitutive overexpression of GhMPK2 in tobacco (Nicotiana tabacum) conferred reduced sensitivity to ABA during both seed germination and vegetative growth. Interestingly, transgenic plants had a decreased rate of water loss and exhibited enhanced drought and salt tolerance. Additionally, transgenic plants showed improved osmotic adjustment capacity, elevated proline accumulation and up-regulated expression of several stress-related genes, including DIN1, Osmotin and NtLEA5. β-glucuronidase (GUS) expression driven by the GhMPK2 promoter was clearly enhanced by treatment with NaCl, PEG, and ABA. These results strongly suggest that GhMPK2 positively regulates salt and drought tolerance in transgenic plants.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang XL, Gao XQ, Wang XC. Stochastic dynamics of actin filaments in guard cells regulating chloroplast localization during stomatal movement. PLANT, CELL & ENVIRONMENT 2011; 34:1248-57. [PMID: 21443604 DOI: 10.1111/j.1365-3040.2011.02325.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Actin filaments and chloroplasts in guard cells play roles in stomatal function. However, detailed actin dynamics vary, and the roles that they play in chloroplast localization during stomatal movement remain to be determined. We examined the dynamics of actin filaments and chloroplast localization in transgenic tobacco expressing green fluorescent protein (GFP)-mouse talin in guard cells by time-lapse imaging. Actin filaments showed sliding, bundling and branching dynamics in moving guard cells. During stomatal movement, long filaments can be severed into small fragments, which can form longer filaments by end-joining activities. With chloroplast movement, actin filaments near chloroplasts showed severing and elongation activity in guard cells during stomatal movement. Cytochalasin B treatment abolished elongation, bundling and branching activities of actin filaments in guard cells, and these changes of actin filaments, and as a result, more chloroplasts were localized at the centre of guard cells. However, chloroplast turning to avoid high light, and sliding of actin fragments near the chloroplast, was unaffected following cytochalasin B treatment in guard cells. We suggest that the sliding dynamics of actin may play roles in chloroplast turning in guard cells. Our results indicate that the stochastic dynamics of actin filaments in guard cells regulate chloroplast localization during stomatal movement.
Collapse
Affiliation(s)
- Xiu-Ling Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | | | | |
Collapse
|
33
|
Zhao Y, Zhao S, Mao T, Qu X, Cao W, Zhang L, Zhang W, He L, Li S, Ren S, Zhao J, Zhu G, Huang S, Ye K, Yuan M, Guo Y. The plant-specific actin binding protein SCAB1 stabilizes actin filaments and regulates stomatal movement in Arabidopsis. THE PLANT CELL 2011; 23:2314-30. [PMID: 21719691 PMCID: PMC3160031 DOI: 10.1105/tpc.111.086546] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/28/2011] [Accepted: 06/10/2011] [Indexed: 05/18/2023]
Abstract
Microfilament dynamics play a critical role in regulating stomatal movement; however, the molecular mechanism underlying this process is not well understood. We report here the identification and characterization of STOMATAL CLOSURE-RELATED ACTIN BINDING PROTEIN1 (SCAB1), an Arabidopsis thaliana actin binding protein. Plants lacking SCAB1 were hypersensitive to drought stress and exhibited reduced abscisic acid-, H(2)O(2)-, and CaCl(2)-regulated stomatal movement. In vitro and in vivo analyses revealed that SCAB1 binds, stabilizes, and bundles actin filaments. SCAB1 shares sequence similarity only with plant proteins and contains a previously undiscovered actin binding domain. During stomatal closure, actin filaments switched from a radial orientation in open stomata to a longitudinal orientation in closed stomata. This switch took longer in scab1 plants than in wild-type plants and was correlated with the delay in stomatal closure seen in scab1 mutants in response to drought stress. Our results suggest that SCAB1 is required for the precise regulation of actin filament reorganization during stomatal closure.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolu Qu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wanhong Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Li Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wei Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Liu He
- National Institute of Biological Sciences, Beijing 102206, China
| | - Sidi Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Sulin Ren
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinfeng Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Guoli Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shanjin Huang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Keqiong Ye
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Address correspondence to
| |
Collapse
|
34
|
Huang AX, She XP. Actin microfilaments and vacuoles are downstream targets of H 2O 2 signalling pathways in hyperosmotic stress-induced stomatal closure. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:303-313. [PMID: 32480886 DOI: 10.1071/fp10079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 02/08/2011] [Indexed: 06/11/2023]
Abstract
Changes in osmotic pressure can induce stomatal closure to reduce transpirational water loss from plants. In the present work, we investigated the mechanism underlying the perception and transduction of extracellular changes in osmotic pressure in Vicia faba L. guard cells. Using an epidermal strip bioassay and laser-scanning confocal microscopy, we provide evidence that hyperosmotic stress treatment led to stomatal closure and the rapid promotion of hydrogen peroxide (H2O2) production in V. faba guard cells. The effects were largely reduced by H2O2 scavengers ASA, CAT, NADPH oxidase inhibitor DPI and cell wall peroxidase inhibitor SHAM. These results indicate that hyperosmotic stress induces stomatal closure by promoting H2O2 production. Cytochalasin B (CB), latrunculin B (Lat B) and jasplakinolide (JK) inhibited stomatal closure induced by hyperosmotic stress but didn't prevent the increase of endogenous H2O2 levels, suggesting that microfilaments reorganisation participates in stomatal closure induced by hyperosmotic stress, and may act downstream of H2O2 signalling processes. In addition, we observed splitting of big vacuoles into many small vacuoles in response to hyperosmotic stress and H2O2 treatment, and CB inhibited these changes of vacuoles; stomatal closure was also inhibited. Taken together these results indicate that the stomatal closure in response to hyperosmotic stress may initiate H2O2 generation, and that reorganisation of microfilaments and the changing of vacuoles occurs downstream of H2O2 signalling processes.
Collapse
Affiliation(s)
- Ai-Xia Huang
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xiao-Ping She
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
35
|
Peiter E. The plant vacuole: emitter and receiver of calcium signals. Cell Calcium 2011; 50:120-8. [PMID: 21376393 DOI: 10.1016/j.ceca.2011.02.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 02/04/2011] [Accepted: 02/05/2011] [Indexed: 12/20/2022]
Abstract
This review portrays the plant vacuole as both a source and a target of Ca(2+) signals. In plants, the vacuole represents a Ca(2+) store of enormous size and capacity. Total and free Ca(2+) concentrations in the vacuole vary with plant species, cell type, and environment, which is likely to have an impact on vacuolar function and the release of vacuolar Ca(2+). It is known that cytosolic Ca(2+) signals are often generated by release of the ion from internal stores, but in very few cases has a role of the vacuole been directly demonstrated. Biochemical and electrophysical studies have provided evidence for the operation of ligand- and voltage-gated Ca(2+)-permeable channels in the vacuolar membrane. The underlying molecular mechanisms are largely unknown with one exception: the slow vacuolar channel, encoded by TPC1, is the only vacuolar Ca(2+)-permeable channel cloned to date. However, due to its complex regulation and its low selectivity amongst cations, the role of this channel in Ca(2+) signalling is still debated. Many transport proteins at the vacuolar membrane are also targets of Ca(2+) signals, both by direct binding of Ca(2+) and by Ca(2+)-dependent phosphorylation. This enables the operation of feedback mechanisms and integrates vacuolar transport systems in the wider signalling network of the plant cell.
Collapse
Affiliation(s)
- Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin-Luther-University of Halle-Wittenberg, 06099 Halle (Saale), Germany.
| |
Collapse
|
36
|
Day B, Henty JL, Porter KJ, Staiger CJ. The pathogen-actin connection: a platform for defense signaling in plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:483-506. [PMID: 21495845 DOI: 10.1146/annurev-phyto-072910-095426] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The cytoskeleton, a dynamic network of cytoplasmic polymers, plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. As a platform for innate immune responses in mammalian cells, the actin cytoskeleton is a central component in the organization and activation of host defenses, including signaling and cellular repair. In plants, our understanding of the genetic and biochemical responses in both pathogen and host that are required for virulence and resistance has grown enormously. Additional advances in live-cell imaging of cytoskeletal dynamics have markedly altered our view of actin turnover in plants. In this review, we outline current knowledge of host resistance following pathogen perception, both in terms of the genetic interactions that mediate defense signaling, as well as the biochemical and cellular processes that are required for defense signaling.
Collapse
Affiliation(s)
- Brad Day
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan 48824-1311, USA.
| | | | | | | |
Collapse
|
37
|
Liu YK, Liu YB, Zhang MY, Li DQ. Stomatal development and movement: the roles of MAPK signaling. PLANT SIGNALING & BEHAVIOR 2010; 5:1176-80. [PMID: 20855958 PMCID: PMC3115344 DOI: 10.4161/psb.5.10.12757] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Stomata are epidermal pores on plant surface used for gas exchange with the atmosphere. Stomatal development and movement are regulated by environmental and internal signals. Mitogen-activated protein kinase (MAPK) cascades are universal transducers of extracellular signals among all eukaryotes. In plant, MAPK cascades regulate diverse cellular processes occurring during the whole ontogenetic plant life and ranging from normal cell proliferation to stress-inducing plant-to-environment interactions. Recent reports reveal that MAPK signaling is involved in both stomatal development and movement. This mini-review summarizes the roles of MAPK signaling in stomatal development and movement. How MAPK specificity is maintained in stomatal development and movement is also discussed.
Collapse
Affiliation(s)
- Yu-Kun Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | | | | | | |
Collapse
|
38
|
|
39
|
Lumbreras V, Vilela B, Irar S, Solé M, Capellades M, Valls M, Coca M, Pagès M. MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:1017-30. [PMID: 20626661 DOI: 10.1111/j.1365-313x.2010.04297.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades have important functions in plant stress responses and development and are key players in reactive oxygen species (ROS) signalling and in innate immunity. In Arabidopsis, the transmission of ROS and pathogen signalling by MAPKs involves the coordinated activation of MPK6 and MPK3; however, the specificity of their negative regulation by phosphatases is not fully known. Here, we present genetic analyses showing that MAPK phosphatase 2 (MKP2) regulates oxidative stress and pathogen defence responses and functionally interacts with MPK3 and MPK6. We show that plants lacking a functional MKP2 gene exhibit delayed wilting symptoms in response to Ralstonia solanacearum and, by contrast, acceleration of disease progression during Botrytis cinerea infection, suggesting that this phosphatase plays differential functions in biotrophic versus necrotrophic pathogen-induced responses. MKP2 function appears to be linked to MPK3 and MPK6 regulation, as indicated by BiFC experiments showing that MKP2 associates with MPK3 and MPK6 in vivo and that in response to fungal elicitors MKP2 exerts differential affinity versus both kinases. We also found that MKP2 interacts with MPK6 in HR-like responses triggered by fungal elicitors, suggesting that MPK3 and MPK6 are subject to differential regulation by MKP2 in this process. We propose that MKP2 is a key regulator of MPK3 and MPK6 networks controlling both abiotic and specific pathogen responses in plants.
Collapse
Affiliation(s)
- Victoria Lumbreras
- Departamento de Genética Molecular, CRAG (CSIC-IRTA-UAB), 18-26 Jordi Girona, 08034 Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Batistic O, Waadt R, Steinhorst L, Held K, Kudla J. CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:211-22. [PMID: 19832944 DOI: 10.1111/j.1365-313x.2009.04045.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
During adaptation and developmental processes cells respond through nonlinear calcium-decoding signaling cascades, the principal components of which have been identified. However, the molecular mechanisms generating specificity of cellular responses remain poorly understood. Calcineurin B-like (CBL) proteins contribute to decoding calcium signals by specifically interacting with a group of CBL-interacting protein kinases (CIPKs). Here, we report the subcellular localization of all 10 CBL proteins from Arabidopsis and provide a cellular localization matrix of a plant calcium signaling network. Our findings suggest that individual CBL proteins decode calcium signals not only at the plasma membrane and the tonoplast, but also in the cytoplasm and nucleus. We found that distinct targeting signals located in the N-terminal domain of CBL proteins determine the spatially discrete localization of CBL/CIPK complexes by COPII-independent targeting pathways. Our findings establish the CBL/CIPK signaling network as a calcium decoding system that enables the simultaneous specific information processing of calcium signals emanating from different intra- and extracellular stores, and thereby provides a mechanism underlying the specificity of cellular responses.
Collapse
Affiliation(s)
- Oliver Batistic
- Institut für Botanik, Universität Münster, Schlossplatz 4, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
41
|
Higaki T, Kutsuna N, Sano T, Kondo N, Hasezawa S. Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:156-65. [PMID: 20092030 DOI: 10.1111/j.1365-313x.2009.04032.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Manual evaluation of cellular structures is a popular approach in cell biological studies. However, such approaches are laborious and are prone to error, especially when large quantities of image data need to be analyzed. Here, we introduce an image analysis framework that overcomes these limitations by semi-automatic quantification and clustering of cytoskeletal structures. In our framework, cytoskeletal orientation, bundling and density are quantified by measurement of newly-developed, robust metric parameters from microscopic images. Thereafter, the microscopic images are classified without supervision by clustering based on the metric patterns. Clustering allows us to collectively investigate the large number of cytoskeletal structure images without laborious inspection. Application of this framework to images of GFP-actin binding domain 2 (GFP-ABD2)-labeled actin cytoskeletons in Arabidopsis guard cells determined that microfilaments (MFs) are radially oriented and transiently bundled in the process of diurnal stomatal opening. The framework also revealed that the expression of mouse talin GFP-ABD (GFP-mTn) continuously induced MF bundling and suppressed the diurnal patterns of stomatal opening, suggesting that changes in the level of MF bundling are crucial for promoting stomatal opening. These results clearly demonstrate the utility of our image analysis framework.
Collapse
Affiliation(s)
- Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | |
Collapse
|
42
|
MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci U S A 2009; 106:20520-5. [PMID: 19910530 DOI: 10.1073/pnas.0907205106] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen species (ROS) mediate abscisic acid (ABA) signaling in guard cells. To dissect guard cell ABA-ROS signaling genetically, a cell type-specific functional genomics approach was used to identify 2 MAPK genes, MPK9 and MPK12, which are preferentially and highly expressed in guard cells. To provide genetic evidence for their function, Arabidopsis single and double TILLING mutants that carry deleterious point mutations in these genes were isolated. RNAi-based gene-silencing plant lines, in which both genes are silenced simultaneously, were generated also. Mutants carrying a mutation in only 1 of these genes did not show any altered phenotype, indicating functional redundancy in these genes. ABA-induced stomatal closure was strongly impaired in 2 independent RNAi lines in which both MPK9 and MPK12 transcripts were significantly silenced. Consistent with this result, mpk9-1/12-1 double mutants showed an enhanced transpirational water loss and ABA- and H(2)O(2)-insensitive stomatal response. Furthermore, ABA and calcium failed to activate anion channels in guard cells of mpk9-1/12-1, indicating that these 2 MPKs act upstream of anion channels in guard cell ABA signaling. An MPK12-YFP fusion construct rescued the ABA-insensitive stomatal response phenotype of mpk9-1/12-1, demonstrating that the phenotype was caused by the mutations. The MPK12 protein is localized in the cytosol and the nucleus, and ABA and H(2)O(2) treatments enhance the protein kinase activity of MPK12. Together, these results provide genetic evidence that MPK9 and MPK12 function downstream of ROS to regulate guard cell ABA signaling positively.
Collapse
|
43
|
Zhang W, Fan LM. Actin dynamics regulates voltage-dependent calcium-permeable channels of the Vicia faba guard cell plasma membrane. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:912-21. [PMID: 19778401 DOI: 10.1111/j.1744-7909.2009.00859.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Free cytosolic Ca(2+) ([Ca(2+)](cyt)) is an ubiquitous second messenger in plant cell signaling, and [Ca(2+)](cyt) elevation is associated with Ca(2+)-permeable channels in the plasma membrane and endomembranes regulated by a wide range of stimuli. However, knowledge regarding Ca(2+) channels and their regulation remains limited in planta. A type of voltage-dependent Ca(2+)-permeable channel was identified and characterized for the Vicia faba L. guard cell plasma membrane by using patch-clamp techniques. These channels are permeable to both Ba(2+) and Ca(2+), and their activities can be inhibited by micromolar Gd(3+). The unitary conductance and the reversal potential of the channels depend on the Ca(2+) or Ba(2+) gradients across the plasma membrane. The inward whole-cell Ca(2+) (Ba(2+)) current, as well as the unitary current amplitude and NP(o) of the single Ca(2+) channel, increase along with the membrane hyperpolarization. Pharmacological experiments suggest that actin dynamics may serve as an upstream regulator of this type of calcium channel of the guard cell plasma membrane. Cytochalasin D, an actin polymerization blocker, activated the NPo of these channels at the single channel level and increased the current amplitude at the whole-cell level. But these channel activations and current increments could be restrained by pretreatment with an F-actin stabilizer, phalloidin. The potential physiological significance of this regulatory mechanism is also discussed.
Collapse
Affiliation(s)
- Wei Zhang
- National Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | |
Collapse
|
44
|
Gao XQ, Wang XL, Ren F, Chen J, Wang XC. Dynamics of vacuoles and actin filaments in guard cells and their roles in stomatal movement. PLANT, CELL & ENVIRONMENT 2009; 32:1108-16. [PMID: 19422610 DOI: 10.1111/j.1365-3040.2009.01993.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Vacuoles and actin filaments are important cytoarchitectures involved in guard cell function. The changes in the morphology and number of vacuoles and the regulation of ion channel activity in tonoplast of guard cells are essential for stomatal movement. A number of studies have investigated the regulation of ion channels in animal and plant cells; however, little is known about the regulating mechanism for vacuolar dynamics in stomatal movement. Actin filaments of guard cells are remodelling with the changes in the stomatal aperture; however, the dynamic functions of actin filaments in stomatal movement remain elusive. In this paper, we summarize the recent developments in the understanding of the dynamics of actin filaments and vacuoles of guard cells during stomatal movement. All relevant studies suggest that actin filaments might be involved in stomatal movement by regulating vacuolar dynamics and the ion channels in tonoplast. The future study could be focused on the linker protein mediating the interaction between actin filaments and tonoplast, which will provide insights into the interactive function of actin and vacuole in stomatal movement regulation.
Collapse
Affiliation(s)
- Xin-Qi Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Taiwan
| | | | | | | | | |
Collapse
|
45
|
Acharya BR, Assmann SM. Hormone interactions in stomatal function. PLANT MOLECULAR BIOLOGY 2009; 69:451-62. [PMID: 19031047 DOI: 10.1007/s11103-008-9427-0] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 10/27/2008] [Indexed: 05/20/2023]
Abstract
Research in recent years on the biology of guard cells has shown that these specialized cells integrate both extra- and intra-cellular signals in the control of stomatal apertures. Among the phytohormones, abscisic acid (ABA) is one of the key players regulating stomatal function. In addition, auxin, cytokinin, ethylene, brassinosteroids, jasmonates, and salicylic acid also contribute to stomatal aperture regulation. The interaction of multiple hormones can serve to determine the size of stomatal apertures in a condition-specific manner. Here, we discuss the roles of different phytohormones and the effects of their interactions on guard cell physiology and function.
Collapse
Affiliation(s)
- Biswa R Acharya
- Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | | |
Collapse
|
46
|
DalCorso G, Farinati S, Maistri S, Furini A. How plants cope with cadmium: staking all on metabolism and gene expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1268-80. [PMID: 19017114 DOI: 10.1111/j.1744-7909.2008.00737.x] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Environmental pollution is one of the major problems for human health. Toxic heavy metals are normally present as soil constituents or can also be spread out in the environment by human activity and agricultural techniques. Soil contamination by heavy metals as cadmium, highlights two main aspects: on one side they interfere with the life cycle of plants and therefore reduce crop yields, and on the other hand, once adsorbed and accumulated into the plant tissues, they enter the food chain poisoning animals and humans. Considering this point of view, understanding the mechanism by which plants handle heavy metal exposure, in particular cadmium stress, is a primary goal of plant-biotechnology research or plant breeders whose aim is to create plants that are able to recover high amounts of heavy metals, which can be used for phytoremediation, or identify crop varieties that do not accumulate toxic metal in grains or fruits. In this review we focus on the main symptoms of cadmium toxicity both on root apparatus and shoots. We elucidate the mechanisms that plants activate to prevent absorption or to detoxify toxic metal ions, such as synthesis of phytochelatins, metallothioneins and enzymes involved in stress response. Finally we consider new plant-biotechnology applications that can be applied for phytoremediation.
Collapse
Affiliation(s)
- Giovanni DalCorso
- Dipartimento Scientifico e Tecnologico, Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | | | | | |
Collapse
|
47
|
Gao XQ, Chen J, Wei PC, Ren F, Chen J, Wang XC. Array and distribution of actin filaments in guard cells contribute to the determination of stomatal aperture. PLANT CELL REPORTS 2008; 27:1655-65. [PMID: 18612643 DOI: 10.1007/s00299-008-0581-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/16/2008] [Accepted: 06/20/2008] [Indexed: 05/20/2023]
Abstract
Actin filaments in guard cells and their dynamics function in regulating stomatal movement. In this study, the array and distribution of actin filaments in guard cells during stomatal movement were studied with two vital labeling, microinjection of alexa-phalloidin in Vicia faba and expression of GFP-mTn in tobacco. We found that the random array of actin filaments in the most of the closed stomata changed to a ring-like array after stomatal open. And actin filaments, which were throughout the cytoplasm of guard cells of closed stomata (even distribution), were mainly found in the cortical cytoplasm in the case of open stomata (cortical distribution). These results revealed that the random array and even distribution of actin filaments in guard cells may be required for keeping the closed stomata; similarly, the ring-like array and cortical distribution of actin filaments function in sustaining open stomata. Furthermore, we found that actin depolymerization, the trait of moving stomata, facilitates the transformation of actin array and distribution with stomatal movement. So, the depolymerization of actin filaments was favorable for the changes of actin array and distribution in guard cells and thus facilitated stomatal movement.
Collapse
Affiliation(s)
- Xin-Qi Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University 100094, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Guard cells can integrate and process multiple complex signals from the environment and respond by opening and closing stomata in order to adapt to the environmental signal. Over the past several years, considerable research progress has been made in our understanding of the role of reactive oxygen species (ROS) as essential signal molecules that mediate abscisic acid (ABA)-induced stomatal closure. In this review, we discuss hydrogen peroxide (H2O2) generation and signalling, H2O2-induced gene expression, crosstalk and the specificity between ABA and H2O2 signalling, and the cellular mechanism for ROS sensing in guard cells. This review focuses especially on the points of connection between ABA and H2O2 signalling in guard cells. The fundamental progress in understanding the role of ABA and ROS in guard cells will continue to provide a rational basis for biotechnological improvements in the development of drought-tolerant crop plants with improved water-use efficiency.
Collapse
Affiliation(s)
- Pengtao Wang
- Laboratory of Plant Stress Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Chun-Peng Song
- Laboratory of Plant Stress Biology, Department of Biology, Henan University, Kaifeng 475001, China
| |
Collapse
|