1
|
Szada-Borzyszkowska A, Krzyżak J, Rusinowski S, Magurno F, Pogrzeba M. Inoculation with Arbuscular Mycorrhizal Fungi Supports the Uptake of Macronutrients and Promotes the Growth of Festuca ovina L. and Trifolium medium L., a Candidate Species for Green Urban Infrastructure. PLANTS (BASEL, SWITZERLAND) 2024; 13:2620. [PMID: 39339595 PMCID: PMC11434852 DOI: 10.3390/plants13182620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Green roofs and walls play an important role in promoting biodiversity, reducing the urban heat island effect and providing ecosystem services in urban areas. However, the conditions on green walls/roofs (low nutrient and organic matter content, drought, high temperatures) are often unfavorable for plant growth. Arbuscular mycorrhizal fungi (AMF) can improve the growth and development of plants under stress conditions as they can increase nutrient and water uptake. In a 6-month pot experiment, we investigated the effect of AMF inoculation on the growth and NPK uptake of Festuca ovina L. and Trifolium medium L., which are used for green roofs and walls. Two variants of mycorrhizal inoculation were used in the experiment: a commercial mycorrhizal inoculant AM Symbivit (Symbiom Ltd., Lanskroun, Czech Republic) and a mycorrhizal inoculant collected from calcareous grassland in the Silesia region (Poland). Funneliformis mosseae was the most abundant species in the roots of F. ovina and T. medium with IM inoculum. In the CM variant, a dominance of F. mosseae was observed in the roots of F. ovina. In contrast, Archaeosporaceae sp. node 317 dominated in the roots of T. medium. Both inoculations had a positive effect on the increase in dry weight of the shoots of T. medium, but only the commercial inoculum had a positive effect on the growth of F. ovina. Both inoculations improved the P uptake by the roots and the P and K uptake into the shoots of T. medium. In addition, both inoculations improved the K uptake by the roots of F. ovina and the N, P and K uptake into the shoots. In conclusion, both AMF communities included in the inoculations had a positive effect on plant growth and nutrient uptake, but the effect depends on the plant and the mycorrhizal fungus species.
Collapse
Affiliation(s)
| | - Jacek Krzyżak
- Institute for Ecology of Industrial Areas, 6 Kossutha St., 40-844 Katowice, Poland
| | - Szymon Rusinowski
- Institute for Ecology of Industrial Areas, 6 Kossutha St., 40-844 Katowice, Poland
- CommLED Solution Sp. z.o.o., 149 Tarnogórska St., 44-100 Gliwice, Poland
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska St., 40-032 Katowice, Poland
| | - Marta Pogrzeba
- Institute for Ecology of Industrial Areas, 6 Kossutha St., 40-844 Katowice, Poland
| |
Collapse
|
2
|
Tedersoo L, Magurno F, Alkahtani S, Mikryukov V. Phylogenetic classification of arbuscular mycorrhizal fungi: new species and higher-ranking taxa in Glomeromycota and Mucoromycota (class Endogonomycetes). MycoKeys 2024; 107:273-325. [PMID: 39169987 PMCID: PMC11336396 DOI: 10.3897/mycokeys.107.125549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Arbuscular mycorrhizal (AM) fungi - Glomeromycota and Endogonomycetes - comprise multiple species and higher-level taxa that have remained undescribed. We propose a mixed morphology- and DNA-based classification framework to promote taxonomic communication and shed light into the phylogenetic structure of these ecologically essential fungi. Based on eDNA samples and long reads as type materials, we describe 15 new species and corresponding genera (Pseudoentrophosporakesseensis, Hoforsarebekkae, Kahvenarebeccae, Kelottijaerviashannonae, Kungsaengenashadiae, Langduoadianae, Lehetuaindrekii, Lokrumastenii, Moosteastephanieae, Nikkaluoktamahdiehiae, Parniguacraigii, Riederbergasylviae, Ruuacoralieae, Tammsaareavivikae and Unemaeeanathalieae), the genus Parvocarpum as well as 19 families (Pseudoentrophosporaceae, Hoforsaceae, Kahvenaceae, Kelottijaerviaceae, Kungsaengenaceae, Langduoaceae, Lehetuaceae, Lokrumaceae, Moosteaceae, Nikkaluoktaceae, Parniguaceae, Riederbergaceae, Ruuaceae, Tammsaareaceae, Unemaeeaceae, Bifigurataceae, Planticonsortiaceae, Jimgerdemanniaceae and Vinositunicaceae) and 17 orders (Hoforsales, Kahvenales, Kelottijaerviales, Kungsaengenales, Langduoales, Lehetuales, Lokrumales, Moosteales, Nikkaluoktales, Parniguales, Riederbergales, Ruuales, Tammsaareales, Unemaeeales, Bifiguratales and Densosporales), and propose six combinations (Diversisporabareae, Diversisporanevadensis, Fuscutatacerradensis, Fuscutatareticulata, Viscosporadeserticola and Parvocarpumbadium) based on phylogenetic evidence. We highlight further knowledge gaps in the phylogenetic structure of AM fungi and propose an alphanumeric coding system for preliminary communication and reference-based eDNA quality-filtering of the remaining undescribed genus- and family-level groups. Using AM fungi as examples, we hope to offer a sound, mixed framework for classification to boost research in the alpha taxonomy of fungi, especially the "dark matter fungi".
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, 2 Liivi, 50409 Tartu, Estonia
- Department of Zoology, College of Science, King Saud University, 12371 Riyadh, Saudi Arabia
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, 12371 Riyadh, Saudi Arabia
| | - Vladimir Mikryukov
- Mycology and Microbiology Center, University of Tartu, 2 Liivi, 50409 Tartu, Estonia
| |
Collapse
|
3
|
Delavaux CS, Ramos RJ, Stürmer SL, Bever JD. An updated LSU database and pipeline for environmental DNA identification of arbuscular mycorrhizal fungi. MYCORRHIZA 2024; 34:369-373. [PMID: 38951211 PMCID: PMC11283431 DOI: 10.1007/s00572-024-01159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Recent work established a backbone reference tree and phylogenetic placement pipeline for identification of arbuscular mycorrhizal fungal (AMF) large subunit (LSU) rDNA environmental sequences. Our previously published pipeline allowed any environmental sequence to be identified as putative AMF or within one of the major families. Despite this contribution, difficulties in implementation of the pipeline remain. Here, we present an updated database and pipeline with (1) an expanded backbone tree to include four newly described genera and (2) several changes to improve ease and consistency of implementation. In particular, packages required for the pipeline are now installed as a single folder (conda environment) and the pipeline has been tested across three university computing clusters. This updated backbone tree and pipeline will enable broadened adoption by the community, advancing our understanding of these ubiquitous and ecologically important fungi.
Collapse
Affiliation(s)
- Camille S Delavaux
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, Zurich, 8092, Switzerland.
| | - Robert J Ramos
- The Environmental Data Science Innovation & Inclusion Lab (ESIIL), University of Colorado Boulder, Colorado, 80309, USA
| | - Sidney L Stürmer
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Santa Catarina, 89030-903, Brazil
| | - James D Bever
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Avenue, Lawrence, KS, 66047, USA
| |
Collapse
|
4
|
Maússe-Sitoe S, Dames J. Characterization of arbuscular mycorrhizal fungal species associating with Zea mays. FRONTIERS IN PLANT SCIENCE 2024; 15:1345229. [PMID: 38774223 PMCID: PMC11106459 DOI: 10.3389/fpls.2024.1345229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/16/2024] [Indexed: 05/24/2024]
Abstract
Taxonomic identification of arbuscular mycorrhizal (AM) fungal spores extracted directly from the field is sometimes difficult because spores are often degraded or parasitized by other organisms. Single-spore inoculation of a suitable host plant allows for establishing monosporic cultures of AM fungi. This study aimed to propagate AM fungal spores isolated from maize soil using single spores for morphological characterization. First, trap cultures were established to trigger the sporulation of AM fungal species. Second, trap cultures were established with individual morphotypes by picking up only one spore under a dissecting microscope and transferring it to a small triangle of sterilized filter paper, which was then carefully inoculated below a root from germinated sorghum seeds in each pot and covered with a sterile substrate. All pots were placed in sunbags and maintained in a plant growth room for 120 days. Spores obtained from single spore trap cultures from each treatment, maize after oats (MO), maize after maize (MM), maize after peas (MP), and maize after soybean (MS), were extracted using the sieving method. Healthy spores were selected for morphological analysis. Direct PCR was conducted by crushing spores in RNAlater and applying three sets of primer pairs: ITS1 × ITS4, NS31 × AML2, and SSUmcf and LSUmBr. Nucleotide sequences obtained from Sanger sequencing were aligned on MEGA X. The phylogenetic tree showed that the closest neighbors of the propagated AM fungal species belonged to the genera Claroideoglomus, Funneliformis, Gigaspora, Paraglomus, and Rhizophagus. The morphological characteristics were compared to the descriptive features of described species posted on the INVAM website, and they included Acaulospora cavernata, Diversispora spurca, Funneliformis geosporus, Funneliformis mosseae, Gigaspora clarus, Gigaspora margarita, Glomus macrosporum, Paraglomus occultum, and Rhizophagus intraradices. These findings can provide a great contribution to crop productivity and sustainable management of the agricultural ecosystem. Also, the isolate analyzed could be grouped into efficient promoters of growth and mycorrhization of maize independent of their geographical location.
Collapse
Affiliation(s)
| | - Joanna Dames
- Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| |
Collapse
|
5
|
Kokkoris V, Banchini C, Paré L, Abdellatif L, Séguin S, Hubbard K, Findlay W, Dalpé Y, Dettman J, Corradi N, Stefani F. Rhizophagus irregularis, the model fungus in arbuscular mycorrhiza research, forms dimorphic spores. THE NEW PHYTOLOGIST 2024; 242:1771-1784. [PMID: 37434339 DOI: 10.1111/nph.19121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/10/2023] [Indexed: 07/13/2023]
Abstract
Rhizophagus irregularis is the model species for arbuscular mycorrhizal fungi (AMF) research and the most widely propagated species for commercial plant biostimulants. Using asymbiotic and symbiotic cultivation systems initiated from single spores, advanced microscopy, Sanger sequencing of the glomalin gene, and PacBio sequencing of the partial 45S rRNA gene, we show that four strains of R. irregularis produce spores of two distinct morphotypes, one corresponding to the morphotype described in the R. irregularis protologue and the other having the phenotype of R. fasciculatus. The two spore morphs are easily distinguished by spore colour, thickness of the subtending hypha, thickness of the second wall layer, lamination of the innermost layer, and the dextrinoid reaction of the two outer spore wall layers to Melzer's reagent. The glomalin gene of the two spore morphs is identical and that of the PacBio sequences of the partial SSU-ITS-LSU region (2780 bp) obtained from single spores of the R. cf fasciculatus morphotype has a median pairwise similarity of 99.8% (SD = 0.005%) to the rDNA ribotypes of R. irregularis DAOM 197198. Based on these results, we conclude that the model AMF species R. irregularis is dimorphic, which has caused taxonomic confusion in culture collections and possibly in AMF research.
Collapse
Affiliation(s)
- Vasilis Kokkoris
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A 0C6, Canada
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Claudia Banchini
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A 0C6, Canada
| | - Louis Paré
- Université Laval, Centre d'Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), 1030 Ave de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Lobna Abdellatif
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A 0C6, Canada
| | - Sylvie Séguin
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A 0C6, Canada
| | - Keith Hubbard
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A 0C6, Canada
| | - Wendy Findlay
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A 0C6, Canada
| | - Yolande Dalpé
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A 0C6, Canada
| | - Jeremy Dettman
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A 0C6, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Franck Stefani
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A 0C6, Canada
| |
Collapse
|
6
|
Yurkov AP, Kryukov AA, Gorbunova AO, Kudriashova TR, Kovalchuk AI, Gorenkova AI, Bogdanova EM, Laktionov YV, Zhurbenko PM, Mikhaylova YV, Puzanskiy RK, Bagrova TN, Yakhin OI, Rodionov AV, Shishova MF. Diversity of Arbuscular Mycorrhizal Fungi in Distinct Ecosystems of the North Caucasus, a Temperate Biodiversity Hotspot. J Fungi (Basel) 2023; 10:11. [PMID: 38248921 PMCID: PMC10817546 DOI: 10.3390/jof10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Investigations that are focused on arbuscular mycorrhizal fungus (AMF) biodiversity is still limited. The analysis of the AMF taxa in the North Caucasus, a temperate biodiversity hotspot, used to be limited to the genus level. This study aimed to define the AMF biodiversity at the species level in the North Caucasus biotopes. METHODS The molecular genetic identification of fungi was carried out with ITS1 and ITS2 regions as barcodes via sequencing using Illumina MiSeq, the analysis of phylogenetic trees for individual genera, and searches for operational taxonomic units (OTUs) with identification at the species level. Sequences from MaarjAM and NCBI GenBank were used as references. RESULTS We analyzed >10 million reads in soil samples for three biotopes to estimate fungal biodiversity. Briefly, 50 AMF species belonging to 20 genera were registered. The total number of the AM fungus OTUs for the "Subalpine Meadow" biotope was 171/131, that for "Forest" was 117/60, and that for "River Valley" was 296/221 based on ITS1/ITS2 data. The total number of the AM fungus species (except for virtual taxa) for the "Subalpine Meadow" biotope was 24/19, that for "Forest" was 22/13, and that for "River Valley" was 28/24 based on ITS1/ITS2 data. Greater AMF diversity, as well as number of OTUs and species, in comparison with that of forest biotopes, characterized valley biotopes (disturbed ecosystems; grasslands). The correlation coefficient between "Percentage of annual plants" and "Glomeromycota total reads" r = 0.76 and 0.81 for ITS1 and ITS2, respectively, and the correlation coefficient between "Percentage of annual plants" and "OTUs number (for total species)" was r = 0.67 and 0.77 for ITS1 and ITS2, respectively. CONCLUSION High AMF biodiversity for the river valley can be associated with a higher percentage of annual plants in these biotopes and the active development of restorative successional processes.
Collapse
Affiliation(s)
- Andrey P Yurkov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Alexey A Kryukov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Anastasiia O Gorbunova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Tatyana R Kudriashova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, 194064 St. Petersburg, Russia
| | - Anastasia I Kovalchuk
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, 194064 St. Petersburg, Russia
| | - Anastasia I Gorenkova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ekaterina M Bogdanova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Yuri V Laktionov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Peter M Zhurbenko
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Yulia V Mikhaylova
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Roman K Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
- Faculty of Ecology, Russian State Hydrometeorological University, 192007 St. Petersburg, Russia
| | - Tatyana N Bagrova
- Faculty of Ecology, Russian State Hydrometeorological University, 192007 St. Petersburg, Russia
| | - Oleg I Yakhin
- Institute of Biochemistry and Genetics, The Ufa Federal Research Center of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Alexander V Rodionov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Maria F Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
7
|
Kaur T, Reddy MS. Diversity of arbuscular mycorrhizal fungi in seleniferous soils and their role in plant growth promotion. 3 Biotech 2023; 13:369. [PMID: 37849768 PMCID: PMC10577119 DOI: 10.1007/s13205-023-03793-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
The present study aimed to investigate the molecular diversity of arbuscular mycorrhizal fungi (AMF) in natural seleniferous soils and their role in protecting plants from Se toxicity. The genomic DNA extracted from maize roots grown in seleniferous and non-seleniferous regions was amplified using AMF-specific primers by nested PCR. The 1.5 kb amplicon spanning pSSU-ITS-pLSU of 18S rRNA of AMF was deciphered using the Illumina Miseq Next Generation Sequencing (NGS) technique. A total of 17 AMF species from the seleniferous region and 18 AMF species from the non-seleniferous region were identified. The number of reads of Glomus irregularis, G. custos, and G. intraradices was higher in seleniferous soil than in non-seleniferous soil, indicating their tolerance to Se. A consortium of Se-tolerant AMF inoculum was prepared and inoculated to maize plants, grown in natural seleniferous soils. AMF-inoculated plants had healthy growth with higher root, shoot, and grain biomass than non-AMF-inoculated plants. AMF inoculation leads to higher Se accumulation in roots but lesser Se accumulation in shoots and seeds of inoculated maize plants as compared to control plants. Present study results suggest that AMF species from seleniferous soils have the potential to be used as biofertilizers to improve plant growth and tolerate Se toxicity in seleniferous soils.
Collapse
Affiliation(s)
- Tanveer Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| | - M. Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| |
Collapse
|
8
|
Silva AMM, Feiler HP, Lacerda-Júnior GV, Fernandes-Júnior PI, de Tarso Aidar S, de Araújo VAVP, Matteoli FP, de Araújo Pereira AP, de Melo IS, Cardoso EJBN. Arbuscular mycorrhizal fungi associated with the rhizosphere of an endemic terrestrial bromeliad and a grass in the Brazilian neotropical dry forest. Braz J Microbiol 2023; 54:1955-1967. [PMID: 37410249 PMCID: PMC10485230 DOI: 10.1007/s42770-023-01058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Arbuscular mycorrhizal fungi form symbiotic associations with 80-90% of all known plants, allowing the fungi to acquire plant-synthesized carbon, and confer an increased capacity for nutrient uptake by plants, improving tolerance to abiotic and biotic stresses. We aimed at characterizing the mycorrhizal community in the rhizosphere of Neoglaziovia variegata (so-called `caroa`) and Tripogonella spicata (so-called resurrection plant), using high-throughput sequencing of the partial 18S rRNA gene. Both plants are currently undergoing a bioprospecting program to find microbes with the potential of helping plants tolerate water stress. Sampling was carried out in the Caatinga biome, a neotropical dry forest, located in northeastern Brazil. Illumina MiSeq sequencing of 37 rhizosphere samples (19 for N. variegata and 18 for T. spicata) revealed a distinct mycorrhizal community between the studied plants. According to alpha diversity analyses, T. spicata showed the highest richness and diversity based on the Observed ASVs and the Shannon index, respectively. On the other hand, N. variegata showed higher modularity of the mycorrhizal network compared to T. spicata. The four most abundant genera found (higher than 10%) were Glomus, Gigaspora, Acaulospora, and Scutellospora, with Glomus being the most abundant in both plants. Nonetheless, Gigaspora, Diversispora, and Ambispora were found only in the rhizosphere of N. variegata, whilst Scutellospora, Paraglomus, and Archaeospora were exclusive to the rhizosphere of T. spicata. Therefore, the community of arbuscular mycorrhizal fungi of the rhizosphere of each plant encompasses a unique composition, structure and modularity, which can differentially assist them in the hostile environment.
Collapse
Affiliation(s)
- Antonio Marcos Miranda Silva
- “Luiz de Queiroz” College of Agriculture, Soil Science Department, University of São Paulo, Piracicaba, São Paulo 13418-900 Brazil
| | | | | | | | - Saulo de Tarso Aidar
- Brazilian Agricultural Research Corporation, Embrapa Semiárido, Petrolina, , Pernambuco 56302-970 Brazil
| | | | - Filipe Pereira Matteoli
- Faculty of Sciences, Department of Biological Sciences, Laboratory of Microbial Bioinformatics, São Paulo State University, Bauru, 17033-360 Brazil
| | | | - Itamar Soares de Melo
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, São Paulo 13918-110 Brazil
| | | |
Collapse
|
9
|
Romano I, Bodenhausen N, Basch G, Soares M, Faist H, Trognitz F, Sessitsch A, Doubell M, Declerck S, Symanczik S. Impact of conservation tillage on wheat performance and its microbiome. FRONTIERS IN PLANT SCIENCE 2023; 14:1211758. [PMID: 37670872 PMCID: PMC10475739 DOI: 10.3389/fpls.2023.1211758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023]
Abstract
Winter wheat is an important cereal consumed worldwide. However, current management practices involving chemical fertilizers, irrigation, and intensive tillage may have negative impacts on the environment. Conservation agriculture is often presented as a sustainable alternative to maintain wheat production, favoring the beneficial microbiome. Here, we evaluated the impact of different water regimes (rainfed and irrigated), fertilization levels (half and full fertilization), and tillage practices (occasional tillage and no-tillage) on wheat performance, microbial activity, and rhizosphere- and root-associated microbial communities of four winter wheat genotypes (Antequera, Allez-y, Apache, and Cellule) grown in a field experiment. Wheat performance (i.e., yield, plant nitrogen concentrations, and total nitrogen uptake) was mainly affected by irrigation, fertilization, and genotype, whereas microbial activity (i.e., protease and alkaline phosphatase activities) was affected by irrigation. Amplicon sequencing data revealed that habitat (rhizosphere vs. root) was the main factor shaping microbial communities and confirmed that the selection of endophytic microbial communities takes place thanks to specific plant-microbiome interactions. Among the experimental factors applied, the interaction of irrigation and tillage influenced rhizosphere- and root-associated microbiomes. The findings presented in this work make it possible to link agricultural practices to microbial communities, paving the way for better monitoring of these microorganisms in the context of agroecosystem sustainability.
Collapse
Affiliation(s)
- Ida Romano
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
| | - Natacha Bodenhausen
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Gottlieb Basch
- MED – Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Évora, Portugal
| | - Miguel Soares
- MED – Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Évora, Portugal
| | - Hanna Faist
- AIT Austrian Institute of Technology, Tulln, Austria
| | | | | | - Marcé Doubell
- Mycology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Mycology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sarah Symanczik
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| |
Collapse
|
10
|
Geisler M, Buerki S, Serpe MD. Arbuscular Mycorrhizae Alter Photosynthetic Responses to Drought in Seedlings of Artemisia tridentata. PLANTS (BASEL, SWITZERLAND) 2023; 12:2990. [PMID: 37631200 PMCID: PMC10458374 DOI: 10.3390/plants12162990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The establishment of Artemisia tridentata, a keystone species of the sagebrush steppe, is often limited by summer drought. Symbioses with arbuscular mycorrhizal fungi (AMF) can help plants to cope with drought. We investigated this possible effect on A. tridentata seedlings inoculated with native AMF and exposed to drought in greenhouse and field settings. In greenhouse experiments, AMF colonization increased intrinsic water use efficiency under water stress and delayed the decrease in photosynthesis caused by drought, or this decrease occurred at a lower soil water content. In the field, we evaluated the effect of AMF inoculation on colonization, leaf water potential, survival, and inflorescence development. Inoculation increased AMF colonization, and the seedlings experienced water stress, as evidenced by water potentials between -2 and -4 MPa and reduced stomatal conductance. However, survival remained high, and no differences in water potentials or survival occurred between treatments. Only the percentage of plants with inflorescence was higher in inoculated than non-inoculated seedlings. Overall, the greenhouse results support that AMF colonization enhances drought tolerance in A. tridentata seedlings. Yet, the significance of these results in increasing survival in nature remains to be tested under more severe drought than the plants experienced in our field experiment.
Collapse
Affiliation(s)
| | | | - Marcelo D. Serpe
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725, USA
| |
Collapse
|
11
|
Rosas-Moreno J, Walker C, Duffy K, Krüger C, Krüger M, Robinson CH, Pittman JK. Isolation and identification of arbuscular mycorrhizal fungi from an abandoned uranium mine and their role in soil-to-plant transfer of radionuclides and metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162781. [PMID: 36906011 DOI: 10.1016/j.scitotenv.2023.162781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Arbuscular mycorrhizal fungi were recovered from soil samples from the naturally radioactive soil at the long-abandoned South Terras uranium mine in Cornwall, UK. Species of Rhizophagus, Claroideoglomus, Paraglomus, Septoglomus, and Ambispora were recovered, and pot cultures from all except Ambispora were established. Cultures were identified to species level using morphological observation and rRNA gene sequencing combined with phylogenetic analysis. These cultures were used in pot experiments designed with a compartmentalised system to assess the contribution of fungal hyphae to the accumulation of essential elements, such as copper and zinc, and non-essential elements, such as lead, arsenic, thorium, and uranium into root and shoot tissues of Plantago lanceolata. The results indicated that none of the treatments had any positive or negative impact on shoot and root biomass. However, Rhizophagus irregularis treatments showed higher accumulation of copper and zinc in shoots, while R. irregularis and Septoglomus constrictum enhanced arsenic accumulation in roots. Moreover, R. irregularis increased uranium concentration in roots and shoots of the P. lanceolata plant. This study provides useful insight into fungal-plant interactions that determine metal and radionuclide transfer from soil into the biosphere at contaminated sites such as mine workings.
Collapse
Affiliation(s)
- Jeanette Rosas-Moreno
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Christopher Walker
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Royal Botanic Garden Edinburgh, 21A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Katie Duffy
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Claudia Krüger
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Manuela Krüger
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Clare H Robinson
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jon K Pittman
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
12
|
Suárez JP, Herrera P, Kalinhoff C, Vivanco-Galván O, Thangaswamy S. Generalist arbuscular mycorrhizal fungi dominated heavy metal polluted soils at two artisanal and small - scale gold mining sites in southeastern Ecuador. BMC Microbiol 2023; 23:42. [PMID: 36792979 PMCID: PMC9930361 DOI: 10.1186/s12866-022-02748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 12/24/2022] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Artisanal and small-scale gold mining activities are producing contamination with heavy metals and metalloids (HMM) into soils and water worldwide. The HMM are considered as one of the major abiotic stresses due to their long-term persistence in soil. In this context, arbuscular mycorrhizal fungi (AMF) confer resistance to a variety of abiotic plant stressors including HMM. However, little is known regarding the diversity and composition of AMF communities in heavy metal polluted sites in Ecuador. METHODS In order to investigate the AMF diversity, root samples and associated soil of six plant species were collected from two sites polluted by heavy metals, located in Zamora-Chinchipe province, Ecuador. The AMF 18S nrDNA genetic region was analyzed and sequenced, and fungal OTUs were defined based on 99% sequence similarity. Results were contrasted with AMF communities from a natural forest and from reforestation sites located in the same province and with available sequences in GenBank. RESULTS The main pollutants in soils were Pb, Zn, Hg, Cd and Cu with concentrations exceeding the soil reference value for agricultural use. Molecular phylogeny and OTU delimitation showed 19 OTUs, the family Glomeraceae was the most OTU-rich followed by Archaeosporaceae, Acaulosporaceae, Ambisporaceae and Paraglomeraceae. Most of the OTUs (11 of 19) have been found at other locations worldwide, 14 OTUs were proven from nearby non-contaminated sites in Zamora-Chinchipe. CONCLUSION Our study showed that there are no specialized OTUs at the studied HMM polluted sites, but rather generalists adapted to a wide variety of habitats. Their potential role in phytoremediation approaches remains to be investigated.
Collapse
Affiliation(s)
- Juan Pablo Suárez
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, UTPL, Loja, Ecuador.
| | - Paulo Herrera
- grid.440860.e0000 0004 0485 6148Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, UTPL, Loja, Ecuador
| | - Carolina Kalinhoff
- grid.440860.e0000 0004 0485 6148Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, UTPL, Loja, Ecuador
| | - Oscar Vivanco-Galván
- grid.440860.e0000 0004 0485 6148Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, UTPL, Loja, Ecuador
| | - Selvaraj Thangaswamy
- grid.440860.e0000 0004 0485 6148Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, UTPL, Loja, Ecuador ,PROMETEO Project, Loja, Ecuador
| |
Collapse
|
13
|
de la Sota Ricaldi AM, Rengifo del Águila S, Blas Sevillano R, López-García Á, Corazon-Guivin MA. Beta Diversity of Arbuscular Mycorrhizal Communities Increases in Time after Crop Establishment of Peruvian Sacha Inchi ( Plukenetia volubilis). J Fungi (Basel) 2023; 9:194. [PMID: 36836309 PMCID: PMC9966307 DOI: 10.3390/jof9020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Beta diversity, i.e., the variance in species compositions across communities, has been pointed out as a main factor for explaining ecosystem functioning. However, few studies have directly tested the effect of crop establishment on beta diversity. We studied beta diversity patterns of arbuscular mycorrhizal (AM) fungal communities associated to sacha inchi (Plukenetia volubilis) after crop establishment. (2) Methods: We molecularly characterized the AM fungal communities associated to roots of sacha inchi in plots after different times of crop establishment, from less than one year to older than three. We analyzed the patterns of alpha, beta, and phylogenetic diversity, and the sources of variation of AM fungal community composition. (3) Results: Beta diversity increased in the older plots, but no temporal effect in alpha or phylogenetic diversity was found. The AM fungal community composition was driven by environmental factors (altitude and soil conditions). A part of this variation could be attributed to differences between sampled locations (expressed as geographic coordinates). Crop age, in turn, affected the composition with no interactions with the environmental conditions or spatial location. (4) Conclusions: These results point out towards a certain recovery of the soil microbiota after sacha inchi establishment. This fact could be attributed to the low-impact management associated to this tropical crop.
Collapse
Affiliation(s)
- Ana Maria de la Sota Ricaldi
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca N° 315, Morales 22201, Peru
| | - Sofía Rengifo del Águila
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca N° 315, Morales 22201, Peru
| | - Raúl Blas Sevillano
- Facultad de Agronomía, Universidad Nacional Agraria la Molina, Av. La Molina s/n, Lima 15024, Peru
| | - Álvaro López-García
- Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), Universidad de Jaén, 23071 Jaén, Spain
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), 18008 Granada, Spain
| | - Mike Anderson Corazon-Guivin
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca N° 315, Morales 22201, Peru
| |
Collapse
|
14
|
Błaszkowski J, Sánchez-García M, Niezgoda P, Zubek S, Fernández F, Vila A, Al-Yahya’ei MN, Symanczik S, Milczarski P, Malinowski R, Cabello M, Goto BT, Casieri L, Malicka M, Bierza W, Magurno F. A new order, Entrophosporales, and three new Entrophospora species in Glomeromycota. Front Microbiol 2022; 13:962856. [PMID: 36643412 PMCID: PMC9835108 DOI: 10.3389/fmicb.2022.962856] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022] Open
Abstract
As a result of phylogenomic, phylogenetic, and morphological analyses of members of the genus Claroideoglomus, four potential new glomoid spore-producing species and Entrophospora infrequens, a new order, Entrophosporales, with one family, Entrophosporaceae (=Claroideoglomeraceae), was erected in the phylum Glomeromycota. The phylogenomic analyses recovered the Entrophosporales as sister to a clade formed by Diversisporales and Glomeraceae. The strongly conserved entrophosporoid morph of E. infrequens, provided with a newly designated epitype, was shown to represent a group of cryptic species with the potential to produce different glomoid morphs. Of the four potential new species, three enriched the Entrophosporales as new Entrophospora species, E. argentinensis, E. glacialis, and E. furrazolae, which originated from Argentina, Sweden, Oman, and Poland. The fourth fungus appeared to be a glomoid morph of the E. infrequens epitype. The physical association of the E. infrequens entrophosporoid and glomoid morphs was reported and illustrated here for the first time. The phylogenetic analyses, using nuc rDNA and rpb1 concatenated sequences, confirmed the previous conclusion that the genus Albahypha in the family Entrophosporaceae sensu Oehl et al. is an unsupported taxon. Finally, the descriptions of the Glomerales, Entrophosporaceae, and Entrophospora were emended and new nomenclatural combinations were introduced.
Collapse
Affiliation(s)
- Janusz Błaszkowski
- Department of Environmental Management, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Marisol Sánchez-García
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Piotr Niezgoda
- Department of Environmental Management, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Szymon Zubek
- Faculty of Biology, Institute of Botany, Jagiellonian University, Kraków, Poland
| | | | - Ana Vila
- R&D Department, Symborg SL, Murcia, Spain
| | | | - Sarah Symanczik
- Zurich-Basel Plant Science Center, Institute of Botany, University of Basel, Basel, Switzerland
| | - Paweł Milczarski
- Department of Genetic, Plant Breeding and Biotechnology, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Ryszard Malinowski
- Department of Environmental Management, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Marta Cabello
- Instituto Spegazzini, Comisión de Investigaciones Científicas de La Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Bruno Tomio Goto
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal, RN, Brazil
| | - Leonardo Casieri
- Mycorrhizal Applications LLC at Bio-Research and Development Growth Park, St. Louis, MO, United States
| | - Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Wojciech Bierza
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
15
|
Yamato M, Yamada H, Maeda T, Yamamoto K, Kusakabe R, Orihara T. Clonal spore populations in sporocarps of arbuscular mycorrhizal fungi. MYCORRHIZA 2022; 32:373-385. [PMID: 35767052 DOI: 10.1007/s00572-022-01086-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Some arbuscular mycorrhizal (AM) fungal species known to form sporocarps (i.e., aggregations of spores) are polyphyletic in two orders, Glomerales and Diversisporales. Spore clusters (sporocarp-like structures) often formed in pot cultures or in vitro conditions are supposed to be clonal populations, while sporocarps in natural habitats with a fungal peridium are morphologically similar to those of epigeous sexual (zygosporic) sporocarps of Endogone species. Thus, in this study, we explored the genetics of sporocarpic spores of two AM fungi with a view to possibilities of clonal or sexual reproduction during sporocarps formation. To examine these possibilities, we investigated single-nucleotide polymorphisms (SNPs) in reduced genomic libraries of spores isolated from sporocarps molecularly identified as Rhizophagus irregularis and Diversispora epigaea. In addition, partial sequences of the MAT locus HD2 gene of R. irregularis were phylogenetically analyzed to determine the nuclear status of the spores. We found that most SNPs were shared among the spores isolated from each sporocarp in both species. Furthermore, all HD2 sequences from spores isolated from three R. irregularis sporocarps were identical. These results indicate that those sporocarps comprise clonal spores. Therefore, sporocarps with clonal spores may have different functions than sexual reproduction, such as massive spore production or spore dispersal via mycophagy.
Collapse
Affiliation(s)
- Masahide Yamato
- Faculty of Education, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| | - Hiroki Yamada
- Graduate School of Education, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Taro Maeda
- Institute for Advanced Biosciences, Keio University, Kakuganji 246-2, Mizukami, Tsuruoka, Yamagata, 997-0052, Japan
| | - Kohei Yamamoto
- Tochigi Prefectural Museum, 2-2 Mutsumi-cho, Utsunomiya, Tochigi, 320-0865, Japan
| | - Ryota Kusakabe
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba, 271-8510, Japan
| | - Takamichi Orihara
- Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara, Kanagawa, 250-0031, Japan
| |
Collapse
|
16
|
Phenol and Polyaromatic Hydrocarbons Are Stronger Drivers Than Host Plant Species in Shaping the Arbuscular Mycorrhizal Fungal Component of the Mycorrhizosphere. Int J Mol Sci 2022; 23:ijms232012585. [PMID: 36293448 PMCID: PMC9604154 DOI: 10.3390/ijms232012585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
Changes in soil microbial communities in response to hydrocarbon pollution are critical indicators of disturbed ecosystem conditions. A core component of these communities that is functionally adjusted to the life-history traits of the host and environmental factors consists of arbuscular mycorrhizal fungi (AMF). AMF communities associated with Poa trivialis and Phragmites australis growing at a phenol and polynuclear aromatic hydrocarbon (PAH)-contaminated site and at an uncontaminated site were compared based on LSU rDNA sequencing. Dissimilarities in species composition and community structures indicated soil pollution as the main factor negatively affecting the AMF diversity. The AMF communities at the contaminated site were dominated by fungal generalists (Rhizophagus, Funneliformis, Claroideoglomus, Paraglomus) with wide ecological tolerance. At the control site, the AMF communities were characterized by higher taxonomic and functional diversity than those exposed to the contamination. The host plant identity was the main driver distinguishing the two AMF metacommunities. The AMF communities at the uncontaminated site were represented by Polonospora, Paraglomus, Oehlia, Nanoglomus, Rhizoglomus, Dominikia, and Microdominikia. Polonosporaceae and Paraglomeraceae were particularly dominant in the Ph. australis mycorrhizosphere. The high abundance of early diverging AMF could be due to the use of primers able to detect lineages such as Paraglomeracae that have not been recognized by previously used 18S rDNA primers.
Collapse
|
17
|
Řezáčová V, Michalová T, Řezáč M, Gryndler M, Duell EB, Wilson GWT, Heneberg P. The root-associated arbuscular mycorrhizal fungal assemblages of exotic alien plants are simplified in invaded distribution ranges, but dominant species are retained: A trans-continental perspective. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:732-741. [PMID: 35924424 DOI: 10.1111/1758-2229.13108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) provide crucial support for the establishment of plants in novel environments. We hypothesized that the OTU/genus richness and diversity of soil- and root-associated AMF associated with alien plant species in their exotic ranges are lower than those in their native ranges. We examined the root-associated and soil-dwelling AMF of 11 invasive plant species in their native and exotic ranges in the United States and Europe by DNA sequencing of the ITS2 locus. Examined root-associated AMF assemblages were simplified, which manifested as the loss of several AMF genera in the exotic ranges of the plants. These fungal assemblages were also characterized by greater dominance and simplification of the fungal assemblages. The dominant fungal genera were present regardless of whether their host plants were in their native or exotic ranges. Interestingly, both the native and invaded soils hosted diverse local AMF assemblages. Therefore, alien plant invasions were not limited to soils with low AMF diversity. Some AMF taxa could be context-dependent passengers rather than drivers of alien plant invasions. Further studies should identify functions of AMF missing or less abundant in roots of plants growing in exotic ranges.
Collapse
Affiliation(s)
- Veronika Řezáčová
- Crop Research Institute, Prague, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Michalová
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Řezáč
- Crop Research Institute, Prague, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Gryndler
- Department of Biology, Faculty of Science, J. E. Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Eric B Duell
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
- Kansas Biological Survey and Center for Ecological Research, Lawrence, Kansas, USA
| | - Gail W T Wilson
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Petr Heneberg
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
The Potential Applications of Commercial Arbuscular Mycorrhizal Fungal Inoculants and Their Ecological Consequences. Microorganisms 2022; 10:microorganisms10101897. [PMID: 36296173 PMCID: PMC9609176 DOI: 10.3390/microorganisms10101897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal fungal (AMF) inoculants are sustainable biological materials that can provide several benefits to plants, especially in disturbed agroecosystems and in the context of phytomanagement interventions. However, it is difficult to predict the effectiveness of AMF inoculants and their impacts on indigenous AMF communities under field conditions. In this review, we examined the literature on the possible outcomes following the introduction of AMF-based inoculants in the field, including their establishment in soil and plant roots, persistence, and effects on the indigenous AMF community. Most studies indicate that introduced AMF can persist in the target field from a few months to several years but with declining abundance (60%) or complete exclusion (30%). Further analysis shows that AMF inoculation exerts both positive and negative impacts on native AMF species, including suppression (33%), stimulation (38%), exclusion (19%), and neutral impacts (10% of examined cases). The factors influencing the ecological fates of AMF inoculants, such as the inherent properties of the inoculum, dosage and frequency of inoculation, and soil physical and biological factors, are further discussed. While it is important to monitor the success and downstream impacts of commercial inoculants in the field, the sampling method and the molecular tools employed to resolve and quantify AMF taxa need to be improved and standardized to eliminate bias towards certain AMF strains and reduce discrepancies among studies. Lastly, inoculant producers must focus on selecting strains with a higher chance of success in the field, and having little or negligible downstream impacts.
Collapse
|
19
|
da Silva KJG, Fernandes JAL, Magurno F, Leandro LBA, Goto BT, Theodoro RC. Phylogenetic Review of Acaulospora ( Diversisporales, Glomeromycota) and the Homoplasic Nature of Its Ornamentations. J Fungi (Basel) 2022; 8:892. [PMID: 36135617 PMCID: PMC9502532 DOI: 10.3390/jof8090892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
The genus Acaulospora has undergone many updates since it was first described; however, there are some missing pieces in the phylogenetic relationships among Acaulospora species. The present review aimed to: (i) understand the evolutionary meaning of their different spore wall ornamentations; (ii) define the best molecular marker for phylogenetic inferences, (iii) address some specific issues concerning the polyphyletic nature of Acaulospora lacunosa and Acaulospora scrobiculata, and the inclusion of Kuklospora species; and (iv) update the global geographical distribution of Acaulospora species. As such, the wall ornamentation of previously described Acaulospora species was reviewed and phylogenetic analyses were carried out based on ITS and SSU-ITS-LSU (nrDNA). Moreover, the already available type material of A. sporocarpia was inspected. According to the data obtained, temperate and tropical zones are the richest in Acaulospora species. We also confirmed that A. sporocarpia does not belong to Acaulospora. Furthermore, our phylogeny supported the monophyly of Acaulospora genus, including the Kuklospora species, K. colombiana and K. kentinensis. The nrDNA phylogeny presented the best resolution and revealed the homoplasic nature of many ornamentations in Acaulospora species, pointing out their unfeasible phylogenetic signal. This review reinforces the urgency of more molecular markers, in addition to the nrDNA sequences, for the definition of a multi-locus phylogeny.
Collapse
Affiliation(s)
- Kássia J. G. da Silva
- Programa de Pós-Graduação em Sistemática e Evolução, Centro de Biociências, Natal 59078-970, RN, Brazil
- Centro de Biociências, Campus Central, Universidade Federal do Rio Grande do Norte, Natal 59064-741, RN, Brazil
| | | | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Larissa B. A. Leandro
- Centro de Biociências, Campus Central, Universidade Federal do Rio Grande do Norte, Natal 59064-741, RN, Brazil
| | - Bruno T. Goto
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal 59064-741, RN, Brazil
| | - Raquel C. Theodoro
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal 59064-741, RN, Brazil
| |
Collapse
|
20
|
Whitehead J, Roy J, Hempel S, Rillig MC. Soil microbial communities shift along an urban gradient in Berlin, Germany. Front Microbiol 2022; 13:972052. [PMID: 36033838 PMCID: PMC9412169 DOI: 10.3389/fmicb.2022.972052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
The microbial communities inhabiting urban soils determine the functioning of these soils, in regards to their ability to cycle nutrients and support plant communities. In an increasingly urbanized world these properties are of the utmost importance, and the microbial communities responsible are worthy of exploration. We used 53 grassland sites spread across Berlin to describe and explain the impacts of urbanity and other environmental parameters upon the diversity and community composition of four microbial groups. These groups were (i) the Fungi, with a separate dataset for (ii) the Glomeromycota, (iii) the Bacteria, and (iv) the protist phylum Cercozoa. We found that urbanity had distinct impacts on fungal richness, which tended to increase. Geographic distance between sites and soil chemistry, in addition to urbanity, drove microbial community composition, with site connectivity being important for Glomeromycotan communities, potentially due to plant host communities. Our findings suggest that many microbial species are well adapted to urban soils, as supported by an increase in diversity being a far more common result of urbanity than the reverse. However, we also found distinctly separate distributions of operational taxonomic unit (OTU)s from the same species, shedding doubt of the reliability of indicator species, and the use of taxonomy to draw conclusion on functionality. Our observational study employed an extensive set of sites across an urbanity gradient, in the region of the German capital, to produce a rich microbial dataset; as such it can serve as a blueprint for other such investigations.
Collapse
Affiliation(s)
- James Whitehead
- Ecology of Plants, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Julien Roy
- Ecology of Plants, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Stefan Hempel
- Ecology of Plants, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Matthias C. Rillig
- Ecology of Plants, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
21
|
Guardiola-Márquez CE, Pacheco A, Mora-Godínez S, Schüßler A, Gradilla-Hernández MS, Senés-Guerrero C. Septoglomus species dominate the arbuscular mycorrhiza of five crop plants in an arid region of northern Mexico. Symbiosis 2022. [DOI: 10.1007/s13199-022-00851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Agnihotri R, Sharma MP, Bucking H, Dames JF, Bagyaraj DJ. Methods for assessing the quality of AM fungal bio-fertilizer: Retrospect and future directions. World J Microbiol Biotechnol 2022; 38:97. [PMID: 35478267 DOI: 10.1007/s11274-022-03288-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
In the recent past, the mass production of arbuscular mycorrhizal (AM) fungi has bloomed into a large biofertilizer industry. Due to their obligate symbiotic nature, these fungi are propagated on living roots in substrate-based pot cultures and RiTDNA in in vitro or root organ culture systems. The quality assessment of AM inocula remains critical for the production and efficacy evaluation of AM fungi. The vigour of AM inocula are assessed through microscopic methods such as inoculum potential, infectivity potential/infection units, most probable number (MPN) and spore density. These methods marginally depend on the researcher's skill. The signature lipids specific to AM fungi, e.g. 16:1ω5cis ester-linked, phospholipid, and neutral lipid fatty acids provide more robustness and reproducibility. The quantitative real-time PCR of AM fungal taxa specific primers and probes analyzing gene copy number is also increasingly used. This article intends to sensitize AM fungal researchers and inoculum manufacturers to various methods of assessing the quality of AM inocula addressing their merits and demerits. This will help AM producers to fulfil the regulatory requirements ensuring the supply of high-quality AM inocula to end-users, and tap a new dimension of AM research in the commercial production of AM fungi and its application in sustainable plant production systems.
Collapse
Affiliation(s)
- R Agnihotri
- ICAR-Indian Institute of Soybean Research, 452001, Indore, India.,M S Swaminathan Research Foundation (MSSRF), Thondamanatham post, Vazhuthavoor road, 605502, Pillaiyarkuppam, Puducherry, India
| | - M P Sharma
- ICAR-Indian Institute of Soybean Research, 452001, Indore, India.
| | - H Bucking
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, 65211, Columbia, Missouri, USA
| | - J F Dames
- Department of Biochemistry and Microbiology, Rhodes University, 6140, Makhanda, Grahamstown, South Africa
| | - D J Bagyaraj
- Centre for Natural Biological Resources and Community Development, 41 RBI Colony, Anand Nagar, 560024, Bengaluru, India.
| |
Collapse
|
23
|
Malar C M, Wang Y, Stajich JE, Kokkoris V, Villeneuve-Laroche M, Yildirir G, Corradi N. Early branching arbuscular mycorrhizal fungus Paraglomus occultum carries a small and repeat-poor genome compared to relatives in the Glomeromycotina. Microb Genom 2022; 8:000810. [PMID: 35451944 PMCID: PMC9453076 DOI: 10.1099/mgen.0.000810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
The arbuscular mycorrhizal fungi (AMFs) are obligate root symbionts in the subphylum Glomeromycotina that can benefit land plants by increasing their soil nutrient uptake in exchange for photosynthetically fixed carbon sources. To date, annotated genome data from representatives of the AMF orders Glomerales, Diversisporales and Archaeosporales have shown that these organisms have large and highly repeated genomes, and no genes to produce sugars and fatty acids. This led to the hypothesis that the most recent common ancestor (MRCA) of Glomeromycotina was fully dependent on plants for nutrition. Here, we aimed to further test this hypothesis by obtaining annotated genome data from a member of the early diverging order Paraglomerales (Paraglomus occultum). Genome analyses showed this species carries a 39.6 Mb genome and considerably fewer genes and repeats compared to most AMF relatives with annotated genomes. Consistent with phylogenies based on ribosomal genes, our phylogenetic analyses suggest P. occultum as the earliest diverged branch within Glomeromycotina. Overall, our analyses support the view that the MRCA of Glomeromycotina carried hallmarks of obligate plant biotrophy. The small genome size and content of P. occultum could either reflect adaptive reductive processes affecting some early AMF lineages, or indicate that the high gene and repeat family diversity thought to drive AMF adaptability to host and environmental change was not an ancestral feature of these prominent plant symbionts.
Collapse
Affiliation(s)
- Mathu Malar C
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Yan Wang
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California–Riverside, Riverside, CA, USA
- Institute for Integrative Genome Biology, University of California–Riverside, Riverside, CA, USA
| | - Vasilis Kokkoris
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Gokalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
24
|
Keyes S, van Veelen A, McKay Fletcher D, Scotson C, Koebernick N, Petroselli C, Williams K, Ruiz S, Cooper L, Mayon R, Duncan S, Dumont M, Jakobsen I, Oldroyd G, Tkacz A, Poole P, Mosselmans F, Borca C, Huthwelker T, Jones DL, Roose T. Multimodal correlative imaging and modelling of phosphorus uptake from soil by hyphae of mycorrhizal fungi. THE NEW PHYTOLOGIST 2022; 234:688-703. [PMID: 35043984 PMCID: PMC9307049 DOI: 10.1111/nph.17980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 05/29/2023]
Abstract
Phosphorus (P) is essential for plant growth. Arbuscular mycorrhizal fungi (AMF) aid its uptake by acquiring P from sources distant from roots in return for carbon. Little is known about how AMF colonise soil pore-space, and models of AMF-enhanced P-uptake are poorly validated. We used synchrotron X-ray computed tomography to visualize mycorrhizas in soil and synchrotron X-ray fluorescence/X-ray absorption near edge structure (XRF/XANES) elemental mapping for P, sulphur (S) and aluminium (Al) in combination with modelling. We found that AMF inoculation had a suppressive effect on colonisation by other soil fungi and identified differences in structure and growth rate between hyphae of AMF and nonmycorrhizal fungi. Our results showed that AMF co-locate with areas of high P and low Al, and preferentially associate with organic-type P species over Al-rich inorganic P. We discovered that AMF avoid Al-rich areas as a source of P. Sulphur-rich regions were found to be correlated with higher hyphal density and an increased organic-associated P-pool, whilst oxidized S-species were found close to AMF hyphae. Increased S oxidation close to AMF suggested the observed changes were microbiome-related. Our experimentally-validated model led to an estimate of P-uptake by AMF hyphae that is an order of magnitude lower than rates previously estimated - a result with significant implications for the modelling of plant-soil-AMF interactions.
Collapse
Affiliation(s)
- Sam Keyes
- Bioengineering Sciences Research GroupDepartment of Mechanical EngineeringSchool of EngineeringFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Arjen van Veelen
- Bioengineering Sciences Research GroupDepartment of Mechanical EngineeringSchool of EngineeringFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
- Material Science and Technology DivisionLos Alamos National LaboratoryLos AlamosNM87545USA
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Dan McKay Fletcher
- Bioengineering Sciences Research GroupDepartment of Mechanical EngineeringSchool of EngineeringFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Callum Scotson
- Bioengineering Sciences Research GroupDepartment of Mechanical EngineeringSchool of EngineeringFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Nico Koebernick
- Bioengineering Sciences Research GroupDepartment of Mechanical EngineeringSchool of EngineeringFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Chiara Petroselli
- Bioengineering Sciences Research GroupDepartment of Mechanical EngineeringSchool of EngineeringFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Katherine Williams
- Bioengineering Sciences Research GroupDepartment of Mechanical EngineeringSchool of EngineeringFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Siul Ruiz
- Bioengineering Sciences Research GroupDepartment of Mechanical EngineeringSchool of EngineeringFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Laura Cooper
- Bioengineering Sciences Research GroupDepartment of Mechanical EngineeringSchool of EngineeringFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Robbie Mayon
- Bioengineering Sciences Research GroupDepartment of Mechanical EngineeringSchool of EngineeringFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Simon Duncan
- Bioengineering Sciences Research GroupDepartment of Mechanical EngineeringSchool of EngineeringFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Marc Dumont
- School of Biological SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Iver Jakobsen
- Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40FrederiksbergDK‐1871Denmark
| | - Giles Oldroyd
- Crop Science CentreUniversity of Cambridge93 Lawrence Weaver RoadCambridgeCB3 0LEUK
| | - Andrzej Tkacz
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Philip Poole
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Fred Mosselmans
- Diamond Light SourceDiamond House, Harwell Science & Innovation CampusDidcotOX11 0DEUK
| | - Camelia Borca
- Swiss Light SourcePSIForschungsstrasse 111Villigen5232Switzerland
| | | | - David L. Jones
- School of Natural SciencesBangor UniversityBangorLL57 2DGUK
- SoilsWest, Food Futures InstituteMurdoch University90 South StreetMurdochWA6150Australia
| | - Tiina Roose
- Bioengineering Sciences Research GroupDepartment of Mechanical EngineeringSchool of EngineeringFaculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonSO17 1BJUK
| |
Collapse
|
25
|
Błaszkowski J, Niezgoda P, Zubek S, Meller E, Milczarski P, Malinowski R, Malicka M, Uszok S, Goto BT, Bierza W, Casieri L, Magurno F. Three new species of arbuscular mycorrhizal fungi of the genus Diversispora from maritime dunes of Poland. Mycologia 2022; 114:453-466. [PMID: 35358026 DOI: 10.1080/00275514.2022.2030081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Three new species of arbuscular mycorrhizal fungi of the genus Diversispora (phylum Glomeromycota) were described based on their morphology and molecular phylogeny. The phylogeny was inferred from the analyses of the partial 45S rDNA sequences (18S-ITS-28S) and the largest subunit of RNA polymerase II (rpb1) gene. These species were associated in the field with plants colonizing maritime sand dunes of the Baltic Sea in Poland and formed mycorrhiza in single-species cultures.
Collapse
Affiliation(s)
- Janusz Błaszkowski
- Department of Protection and Shaping of Environment, West Pomeranian University of Technology in Szczecin, 71-434, Szczecin, Poland
| | - Piotr Niezgoda
- Department of Protection and Shaping of Environment, West Pomeranian University of Technology in Szczecin, 71-434, Szczecin, Poland
| | - Szymon Zubek
- Institute of Botany, Faculty of Biology, Jagiellonian University, 30-387, Kraków, Poland
| | - Edward Meller
- Laboratory of Soil Science and Environmental Chemistry, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, 71-434, Szczecin, Poland
| | - Paweł Milczarski
- Department of Genetics, Plant Breeding & Biotechnology, West Pomeranian University of Technology in Szczecin, 71-434, Szczecin, Poland
| | - Ryszard Malinowski
- Laboratory of Soil Science and Environmental Chemistry, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, 71-434, Szczecin, Poland
| | - Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Sylwia Uszok
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Bruno Tomio Goto
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, Brazil
| | - Wojciech Bierza
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Leonardo Casieri
- Mycorrhizal Applications LLC at Bio-Research & Development Growth Park, St. Louis, Missouri 63132, USA
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032, Katowice, Poland
| |
Collapse
|
26
|
Yu F, Goto BT, Magurno F, Błaszkowski J, Wang J, Ma W, Feng H, Liu Y. Glomus chinense and Dominikia gansuensis, two new Glomeraceae species of arbuscular mycorrhizal fungi from high altitude in the Tibetan Plateau. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01799-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Heller WP, Carrara JE. Multiplex qPCR assays to distinguish individual species of arbuscular mycorrhizal fungi from roots and soil. MYCORRHIZA 2022; 32:155-164. [PMID: 35133475 DOI: 10.1007/s00572-022-01069-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Currently, root colonization measurements of arbuscular mycorrhizal fungi (AMF) require staining and microscopy, and species-level identification of the fungi by such observations is not possible. Here, we present novel multiplex real-time PCR assays targeting the glomalin genes of 11 different species of AMF commonly found in temperate agricultural soils, which independently detect and measure the abundance of these fungi using DNA extracts from soil and or root tissue. The availability of these tools will not only increase throughput in determining levels of root colonization but can provide species-specific levels of root colonization from a single sample. This will help to establish which AMF species, or combinations of different species, provide the most benefits to crops, and will aid in the development of AMF for use as biofertilizers.
Collapse
Affiliation(s)
- Wade P Heller
- USDA Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA.
| | - Joseph E Carrara
- USDA Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| |
Collapse
|
28
|
Delavaux CS, Ramos RJ, Sturmer SL, Bever JD. Environmental identification of arbuscular mycorrhizal fungi using the LSU rDNA gene region: an expanded database and improved pipeline. MYCORRHIZA 2022; 32:145-153. [PMID: 35099622 PMCID: PMC8907093 DOI: 10.1007/s00572-022-01068-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/18/2022] [Indexed: 05/02/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF; Glomeromycota) are difficult to culture; therefore, establishing a robust amplicon-based approach to taxa identification is imperative to describe AMF diversity. Further, due to low and biased sampling of AMF taxa, molecular databases do not represent the breadth of AMF diversity, making database matching approaches suboptimal. Therefore, a full description of AMF diversity requires a tool to determine sequence-based placement in the Glomeromycota clade. Nonetheless, commonly used gene regions, including the SSU and ITS, do not enable reliable phylogenetic placement. Here, we present an improved database and pipeline for the phylogenetic determination of AMF using amplicons from the large subunit (LSU) rRNA gene. We improve our database and backbone tree by including additional outgroup sequences. We also improve an existing bioinformatics pipeline by aligning forward and reverse reads separately, using a universal alignment for all tree building, and implementing a BLAST screening prior to tree building to remove non-homologous sequences. Finally, we present a script to extract AMF belonging to 11 major families as well as an amplicon sequencing variant (ASV) version of our pipeline. We test the utility of the pipeline by testing the placement of known AMF, known non-AMF, and Acaulospora sp. spore sequences. This work represents the most comprehensive database and pipeline for phylogenetic placement of AMF LSU amplicon sequences within the Glomeromycota clade.
Collapse
Affiliation(s)
- Camille S Delavaux
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA.
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Ave, Lawrence, KS, 66047, USA.
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland.
| | - Robert J Ramos
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Ave, Lawrence, KS, 66047, USA
| | - Sidney L Sturmer
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, R. Antônio da Veiga 140Santa Catarina, Blumenau, 89030-903, Brazil
| | - James D Bever
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Ave, Lawrence, KS, 66047, USA
| |
Collapse
|
29
|
Pellegrino E, Nuti M, Ercoli L. Multiple Arbuscular Mycorrhizal Fungal Consortia Enhance Yield and Fatty Acids of Medicago sativa: A Two-Year Field Study on Agronomic Traits and Tracing of Fungal Persistence. FRONTIERS IN PLANT SCIENCE 2022; 13:814401. [PMID: 35237288 PMCID: PMC8882620 DOI: 10.3389/fpls.2022.814401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal fungi are promoted as biofertilizers due to potential benefits in crop productivity, and macro- and microelement uptake. However, crop response to arbuscular mycorrhizal fungi (AMF) inoculation is context-dependent, and AMF diversity and field establishment and persistence of inoculants can greatly contribute to variation in outcomes. This study was designed to test the hypotheses that multiple and local AMF inoculants could enhance alfalfa yield and fatty acids (FA) compared to exotic isolates either single or in the mixture. We aimed also to verify the persistence of inoculated AMF, and which component of the AMF communities was the major driver of plant traits. Therefore, a field experiment of AMF inoculation of alfalfa (Medicago sativa L.) with three single foreign isolates, a mixture of the foreign isolates (FMix), and a highly diverse mixture of local AMF (LMix) was set up. We showed that AMF improved alfalfa yield (+ 68%), nutrient (+ 147% N content and + 182% P content in forage), and FA content (+ 105%). These positive effects persisted for at least 2 years post-inoculation and were associated with enhanced AMF abundance in roots. Consortia of AMF strains acted in synergy, and the mixture of foreign AMF isolates provided greater benefits compared to local consortia (+ 20% forage yield, + 36% forage N content, + 18% forage P content, + 20% total FA in forage). Foreign strains of Funneliformis mosseae and Rhizophagus irregularis persisted in the roots of alfalfa 2 years following inoculation, either as single inoculum or as a component of the mixture. Among inoculants, F. mosseae BEG12 and AZ225C and the FMix exerted a higher impact on the local AMF community compared with LMix and R. irregularis BEG141. Finally, the stimulation of the proliferation of a single-taxa (R. irregularis cluster1) induced by all inoculants was the main determinant of the host benefits. Crop productivity and quality as well as field persistence of inoculated AMF support the use of mixtures of foreign AMF. On the other hand, local mixtures showed a lower impact on native AMF. These results pave the way for extending the study on the effect of AMF mixtures for the production of high-quality forage for the animal diet.
Collapse
Affiliation(s)
- Elisa Pellegrino
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Marco Nuti
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- University of Pisa, Pisa, Italy
| | - Laura Ercoli
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
30
|
Walker C, Schüßler A, Vincent B, Cranenbrouck S, Declerck S. Anchoring the species Rhizophagus intraradices (formerly Glomus intraradices). Fungal Syst Evol 2022; 8:179-201. [PMID: 35005581 PMCID: PMC8687058 DOI: 10.3114/fuse.2021.08.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/06/2021] [Indexed: 11/07/2022] Open
Abstract
The nomenclatural type material of Rhizophagus intraradices (basionym Glomus intraradices) was originally described from a trap pot culture established with root fragments, subcultures of which later became registered in the INVAM culture collection as FL 208. Subcultures of FL 208 (designated as strain ATT 4) and a new strain, independently isolated from the type location (ATT 1102), were established as both pot cultures with soil-like substrate and in vitro root organ culture. Long-term sampling of these cultures shows spores of the species to have considerable morphological plasticity, not described in the original description. Size, shape and other features of the spores were much more variable than indicated in the protologue. Phylogenetic analyses confirmed earlier published evidence that sequences from all R. intraradices cultures formed a monophyletic clade, well separated from, and not representing a sister clade to, R. irregularis. Moreover, new phylogenetic analyses show that Rhizoglomus venetianum and R. irregularis are synonymous. The morphological characters used to separate these species exemplify the difficulties in species recognition due to the high phenotypic plasticity in the genus Rhizophagus. Rhizophagus intraradices is morphologically re-described, an epitype is designated from a single-spore isolate derived from ATT 4, and R. venetianum is synonymised with R. irregularis.
Collapse
Affiliation(s)
- C Walker
- Royal Botanic Garden Edinburgh, 21A Inverleith Row, Edinburgh EH3 5LR, UK.,School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - A Schüßler
- SYMPLANTA GmbH & Co. KG, Graupnerweg 42, 64287 Darmstadt, Germany
| | - B Vincent
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud, 2 box L7.05.06, 1348 Louvain-la-Neuve, Belgium
| | - S Cranenbrouck
- Université catholique de Louvain, Earth and Life Institute, Mycology, Mycothèque de l'Université catholique de Louvain (MUCL), Croix du Sud, 2 Box L7.05.06, 1348 Louvain-la-Neuve, Belgium
| | - S Declerck
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud, 2 box L7.05.06, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
31
|
Alrajhei K, Saleh I, Abu‐Dieyeh MH. Biodiversity of arbuscular mycorrhizal fungi in plant roots and rhizosphere soil from different arid land environment of Qatar. PLANT DIRECT 2022; 6:e369. [PMID: 35028492 PMCID: PMC8743365 DOI: 10.1002/pld3.369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Recently more attention has been observed toward the role of arbuscular mycorrhizal fungi (AMF) in plant growth. Qatar belongs to the Arabian Gulf region with hot and dry climatic conditions. The study aims to investigate the species composition and abundance of AMF in Qatar, rhizosphere soil samples, and roots of plants from 12 families and 8 different locations. The AMF were identified based on the sequencing of the polymerase chain reaction (PCR) product of the amplified conserved ITS region. The reported AMF infection rate was found to vary with location and plant species. Tamarix aphylla recorded the highest AMF infection rate (100%), followed by Blepharis ciliaris (98%) and Sporobolus ioclados (92%). AMF spore counts ranged from 29.3 spores in Blepharis ciliaris to 643 spores/100 g soil in Fagonia indica. No correlation was detected between colonization rate and spore counts. While all AMF identified at species levels were reported in other regions, new species are still expected since some were identified only at higher taxonomic levels. Claroideoglomus drummondii and Rhizophagus irregularis were the most widespread while Claroideoglomus claroideum and Diversispora aurantia were the least present. Our results fill the gap of knowledge of AMF in the region and opens new research toward its future applications for sustainable agriculture.
Collapse
Affiliation(s)
- Khazna Alrajhei
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and SciencesQatar UniversityDohaQatar
| | - Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and SciencesQatar UniversityDohaQatar
| | - Mohammed H. Abu‐Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and SciencesQatar UniversityDohaQatar
| |
Collapse
|
32
|
Wu N, Li Z, Meng S, Wu F. Effects of arbuscular mycorrhizal inoculation on the growth, photosynthesis and antioxidant enzymatic activity of Euonymus maackii Rupr. under gradient water deficit levels. PLoS One 2021; 16:e0259959. [PMID: 34813605 PMCID: PMC8610274 DOI: 10.1371/journal.pone.0259959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/30/2021] [Indexed: 11/19/2022] Open
Abstract
The role of arbuscular mycorrhizal (AM) fungus (Rhizophagus intraradices) in the amelioration of the water deficit-mediated negative influence on the growth, photosynthesis, and antioxidant system in Euonymus maackii Rupr. was examined. E. maackii seedlings were subjected to 5 water deficit levels, soil water contents of 20%, 40%, 60%, 80% and 100% field capacity (FC), and 2 inoculation treatments, with and without AM inoculation. The water deficit increasingly limited the seedling height, biomass accumulation in shoots and roots, chlorophyll content, gas exchange and chlorophyll fluorescence parameters with an increasing water deficit level. In addition, water deficit stimulated the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), in both shoots and roots, except under 20% FC conditions. E. maackii seedlings under all water deficit conditions formed symbiosis well with AM fungi, which significantly ameliorated the drought-mediated negative effect, especially under 40% and 60% FC conditions. Under 40% to 80% FC conditions, AM formation improved seedling growth and photosynthesis by significantly enhancing the biomass accumulation, chlorophyll content and assimilation. Mycorrhizal seedlings showed better tolerance and less sensitivity to a water deficit, reflected in the lower SOD activities of shoots and roots and CAT activity of shoots under 40% and 60% FC conditions. Downregulation of the antioxidant system in mycorrhizal seedlings suggested better maintenance of redox homeostasis and protection of metabolism, including biomass accumulation and assimilation. All the results advocated the positive role of R. intraradices inoculation in E. maackii against a water deficit, especially under 40% FC, which suggested the distinct AM performance in drought tolerance and the potential role of the combination of E. maackii-AM fungi in ecological restoration in arid regions.
Collapse
Affiliation(s)
- Na Wu
- Institute of Applied Biotechnology, School of Life Science, Shanxi Datong University, Datong, Shanxi, China
| | - Zhen Li
- Institute of Applied Biotechnology, School of Life Science, Shanxi Datong University, Datong, Shanxi, China
| | - Sen Meng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangdong, China
| | - Fei Wu
- 2011 Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
33
|
Arruda B, Rodrigues YF, Herrera WFB, Robin A, Cotta SR, Andreote FD. Experimental validation under controlled conditions of real time PCR to quantify arbuscular mycorrhizal colonization in root. J Microbiol Methods 2021; 192:106382. [PMID: 34808146 DOI: 10.1016/j.mimet.2021.106382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022]
Abstract
Mycorrhizal colonization of roots is traditionally evaluated by empirical methods, such as root microscopy. We compared this method with data from using a real time PCR technique, and determined the correlation between methods, indicating particularities of a promising system for a quick and accurate molecular diagnostic of arbuscular mycorrhization.
Collapse
Affiliation(s)
- Bruna Arruda
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Brazil..
| | - Yasmin Florentino Rodrigues
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Brazil..
| | | | - Agnès Robin
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Brazil.; CIRAD, UMR Eco&Sols, Piracicaba, Brazil; Eco&Sols, Université Montpellier, CIRAD, INRAE, IRD, Montpellier, France.
| | - Simone Raposo Cotta
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Brazil.; University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, Brazil..
| |
Collapse
|
34
|
Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska‐Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon‐Cochard C, Rose L, Ryser P, Scherer‐Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde‐Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. THE NEW PHYTOLOGIST 2021; 232:973-1122. [PMID: 34608637 PMCID: PMC8518129 DOI: 10.1111/nph.17572] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T. Freschet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
| | - Loïc Pagès
- UR 1115 PSHCentre PACA, site AgroparcINRAE84914Avignon cedex 9France
| | - Colleen M. Iversen
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Louise H. Comas
- USDA‐ARS Water Management Research Unit2150 Centre Avenue, Bldg D, Suite 320Fort CollinsCO80526USA
| | - Boris Rewald
- Department of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Catherine Roumet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Jitka Klimešová
- Department of Functional EcologyInstitute of Botany CASDukelska 13537901TrebonCzech Republic
| | - Marcin Zadworny
- Institute of DendrologyPolish Academy of SciencesParkowa 562‐035KórnikPoland
| | - Hendrik Poorter
- Plant Sciences (IBG‐2)Forschungszentrum Jülich GmbHD‐52425JülichGermany
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | | | - Thomas S. Adams
- Department of Plant SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Agnieszka Bagniewska‐Zadworna
- Department of General BotanyInstitute of Experimental BiologyFaculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznańskiego 661-614PoznańPoland
| | - A. Glyn Bengough
- The James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- School of Science and EngineeringUniversity of DundeeDundee,DD1 4HNUK
| | | | - Ivano Brunner
- Forest Soils and BiogeochemistrySwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
| | - Johannes H. C. Cornelissen
- Department of Ecological ScienceFaculty of ScienceVrije Universiteit AmsterdamDe Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Eric Garnier
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Arthur Gessler
- Forest DynamicsSwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich8092ZurichSwitzerland
| | - Sarah E. Hobbie
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt PaulMN55108USA
| | - Ina C. Meier
- Functional Forest EcologyUniversity of HamburgHaidkrugsweg 122885BarsbütelGermany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation GroupDepartment of Environmental SciencesWageningen University and ResearchPO Box 476700 AAWageningenthe Netherlands
| | | | - Laura Rose
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
- Senckenberg Biodiversity and Climate Research Centre (BiK-F)Senckenberganlage 2560325Frankfurt am MainGermany
| | - Peter Ryser
- Laurentian University935 Ramsey Lake RoadSudburyONP3E 2C6Canada
| | | | - Nadejda A. Soudzilovskaia
- Environmental Biology DepartmentInstitute of Environmental SciencesCMLLeiden UniversityLeiden2300 RAthe Netherlands
| | - Alexia Stokes
- INRAEAMAPCIRAD, IRDCNRSUniversity of MontpellierMontpellier34000France
| | - Tao Sun
- Institute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Oscar J. Valverde‐Barrantes
- International Center for Tropical BotanyDepartment of Biological SciencesFlorida International UniversityMiamiFL33199USA
| | - Monique Weemstra
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Alexandra Weigelt
- Systematic Botany and Functional BiodiversityInstitute of BiologyLeipzig UniversityJohannisallee 21-23Leipzig04103Germany
| | - Nina Wurzburger
- Odum School of EcologyUniversity of Georgia140 E. Green StreetAthensGA30602USA
| | - Larry M. York
- Biosciences Division and Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Sarah A. Batterman
- School of Geography and Priestley International Centre for ClimateUniversity of LeedsLeedsLS2 9JTUK
- Cary Institute of Ecosystem StudiesMillbrookNY12545USA
| | - Moemy Gomes de Moraes
- Department of BotanyInstitute of Biological SciencesFederal University of Goiás1974690-900Goiânia, GoiásBrazil
| | - Štěpán Janeček
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawley (Perth)WA 6009Australia
| | - Hans Lambers
- School of Biological SciencesThe University of Western AustraliaCrawley (Perth)WAAustralia
| | - Verity Salmon
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Nishanth Tharayil
- Department of Plant and Environmental SciencesClemson UniversityClemsonSC29634USA
| | - M. Luke McCormack
- Center for Tree ScienceMorton Arboretum, 4100 Illinois Rt. 53LisleIL60532USA
| |
Collapse
|
35
|
Sportes A, Hériché M, Boussageon R, Noceto PA, van Tuinen D, Wipf D, Courty PE. A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas and their emerging challenges. MYCORRHIZA 2021; 31:637-653. [PMID: 34657204 DOI: 10.1007/s00572-021-01053-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Arbuscular mycorrhiza, one of the oldest interactions on earth (~ 450 million years old) and a first-class partner for plants to colonize emerged land, is considered one of the most pervasive ecological relationships on the globe. Despite how important and old this interaction is, its discovery was very recent compared to the long story of land plant evolution. The story of the arbuscular mycorrhiza cannot be addressed apart from the history, controversies, and speculations about mycorrhiza in its broad sense. The chronicle of mycorrhizal research is marked by multiple key milestones such as the initial description of a "persistent epiderm and pellicular wall structure" by Hartig; the introduction of the "Symbiotismus" and "Mycorrhiza" concepts by Frank; the description of diverse root-fungal morphologies; the first description of arbuscules by Gallaud; Mosse's pivotal statement of the beneficial nature of the arbuscular mycorrhizal symbiosis; the impact of molecular tools on the taxonomy of mycorrhizal fungi as well as the development of in vitro root organ cultures for producing axenic arbuscular mycorrhizal fungi (AMF). An appreciation of the story - full of twists and turns - of the arbuscular mycorrhiza, going from the roots of mycorrhiza history, along with the discovery of different mycorrhiza types such as ectomycorrhiza, can improve research to help face our days' challenge of developing sustainable agriculture that integrates the arbuscular mycorrhiza and its ecosystem services.
Collapse
Affiliation(s)
- Antoine Sportes
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Mathilde Hériché
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Raphaël Boussageon
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Antoine Noceto
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Diederik van Tuinen
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pierre Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
36
|
Säle V, Palenzuela J, Azcón-Aguilar C, Sánchez-Castro I, da Silva GA, Seitz B, Sieverding E, van der Heijden MGA, Oehl F. Ancient lineages of arbuscular mycorrhizal fungi provide little plant benefit. MYCORRHIZA 2021; 31:559-576. [PMID: 34327560 PMCID: PMC8484173 DOI: 10.1007/s00572-021-01042-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/08/2021] [Indexed: 05/17/2023]
Abstract
Almost all land plants form symbiotic associations with arbuscular mycorrhizal fungi (AMF). Individual plants usually are colonized by a wide range of phylogenetically diverse AMF species. The impact that different AMF taxa have on plant growth is only partly understood. We screened 44 AMF isolates for their effect on growth promotion and nutrient uptake of leek plants (Allium porrum), including isolates that have not been tested previously. In particular, we aimed to test weather AMF lineages with an ancient evolutionary age differ from relatively recent lineages in their effects on leek plants. The AMF isolates that were tested covered 18 species from all five AMF orders, eight families, and 13 genera. The experiment was conducted in a greenhouse. A soil-sand mixture was used as substrate for the leek plants. Plant growth response to inoculation with AMF varied from - 19 to 232% and depended on isolate, species, and family identity. Species from the ancient families Archaeosporaceae and Paraglomeraceae tended to be less beneficial, in terms of stimulation plant growth and nutrient uptake, than species of Glomeraceae, Entrophosporaceae, and Diversisporaceae, which are considered phylogenetically more recent than those ancient families. Root colonization levels also depended on AMF family. This study indicates that plant benefit in the symbiosis between plants and AMF is linked to fungal identity and phylogeny and it shows that there are large differences in effectiveness of different AMF.
Collapse
Affiliation(s)
- Verena Säle
- Plant-Soil-Interactions, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland.
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
- Vegetable-Production Extension, Agroscope, Müller-Thurgau-Strasse 29, CH-8820, Wädenswil, Switzerland.
| | - Javier Palenzuela
- Departamento de Microbiología del Suelo Y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Concepción Azcón-Aguilar
- Departamento de Microbiología del Suelo Y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Iván Sánchez-Castro
- Departamento de Microbiología, Universidad de Granada, Campus Universitario de Fuentenueva, 18071, Granada, Spain
| | - Gladstone Alves da Silva
- Departamento de Micologia, CCB, Universidade Federal de Pernambuco, Av. da Engenharia s/n, Cidade Universitária, Recife, PE, 50740-600, Brazil
| | - Benjamin Seitz
- Plant-Soil-Interactions, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
| | - Ewald Sieverding
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart-Hohenheim, Germany
| | - Marcel G A van der Heijden
- Plant-Soil-Interactions, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, 8057, Zürich, Switzerland
| | - Fritz Oehl
- Ecotoxicology, Agroscope, Müller-Thurgau-Strasse 29, CH-8820, Wädenswil, Switzerland
| |
Collapse
|
37
|
Feng J, Huang Z, Zhang Y, Rui W, Lei X, Li Z. Beneficial Effects of the Five Isolates of Funneliformis mosseae on the Tomato Plants Were Not Related to Their Evolutionary Distances of SSU rDNA or PT1 Sequences in the Nutrition Solution Production. PLANTS 2021; 10:plants10091948. [PMID: 34579480 PMCID: PMC8467985 DOI: 10.3390/plants10091948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022]
Abstract
The symbiosis and beneficial effects of arbuscular mycorrhizal fungi (AM fungi) on plants have been widely reported; however, the effects might be unascertained in tomato industry production with coconut coir due to the nutrition solution supply, or alternatively with isolate-specific. Five isolates of AM fungi were collected from soils of differing geographical origins, identified as Funneliformis mosseae and evidenced closing evolutionary distances with the covering of the small subunit (SSU) rDNA regions and Pi transporter gene (PT1) sequences. The effects of these isolates on the colonization rates, plant growth, yield, and nutrition uptake were analyzed in tomato nutrition solution production with growing seasons of spring-summer and autumn-winter. Our result indicated that with isolate-specific effects, irrespective of geographical or the SSU rDNA and PT1 sequences evolution distance, two isolates (A2 and NYN1) had the most yield benefits for plants of both growing seasons, one (E2) had weaker effects and the remaining two (A2 and T6) had varied seasonal-specific effects. Inoculation with effective isolates induced significant increases of 29.0-38.0% (isolate X5, T6) and 34.6-36.5% (isolate NYN1, T6) in the plant tissues respective nitrogen and phosphorus content; the plant biomass increased by 18.4-25.4% (isolate T6, NYN1), and yields increased by 8.8-12.0% (isolate NYN1, A2) compared with uninoculated plants. The maximum root biomass increased by 28.3% (isolate T6) and 55.1% (isolate E2) in the autumn-winter and spring-summer growing seasons, respectively. This strong effect on root biomass was even more significant in an industry culture with a small volume of substrate per plant. Our results reveal the potential benefits of using selected effective isolates as a renewable resource that can overcome the suppressing effects of sufficient nutrient availability on colonization rates, while increasing the yields of industrially produced tomatoes in nutrition solution with coconut coir.
Collapse
Affiliation(s)
- Jingyu Feng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China; (J.F.); (Z.H.); (Y.Z.); (W.R.)
| | - Zhe Huang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China; (J.F.); (Z.H.); (Y.Z.); (W.R.)
| | - Yongbin Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China; (J.F.); (Z.H.); (Y.Z.); (W.R.)
| | - Wenjing Rui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China; (J.F.); (Z.H.); (Y.Z.); (W.R.)
| | - Xihong Lei
- Beijing Agricultural Extention Station, Huixinxili 10, Changyang District, Beijing 100029, China;
| | - Zhifang Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China; (J.F.); (Z.H.); (Y.Z.); (W.R.)
- Correspondence:
| |
Collapse
|
38
|
Canarini A, Schmidt H, Fuchslueger L, Martin V, Herbold CW, Zezula D, Gündler P, Hasibeder R, Jecmenica M, Bahn M, Richter A. Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nat Commun 2021; 12:5308. [PMID: 34489463 PMCID: PMC8421443 DOI: 10.1038/s41467-021-25675-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Climate change is altering the frequency and severity of drought events. Recent evidence indicates that drought may produce legacy effects on soil microbial communities. However, it is unclear whether precedent drought events lead to ecological memory formation, i.e., the capacity of past events to influence current ecosystem response trajectories. Here, we utilize a long-term field experiment in a mountain grassland in central Austria with an experimental layout comparing 10 years of recurrent drought events to a single drought event and ambient conditions. We show that recurrent droughts increase the dissimilarity of microbial communities compared to control and single drought events, and enhance soil multifunctionality during drought (calculated via measurements of potential enzymatic activities, soil nutrients, microbial biomass stoichiometry and belowground net primary productivity). Our results indicate that soil microbial community composition changes in concert with its functioning, with consequences for soil processes. The formation of ecological memory in soil under recurrent drought may enhance the resilience of ecosystem functioning against future drought events. Legacies of past ecological disturbances are expected but challenging to demonstrate. Here the authors report a 10-year field experiment in a mountain grassland that shows ecological memory of soil microbial community and functioning in response to recurrent drought.
Collapse
Affiliation(s)
- Alberto Canarini
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Hannes Schmidt
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Victoria Martin
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - David Zezula
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Philipp Gündler
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Roland Hasibeder
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Marina Jecmenica
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
39
|
Roy J, van Duijnen R, Leifheit EF, Mbedi S, Temperton VM, Rillig MC. Legacy effects of pre-crop plant functional group on fungal root symbionts of barley. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02378. [PMID: 33988274 DOI: 10.1002/eap.2378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/23/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi, a group of widespread fungal symbionts of crops, could be important in driving crop yield across crop rotations through plant-soil feedbacks (PSF). However, whether preceding crops have a legacy effect on the AM fungi of the subsequent crop is poorly known. We set up an outdoor mesocosm crop rotation experiment that consisted of a first phase growing either one of four pre-crops establishing AM and/or rhizobial symbiosis or not (spring barley, faba bean, lupine, canola), followed by an AM crop, winter barley. After the pre-crop harvest, carbon-rich organic substrates were applied to test whether it attenuated, accentuated or modified the effect of pre-crops. The pre-crop mycorrhizal status, but not its rhizobial status, affected the richness and composition of AM fungi, and this difference, in particular community composition, persisted and increased in the roots of winter barley. The effect of a pre-crop was driven by its single symbiotic group, not its mixed symbiotic group and/or by a crop-species-specific effect. This demonstrates that the pre-crop symbiotic group has lasting legacy effects on the AM fungal communities and may steer the AM fungal community succession across rotation phases. This effect was accentuated by sawdust amendment, but not wheat straw. Based on the previous observation of decreased crop yield after AM pre-crops, our findings suggest negative PSF at the level of the plant symbiotic group driven by a legacy effect of crop rotation history on AM fungal communities, and that a focus on crop symbiotic group offers additional understanding of PSF.
Collapse
Affiliation(s)
- Julien Roy
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | | | - Eva F Leifheit
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Susan Mbedi
- Naturkundemuseum Berlin, Berlin, 10115, Germany
- Berlin Center for Genomics in Biodiversity Reseach, Berlin, 14195, Germany
| | - Vicky M Temperton
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| |
Collapse
|
40
|
Błaszkowski J, Niezgoda P, Meller E, Milczarski P, Zubek S, Malicka M, Uszok S, Casieri L, Goto BT, Magurno F. New taxa in Glomeromycota: Polonosporaceae fam. nov., Polonospora gen. nov., and P. polonica comb. nov. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01726-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractPhylogenetic analyses of sequences of the nuc rDNA small subunit (18S), internal transcribed spacer (ITS1-5.8S-ITS2 = ITS), and large subunit (28S) region (= 18S-ITS-28S), as well as sequences of this region concatenated with sequences of the largest subunit of RNA polymerase II (RPB1) gene, proved that the species originally described as Acaulospora polonica (phylum Glomeromycota) represents a new genus and a new family of the ancient order Archaeosporales, here introduced into the Glomeromycota under the names Polonospora and Polonosporaceae, respectively. The phylogenetic analyses and BLASTn queries also indicated that the Polonosporaceae with P. polonica comb. nov. still contains several morphologically undescribed taxa at the ranks of genus and species, which have a worldwide distribution.
Collapse
|
41
|
Carteron A, Beigas M, Joly S, Turner BL, Laliberté E. Temperate Forests Dominated by Arbuscular or Ectomycorrhizal Fungi Are Characterized by Strong Shifts from Saprotrophic to Mycorrhizal Fungi with Increasing Soil Depth. MICROBIAL ECOLOGY 2021; 82:377-390. [PMID: 32556393 DOI: 10.1007/s00248-020-01540-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
In temperate and boreal forests, competition for soil resources between free-living saprotrophs and ectomycorrhizal (EcM) fungi has been suggested to restrict saprotrophic fungal dominance to the most superficial organic soil horizons in forests dominated by EcM trees. By contrast, lower niche overlap with arbuscular mycorrhizal (AM) fungi could allow fungal saprotrophs to maintain this dominance into deeper soil horizons in AM-dominated forests. Here we used a natural gradient of adjacent forest patches that were dominated by either AM or EcM trees, or a mixture of both to determine how fungal communities characterized with high-throughput amplicon sequencing change across organic and mineral soil horizons. We found a general shift from saprotrophic to mycorrhizal fungal dominance with increasing soil depth in all forest mycorrhizal types, especially in organic horizons. Vertical changes in soil chemistry, including pH, organic matter, exchangeable cations, and extractable phosphorus, coincided with shifts in fungal community composition. Although fungal communities and soil chemistry differed among adjacent forest mycorrhizal types, variations were stronger within a given soil profile, pointing to the importance of considering horizons when characterizing soil fungal communities. Our results also suggest that in temperate forests, vertical shifts from saprotrophic to mycorrhizal fungi within organic and mineral horizons occur similarly in both ectomycorrhizal and arbuscular mycorrhizal forests.
Collapse
Affiliation(s)
- Alexis Carteron
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, Canada.
| | - Marie Beigas
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, Canada
| | - Simon Joly
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, Canada
- Montreal Botanical Garden, 4101 Sherbrooke Est, Montréal, H1X 2B2, Canada
| | - Benjamin L Turner
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - Etienne Laliberté
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, Canada
| |
Collapse
|
42
|
Malicka M, Magurno F, Posta K, Chmura D, Piotrowska-Seget Z. Differences in the effects of single and mixed species of AMF on the growth and oxidative stress defense in Lolium perenne exposed to hydrocarbons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112252. [PMID: 33930772 DOI: 10.1016/j.ecoenv.2021.112252] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 05/27/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous mutualistic plant symbionts that promote plant growth and protect them from abiotic stresses. Studies on AMF-assisted phytoremediation have shown that AMF can increase plant tolerance to the presence of hydrocarbon contaminants by improving plant nutrition status and mitigating oxidative stress. This work aimed to evaluate the impact of single and mixed-species AMF inocula (Funneliformis caledonium, Diversispora varaderana, Claroideoglomus walkeri), obtained from a contaminated environment, on the growth, oxidative stress (DNA oxidation and lipid peroxidation), and activity of antioxidative enzymes (superoxide dismutase, catalase, peroxidase) in Lolium perenne growing on a substrate contaminated with 0/0-30/120 mg phenol/polynuclear aromatic hydrocarbons (PAHs) kg-1. The assessment of AMF tolerance to the presence of contaminants was based on mycorrhizal root colonization, spore production, the level of oxidative stress, and antioxidative activity in AMF spores. In contrast to the mixed-species AMF inoculum, single AMF species significantly enhanced the growth of host plants cultured on the contaminated substrate. The effect of inoculation on the level of oxidative stress and the activity of antioxidative enzymes in plant tissues differed between the AMF species. Changes in the level of oxidative stress and the activity of antioxidative enzymes in AMF spores in response to contamination also depended on AMF species. Although the concentration of phenol and PAHs had a negative effect on the production of AMF spores, low (5/20 mg phenol/PAHs kg-1) and medium (15/60 mg phenol/PAHs kg-1) substrate contamination stimulated the mycorrhizal colonization of roots. Among the studied AMF species, F. caledonium was the most tolerant to phenol and PAHs and showed the highest potential in plant growth promotion. The results presented in this study might contribute to the development of functionally customized AMF-assisted phytoremediation strategies with indigenous AMF, more effective than commercial AMF inocula, as a result of their selection by the presence of contaminants.
Collapse
Affiliation(s)
- Monika Malicka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032 Katowice, Poland.
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032 Katowice, Poland
| | - Katalin Posta
- Institute of Genetics, Microbiology and Biotechnology, Szent István University, Páter Károly 1 Street, Gödöllő H-2100, Hungary
| | - Damian Chmura
- Institute of Environmental Protection and Engineering, University of Bielsko-Biala, Willowa 2 Street, 43-309 Bielsko-Biała, Poland
| | - Zofia Piotrowska-Seget
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28 Street, 40-032 Katowice, Poland
| |
Collapse
|
43
|
Kolaříková Z, Slavíková R, Krüger C, Krüger M, Kohout P. PacBio sequencing of Glomeromycota rDNA: a novel amplicon covering all widely used ribosomal barcoding regions and its applicability in taxonomy and ecology of arbuscular mycorrhizal fungi. THE NEW PHYTOLOGIST 2021; 231:490-499. [PMID: 33780549 DOI: 10.1111/nph.17372] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/23/2021] [Indexed: 05/02/2023]
Abstract
There is no consensus barcoding region for determination of arbuscular mycorrhizal fungal (AMF) taxa. To overcome this obstacle, we have developed an approach to sequence an AMF marker within the ribosome-encoding operon (rDNA) that covers all three widely applied variable molecular markers. Using a nested PCR approach specific to AMF, we amplified a part (c. 2.5 kb) of the rDNA spanning the majority of the small subunit rRNA (SSU) gene, the complete internal transcribed spacer (ITS) region and a part of the large subunit (LSU) rRNA gene. The PCR products were sequenced on the PacBio platform utilizing Single Molecule Real Time (SMRT) sequencing. Employing this method for selected environmental DNA samples, we were able to describe complex AMF communities consisting of various glomeromycotan lineages. We demonstrate the applicability of this new 2.5 kb approach to provide robust phylogenetic assignment of AMF lineages without known sequences from pure cultures and to consolidate information about AMF taxon distributions coming from three widely used barcoding regions into one integrative dataset.
Collapse
Affiliation(s)
- Zuzana Kolaříková
- Institute of Botany of the Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
| | - Renata Slavíková
- Institute of Botany of the Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
| | - Claudia Krüger
- Institute of Botany of the Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
| | - Manuela Krüger
- Institute of Botany of the Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
| | - Petr Kohout
- Institute of Botany of the Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
- Faculty of Science, Charles University in Prague, Prague, CZ-128 44, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Prague, CZ-142 20, Czech Republic
| |
Collapse
|
44
|
Sudová R, Rydlová J, Čtvrtlíková M, Kohout P, Oehl F, Voříšková J, Kolaříková Z. Symbiosis of isoetid plant species with arbuscular mycorrhizal fungi under aquatic versus terrestrial conditions. MYCORRHIZA 2021; 31:273-288. [PMID: 33486575 DOI: 10.1007/s00572-020-01017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) colonize the roots of numerous aquatic and wetland plants, but the establishment and functioning of mycorrhizal symbiosis in submerged habitats have received only little attention. Three pot experiments were conducted to study the interaction of isoetid plants with native AMF. In the first experiment, arbuscular mycorrhizal (AM) symbiosis did not establish in roots of Isoëtes echinospora and I. lacustris, while Littorella uniflora roots were highly colonized. Shoot and root biomass of L. uniflora were, however, not affected by AMF inoculation, and only one of nine AMF isolates significantly increased shoot P concentration. In the second experiment, we compared colonization by three Glomus tetrastratosum isolates of different cultivation history and origin (aquatic versus terrestrial) and their effects on L. uniflora growth and phosphorus nutrition under submerged versus terrestrial conditions. The submerged cultivation considerably slowed, but did not inhibit mycorrhizal root colonization, regardless of isolate identity. Inoculation with any AMF isolate improved plant growth and P uptake under terrestrial, but not submerged conditions. In the final experiment, we compared the communities of AMF established in two cultivation regimes of trap cultures with lake sediments, either submerged on L. uniflora or terrestrial on Zea mays. After 2-year cultivation, we did not detect a significant effect of cultivation regime on AMF community composition. In summary, although submerged conditions do not preclude the development of functional AM symbiosis, the contribution of these symbiotic fungi to the fitness of their hosts seems to be considerably less than under terrestrial conditions.
Collapse
Affiliation(s)
- Radka Sudová
- Institute of Botany, The Czech Academy of Sciences, 242 43, Průhonice, Czech Republic.
| | - Jana Rydlová
- Institute of Botany, The Czech Academy of Sciences, 242 43, Průhonice, Czech Republic
| | - Martina Čtvrtlíková
- Biology Centre, Institute of Hydrobiology, The Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
| | - Petr Kohout
- Institute of Botany, The Czech Academy of Sciences, 242 43, Průhonice, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | - Fritz Oehl
- Agroscope, Competence Division for Plants and Plant Products, Ecotoxicology, 8820, Wädenswil, Switzerland
| | - Jana Voříšková
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Zuzana Kolaříková
- Institute of Botany, The Czech Academy of Sciences, 242 43, Průhonice, Czech Republic
| |
Collapse
|
45
|
Błaszkowski J, Jobim K, Niezgoda P, Meller E, Malinowski R, Milczarski P, Zubek S, Magurno F, Casieri L, Bierza W, Błaszkowski T, Crossay T, Goto BT. New Glomeromycotan Taxa, Dominikia glomerocarpica sp. nov. and Epigeocarpum crypticum gen. nov. et sp. nov. From Brazil, and Silvaspora gen. nov. From New Caledonia. Front Microbiol 2021; 12:655910. [PMID: 33967994 PMCID: PMC8102679 DOI: 10.3389/fmicb.2021.655910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
Examination of fungal specimens collected in the Atlantic rain forest ecosystems of Northeast Brazil revealed many potentially new epigeous and semihypogeous glomerocarp-producing species of the phylum Glomeromycota. Among them were two fungi that formed unorganized epigeous glomerocarps with glomoid spores of almost identical morphology. The sole structure that distinguished the two fungi was the laminate layer 2 of their three-layered spore wall, which in spores of the second fungus crushed in PVLG-based mountants contracted and, consequently, transferred into a crown-like structure. Surprisingly, phylogenetic analyses of sequences of the 18S-ITS-28S nuc rDNA and the rpb1 gene indicated that these glomerocarps represent two strongly divergent undescribed species in the family Glomeraceae. The analyses placed the first in the genus Dominikia, and the second in a sister clade to the monospecific generic clade Kamienskia with Kamienskia bistrata. The first species was described here as Dominikia glomerocarpica sp. nov. Because D. glomerocarpica is the first glomerocarp-forming species in Dominikia, the generic description of this genus was emended. The very large phylogenetic distance and the fundamental morphological differences between the second species and K. bistrata suggested us to introduce a new genus, here named as Epigeocarpum gen. nov., and name the new species Epigeocarpum crypticum sp. nov. In addition, our analyses also focused on an arbuscular mycorrhizal fungus originally described as Rhizophagus neocaledonicus, later transferred to the genus Rhizoglomus. The analyses indicated that this species does not belong to any of these two genera but represents a new clade at the rank of genus in the Glomeraceae, here described as Silvaspora gen. nov.
Collapse
Affiliation(s)
- Janusz Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Khadija Jobim
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Piotr Niezgoda
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Edward Meller
- Laboratory of Soil Science and Environmental Chemistry, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Ryszard Malinowski
- Laboratory of Soil Science and Environmental Chemistry, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Paweł Milczarski
- Department of Genetics, Plant Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Szymon Zubek
- Faculty of Biology, Institute of Botany, Jagiellonian University, Kraków, Poland
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Leonardo Casieri
- Mycorrhizal Applications LLC at Bio-Research & Development Growth Park, St. Louis, MO, United States
| | - Wojciech Bierza
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Tomasz Błaszkowski
- Department of General and Oncological Surgery, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Thomas Crossay
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de la Nouvelle Calédonie, Nouméa, New Caledonia
| | - Bruno Tomio Goto
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
46
|
Abstract
Specific quantification of root-colonizing arbuscular mycorrhizal fungi (AMF) by quantitative real-time PCR is a high-throughput technique, most suitable for determining abundances of AMF species or isolates in previously characterized experimental systems. The principal steps are the choice and validation of an appropriate assay to specifically amplify a gene fragment of the target AMF, preparation of templates from root samples, and quantification of the fungal gene copy numbers in these templates. The use of a suitable assay is crucial for a correct data collection but also highly specific for each experimental system and is therefore covered by general recommendations. Subsequently, specific steps are described for the validation of the assay using a standard dilution series, the determination of appropriate dilutions of DNA extracts from roots, and the quantification of the gene copy numbers in samples including calculations.
Collapse
|
47
|
Kryukov AA, Gorbunova AO, Machs EM, Mikhaylova YV, Rodionov AV, Zhurbenko PM, Yurkov AP. Perspectives of using Illumina MiSeq for identification of arbuscular mycorrhizal fungi. Vavilovskii Zhurnal Genet Selektsii 2021; 24:158-167. [PMID: 33659795 PMCID: PMC7716513 DOI: 10.18699/vj19.38-o] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Arbuscular mycorrhiza fungi (AMF) form one of the most common symbiosis with the majority of land
plants. AMF supply the plant with various mineral elements, primarily phosphorus, and improve the water supply.
The search for the most effective AMF strains for symbiosis and the creation of microbial preparations on that basis
is an important task for modern biology. Owing to the difficulties of cultivation without a host plant and their
high genetic polymorphism, identifying AMF is very difficult. A high number of cryptic species often makes morphological
identification unreliable. Recent years have seen a growth in the number of AMF biodiversity studies
performed by modern NGS-based methods, Illumina MiSeq in particular. Currently, there are still many questions
that remain for the identification of AМF. The most important are whether conservative or variable sequences
should be used to select a marker for barcoding and whether universal primers or those specific to AMF should be
used. In our work, we have successfully used universal primers ITS3 and ITS4 for the sequencing in Illumina MiSeq
of the 5.8S rDNA – ITS2 region of the 35S rRNA genes, which contain both a conservative and variable regions. The
molecular genetic approach for AMF identification was quite effective and allowed us to reliably identify eight of
nine isolates to the species level: five isolates of Rhizophagus irregularis, and one isolate of R. invermaius, Paraglomus
laccatum, and Claroideoglomus etunicatum, respectively. For all five R. irregularis isolates, high variability in
the ITS region and the absence of ecotopic-related molecular characters in the ITS2 region were demonstrated.
The NCBI data is still insufficient for accurate AMF identification of Acaulospora sp. isolates from the genus to the
species level.
Collapse
Affiliation(s)
- A A Kryukov
- All-Russian Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - A O Gorbunova
- All-Russian Research Institute for Agricultural Microbiology, St. Petersburg, Russia Saint Petersburg State University, Biological Faculty, St. Petersburg, Russia
| | - E M Machs
- Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Y V Mikhaylova
- Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - A V Rodionov
- Saint Petersburg State University, Biological Faculty, St. Petersburg, Russia Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - P M Zhurbenko
- Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - A P Yurkov
- All-Russian Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| |
Collapse
|
48
|
Alaux PL, Mison C, Senés-Guerrero C, Moreau V, Manssens G, Foucart G, Cranenbrouck S, Declerck S. Diversity and species composition of arbuscular mycorrhizal fungi across maize fields in the southern part of Belgium. MYCORRHIZA 2021; 31:265-272. [PMID: 33211191 DOI: 10.1007/s00572-020-01007-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are key actors among soil microbial inhabitants, forming beneficial associations with most horticultural plants and crops (e.g., maize). For maize, the world most cultivated cereal, data on AMF species diversity in fields is sparse and even totally nonexistent in the southern part of Belgium where maize represents 8% of the cultivated area. In the present study, 14 maize fields in South Belgium under conventional, conversion, or organic management were analyzed for AMF diversity and species composition using 454 pyrosequencing. A large part (54%) of the 49 AMF species observed were unknown or have not been described in the literature. AMF diversity highly varied among fields, with the number of species ranging between 1 and 37 according to the field. A statistically significant effect of management was measured on AMF diversity, with the highest Hill index values (diversity and richness) under the organic management system compared with conventional management or conversion. Our results suggest a positive effects of organic management on AMF diversity in maize. They also highlight the rather high diversity or richness of AMF and the large portion of sequences not yet ascribed to species, thereby emphasizing a need to intensify AMF identification in cropping systems.
Collapse
Affiliation(s)
- Pierre-Louis Alaux
- Earth and Life Institute, Applied Microbiology, Mycology, Université Catholique de Louvain, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Coralie Mison
- Earth and Life Institute, Applied Microbiology, Mycology, Université Catholique de Louvain, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Carolina Senés-Guerrero
- Escuela de Ingeniería Y Ciencias, Tecnológico de Monterrey, General Ramón Corona 2514, 45138, Zapopan, Jalisco, Mexico
| | - Virginie Moreau
- Earth and Life Institute, Applied Microbiology, Mycology, Université Catholique de Louvain, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Gilles Manssens
- Centre Indépendant de Promotion Fourragère (CIPF), Croix du Sud, 2 L7.05.11, Louvain-la-Neuve, Belgium
| | - Guy Foucart
- Centre Indépendant de Promotion Fourragère (CIPF), Croix du Sud, 2 L7.05.11, Louvain-la-Neuve, Belgium
| | - Sylvie Cranenbrouck
- Earth and Life Institute, Applied Microbiology, Mycology, Mycothèque de L'Université Catholique de Louvain (BCCM/MUCL), Université Catholique de Louvain, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Earth and Life Institute, Applied Microbiology, Mycology, Université Catholique de Louvain, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
49
|
Delavaux CS, Sturmer SL, Wagner MR, Schütte U, Morton JB, Bever JD. Utility of large subunit for environmental sequencing of arbuscular mycorrhizal fungi: a new reference database and pipeline. THE NEW PHYTOLOGIST 2021; 229:3048-3052. [PMID: 33190292 DOI: 10.1111/nph.17080] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- Camille S Delavaux
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Ave, Lawrence, KS, 66047, USA
| | - Sidney L Sturmer
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, R. Antônio da Veiga 140, Blumenau, Santa Catarina, 89030-903, Brazil
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Ave, Lawrence, KS, 66047, USA
| | - Ursel Schütte
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK, 99775, USA
| | - Joseph B Morton
- West Virginia University, 6 Alegre Pass, Santa Fe, Morgantown, NM, 87508, USA
| | - James D Bever
- Department of Ecology and Evolutionary Biology, The University of Kansas, 2041 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
- Kansas Biological Survey, The University of Kansas, 106 Higuchi Hall, 2101 Constant Ave, Lawrence, KS, 66047, USA
| |
Collapse
|
50
|
Rodríguez-Yon Y, Maistro-Patreze C, Saggin-Junior OJ, Rivera RA, Quiñones M, Haesaert G, van Tuinen D. Development of a taxon-discriminating molecular marker to trace and quantify a mycorrhizal inoculum in roots and soils of agroecosystems. Folia Microbiol (Praha) 2021; 66:371-384. [PMID: 33534036 DOI: 10.1007/s12223-020-00844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/17/2020] [Indexed: 11/26/2022]
Abstract
Crop inoculation with Glomus cubense isolate (INCAM-4, DAOM-241198) promotes yield in banana, cassava, forages, and others. Yield improvements range from 20 to 80% depending on crops, nutrient supply, and edaphoclimatic conditions. However, it is difficult to connect yield effects with G. cubense abundance in roots due to the lack of an adequate methodology to trace this taxon in the field. It is necessary to establish an accurate evaluation framework of its contribution to root colonization separated from native arbuscular mycorrhizal fungi (AMF). A taxon-discriminating primer set was designed based on the ITS nrDNA marker and two molecular approaches were optimized and validated (endpoint PCR and quantitative real-time PCR) to trace and quantify the G. cubense isolate in root and soil samples under greenhouse and environmental conditions. The detection limit and specificity assays were performed by both approaches. Different 18 AMF taxa were used for endpoint PCR specificity assay, showing that primers specifically amplified the INCAM-4 isolate yielding a 370 bp-PCR product. In the greenhouse, Urochloa brizantha plants inoculated with three isolates (Rhizophagus irregularis, R. clarus, and G. cubense) and environmental root and soil samples were successfully traced and quantified by qPCR. The AMF root colonization reached 41-70% and the spore number 4-128 per g of soil. This study demonstrates for the first time the feasibility to trace and quantify the G. cubense isolate using a taxon-discriminating ITS marker in roots and soils. The validated approaches reveal their potential to be used for the quality control of other mycorrhizal inoculants and their relative quantification in agroecosystems.
Collapse
Affiliation(s)
- Yakelin Rodríguez-Yon
- Arbuscular Mycorrhizal Group, Department Biofertilizers and Plant Nutrition, Instituto Nacional de Ciencias Agrícolas (INCA) Gaveta Postal No 1 San José de Las Lajas, 32700, Mayabeque, Cuba.
| | - Camila Maistro-Patreze
- Department of Botany, Center for Life Science and Health, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, RJ, 22290-255, Brazil
| | - Orivaldo Jose Saggin-Junior
- Mycorrhiza Laboratory, Embrapa Agrobiologia, BR 464, km 07, Bairro Ecologia, Seropédica, RJ, 23891-000, Brazil
| | - Ramón Antonio Rivera
- Arbuscular Mycorrhizal Group, Department Biofertilizers and Plant Nutrition, Instituto Nacional de Ciencias Agrícolas (INCA) Gaveta Postal No 1 San José de Las Lajas, 32700, Mayabeque, Cuba
| | - Madelaine Quiñones
- Plant Pathology Group, Centro Nacional de Sanidad Agropecuaria (CENSA), Mayabeque, Cuba
| | - Geert Haesaert
- Department of Applied Sciences, Faculty of Bioscience Engineering, Ghent University, V. Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Diederik van Tuinen
- Agroécologie, AgroSup Dijon, CNRS, Université Bourgogne, INRAE, Université Bourgogne Franche-Comté, 21000, Dijon, France
| |
Collapse
|