1
|
Smythers AL, Bhatnagar N, Ha C, Majumdar P, McConnell EW, Mohanasundaram B, Hicks LM, Pandey S. Abscisic acid-controlled redox proteome of Arabidopsis and its regulation by heterotrimeric Gβ protein. THE NEW PHYTOLOGIST 2022; 236:447-463. [PMID: 35766993 DOI: 10.1111/nph.18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The plant hormone abscisic acid (ABA) plays crucial roles in regulation of stress responses and growth modulation. Heterotrimeric G-proteins are key mediators of ABA responses. Both ABA and G-proteins have also been implicated in intracellular redox regulation; however, the extent to which reversible protein oxidation manipulates ABA and/or G-protein signaling remains uncharacterized. To probe the role of reversible protein oxidation in plant stress response and its dependence on G-proteins, we determined the ABA-dependent reversible redoxome of wild-type and Gβ-protein null mutant agb1 of Arabidopsis. We quantified 6891 uniquely oxidized cysteine-containing peptides, 923 of which show significant changes in oxidation following ABA treatment. The majority of these changes required the presence of G-proteins. Divergent pathways including primary metabolism, reactive oxygen species response, translation and photosynthesis exhibited both ABA- and G-protein-dependent redox changes, many of which occurred on proteins not previously linked to them. We report the most comprehensive ABA-dependent plant redoxome and uncover a complex network of reversible oxidations that allow ABA and G-proteins to rapidly adjust cellular signaling to adapt to changing environments. Physiological validation of a subset of these observations suggests that functional G-proteins are required to maintain intracellular redox homeostasis and fully execute plant stress responses.
Collapse
Affiliation(s)
- Amanda L Smythers
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Chien Ha
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | | | - Evan W McConnell
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Leslie M Hicks
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| |
Collapse
|
2
|
Zhai L, Xie L, Xu J, Xu B, Dong J, Zhang X. Study on exogenous application of thidiazuron on seed size of Brassica napus L. FRONTIERS IN PLANT SCIENCE 2022; 13:998698. [PMID: 36147221 PMCID: PMC9486165 DOI: 10.3389/fpls.2022.998698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Thidiazuron (TDZ) is a novel and efficient cytokinin commonly used in tissue culture, and numerous studies have demonstrated that TDZ can increase berry size. However, no study to date has explored the effect of TDZ on seed size of Brassica napus and the mechanism. To shed light on the effect of TDZ on the seed size of B. napus, four different concentrations of TDZ were applied to B. napus. Results indicated that TDZ treatment could increase the seed diameter and silique length of B. napus to varying degrees and 100 and 200 μmol/L TDZ treatments were the most effective with a 3.6 and 4.6% increase in seed diameter, respectively. In addition, the yield of B. napus was also substantially increased under TDZ treatment. On the other hand, confocal micrographs of embryos and cotyledon cells suggested that embryos and their cotyledon epidermal cells treated with 200 μmol/L TDZ were obviously larger in size than the control. Furthermore, TDZ promoted the upregulation of some key maternal tissue growth-related genes, including two G-protein signaling genes (AGG3 and RGA1) and two transcriptional regulators (ANT and GS2). The expression analysis of genes related to the auxin metabolic pathways, G-protein signaling, endosperm growth and transcriptional regulators confirmed that treatment with TDZ negatively regulated the key genes ABI5, AGB1, AP2, ARF2, and ARF18 during bud development stage and florescence. The results strongly suggested that TDZ might regulate the transcriptional levels of key genes involved in auxin metabolic pathways, G-protein signaling, endosperm growth and transcriptional regulators, which resulted in bigger cotyledon epidermal cells and seed size in B. napus. This study explored the mechanism of TDZ treatment on the seed size of B. napus and provided an important reference for improving rapeseed yield.
Collapse
Affiliation(s)
- Lu Zhai
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, China
- College of Life Science, Yangtze University, Hubei, China
| | - Lingli Xie
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, China
- College of Life Science, Yangtze University, Hubei, China
| | - JinSong Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, China
- College of Agriculture, Yangtze University, Hubei, China
| | - Benbo Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, China
- College of Life Science, Yangtze University, Hubei, China
| | - Jing Dong
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, China
| | - XueKun Zhang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, China
- College of Agriculture, Yangtze University, Hubei, China
| |
Collapse
|
3
|
Zait Y, Ferrero‐Serrano Á, Assmann SM. The α subunit of the heterotrimeric G protein regulates mesophyll CO 2 conductance and drought tolerance in rice. THE NEW PHYTOLOGIST 2021; 232:2324-2338. [PMID: 34515342 PMCID: PMC9293471 DOI: 10.1111/nph.17730] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/01/2021] [Indexed: 05/03/2023]
Abstract
Mesophyll conductance gm determines CO2 diffusion rates from mesophyll intercellular air spaces to the chloroplasts and is an important factor limiting photosynthesis. Increasing gm in cultivated plants is a potential strategy to increase photosynthesis and intrinsic water use efficiency (WUEi ). The anatomy of the leaf and metabolic factors such as aquaporins and carbonic anhydrases have been identified as important determinants of gm . However, genes involved in the regulation and modulation of gm remain largely unknown. In this work, we investigated the role of heterotrimeric G proteins in gm and drought tolerance in rice d1 mutants, which harbor a null mutation in the Gα subunit gene, RGA1. d1 mutants in both cv Nipponbare and cv Taichung 65 exhibited increased gm , fostering improvement in photosynthesis, WUEi , and drought tolerance compared with wild-type. The increased surface area of mesophyll cells and chloroplasts exposed to intercellular airspaces and the reduced cell wall and chloroplast thickness in the d1 mutant are evident contributors to the increase in gm . Our results indicate that manipulation of heterotrimeric G protein signaling has the potential to improve crop WUEi and productivity under drought.
Collapse
Affiliation(s)
- Yotam Zait
- Biology DepartmentPenn State University208 Mueller LaboratoryUniversity ParkPA16802USA
| | - Ángel Ferrero‐Serrano
- Biology DepartmentPenn State University208 Mueller LaboratoryUniversity ParkPA16802USA
| | - Sarah M. Assmann
- Biology DepartmentPenn State University208 Mueller LaboratoryUniversity ParkPA16802USA
| |
Collapse
|
4
|
Lacey EP, Herrera FO, Richter SJ. Multiple modes of selection can influence the role of phenotypic plasticity in species' invasions: Evidence from a manipulative field experiment. Ecol Evol 2021; 11:4140-4157. [PMID: 33976799 PMCID: PMC8093752 DOI: 10.1002/ece3.7311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/15/2021] [Accepted: 02/04/2021] [Indexed: 01/14/2023] Open
Abstract
In exploring the roles of phenotypic plasticity in the establishment and early evolution of invading species, little empirical attention has been given to the importance of correlational selection acting upon suites of functionally related plastic traits in nature. We illustrate how this lack of attention has limited our ability to evaluate plasticity's role during invasion and also, the costs and benefits of plasticity. We addressed these issues by transplanting clones of European-derived Plantago lanceolata L. genotypes into two temporally variable habitats in the species' introduced range in North America. Phenotypic selection analyses were performed for each habitat to estimate linear, quadratic, and correlational selection on phenotypic trait values and plasticities in the reproductive traits: flowering onset and spike and scape lengths. Also, we measured pairwise genetic correlations for our "colonists." Results showed that (a) correlational selection acted on trait plasticity after transplantation, (b) selection favored certain combinations of genetically correlated and uncorrelated trait values and plasticities, and (c) using signed, instead of absolute, values of plasticity in analyses facilitated the detection of correlational selection on trait value-plasticity combinations and their adaptive value. Based on our results, we urge future studies on species invasions to (a) measure correlational selection and (b) retain signed values of plasticity in order to better discriminate between adaptive and maladaptive plasticity.
Collapse
Affiliation(s)
| | | | - Scott J. Richter
- Department of Mathematics & StatisticsUniversity of North CarolinaGreensboroNCUSA
| |
Collapse
|
5
|
Chevalier W, Moussa SA, Medeiros Netto Ottoni M, Dubois-Laurent C, Huet S, Aubert C, Desnoues E, Navez B, Cottet V, Chalot G, Jost M, Barrot L, Freymark G, Uittenbogaard M, Chaniet F, Suel A, Bouvier Merlet MH, Hamama L, Le Clerc V, Briard M, Peltier D, Geoffriau E. Multisite evaluation of phenotypic plasticity for specialized metabolites, some involved in carrot quality and disease resistance. PLoS One 2021; 16:e0249613. [PMID: 33798246 PMCID: PMC8018645 DOI: 10.1371/journal.pone.0249613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
Renewed consumer demand motivates the nutritional and sensory quality improvement of fruits and vegetables. Specialized metabolites being largely involved in nutritional and sensory quality of carrot, a better knowledge of their phenotypic variability is required. A metabolomic approach was used to evaluate phenotypic plasticity level of carrot commercial varieties, over three years and a wide range of cropping environments spread over several geographical areas in France. Seven groups of metabolites have been quantified by HPLC or GC methods: sugars, carotenoids, terpenes, phenolic compounds, phenylpropanoids and polyacetylenes. A large variation in root metabolic profiles was observed, in relation with environment, variety and variety by environment interaction effects in decreasing order of importance. Our results show a clear diversity structuration based on metabolite content. Polyacetylenes, β-pinene and α-carotene were identified mostly as relatively stable varietal markers, exhibiting static stability. Nevertheless, environment effect was substantial for a large part of carrot metabolic profile and various levels of phenotypic plasticity were observed depending on metabolites and varieties. A strong difference of environmental sensitivity between varieties was observed for several compounds, particularly myristicin, 6MM and D-germacrene, known to be involved in responses to biotic and abiotic stress. This work provides useful information about plasticity in the perspective of carrot breeding and production. A balance between constitutive content and environmental sensitivity for key metabolites should be reached for quality improvement in carrot and other vegetables.
Collapse
Affiliation(s)
- Wilfried Chevalier
- Institut Agro, Université d’Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, France
| | - Sitti-Anlati Moussa
- Institut Agro, Université d’Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, France
| | | | | | - Sébastien Huet
- Institut Agro, Université d’Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, France
| | - Christophe Aubert
- Centre Technique Interprofessionnel des Fruits et Légumes (CTIFL), Paris, France
| | - Elsa Desnoues
- Centre Technique Interprofessionnel des Fruits et Légumes (CTIFL), Paris, France
| | - Brigitte Navez
- Centre Technique Interprofessionnel des Fruits et Légumes (CTIFL), Paris, France
| | - Valentine Cottet
- Centre Technique Interprofessionnel des Fruits et Légumes (CTIFL), Paris, France
| | - Guillaume Chalot
- Centre Technique Interprofessionnel des Fruits et Légumes (CTIFL), Paris, France
| | - Michel Jost
- Centre Technique Interprofessionnel des Fruits et Légumes (CTIFL), Paris, France
| | | | | | | | | | - Anita Suel
- Institut Agro, Université d’Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, France
| | | | - Latifa Hamama
- Institut Agro, Université d’Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, France
| | - Valérie Le Clerc
- Institut Agro, Université d’Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, France
| | - Mathilde Briard
- Institut Agro, Université d’Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, France
| | - Didier Peltier
- Institut Agro, Université d’Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, France
| | - Emmanuel Geoffriau
- Institut Agro, Université d’Angers, INRAE, IRHS, SFR 4207 QUASAV, Angers, France
| |
Collapse
|
6
|
Bhardwaj D, Sahoo RK, Naqvi AR, Lakhanpaul S, Tuteja N. Pea Gβ subunit of G proteins has a role in nitric oxide-induced stomatal closure in response to heat and drought stress. PROTOPLASMA 2020; 257:1639-1654. [PMID: 32737572 DOI: 10.1007/s00709-020-01529-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Heterotrimeric G proteins consisting of Gα, Gβ and Gγ subunits act as downstream effectors to regulate multiple functions including abiotic stress tolerance. However, the mechanism of Gβ-mediated heat and drought tolerance is yet to be established. To explore the role of Pisum sativum Gβ subunit (PsGβ) in heat and drought stress, transgenic tobacco plants overexpressing (OEs) PsGβ were raised. Transgenic plants showing ectopic expression of PsGβ performed better under heat and drought stress in comparison with vector control plants. The seed germination, relative water content (RWC) and nitric oxide (NO) induction in the guard cells of transgenic plants were significantly higher in contrast to control plants. PsGβ promoter was isolated and several stress-responsive elements were identified. The change in Gβ expression in response to heat, methyl jasmonate (MeJA), abscisic acid (ABA), drought and salt confirms the presence of heat, low temperature and drought-responsive elements in the PsGβ promoter. Also, heat and drought stress caused the release of NO-induced stomatal closure in the leaves of transgenic tobacco plants OEs PsGβ. The better performance of transgenic plant OEs PsGβ is also attributed to the improved photosynthetic parameters as compared with control plants. These findings suggest a role of PsGβ in the signalling pathway leading to NO-induced stomatal closure during heat and drought stress.
Collapse
Affiliation(s)
- Deepak Bhardwaj
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Botany, Central University of Jammu, Jammu and Kashmir, 181143, India
- Department of Botany, University of Delhi, Delhi, India
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Afsar Raza Naqvi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
7
|
Guo J, Li H, Yang Y. Phenotypic Plasticity in Sexual Reproduction Based on Nutrients Supplied From Vegetative Ramets in a Leymus chinensis Population. FRONTIERS IN PLANT SCIENCE 2020; 10:1681. [PMID: 32010165 PMCID: PMC6976537 DOI: 10.3389/fpls.2019.01681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/29/2019] [Indexed: 05/12/2023]
Abstract
Phenotypic plasticity is considered a major mechanism that allows plants to adapt to heterogeneous environments. The physiological integration between the interconnected rhizomes or stolons of clonal plants influences the plasticity of such plants in heterogeneous environments. However, the determinants of plasticity of reproductive ramets in clonal plants in homogeneous environments are unclear. Here, we chose Leymus chinensis, a perennial rhizomatous grass, and conducted a series of field experiments in situ, including grading sampling of reproductive ramets and different connection forms of vegetative ramets labeled with 15N at four reproductive stages. Reproductive ramet biomass, inflorescence biomass, seed number, seed-setting percentage, reproductive allocation, and reallocation significantly increased with an increase in the number of vegetative ramets connected to tillering nodes, and the plasticity indexes of these six phenotypic characteristics showed similar increasing trends. The amount of nutrients supplied from the connected vegetative ramets to the reproductive ramets was significantly affected by the transfer direction, reproductive stage, and position order of the vegetative ramets. Throughout the sexual reproduction stage, nutrients were preferentially transferred to the acropetal reproductive ramet in L. chinensis populations. The amount of nutrients supplied from the connected vegetative ramets to the reproductive ramets at the milk-ripe stage, when sexual reproduction was most vigorous, was significantly larger than that at other reproductive stages. The amount of nutrients supplied from the spacer vegetative ramet to the acropetal reproductive ramet was significantly larger than that to the basipetal reproductive ramet. The closer the vegetative ramet was to the reproductive ramet, the more nutrients were supplied; the amount of nutrients supplied was significantly negatively related to the position order of the vegetative ramet. We identified the determinant of plasticity in sexual reproduction in clonal plants in a homogeneous environment: physiological integration between ramets within clones. Our results are vital for better understanding the adaptation of populations and even the evolution of species of clonal plants.
Collapse
Affiliation(s)
| | - Haiyan Li
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yunfei Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
8
|
Shaar‐Moshe L, Hayouka R, Roessner U, Peleg Z. Phenotypic and metabolic plasticity shapes life-history strategies under combinations of abiotic stresses. PLANT DIRECT 2019; 3:e00113. [PMID: 31245755 PMCID: PMC6508786 DOI: 10.1002/pld3.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/11/2018] [Accepted: 12/23/2018] [Indexed: 05/23/2023]
Abstract
Plants developed various reversible and non-reversible acclimation mechanisms to cope with the multifaceted nature of abiotic-stress combinations. We hypothesized that in order to endure these stress combinations, plants elicit distinctive acclimation strategies through specific trade-offs between reproduction and defense. To investigate Brachypodium distachyon acclimation strategies to combinations of salinity, drought and heat, we applied a system biology approach, integrating physiological, metabolic, and transcriptional analyses. We analyzed the trade-offs among functional and performance traits, and their effects on plant fitness. A combination of drought and heat resulted in escape strategy, while under a combination of salinity and heat, plants exhibited an avoidance strategy. On the other hand, under combinations of salinity and drought, with or without heat stress, plant fitness (i.e., germination rate of subsequent generation) was severely impaired. These results indicate that under combined stresses, plants' life-history strategies were shaped by the limits of phenotypic and metabolic plasticity and the trade-offs between traits, thereby giving raise to distinct acclimations. Our findings provide a mechanistic understanding of plant acclimations to combinations of abiotic stresses and shed light on the different life-history strategies that can contribute to grass fitness and possibly to their dispersion under changing environments.
Collapse
Affiliation(s)
- Lidor Shaar‐Moshe
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
| | - Ruchama Hayouka
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
| | - Ute Roessner
- School of BioSciencesThe University of MelbourneMelbourneAustralia
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
9
|
Wu TY, Urano D. Genetic and Systematic Approaches Toward G Protein-Coupled Abiotic Stress Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1378. [PMID: 30294337 PMCID: PMC6158310 DOI: 10.3389/fpls.2018.01378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/29/2018] [Indexed: 05/15/2023]
Abstract
Heterotrimeric G protein, composed of Gα, Gβ, and Gγ subunits, modulates plant adaptations to environmental stresses such as high salinity, drought, extreme temperatures and high light intensity. Most of these evidence were however derived solely from conventional genetics methods with which stress-associated phenotypes were compared between wild type and various G protein mutant plants. Recent advances in systematic approaches, mainly transcriptome and proteome, have contributed to in-depth understanding of molecular linkages between G proteins and environmental changes. Here, we update our knowledge on the roles of G proteins in abiotic stress responses. Furthermore, we highlight the current whole genome studies and integrated omics approach to better understand the fundamental G protein functions involved in abiotic stress responses. It is our purpose here to bridge the gap between molecular mechanisms in G protein science and stress biology and pave the way toward crop improvement researches in the future.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Ferrero-Serrano Á, Su Z, Assmann SM. Illuminating the role of the Gα heterotrimeric G protein subunit, RGA1, in regulating photoprotection and photoavoidance in rice. PLANT, CELL & ENVIRONMENT 2018; 41:451-468. [PMID: 29216416 DOI: 10.1111/pce.13113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 05/22/2023]
Abstract
We studied physiological mechanisms of photoavoidance and photoprotection of a dwarf rice mutant with erect leaves, d1, in which the RGA1 gene, which encodes the Gα subunit of the heterotrimeric G protein, is non-functional. Leaves of d1 exhibit lower leaf temperature and higher photochemical reflectance index relative to wild type (WT), indicative of increased photoavoidance and more efficient light harvesting. RNA sequencing analysis of flag leaves revealed that messenger RNA levels of genes encoding heat shock proteins, enzymes associated with chlorophyll breakdown, and ROS scavengers were down-regulated in d1. By contrast, genes encoding proteins associated with light harvesting, Photosystem II, cyclic electron transport, Photosystem I, and chlorophyll biosynthesis were up-regulated in d1. Consistent with these observations, when WT and d1 plants were experimentally subjected to the same light intensity, d1 plants exhibited a greater capacity to dissipate excess irradiance (increased nonphotochemical quenching) relative to WT. The increased capacity in d1 for both photoavoidance and photoprotection reduced sustained photoinhibitory damage, as revealed by a higher Fv /Fm . We therefore propose RGA1 as a regulator of photoavoidance and photoprotection mechanisms in rice and highlight the prospect of exploiting modulation of heterotrimeric G protein signalling to increase these characteristics and improve the yield of cereals in the event of abiotic stress.
Collapse
Affiliation(s)
- Ángel Ferrero-Serrano
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Zhao Su
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Sarah M Assmann
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| |
Collapse
|
11
|
Pandey S. Heterotrimeric G-protein regulatory circuits in plants: Conserved and novel mechanisms. PLANT SIGNALING & BEHAVIOR 2017; 12:e1325983. [PMID: 28532301 PMCID: PMC5566352 DOI: 10.1080/15592324.2017.1325983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
ARTICLE ADDENDUM Efficient activation and deactivation of Gα protein is critical for the regulation of heterotrimeric G-protein mediated signaling pathways. While the core G-protein components and their activation/deactivation chemistries are broadly conserved throughout the eukaryotic evolution, their regulatory mechanisms seem to have been rewired in plants to meet specific needs. Plants such as Arabidopsis, which have a limited number of G-protein components and their regulators, offer a unique opportunity to dissect the mechanistic details of distinct signaling pathways. We have recently established an interaction between the regulator of G-protein signaling 1 (RGS1) and phospholipase Dα1 (PLDα1); 2 of the GTPase activity accelerating proteins (GAPs) of the Arabidopsis Gα protein, GPA1. We now show that phosphatidic acid (PA), a key product of PLDα1 activity, can bind with and modulate the GAP activity of RGS1, uncovering a molecular link between lipid and G-protein signaling and its role in providing the specificity of response regulation.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- CONTACT Sona Pandey Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis MO, 63132, USA
| |
Collapse
|
12
|
Roy Choudhury S, Pandey S. Phosphatidic acid binding inhibits RGS1 activity to affect specific signaling pathways in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:466-477. [PMID: 28161903 DOI: 10.1111/tpj.13503] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 05/22/2023]
Abstract
Modulation of the active versus inactive forms of the Gα protein is critical for the signaling processes mediated by the heterotrimeric G-protein complex. We have recently established that in Arabidopsis, the regulator of G-protein signaling (RGS1) protein and a lipid-hydrolyzing enzyme, phospholipase Dα1 (PLDα1), both act as GTPase-activity accelerating proteins (GAPs) for the Gα protein to attenuate its activity. RGS1 and PLDα1 interact with each other, and RGS1 inhibits the activity of PLDα1 during regulation of a subset of responses. In this study, we present evidence that this regulation is bidirectional. Phosphatidic acid (PA), a second messenger typically derived from the lipid-hydrolyzing activity of PLDα1, is a molecular target of RGS1. PA binds and inhibits the GAP activity of RGS1. A conserved lysine residue in RGS1 (Lys259 ) is directly involved in RGS1-PA binding. Introduction of this RGS1 protein variant in the rgs1 mutant background makes plants hypersensitive to a subset of abscisic acid-mediated responses. Our data point to the existence of negative feedback loops between these two regulatory proteins that precisely modulate the level of active Gα, consequently generating a highly controlled signal-response output.
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- Donald Danforth Plant Science Center, 975 N. Warson Road, St Louis, MO, 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St Louis, MO, 63132, USA
| |
Collapse
|
13
|
Ferrero-Serrano Á, Assmann SM. The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3433-43. [PMID: 27194741 PMCID: PMC4892740 DOI: 10.1093/jxb/erw183] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Essential in the Green Revolution was the development of high-yielding dwarf varieties of rice (Oryza sativa L.), but their selection was not based on responses to water limitation. We studied physiological responses to progressive drought of the dwarf rice mutant, d1, in which the RGA1 gene, which encodes the GTP-binding α-subunit of the heterotrimeric G protein, is non-functional. Wild-type (WT) plants cease net carbon fixation 11 days after water is withheld, while d1 plants maintain net photosynthesis for an additional week. During drought, d1 plants exhibit greater stomatal conductance than the WT, but both genotypes exhibit the same transpirational water loss per unit leaf area. This is explained by a smaller driving force for water loss in d1 owing to its lower leaf temperatures, consistent with its more erect architecture. As drought becomes more severe, WT plants show an accelerated decline in photosynthesis, which may be exacerbated by the higher leaf temperatures in the WT. We thus show how a rice mutant with dwarf and erect leaves has a decreased susceptibility to water stress. Accordingly, it may be useful to incorporate RGA1 mutation in breeding or biotechnological strategies for development of drought-resistant rice.
Collapse
Affiliation(s)
- Ángel Ferrero-Serrano
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | - Sarah M Assmann
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| |
Collapse
|
14
|
Roy Choudhury S, Pandey S. The role of PLDα1 in providing specificity to signal-response coupling by heterotrimeric G-protein components in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:50-61. [PMID: 26935351 DOI: 10.1111/tpj.13151] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/15/2016] [Indexed: 05/21/2023]
Abstract
Heterotrimeric G-proteins comprised of Gα, Gβ and Gγ subunits are important signal transducers in all eukaryotes. In plants, G-proteins affect multiple biotic and abiotic stress responses, as well as many developmental processes, even though their repertoire is significantly limited compared with that in metazoan systems. One canonical and three extra-large Gα, 1 Gβ and 3 Gγ proteins represent the heterotrimeric G-protein complex in Arabidopsis, and a single regulatory protein, RGS1, is one of the few known biochemical regulators of this signaling complex. This quantitative disparity between the number of signaling components and the range of processes they influence is rather intriguing. We now present evidence that the phospholipase Dα1 protein is a key component and modulator of the G-protein complex in affecting a subset of signaling pathways. We also show that the same G-protein subunits and their modulators exhibit distinct physiological and genetic interactions depending on specific signaling and developmental pathways. Such developmental plasticity and interaction specificity likely compensates for the lack of multiplicity of individual subunits, and helps to fine tune the plants' responses to constantly changing environments.
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| |
Collapse
|
15
|
Yu TY, Shi DQ, Jia PF, Tang J, Li HJ, Liu J, Yang WC. The Arabidopsis Receptor Kinase ZAR1 Is Required for Zygote Asymmetric Division and Its Daughter Cell Fate. PLoS Genet 2016; 12:e1005933. [PMID: 27014878 PMCID: PMC4807781 DOI: 10.1371/journal.pgen.1005933] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
Abstract
Asymmetric division of zygote is critical for pattern formation during early embryogenesis in plants and animals. It requires integration of the intrinsic and extrinsic cues prior to and/or after fertilization. How these cues are translated into developmental signals is poorly understood. Here through genetic screen for mutations affecting early embryogenesis, we identified an Arabidopsis mutant, zygotic arrest 1 (zar1), in which zygote asymmetric division and the cell fate of its daughter cells were impaired. ZAR1 encodes a member of the RLK/Pelle kinase family. We demonstrated that ZAR1 physically interacts with Calmodulin and the heterotrimeric G protein Gβ, and ZAR1 kinase is activated by their binding as well. ZAR1 is specifically expressed micropylarly in the embryo sac at eight-nucleate stage and then in central cell, egg cell and synergids in the mature embryo sac. After fertilization, ZAR1 is accumulated in zygote and endosperm. The disruption of ZAR1 and AGB1 results in short basal cell and an apical cell with basal cell fate. These data suggest that ZAR1 functions as a membrane integrator for extrinsic cues, Ca2+ signal and G protein signaling to regulate the division of zygote and the cell fate of its daughter cells in Arabidopsis.
Collapse
Affiliation(s)
- Tian-Ying Yu
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Peng-Fei Jia
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jun Tang
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Bizet F, Bogeat-Triboulot MB, Montpied P, Christophe A, Ningre N, Cohen D, Hummel I. Phenotypic plasticity toward water regime: response of leaf growth and underlying candidate genes in Populus. PHYSIOLOGIA PLANTARUM 2015; 154:39-53. [PMID: 25185760 DOI: 10.1111/ppl.12271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/10/2014] [Accepted: 07/23/2014] [Indexed: 06/03/2023]
Abstract
Phenotypic plasticity is considered as an important mechanism for plants to cope with environmental challenges. Leaf growth is one of the first macroscopic processes to be impacted by modification of soil water availability. In this study, we intended to analyze and compare plasticity at different scales. We examined the differential effect of water regime (optimal, moderate water deprivation and recovery) on growth and on the expression of candidate genes in leaves of different growth stages. Candidates were selected to assess components of growth response: abscisic acid signaling, water transport, cell wall modification and stomatal development signaling network. At the tree scale, the four studied poplar hybrids responded similarly to water regime. Meanwhile, leaf growth response was under genotype × environment interaction. Patterns of candidate gene expression enriched our knowledge about their functionality in poplars. For most candidates, transcript levels were strongly structured according to leaf growth performance while response to water regime was clearly dependent on genotype. The use of an index of plasticity revealed that the magnitude of the response was higher for gene expression than for macroscopic traits. In addition, the ranking of poplar genotypes for macroscopic traits well paralleled the one for gene expression.
Collapse
Affiliation(s)
- François Bizet
- INRA, UMR Ecologie et Ecophysiologie Forestières, FR-54280, Champenoux, France; Université de Lorraine, UMR Ecologie et Ecophysiologie Forestières, Faculté des Sciences et Technologies, FR-54506, Vandœuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Xu DB, Chen M, Ma YN, Xu ZS, Li LC, Chen YF, Ma YZ. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis. PLoS One 2015; 10:e0116385. [PMID: 25635681 PMCID: PMC4312036 DOI: 10.1371/journal.pone.0116385] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/05/2014] [Indexed: 01/08/2023] Open
Abstract
Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2) was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1), were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44), were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.
Collapse
Affiliation(s)
- Dong-bei Xu
- College of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Ya-nan Ma
- College of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Zhao-shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Lian-cheng Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yao-feng Chen
- College of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- * E-mail: (YC); (YZM)
| | - You-zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
- * E-mail: (YC); (YZM)
| |
Collapse
|
18
|
Evolution, expression differentiation and interaction specificity of heterotrimeric G-protein subunit gene family in the mesohexaploid Brassica rapa. PLoS One 2014; 9:e105771. [PMID: 25191920 PMCID: PMC4156303 DOI: 10.1371/journal.pone.0105771] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/28/2014] [Indexed: 11/24/2022] Open
Abstract
Heterotrimeric G-proteins, comprising of Gα, Gβ, and Gγ subunits, are important signal transducers which regulate many aspects of fundamental growth and developmental processes in all eukaryotes. Initial studies in model plants Arabidopsis and rice suggest that the repertoire of plant G-protein is much simpler than that observed in metazoans. In order to assess the consequence of whole genome triplication events within Brassicaceae family, we investigated the multiplicity of G-protein subunit genes in mesohexaploid Brassica rapa, a globally important vegetable and oilseed crop. We identified one Gα (BraA.Gα1), three Gβ (BraA.Gβ1, BraA.Gβ2, and BraA.Gβ3), and five Gγ (BraA.Gγ1, BraA.Gγ2, BraA.Gγ3, BraA.Gγ4, and BraA.Gγ5) genes from B. rapa, with a possibility of 15 Gαβγ heterotrimer combinations. Our analysis suggested that the process of genome triplication coupled with gene-loss (gene-fractionation) phenomenon have shaped the quantitative and sequence diversity of G-protein subunit genes in the extant B. rapa genome. Detailed expression analysis using qRT-PCR assays revealed that the G-protein genes have retained ubiquitous but distinct expression profiles across plant development. The expression of multiple G-protein genes was differentially regulated during seed-maturation and germination stages, and in response to various phytohormone treatments and stress conditions. Yeast-based interaction analysis showed that G-protein subunits interacted in most of the possible combinations, with some degree of subunit-specific interaction specificity, to control the functional selectivity of G-protein heterotrimer in different cell and tissue-types or in response to different environmental conditions. Taken together, this research identifies a highly diverse G-protein signaling network known to date from B. rapa, and provides a clue about the possible complexity of G-protein signaling networks present across globally important Brassica species.
Collapse
|
19
|
Choudhury SR, Pandey S. Specific subunits of heterotrimeric G proteins play important roles during nodulation in soybean. PLANT PHYSIOLOGY 2013; 162:522-33. [PMID: 23569109 PMCID: PMC3641229 DOI: 10.1104/pp.113.215400] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/04/2013] [Indexed: 05/09/2023]
Abstract
Heterotrimeric G proteins comprising Gα, Gβ, and Gγ subunits regulate many fundamental growth and development processes in all eukaryotes. Plants possess a relatively limited number of G-protein components compared with mammalian systems, and their detailed functional characterization has been performed mostly in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). However, the presence of single Gα and Gβ proteins in both these species has significantly undermined the complexity and specificity of response regulation in plant G-protein signaling. There is ample pharmacological evidence for the role of G proteins in regulation of legume-specific processes such as nodulation, but the lack of genetic data from a leguminous species has restricted its direct assessment. Our recent identification and characterization of an elaborate G-protein family in soybean (Glycine max) and the availability of appropriate molecular-genetic resources have allowed us to directly evaluate the role of G-protein subunits during nodulation. We demonstrate that all G-protein genes are expressed in nodules and exhibit significant changes in their expression in response to Bradyrhizobium japonicum infection and in representative supernodulating and nonnodulating soybean mutants. RNA interference suppression and overexpression of specific G-protein components results in lower and higher nodule numbers, respectively, validating their roles as positive regulators of nodule formation. Our data further show preferential usage of distinct G-protein subunits in the presence of an additional signal during nodulation. Interestingly, the Gα proteins directly interact with the soybean nodulation factor receptors NFR1α and NFR1β, suggesting that the plant G proteins may couple with receptors other than the canonical heptahelical receptors common in metazoans to modulate signaling.
Collapse
Affiliation(s)
| | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
20
|
Roy Choudhury S, Westfall CS, Laborde JP, Bisht NC, Jez JM, Pandey S. Two chimeric regulators of G-protein signaling (RGS) proteins differentially modulate soybean heterotrimeric G-protein cycle. J Biol Chem 2012; 287:17870-17881. [PMID: 22474294 PMCID: PMC3366798 DOI: 10.1074/jbc.m112.353219] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/26/2012] [Indexed: 12/12/2022] Open
Abstract
Heterotrimeric G-proteins and the regulator of G-protein signaling (RGS) proteins, which accelerate the inherent GTPase activity of Gα proteins, are common in animals and encoded by large gene families; however, in plants G-protein signaling is thought to be more limited in scope. For example, Arabidopsis thaliana contains one Gα, one Gβ, three Gγ, and one RGS protein. Recent examination of the Glycine max (soybean) genome reveals a larger set of G-protein-related genes and raises the possibility of more intricate G-protein networks than previously observed in plants. Stopped-flow analysis of GTP-binding and GDP/GTP exchange for the four soybean Gα proteins (GmGα1-4) reveals differences in their kinetic properties. The soybean genome encodes two chimeric RGS proteins with an N-terminal seven transmembrane domain and a C-terminal RGS box. Both GmRGS interact with each of the four GmGα and regulate their GTPase activity. The GTPase-accelerating activities of GmRGS1 and -2 differ for each GmGα, suggesting more than one possible rate of the G-protein cycle initiated by each of the Gα proteins. The differential effects of GmRGS1 and GmRGS2 on GmGα1-4 result from a single valine versus alanine difference. The emerging picture suggests complex regulation of the G-protein cycle in soybean and in other plants with expanded G-protein networks.
Collapse
Affiliation(s)
| | - Corey S Westfall
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - John P Laborde
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Naveen C Bisht
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Joseph M Jez
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132.
| |
Collapse
|
21
|
Utsunomiya Y, Samejima C, Takayanagi Y, Izawa Y, Yoshida T, Sawada Y, Fujisawa Y, Kato H, Iwasaki Y. Suppression of the rice heterotrimeric G protein β-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:907-16. [PMID: 21585570 DOI: 10.1111/j.1365-313x.2011.04643.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the present study, we investigated the function of the heterotrimeric G protein β-subunit (Gβ) gene (RGB1) in rice. RGB1 knock-down lines were generated in the wild type and d1-5, a mutant deficient for the heterotrimeric G protein α-subunit (Gα) gene (RGA1). Both transgenic lines showed browning of the lamina joint regions and nodes that could be attributed to a reduction of RGB1 function, as the abnormality was not observed in d1-5. The RGB1 knock-down lines generated in d1-5 were shorter, suggesting RGB1 to be a positive regulator of cellular proliferation, in addition to RGA1. The number of sterile seeds also increased in both RGB1 knock-down lines. These results suggest that Gβγ and Gα cooperatively function in cellular proliferation and seed fertility. We discuss the potential predominant role of RGB1 in G protein signaling in rice.
Collapse
Affiliation(s)
- Yuzuko Utsunomiya
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka Kenjyojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang RS, Pandey S, Li S, Gookin TE, Zhao Z, Albert R, Assmann SM. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics 2011; 12:216. [PMID: 21554708 PMCID: PMC3115880 DOI: 10.1186/1471-2164-12-216] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/09/2011] [Indexed: 12/15/2022] Open
Abstract
Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA). ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and their downstream targets, the type 2C protein phosphatases. Our data also provide evidence for cross-talk at the transcriptional level between ABA and another hormonal inhibitor of stomatal opening, methyl jasmonate. Conclusions Our results engender new insights into the basic cell biology of guard cells, reveal common and unique elements of ABA-regulation of gene expression in guard cells, and set the stage for targeted biotechnological manipulations to improve plant water use efficiency.
Collapse
Affiliation(s)
- Rui-Sheng Wang
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques M, Gibon Y. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1715-29. [PMID: 21239376 DOI: 10.1093/jxb/erq438] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, carbon (C) molecules provide building blocks for biomass production, fuel for energy, and exert signalling roles to shape development and metabolism. Accordingly, plant growth is well correlated with light interception and energy conversion through photosynthesis. Because water deficits close stomata and thus reduce C entry, it has been hypothesised that droughted plants are under C starvation and their growth under C limitation. In this review, these points are questioned by combining literature review with experimental and modelling illustrations in various plant organs and species. First, converging evidence is gathered from the literature that water deficit generally increases C concentration in plant organs. The hypothesis is raised that this could be due to organ expansion (as a major C sink) being affected earlier and more intensively than photosynthesis (C source) and metabolism. How such an increase is likely to interact with C signalling is not known. Hence, the literature is reviewed for possible links between C and stress signalling that could take part in this interaction. Finally, the possible impact of water deficit-induced C accumulation on growth is questioned for various sink organs of several species by combining published as well as new experimental data or data generated using a modelling approach. To this aim, robust correlations between C availability and sink organ growth are reported in the absence of water deficit. Under water deficit, relationships weaken or are modified suggesting release of the influence of C availability on sink organ growth. These results are interpreted as the signature of a transition from source to sink growth limitation under water deficit.
Collapse
Affiliation(s)
- Bertrand Muller
- INRA, UMR 759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut de Biologie Intégrative des Plantes, F-34060 Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M. Plant phenotypic plasticity in a changing climate. TRENDS IN PLANT SCIENCE 2010; 15:684-92. [PMID: 20970368 DOI: 10.1016/j.tplants.2010.09.008] [Citation(s) in RCA: 899] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 05/19/2023]
Abstract
Climate change is altering the availability of resources and the conditions that are crucial to plant performance. One way plants will respond to these changes is through environmentally induced shifts in phenotype (phenotypic plasticity). Understanding plastic responses is crucial for predicting and managing the effects of climate change on native species as well as crop plants. Here, we provide a toolbox with definitions of key theoretical elements and a synthesis of the current understanding of the molecular and genetic mechanisms underlying plasticity relevant to climate change. By bringing ecological, evolutionary, physiological and molecular perspectives together, we hope to provide clear directives for future research and stimulate cross-disciplinary dialogue on the relevance of phenotypic plasticity under climate change.
Collapse
Affiliation(s)
- A B Nicotra
- Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pandey S, Wang RS, Wilson L, Li S, Zhao Z, Gookin TE, Assmann SM, Albert R. Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. Mol Syst Biol 2010; 6:372. [PMID: 20531402 PMCID: PMC2913393 DOI: 10.1038/msb.2010.28] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 04/12/2010] [Indexed: 11/26/2022] Open
Abstract
Classical mechanisms of heterotrimeric G-protein signaling are observed to function in regulation of the transcriptome. Conversely, many theoretical regulatory modes of the G-protein are not manifested in the transcriptomes we investigate. A new mechanism of G-protein signaling is revealed, in which the β subunit regulates gene expression identically in the presence or absence of the α subunit. We find evidence of cross-talk between G-protein-mediated and hormone-mediated transcriptional regulation. We find evidence of system specificity in G-protein signaling.
Heterotrimeric G-proteins, composed of α, β, and γ subunits, participate in a wide range of signaling pathways in eukaryotes (Morris and Malbon, 1999). According to the typical, mammalian paradigm, in its inactive state, the G-protein exists as an associated heterotrimer. G-protein signaling begins with ligand binding that results in a conformational change in a G-protein-coupled receptor (GPCR). Once activated by the GPCR, the Gα separates from the associated Gβγ dimer and the freed Gα and Gβγ proteins can then interact with downstream effector molecules, alone or in combination, to transduce the signal. Subsequent to signal propagation, Gα re-associates with the Gβγ dimer to reform the G-protein complex. There are several classical routes for signal propagation through heterotrimeric G-proteins that have been categorized in mammalian systems (Marrari et al, 2007; Dupre et al, 2009). One route, which we designate classical I, requires the presence of both subunits, and can invoke one of two distinct mechanisms. In one mechanism, on GPCR activation, freed Gα and Gβγ each interact with downstream effectors to elicit the downstream response. In a related mechanism, Gα but not Gβγ interacts with downstream effectors, but the Gβγ dimer is nevertheless required to facilitate coupling of Gα with the relevant GPCR (Marrari et al, 2007). In a second route, which we designate classical II, it is solely the Gβγ dimer that interacts with downstream effectors; in this case, sequestration of Gβγ within the heterotrimer prevents signal propagation. In addition, a few non-classical G-protein regulatory modes have also been implicated in some systems, for example signaling by the intact heterotrimer in yeast (Klein et al, 2000; Frank et al, 2005). Observations such as these lead to a fundamental question, namely, which of all the theoretical regulatory modes of G-protein signaling are realized biologically. Our study answers this question in the context of the model plant Arabidopsis thaliana, and in addition analyzes the manner in which G-protein signaling couples with signaling by the plant hormone abscisic acid. The Arabidopsis genome encodes only one canonical Gα subunit, GPA1, and one canonical Gβ subunit, AGB1, and knockout mutants are available for each of these, allowing clear dissection of Gα- and Gβ-related phenotypes. Abscisic acid (ABA) is a major plant hormone, which inhibits growth and promotes tolerance of abiotic stresses such as drought, salinity, and cold. ABA signaling is known to interact with heterotrimeric G-protein signaling in both developmental and stress responses in a complex manner, causing, for example, ABA hyposensitivity of guard cell stomatal opening in gpa1 and agb1 single mutants as well as agb1 gpa1 double mutants (Fan et al, 2008), but ABA hypersensitivity of the inhibition of seed germination and post-germination seedling development in the same mutants (Pandey et al, 2006). These experimental observations implicate G-proteins as one of the components of ABA signaling, but to date no systematic study has been conducted in either plant or metazoan systems to define the co-regulatory modes of a G-protein and a hormone. In this study, we conduct genome-wide gene expression profiling in G-protein subunit mutants of A. thaliana guard cells and leaves, with or without treatment with ABA. By introducing one or more mediators acting downstream of the G-protein and ABA to control transcript levels, we propose nine G-protein/ABA signaling pathways including ABA-independent G-protein signaling pathways, G-protein-independent ABA signaling pathways, and seven distinct ABA–G-protein-coupled signaling pathways (Figure 1). We develop a Boolean modeling framework to systematically enumerate 14 possible theoretical regulatory modes of the G-protein and 142 co-regulatory modes of the G-protein and ABA, and then use a pattern matching approach to associate target genes with theoretical regulatory modes. Our analysis shows that the G-protein regulatory mode that requires the presence of both Gα and Gβγ subunits (consistent with classical I mechanisms), is well represented in both guard cells and leaves. The G-protein regulatory mode that requires a freed Gβγ subunit (classical II G-protein regulatory mechanism) is well supported in guard cells and somewhat less so in leaves. In addition, a G-protein regulatory mode representing a non-classical regulatory mechanism is prevalent in guard cells but less so in leaves (Figure 5). In this regulatory mode, signaling by Gβ(γ) occurs, and this signaling is not regulated in any way by Gα. By relating the target genes with the nine proposed G-protein/ABA signaling pathways, we are able to gauge the plausibility of regulatory modes of the G-protein and ABA at the pathway level. We find that G-protein-independent ABA signaling pathways are prevalent in both guard cells and leaves. The existence of an ABA-independent regulatory activity of the G-protein is well supported in guard cells, but not supported in leaves. Additive regulation by G-protein signaling plus G-protein-independent ABA signaling is rare in both guard cells and leaves. In addition, combinatorial cross-talk between G-protein signaling and ABA signaling and additive cross-talk between ABA–G-protein signaling and G-protein-independent ABA signaling are observed in both guard cells and leaves. Our transcriptome analysis indicates that in some cases, ABA definitely does not influence G-protein signaling, though it may do so in some other cases. To investigate whether previously observed hypersensitivity or hyposensitivity of developmental and dynamic transient responses to ABA in G-protein mutants is recapitulated at the level of transcriptional regulation, we compare gene regulation by ABA in guard cells and leaves of the G-protein mutants versus wild type. We find that in guard cells, equal ABA hyposensitivity of all mutants combined is significant, although hyposensitivity in individual mutants is not. There is also a separate group of genes in guard cells that show ABA hypersensitivity in the gpa1 mutant, suggesting complex interactions between ABA and G-protein signaling in gene regulation in this cell type. In leaves, ABA hyposensitivity of gene expression in the three individual mutants and equal hyposensitivity in all mutants are strongly supported. In addition, several of the functional categories identified by our analysis of G-protein regulatory modes have been implicated in previous physiological analyses of G-protein mutants, providing validation to the biological interpretation of our results. In summary, by conducting a genome-wide gene expression profiling study in G-protein subunit mutants of A. thaliana guard cells and leaves and developing a Boolean modeling framework, we systematically evaluate the biological utilization of mechanisms of G-protein regulatory action and reveal novel regulatory modes of the G-protein. The results generate empirical evidence and insights regarding molecular events of G-protein signaling and response at the physiological level in both plants and mammals. Heterotrimeric G-proteins mediate crucial and diverse signaling pathways in eukaryotes. Here, we generate and analyze microarray data from guard cells and leaves of G-protein subunit mutants of the model plant Arabidopsis thaliana, with or without treatment with the stress hormone, abscisic acid. Although G-protein control of the transcriptome has received little attention to date in any system, transcriptome analysis allows us to search for potentially uncommon yet significant signaling mechanisms. We describe the theoretical Boolean mechanisms of G-protein × hormone regulation, and then apply a pattern matching approach to associate gene expression profiles with Boolean models. We find that (1) classical mechanisms of G-protein signaling are well represented. Conversely, some theoretical regulatory modes of the G-protein are not supported; (2) a new mechanism of G-protein signaling is revealed, in which Gβ regulates gene expression identically in the presence or absence of Gα; (3) guard cells and leaves favor different G-protein modes in transcriptome regulation, supporting system specificity of G-protein signaling. Our method holds significant promise for analyzing analogous ‘switch-like' signal transduction events in any organism.
Collapse
Affiliation(s)
- Sona Pandey
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|