1
|
Matos IS, Boakye M, Niewiadomski I, Antonio M, Carlos S, Johnson BC, Chu A, Echevarria A, Fontao A, Garcia L, Kalantar D, Madhavan S, Mann J, McDonough S, Rohde J, Scudder M, Sharma S, To J, Tomaka C, Vu B, Yokota N, Forbes H, Fricker M, Blonder BW. Leaf venation network architecture coordinates functional trade-offs across vein spatial scales: evidence for multiple alternative designs. THE NEW PHYTOLOGIST 2024; 244:407-425. [PMID: 39180209 DOI: 10.1111/nph.20037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/16/2024] [Indexed: 08/26/2024]
Abstract
Variation in leaf venation network architecture may reflect trade-offs among multiple functions including efficiency, resilience, support, cost, and resistance to drought and herbivory. However, our knowledge about architecture-function trade-offs is mostly based on studies examining a small number of functional axes, so we still lack a more integrative picture of multidimensional trade-offs. Here, we measured architecture and functional traits on 122 ferns and angiosperms species to describe how trade-offs vary across phylogenetic groups and vein spatial scales (small, medium, and large vein width) and determine whether architecture traits at each scale have independent or integrated effects on each function. We found that generalized architecture-function trade-offs are weak. Architecture strongly predicts leaf support and damage resistance axes but weakly predicts efficiency and resilience axes. Architecture traits at different spatial scales contribute to different functional axes, allowing plants to independently modulate different functions by varying network properties at each scale. This independence of vein architecture traits within and across spatial scales may enable evolution of multiple alternative leaf network designs with similar functioning.
Collapse
Affiliation(s)
- Ilaine Silveira Matos
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mickey Boakye
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Izzi Niewiadomski
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Monica Antonio
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sonoma Carlos
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Breanna Carrillo Johnson
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ashley Chu
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Andrea Echevarria
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Adrian Fontao
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Lisa Garcia
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Diana Kalantar
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Srinivasan Madhavan
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Joseph Mann
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Samantha McDonough
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - James Rohde
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Meg Scudder
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Satvik Sharma
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jason To
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Connor Tomaka
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Bradley Vu
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Nicole Yokota
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Holly Forbes
- University of California Botanical Garden, Berkeley, CA, 94720, USA
| | - Mark Fricker
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Benjamin Wong Blonder
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
2
|
Cárdenas RE, Rodríguez-Ortega C, Utreras D, Forrister DL, Endara MJ, Queenborough SA, Alvia P, Menéndez-Guerrero PA, Báez S, Donoso DA. Long-term strict ant-plant mutualism identity characterises growth rate and leaf shearing resistance of an Amazonian myrmecophyte. Sci Rep 2024; 14:17813. [PMID: 39090121 PMCID: PMC11294366 DOI: 10.1038/s41598-024-67140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Over 125 million years of ant-plant interactions have culminated in one of the most intriguing evolutionary outcomes in life history. The myrmecophyte Duroia hirsuta (Rubiaceae) is known for its mutualistic association with the ant Myrmelachista schumanni and several other species, mainly Azteca, in the north-western Amazon. While both ants provide indirect defences to plants, only M. schumanni nests in plant domatia and has the unique behaviour of clearing the surroundings of its host tree from heterospecific plants, potentially increasing resource availability to its host. Using a 12-year survey, we asked how the continuous presence of either only M. schumanni or only Azteca spp. benefits the growth and defence traits of host trees. We found that the continuous presence of M. schumanni improved relative growth rates and leaf shearing resistance of Duroia better than trees with Azteca. However, leaf herbivory, dry matter content, trichome density, and secondary metabolite production were the same in all trees. Survival depended directly on ant association (> 94% of trees died when ants were absent). This study extends our understanding of the long-term effects of strict ant-plant mutualism on host plant traits in the field and reinforces the use of D. hirsuta-M. schumanni as a model system suitable for eco-co-evolutionary research on plant-animal interactions.
Collapse
Affiliation(s)
- Rafael E Cárdenas
- Museo de Zoología QCAZ, Laboratorio de Entomología y Herbario QCA, Laboratorio de Ecología de Plantas, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador.
| | - Camila Rodríguez-Ortega
- Museo de Zoología QCAZ, Laboratorio de Entomología y Herbario QCA, Laboratorio de Ecología de Plantas, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador
| | - Daniel Utreras
- Museo de Zoología QCAZ, Laboratorio de Entomología y Herbario QCA, Laboratorio de Ecología de Plantas, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador
| | - Dale L Forrister
- Smithsonian Tropical Research Institute, Apdo. 0843-03092, Balboa, Republic of Panama
| | - María-José Endara
- Grupo de Investigación en Ecología Evolutiva en los Trópicos-EETROP, Universidad de Las Américas, Quito, Ecuador
| | - Simon A Queenborough
- Museo de Zoología QCAZ, Laboratorio de Entomología y Herbario QCA, Laboratorio de Ecología de Plantas, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador
- Yale School of the Environment, Yale University, New Haven, CT, USA
| | - Pablo Alvia
- Estación Científica Yasuní, Pontificia Universidad Católica del Ecuador, Parque Nacional Yasuní, Orellana, Ecuador
| | - Pablo A Menéndez-Guerrero
- Laboratorio de Macroecología y Cambio Global, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador
| | - Selene Báez
- Departamento de Biología, Facultad de Ciencias, Escuela Politécnica Nacional, Quito, Ecuador
| | - David A Donoso
- Grupo de Investigación en Ecología Evolutiva en los Trópicos-EETROP, Universidad de Las Américas, Quito, Ecuador
- Departamento de Biología, Facultad de Ciencias, Escuela Politécnica Nacional, Quito, Ecuador
| |
Collapse
|
3
|
Durant PC, Bhasin A, Juenger TE, Heckman RW. Genetically correlated leaf tensile and morphological traits are driven by growing season length in a widespread perennial grass. AMERICAN JOURNAL OF BOTANY 2024; 111:e16349. [PMID: 38783552 DOI: 10.1002/ajb2.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024]
Abstract
PREMISE Leaf tensile resistance, a leaf's ability to withstand pulling forces, is an important determinant of plant ecological strategies. One potential driver of leaf tensile resistance is growing season length. When growing seasons are long, strong leaves, which often require more time and resources to construct than weak leaves, may be more advantageous than when growing seasons are short. Growing season length and other ecological conditions may also impact the morphological traits that underlie leaf tensile resistance. METHODS To understand variation in leaf tensile resistance, we measured size-dependent leaf strength and size-independent leaf toughness in diverse genotypes of the widespread perennial grass Panicum virgatum (switchgrass) in a common garden. We then used quantitative genetic approaches to estimate the heritability of leaf tensile resistance and whether there were genetic correlations between leaf tensile resistance and other morphological traits. RESULTS Leaf tensile resistance was positively associated with aboveground biomass (a proxy for fitness). Moreover, both measures of leaf tensile resistance exhibited high heritability and were positively genetically correlated with leaf lamina thickness and leaf mass per area (LMA). Leaf tensile resistance also increased with the growing season length in the habitat of origin, and this effect was mediated by both LMA and leaf thickness. CONCLUSIONS Differences in growing season length may promote selection for different leaf lifespans and may explain existing variation in leaf tensile resistance in P. virgatum. In addition, the high heritability of leaf tensile resistance suggests that P. virgatum will be able to respond to climate change as growing seasons lengthen.
Collapse
Affiliation(s)
- P Camilla Durant
- Department of Integrated Biology, University of Texas at Austin, Austin, 78712, TX, USA
| | - Amit Bhasin
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, 78712, TX, USA
| | - Thomas E Juenger
- Department of Integrated Biology, University of Texas at Austin, Austin, 78712, TX, USA
| | - Robert W Heckman
- Department of Integrated Biology, University of Texas at Austin, Austin, 78712, TX, USA
| |
Collapse
|
4
|
Reyes-Ortiz M, Lira-Noriega A, Osorio-Olvera L, Luna-Vega I, Williams-Linera G. Leaf functional traits and ecological niche of Fagus grandifolia and Oreomunnea mexicana in natural forests and plantings as a proxy of climate change. AMERICAN JOURNAL OF BOTANY 2024; 111:e16322. [PMID: 38641895 DOI: 10.1002/ajb2.16322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/21/2024]
Abstract
PREMISE Functional traits reflect species' responses to environmental variation and the breadth of their ecological niches. Fagus grandifolia and Oreomunnea mexicana have restricted distribution in upper montane cloud forests (1700-2000 m a.s.l.) in Mexico. These species were introduced into plantings at lower elevations (1200-1600 m a.s.l.) that have climates predicted for montane forests in 2050 and 2070. The aim was to relate morphological leaf traits to the ecological niche structure of each species. METHODS Leaf functional traits (leaf area, specific leaf area [SLA], thickness, and toughness) were analyzed in forests and plantings. Atmospheric circulation models and representative concentration pathways (RCPs: 2.6, 4.5, 8.5) were used to assess future climate conditions. Trait-niche relationships were analyzed by measuring the Mahalanobis distance (MD) from the forests and the plantings to the ecological niche centroid (ENC). RESULTS For both species, leaf area and SLA were higher and toughness lower in plantings at lower elevation relative to those in higher-elevation forests, and thickness was similar. Leaf traits varied with distance from sites to the ENC. Forests and plantings have different environmental locations regarding the ENC, but forests are closer (MD 0.34-0.58) than plantings (MD 0.50-0.70) for both species. CONCLUSIONS Elevation as a proxy for expected future climate conditions influenced the functional traits of both species, and trait patterns related to the structure of their ecological niches were consistent. The use of distances to the ENC is a promising approach to explore variability in species' functional traits and phenotypic responses in optimal versus marginal environmental conditions.
Collapse
Affiliation(s)
- Miriam Reyes-Ortiz
- Red de Ecología Funcional, Instituto de Ecología, A.C., Carretera antigua a Coatepec No. 351, Xalapa, 91073, Veracruz, Mexico
- Departamento de Saúde Coletiva, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Rua Tessália Vieira de Camargo, 126 - Cidade Universitária Zeferino Vaz CEP 13083-887, Campinas, SP, Brazil
| | - Andrés Lira-Noriega
- Instituto de Ecología, A.C., Red de Estudios Moleculares Avanzados, Xalapa, 91073, Veracruz, Mexico
| | - Luis Osorio-Olvera
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, UNAM, Laboratorio de Ecoinformática de la Biodiversidad, Ciudad de México, Mexico
| | - Isolda Luna-Vega
- Departamento de Biología Evolutiva, Facultad de Ciencias, UNAM, Laboratorio de Biogeografía y Sistemática, Ciudad de México, Mexico
| | - Guadalupe Williams-Linera
- Red de Ecología Funcional, Instituto de Ecología, A.C., Carretera antigua a Coatepec No. 351, Xalapa, 91073, Veracruz, Mexico
| |
Collapse
|
5
|
Jiang F, Bennett JA, Crawford KM, Heinze J, Pu X, Luo A, Wang Z. Global patterns and drivers of plant-soil microbe interactions. Ecol Lett 2024; 27:e14364. [PMID: 38225803 DOI: 10.1111/ele.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024]
Abstract
Plant-soil feedback (PSF) is an important mechanism determining plant community dynamics and structure. Understanding the geographic patterns and drivers of PSF is essential for understanding the mechanisms underlying geographic plant diversity patterns. We compiled a large dataset containing 5969 observations of PSF from 202 studies to demonstrate the global patterns and drivers of PSF for woody and non-woody species. Overall, PSF was negative on average and was influenced by plant attributes and environmental settings. Woody species PSFs did not vary with latitude, but non-woody PSFs were more negative at higher latitudes. PSF was consistently more positive with increasing aridity for both woody and non-woody species, likely due to increased mutualistic microbes relative to soil-borne pathogens. These findings were consistent between field and greenhouse experiments, suggesting that PSF variation can be driven by soil legacies from climates. Our findings call for caution to use PSF as an explanation of the latitudinal diversity gradient and highlight that aridity can influence plant community dynamics and structure across broad scales through mediating plant-soil microbe interactions.
Collapse
Affiliation(s)
- Feng Jiang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jonathan A Bennett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerri M Crawford
- Department of Biology & Biochemistry, University of Houston, Houston, Texas, USA
| | - Johannes Heinze
- Department of Biodiversity, Heinz Sielmann Foundation, Wustermark (OT Elstal), Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Xucai Pu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ao Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
6
|
Bucher SF, Uhde L, Weigelt A, Cesarz S, Eisenhauer N, Gebler A, Kyba C, Römermann C, Shatwell T, Hines J. Artificial light at night decreases plant diversity and performance in experimental grassland communities. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220358. [PMID: 37899022 PMCID: PMC10613542 DOI: 10.1098/rstb.2022.0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/28/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) affects many areas of the world and is increasing globally. To date, there has been limited and inconsistent evidence regarding the consequences of ALAN for plant communities, as well as for the fitness of their constituent species. ALAN could be beneficial for plants as they need light as energy source, but they also need darkness for regeneration and growth. We created model communities composed of 16 plant species sown, exposed to a gradient of ALAN ranging from 'moonlight only' to conditions like situations typically found directly underneath a streetlamp. We measured plant community composition and its production (biomass), as well as functional traits of three plant species from different functional groups (grasses, herbs, legumes) in two separate harvests. We found that biomass was reduced by 33% in the highest ALAN treatment compared to the control, Shannon diversity decreased by 43% and evenness by 34% in the first harvest. Some species failed to establish in the second harvest. Specific leaf area, leaf dry matter content and leaf hairiness responded to ALAN. These responses suggest that plant communities will be sensitive to increasing ALAN, and they flag a need for plant conservation activities that consider impending ALAN scenarios. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Lia Uhde
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Alexandra Weigelt
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Simone Cesarz
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Nico Eisenhauer
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Alban Gebler
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Christopher Kyba
- Interdisciplinary Geographic Information Sciences, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Remote Sensing and Geoinformatics, Deutsches GeoForschungsZentrum GFZ, Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Tom Shatwell
- Department of Lake Research, Helmholtz-Centre for Environmental Research – UFZ, 39114 Magdeburg, Germany
| | - Jes Hines
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| |
Collapse
|
7
|
Akram MA, Wang X, Shrestha N, Zhang Y, Sun Y, Yao S, Li J, Hou Q, Hu W, Ran J, Deng J. Variations and driving factors of leaf functional traits in the dominant desert plant species along an environmental gradient in the drylands of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165394. [PMID: 37437630 DOI: 10.1016/j.scitotenv.2023.165394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Leaf functional traits (LFTs) of desert plants are responsive, adaptable and highly plastic to their environment. However, the macroscale variation in LFTs and driving factors underlying this variation remain unclear, especially for desert plants. Here, we measured eight LFTs, including leaf carbon concentration (LCC), leaf nitrogen concentration (LNC), leaf phosphorus concentration (LPC), specific leaf area (SLA), leaf dry matter content (LDMC), leaf mass per area (LMA), leaf thickness (LTH) and leaf tissue density (LTD) across 114 sites along environmental gradient in the drylands of China and in Guazhou Common Garden and evaluated the effect of environment and phylogeny on the LFTs. We noted that for all species, the mean values of LCC, LNC, LPC, SLA, LDMC, LMA, LTH and LTD were 384.62 mg g-1, 19.91 mg g-1, 1.12 mg g-1, 79.62 cm2 g-1, 0.74 g g-1, 237.39 g m-2, 0.38 mm and 0.91 g cm-3, respectively. LFTs exhibited significant geographical variations and the LNC, LMA and LTH in the plants of Guazhou Common Garden were significantly higher than the field sites in the drylands of China. LDMC and LTD of plants in Guazhou Common Garden were, however, considerably lower than those in the drylands of China. LCC, LPC, LTH and LTD differed significantly among different plant lifeforms, while LNC, SLA, LDMC and LMA didn't show significant variations. We found that the environmental variables explained higher spatial variations (3.6-66.3 %) in LFTs than the phylogeny (1.8-54.2 %). The LCC significantly increased, while LDMC and LTD decreased with increased temperature and reduced precipitation. LPC, LDMC, LMA, and LTD significantly increased, while SLA and LTH decreased with increased aridity. However, leaf elements were not significantly correlated with soil nutrients. The mean annual precipitation was a key factor controlling variations in LFTs at the macroscale in the drylands of China. These findings will provide new insights to better understand the response of LFTs and plants adaptation along environmental gradient in drylands, and will serve as a reference for studying biogeographic patterns of leaf traits.
Collapse
Affiliation(s)
- Muhammad Adnan Akram
- School of Economics, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China.
| | - Xiaoting Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Nawal Shrestha
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yahui Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ying Sun
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shuran Yao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jinhui Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Qingqing Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Weigang Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jinzhi Ran
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jianming Deng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Römer D, Exl R, Roces F. Two feedback mechanisms involved in the control of leaf fragment size in leaf-cutting ants. J Exp Biol 2023; 226:jeb244246. [PMID: 37348454 PMCID: PMC10323230 DOI: 10.1242/jeb.244246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2023] [Indexed: 06/24/2023]
Abstract
Polymorphic leaf-cutting ants harvest leaf fragments that correlate in size with the workers' body size. When cutting, workers anchor their hind legs on the leaf edge and rotate, removing approximately semicircular fragments. Workers show behavioural plasticity and modify their leg extension while holding onto the leaf edge depending on, for instance, leaf toughness, cutting smaller fragments out of tough leaves. What sensory information workers use to control the cutting trajectory remains unknown. We investigated whether sensory information from both the leg contact with the leaf edge and from head movements underlies fragment size determination. In the laboratory, we recorded Atta sexdens workers cutting standardised ®Parafilm pseudoleaves of different thickness, and quantified cutting behaviour and body reach, i.e. the distance between the mandible and the anchored hind leg tarsus. Experimentally preventing contact with the leaf edge resulted in smaller fragments, evincing that workers control the cutting trajectory using information from the contact of the hind legs with the leaf edge. However, ants were able to cut fragments even when contact of all six legs with the edge was prevented, indicating the use of additional sensory information. Ablation of mechanosensory hairs at the neck joint alone did not influence fragment size determination, yet simultaneously preventing sensory feedback from both mechanosensory hairs and edge contact led to a loss of control over the cutting trajectory. Leaf-cutting ants, therefore, control their cutting trajectory using sensory information from both the leg contact with the leaf edge and the lateral bending of the head.
Collapse
Affiliation(s)
- Daniela Römer
- Department of Behavioural Physiology and Sociobiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rebecca Exl
- Department of Behavioural Physiology and Sociobiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Flavio Roces
- Department of Behavioural Physiology and Sociobiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
9
|
Alonso-Forn D, Sancho-Knapik D, Fariñas MD, Nadal M, Martín-Sánchez R, Ferrio JP, de Dios VR, Peguero-Pina JJ, Onoda Y, Cavender-Bares J, Arenas TGÁ, Gil-Pelegrín E. Disentangling leaf structural and material properties in relationship to their anatomical and chemical compositional traits in oaks (Quercus L.). ANNALS OF BOTANY 2023; 131:789-800. [PMID: 36794926 PMCID: PMC10184456 DOI: 10.1093/aob/mcad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/15/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS The existence of sclerophyllous plants has been considered an adaptive strategy against different environmental stresses. Given that it literally means 'hard-leaved', it is essential to quantify the leaf mechanical properties to understand sclerophylly. However, the relative importance of each leaf trait for mechanical properties is not yet well established. METHODS Genus Quercus is an excellent system to shed light on this because it minimizes phylogenetic variation while having a wide variation in sclerophylly. We measured leaf anatomical traits and cell wall composition, analysing their relationship with leaf mass per area and leaf mechanical properties in a set of 25 oak species. KEY RESULTS The upper epidermis outer wall makes a strong and direct contribution to the leaf mechanical strength. Moreover, cellulose plays a crucial role in increasing leaf strength and toughness. The principal component analysis plot based on leaf trait values clearly separates Quercus species into two groups corresponding to evergreen and deciduous species. CONCLUSIONS Sclerophyllous Quercus species are tougher and stronger owing to their thicker epidermis outer wall and/or higher cellulose concentration. Furthermore, section Ilex species share common traits, although they occupy different climates. In addition, evergreen species living in mediterranean-type climates share common leaf traits irrespective of their different phylogenetic origin.
Collapse
Affiliation(s)
- David Alonso-Forn
- Department of Agricultural and Forest Systems and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Domingo Sancho-Knapik
- Department of Agricultural and Forest Systems and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón – IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - María Dolores Fariñas
- Sensors and Ultrasonic Technologies Department, Information and Physics Technologies Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Miquel Nadal
- Department of Agricultural and Forest Systems and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Rubén Martín-Sánchez
- Department of Agricultural and Forest Systems and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Juan Pedro Ferrio
- Department of Agricultural and Forest Systems and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Aragon Agency for Research and Development (ARAID), E-50018 Zaragoza, Spain
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences, Universitat de Lleida, E-25198 Lleida, Spain
- JRU CTFC-Agrotecnio-CERCA Center, E-25198 Lleida, Spain
| | - José Javier Peguero-Pina
- Department of Agricultural and Forest Systems and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón – IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Yusuke Onoda
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Oiwake, Kitashirakawa, Kyoto 606-8502, Japan
| | | | - Tomás Gómez Álvarez Arenas
- Sensors and Ultrasonic Technologies Department, Information and Physics Technologies Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Eustaquio Gil-Pelegrín
- Department of Agricultural and Forest Systems and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| |
Collapse
|
10
|
Yin XH, Hao GY, Sterck F. Ring- and diffuse-porous tree species from a cold temperate forest diverge in stem hydraulic traits, leaf photosynthetic traits, growth rate and altitudinal distribution. TREE PHYSIOLOGY 2023; 43:722-736. [PMID: 36715627 DOI: 10.1093/treephys/tpad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 05/13/2023]
Abstract
In cold and humid temperate forests, low temperature, late frost and frequent freeze-thaw cycles are the main factors limiting tree growth and survival. Ring- and diffuse-porous tree species differing in xylem anatomy coexist in these forests, but their divergent adaptations to these factors have been poorly explored. To fill this knowledge gap, we compared four ring-porous and four diffuse-porous tree species from the same temperate forest in Northeast China by quantifying their leaf and stem functional traits, their stem growth rates using tree ring analysis and their resistance to cold represented by upper altitude species distribution borders from survey data. We found that the ring-porous trees were characterized by traits related to more rapid water transport, carbon gain and stem growth rates than those of the diffuse-porous species. Compared with the diffuse-porous species, the ring-porous species had a significantly higher shoot hydraulic conductance (Ks-shoot, 0.52 vs 1.03 kg m-1 s-1 MPa-1), leaf photosynthetic rate (An, 11.28 vs 15.83 μmol m-2 s-1), relative basal area increment (BAIr, 2.28 vs 0.72 cm year-1) and stem biomass increment (M, 0.34 vs 0.09 kg year-1 m-1). However, the observed upper elevational distribution limit of the diffuse-porous species was higher than that of the ring-porous species and was associated with higher values of conservative traits, such as longer leaf life span (R2 = 0.52). Correspondingly, BAIr and M showed significant positive correlations with acquisitive traits such as Ks-shoot (R2 = 0.77) and leaf photosynthetic rate (R2 = 0.73) across the eight species, with the ring-porous species occurring at the fast-acquisitive side of the spectrum and the diffuse-porous species located on the opposite side. The observed contrasts in functional traits between the two species groups improved our understanding of their differences in terms of growth strategies and adaptive capabilities in the cold, humid temperate forests.
Collapse
Affiliation(s)
- Xiao-Han Yin
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shengyang, Liaoning 110016, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shengyang, Liaoning 110016, China
- Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Guang-You Hao
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shengyang, Liaoning 110016, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shengyang, Liaoning 110016, China
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
11
|
Nadal M, Clemente-Moreno MJ, Perera-Castro AV, Roig-Oliver M, Onoda Y, Gulías J, Flexas J. Incorporating pressure-volume traits into the leaf economics spectrum. Ecol Lett 2023; 26:549-562. [PMID: 36750322 DOI: 10.1111/ele.14176] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/09/2023]
Abstract
In recent years, attempts have been made in linking pressure-volume parameters and the leaf economics spectrum to expand our knowledge of the interrelationships among leaf traits. We provide theoretical and empirical evidence for the coordination of the turgor loss point and associated traits with net CO2 assimilation (An ) and leaf mass per area (LMA). We measured gas exchange, pressure-volume curves and leaf structure in 45 ferns and angiosperms, and explored the anatomical and chemical basis of the key traits. We propose that the coordination observed between mass-based An , capacitance and the turgor loss point (πtlp ) emerges from their shared link with leaf density (one of the components of LMA) and, specially, leaf saturated water content (LSWC), which in turn relates to cell size and nitrogen and carbon content. Thus, considering the components of LMA and LSWC in ecophysiological studies can provide a broader perspective on leaf structure and function.
Collapse
Affiliation(s)
- Miquel Nadal
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Palma, Spain
| | - María J Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Palma, Spain
| | - Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Palma, Spain
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Palma, Spain
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Javier Gulías
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Palma, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Palma, Spain
| |
Collapse
|
12
|
Wang H, Yang J, Xie T, Ma L, Niu F, He C, Shan L. Variation and association of leaf traits for desert plants in the arid area, northwest China. Ecol Evol 2023; 13:e9946. [PMID: 36969926 PMCID: PMC10037433 DOI: 10.1002/ece3.9946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Characterizing variation and association of plant traits is critical for understanding plant adaptation strategies and community assembly mechanisms. However, little is known about the leaf trait variations of desert plants and their association with different life forms. We used principal component analysis, Pearson's correlation, phylogenetic independent contrasts, linear mixed model, and variance decomposition to explore the variation and association of 10 leaf traits in 22 desert plants in the arid area of northwest China. We found that: (1) the contribution of interspecific variation to the overall variation was greater than the intraspecific variation of all the studied leaf traits; (2) intraspecific and interspecific variation in leaf traits differed among life forms. Some leaf traits, such as tissue density of shrubs and specific leaf area of herbs, exhibited greater intraspecific than interspecific variation, while other traits exhibited the inverse; (3) desert shrubs corroborate the leaf economic spectrum hypothesis and had a fast acquisitive resource strategy, but herbs may not conform to this hypothesis; (4) there were trade‐offs between leaf traits, which were mediated by phylogeny. Overall, our results suggest that interspecific variation of leaf traits significantly contributes to the total leaf traits variation in desert plants. However, intraspecific variation should not be overlooked. There are contrasts in the resource acquisition strategies between plants life forms. Our results support understanding of the mechanisms underlying community assembly in arid regions and suggest that future works may focus on the variation and association of plant traits at both intra‐ and interspecific scales.
Collapse
Affiliation(s)
- Hongyong Wang
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Jie Yang
- Pingliang institute of soil and water conservation SciencePingliangChina
| | - Tingting Xie
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Li Ma
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Furong Niu
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Cai He
- Wuwei Academy of ForestryWuweiChina
| | - Lishan Shan
- College of ForestryGansu Agricultural UniversityLanzhouChina
| |
Collapse
|
13
|
Vaessen RW, Jansen PA, Richard-Hansen C, Boot RGA, Denis T, Derroire G, Petronelli P, de Vries JS, Barry KE, Ter Steege H, van Kuijk M. Defaunation changes leaf trait composition of recruit communities in tropical forests in French Guiana. Ecology 2023; 104:e3872. [PMID: 36121050 PMCID: PMC10078438 DOI: 10.1002/ecy.3872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/13/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023]
Abstract
Hunting impacts tropical vertebrate populations, causing declines of species that function as seed dispersers and predators, or that browse seedlings and saplings. Whether and how the resulting reductions in seed dispersal, seed predation, and browsing translate to changes in the tree composition is poorly understood. Here, we assess the effect of defaunation on the functional composition of communities of tree recruits in tropical rainforests in French Guiana. We selected eight sites along a gradient of defaunation, caused by differences in hunting pressure, in otherwise intact old-growth forests in French Guiana. We measured shifts in functional composition by comparing leaf and fruit traits and wood density between tree recruits (up to 5 cm diameter at breast height) and adults, and tested whether and how these compositional shifts related to defaunation. We found a positive relationship with defaunation for shifts in specific leaf area, a negative relationship for shifts of leaf toughness and wood density, and a weak relationship for shifts in fruit traits. Our results suggest that the loss of vertebrates affects ecological processes such as seed dispersal and browsing, of which browsing remains understudied. Even though these changes sometimes seem minor, together they result in major shifts in forest composition. These changes have long-term ramifications that may alter forest dynamics for generations.
Collapse
Affiliation(s)
- Rens W Vaessen
- Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Patrick A Jansen
- Department of Environmental Sciences, Wageningen University and Research, Wageningen, the Netherlands.,Smithsonian Tropical Research Institute, Center for Tropical Forest Science, Ancon, Panama
| | - Cécile Richard-Hansen
- OFB/DRAS/UPFSEO, UMR EcoFoG (AgroParisTech, CNRS, INRAE, Université de la Guyane, Université des Antilles), Kourou, French Guiana
| | - René G A Boot
- Department of Biology, Utrecht University, Utrecht, the Netherlands.,Tropenbos International, Wageningen, the Netherlands
| | - Thomas Denis
- OFB/DRAS/UPFSEO, UMR EcoFoG (AgroParisTech, CNRS, INRAE, Université de la Guyane, Université des Antilles), Kourou, French Guiana
| | - Géraldine Derroire
- CIRAD, UMR EcoFoG (AgroParisTech, CNRS, INRAE, Université de la Guyane, Université des Antilles), Kourou, French Guiana
| | - Pascal Petronelli
- CIRAD, UMR EcoFoG (AgroParisTech, CNRS, INRAE, Université de la Guyane, Université des Antilles), Kourou, French Guiana
| | - Jesse S de Vries
- Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Kathryn E Barry
- Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, the Netherlands.,Systems Ecology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
14
|
Zhou Z, Chen B, Zhao H, Yi J, Liu S, Tie D, Xu J, Hu S, Guo Y, Yue M. Temperate Lianas Have More Acquisitive Strategies than Host Trees in Leaf and Stem Traits, but Not Root Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:3543. [PMID: 36559652 PMCID: PMC9788099 DOI: 10.3390/plants11243543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Increasingly, tropical studies based on aboveground traits have suggested that lianas have a more acquisitive strategy than trees, thereby possibly explaining the increase in lianas relative to trees in many tropical forests under global change. However, few studies have tested whether this pattern can be extended to root traits and temperate forests. In this study, we sampled 61 temperate liana-host tree pairs and quantified 11 commonly studied functional traits representative of plant economics in roots, stems, and leaves; we aimed to determine whether root, stem and leaf traits are coordinated across lifeforms, and whether temperate lianas are also characterized by more fast and acquisitive traits than trees. Our results showed that leaf and stem traits were coordinated across lifeforms but not with root traits, suggesting that aboveground plant economics is not always correlated with belowground economics, and leaf and stem economic spectra cannot be expanded to the root directly. Compared with host trees, lianas had more acquisitive leaf and stem traits, such as higher specific leaf area and lower leaf dry matter content, leaf carbon content, leaf mass per area, and wood density, suggesting that lianas have a more acquisitive strategy than host trees in the temperate forest. The differences between lianas and trees in plant strategy may drive their contrasting responses to the changing temperate forest environment under global change.
Collapse
|
15
|
Park JH, Lee JM, Kim EJ, Park JW, Lee EP, Lee SI, You YH. A study on the proliferation of Myzus persicae (sulzer) during the winter season for year-round production within a smart farm facility. PLoS One 2022; 17:e0276520. [PMID: 36269770 PMCID: PMC9586411 DOI: 10.1371/journal.pone.0276520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
In this study, we examined the feasibility of Myzus persicae proliferation through interrelationships with host plants in a smart farm facility during winter. We investigated aphid proliferation under an LED artificial light source and attempted to interpret aphid proliferation in relation to the net photosynthetic rate of the host plant, Eutrema japonicum. We observed that aphids continuously proliferated in the smart farm facility in winter without dormancy. The average number of aphids was greater under the 1:1 red:blue light irradiation time ratio, where the photosynthetic rate of the host plant was lower than under the 5:1 and 10:1 red:blue light irradiation time ratios. These results show that it is important to maintain a low net photosynthetic rate of the host plant, E. japonicum, in order to effectively proliferate aphids under artificial light such as in the case of smart farm facilities.
Collapse
Affiliation(s)
- Jae-Hoon Park
- Department of Life Science, Kongju National University, Gongju, South Korea
| | - Jung-Min Lee
- Department of Life Science, Kongju National University, Gongju, South Korea
| | - Eui-Joo Kim
- Department of Life Science, Kongju National University, Gongju, South Korea
| | - Ji-Won Park
- Department of Life Science, Kongju National University, Gongju, South Korea
| | - Eung-Pill Lee
- National Ecosystem Survey Team, National Institute of Ecology, Seochon, South Korea
| | - Soo-In Lee
- Invasive Alien Species Research Team, National Institute of Ecology, Seochon, South Korea
| | - Young-Han You
- Department of Life Science, Kongju National University, Gongju, South Korea
- * E-mail:
| |
Collapse
|
16
|
Meng YY, Xiang W, Wen Y, Huang DL, Cao KF, Zhu SD. Correlations between leaf economics, mechanical resistance and drought tolerance across 41 cycad species. ANNALS OF BOTANY 2022; 130:345-354. [PMID: 34871356 PMCID: PMC9486883 DOI: 10.1093/aob/mcab146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/04/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS We conducted a comprehensive analysis of the functional traits of leaves (leaflets) of cycads. The aim of this study was to clarify the functional divergence between the earlier origin Cycadaceae and the later differentiated Zamiaceae, and the differences in trait associations between cycads and angiosperms. METHODS We selected 20 Cycadaceae species and 21 Zamiaceae species from the same cycad garden in South China, and measured their leaf structure, economic traits, mechanical resistance (Fp) and leaf water potential at the turgor loss point (πtlp). In addition, we compiled a dataset of geographical distribution along with climatic variables for these cycad species, and some leaf traits of tropical-sub-tropical angiosperm woody species from the literature for comparison. KEY RESULTS The results showed significantly contrasting leaf trait syndromes between the two families, with Zamiaceae species exhibiting thicker leaves, higher carbon investments and greater Fp than Cycadaceae species. Leaf thickness (LT) and πtlp were correlated with mean climatic variables in their native distribution ranges, indicating their evolutionary adaptation to environmental conditions. Compared with the leaves of angiosperms, the cycad leaves were thicker and tougher, and more tolerant to desiccation. Greater Fp was associated with a higher structural investment in both angiosperms and cycads; however, cycads showed lower Fp at a given leaf mass per area or LT than angiosperms. Enhancement of Fp led to more negative πtlp in angiosperms, but the opposite trend was observed in cycads. CONCLUSIONS Our results reveal that variations in leaf traits of cycads are mainly influenced by taxonomy and the environment of their native range. We also demonstrate similar leaf functional associations in terms of economics, but different relationships with regard to mechanics and drought tolerance between cycads and angiosperms. This study expands our understanding of the ecological strategies and likely responses of cycads to future climate change.
Collapse
Affiliation(s)
| | | | | | - Dong-Liu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, China
| | | |
Collapse
|
17
|
Maenpuen P, Katabuchi M, Onoda Y, Zhou C, Zhang JL, Chen YJ. Sources and consequences of mismatch between leaf disc and whole-leaf leaf mass per area (LMA). AMERICAN JOURNAL OF BOTANY 2022; 109:1242-1250. [PMID: 35862826 DOI: 10.1002/ajb2.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/20/2021] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Leaf mass per area (LMA), which is an important functional trait in leaf economic spectrum and plant growth analysis, is measured from leaf discs or whole leaves. Differences between the measurement methods may lead to large differences in the estimates of LMA values. METHODS We examined to what extent estimates of LMA based on whole leaves match those based on discs using 334 woody species from a wide range of biomes (tropics, subtropics, savanna, and temperate), whether the relationship varied by leaf morphology (tissue density, leaf area, leaf thickness), punch size (0.6- and 1.0-cm diameter), and whether the extent of intraspecifc variation for each species matches. RESULTS Disc-based estimates of species mean LMA matched the whole-leaf estimates well, and whole-leaf LMA tended to be 9.69% higher than leaf-disc LMA. The ratio of whole-leaf LMA to leaf-disc LMA was higher for species with higher leaf tissue density and larger leaves, and variance in the ratio was greater for species with lower leaf tissue density and thinner leaves. Estimates based on small leaf discs also inflated the ratio. The extent of the intraspecific variation only weakly matched between whole-leaf and disc-based estimates (R2 = 0.08). CONCLUSIONS Our results suggest that simple conversion between whole-leaf and leaf-disc LMA is difficult for species obtained with a small leaf punch, but it should be possible for species obtained with a large+ leaf punch. Accurately representing leaf traits will likely require careful selection between leaf-disc and whole-leaf traits depending on the objectives. Quantifying intraspecific variation using leaf discs should be also considered with caution.
Collapse
Affiliation(s)
- Phisamai Maenpuen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Masatoshi Katabuchi
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Cong Zhou
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Yunnan, 666303, China
- Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan, 6663300, China
| |
Collapse
|
18
|
Song Y, Sterck F, Zhou X, Liu Q, Kruijt B, Poorter L. Drought resilience of conifer species is driven by leaf lifespan but not by hydraulic traits. THE NEW PHYTOLOGIST 2022; 235:978-992. [PMID: 35474217 PMCID: PMC9322575 DOI: 10.1111/nph.18177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Increased droughts impair tree growth worldwide. This study analyzes hydraulic and carbon traits of conifer species, and how they shape species strategies in terms of their growth rate and drought resilience. We measured 43 functional stem and leaf traits for 28 conifer species growing in a 50-yr-old common garden experiment in the Netherlands. We assessed: how drought- and carbon-related traits are associated across species, how these traits affect stem growth and drought resilience, and how traits and drought resilience are related to species' climatic origin. We found two trait spectra: a hydraulics spectrum reflecting a trade-off between hydraulic and biomechanical safety vs hydraulic efficiency, and a leaf economics spectrum reflecting a trade-off between tough, long-lived tissues vs high carbon assimilation rate. Pit aperture size occupied a central position in the trait-based network analysis and also increased stem growth. Drought recovery decreased with leaf lifespan. Conifer species with long-lived leaves suffer from drought legacy effects, as drought-damaged leaves cannot easily be replaced, limiting growth recovery after drought. Leaf lifespan, rather than hydraulic traits, can explain growth responses to a drier future.
Collapse
Affiliation(s)
- Yanjun Song
- Forest Ecology and Forest Management GroupWageningen University and Research6700 AAWageningenthe Netherlands
| | - Frank Sterck
- Forest Ecology and Forest Management GroupWageningen University and Research6700 AAWageningenthe Netherlands
| | - Xiaqu Zhou
- Forest Ecology and Forest Management GroupWageningen University and Research6700 AAWageningenthe Netherlands
- Department of Earth and Environmental SciencesKU LeuvenPO Box 24113001LeuvenBelgium
| | - Qi Liu
- Forest Ecology and Forest Management GroupWageningen University and Research6700 AAWageningenthe Netherlands
| | - Bart Kruijt
- Water Systems and Global Change GroupWageningen University and Research6700 AAWageningenthe Netherlands
| | - Lourens Poorter
- Forest Ecology and Forest Management GroupWageningen University and Research6700 AAWageningenthe Netherlands
| |
Collapse
|
19
|
Westoby M, Schrader J, Falster D. Trait ecology of startup plants. THE NEW PHYTOLOGIST 2022; 235:842-847. [PMID: 35488498 PMCID: PMC9325420 DOI: 10.1111/nph.18193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Startup plants include seedlings and basal and epicormic resprouts. It has long been held that startups have different strategies from adult plants, but theory for what trait differences to expect is limited and not yet quantitatively tested. Three applicable concepts are analogous to human startup firms, R-shift, and trait-growth theory. All three suggest startups should be built with lower construction costs than established plants. This appears to be almost always true in terms of leaf mass per area (LMA), though many comparisons are complicated by the startups growing in lower light. Trait-growth theory predicts LMA should increase progressively with height or total leaf area, driven by higher conductive-pathway costs associated with each unit leaf area, and by greater reward from slowing leaf turnover. Basal resprouts often have somewhat higher LMA than seedlings, but possibly this is simply because they are larger. A number of eminently testable questions are identified. Prospects are good for a theoretically cogent and field-tested body of knowledge about plant startups.
Collapse
Affiliation(s)
- Mark Westoby
- School of Natural SciencesMacquarie UniversitySydneyNSW2109Australia
| | - Julian Schrader
- School of Natural SciencesMacquarie UniversitySydneyNSW2109Australia
- Department of Biodiversity, Macroecology and BiogeographyUniversity of GoettingenGoettingen37073Germany
| | - Daniel Falster
- Evolution & Ecology ResearchUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
20
|
Zhang Q, Hao G, Li M, Li L, Kang B, Yang N, Li H. Transformation of Plant to Resource Acquisition Under High Nitrogen Addition Will Reduce Green Roof Ecosystem Functioning. FRONTIERS IN PLANT SCIENCE 2022; 13:894782. [PMID: 35665150 PMCID: PMC9157423 DOI: 10.3389/fpls.2022.894782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Ecosystem engineering, such as green roof, provides numerous key ecosystem functions dependent on both plants and environmental changes. In the recent years, global nitrogen (N) deposition has become a hot topic with the intensification of anthropogenic disturbance. However, the response of green roof ecosystems to N deposition is still not clear. To explore the effects of N addition on plant ecological strategy and ecosystem functioning (biomass), we conducted a 3-month N addition simulation experiment using 12 common green roof species from different growth forms on an extensive green roof in Tianjin, China. The experiment included three different N addition treatments (0, 3.5, and 10.5 gN m-2 year-1). We found that plants with the resource-acquisitive strategy were more suitable to survive in a high N environment, since both aboveground and belowground traits exhibited synergistic effects. Moreover, N addition indirectly decreased plant biomass, indicating that ecosystem functioning was impaired. We highlight that there is a trade-off between the survival of green roof species and keeping the ecosystem functioning well in the future N deposition. Meanwhile, these findings also provide insights into how green roof species respond to global climate change and offer important information for better managing and protecting similar ecosystem engineering in the background of high N deposition.
Collapse
Affiliation(s)
- Qinze Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Guang Hao
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Meiyang Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Longqin Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Binyue Kang
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Nan Yang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Hongyuan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
21
|
Lusk CH. A field test of forest canopy structure measurements with the CanopyCapture smartphone application. PeerJ 2022; 10:e13450. [PMID: 35586134 PMCID: PMC9109689 DOI: 10.7717/peerj.13450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/26/2022] [Indexed: 01/14/2023] Open
Abstract
Background Several smartphone applications have been developed for the purpose of low-cost and convenient assessments of vegetation canopy structure and understorey illumination. Like standard hemispherical photography, most of these applications require user decisions about image processing, posing challenges for repeatability of measurements. Here I report a test of CanopyCapture, an application that instantaneously estimates percentage canopy gap fraction without any input from the user, and has the added advantage of an intuitive levelling mechanism. Methods Gap fraction estimates by CanopyCapture were compared with gap fraction values computed by the LAI-2200C Canopy Analyzer, in two contrasting evergreen temperate forests in New Zealand: an even-aged southern beech (Nothofagus) stand and an old-growth podocarp/broadleaf forest. These comparisons were repeated using a wide-angle adapter to enhance the smartphone camera's field of view from 45 to 65°. I also asked if CanopyCapture results depended on sky condition (sunny vs. overcast) and on the type of smartphone used. Results CanopyCapture output was significantly correlated with gap fraction computed by the LAI-2200C (R2 = 0.39), and use of the wide-angle adapter lifted this value to 0.56. However, CanopyCapture output was not significantly correlated with LAI-2200C output in the even-aged Nothofagus stand, where there was less spatial variation in canopy structure. Despite being much less sensitive to variation in gap fraction than the LAI-2200C, CanopyCapture was nevertheless able to detect differences in average gap fraction between the two forests studied. CanopyCapture results beneath intact canopies were not significantly affected by sky condition, but reflection of direct light off tree trunks in sunny weather caused slight overestimation of gap fraction beneath broken canopies and gaps. Uneven or patchy cloud cover can also cause erroneous readings beneath large canopy openings. Three different models of smartphone gave different results. Conclusions CanopyCapture offers a rapid and repeatable proxy for comparisons of average canopy gap fraction in multiple stands/forests, provided large sample sizes are used. Measurement under even overcast skies is recommended, and studies involving multiple operators will need to standardize smartphones to ensure comparability of results. Although wide-angle adapters can improve performance, CanopyCapture's low sensitivity prevents high-resolution comparisons of the light environments of individual understorey plants within a stand.
Collapse
|
22
|
Guzmán‐Jacob V, Guerrero‐Ramírez NR, Craven D, Brant Paterno G, Taylor A, Krömer T, Wanek W, Zotz G, Kreft H. Broad‐ and small‐scale environmental gradients drive variation in chemical, but not morphological, leaf traits of vascular epiphytes. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Valeria Guzmán‐Jacob
- Biodiversity, Macroecology and Biogeography University of Goettingen Göttingen Germany
| | | | - Dylan Craven
- Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor Santiago de Chile Chile
| | - Gustavo Brant Paterno
- Biodiversity, Macroecology and Biogeography University of Goettingen Göttingen Germany
| | - Amanda Taylor
- Biodiversity, Macroecology and Biogeography University of Goettingen Göttingen Germany
| | - Thorsten Krömer
- Centro de Investigaciones Tropicales, Universidad Veracruzana, Xalapa Veracruz México
| | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research University of Vienna Austria
| | - Gerhard Zotz
- Institute for Biology and Environmental Sciences Carl von Ossietzky University Oldenburg Germany
| | - Holger Kreft
- Biodiversity, Macroecology and Biogeography University of Goettingen Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use (CBL) University of Goettingen Göttingen Germany
| |
Collapse
|
23
|
Zhang Y, Zhao J, Xu J, Chai Y, Liu P, Quan J, Wu X, Li C, Yue M. Effects of Water Availability on the Relationships Between Hydraulic and Economic Traits in the Quercus wutaishanica Forests. FRONTIERS IN PLANT SCIENCE 2022; 13:902509. [PMID: 35720582 PMCID: PMC9199496 DOI: 10.3389/fpls.2022.902509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/03/2022] [Indexed: 05/02/2023]
Abstract
Water availability is a key environmental factor affecting plant species distribution, and the relationships between hydraulic and economic traits are important for understanding the species' distribution patterns. However, in the same community type but within different soil water availabilities, the relationships in congeneric species remain ambiguous. In northwest China, Quercus wutaishanica forests in the Qinling Mountains (QM, humid region) and Loess Plateau (LP, drought region) have different species composition owing to contrasting soil water availability, but with common species occurring in two regions. We analyzed eight hydraulic traits [stomatal density (SD), vein density (VD), wood specific gravity (WSGbranch), lower leaf area: sapwood area (Al: As), stomatal length (SL), turgor loss point (ΨTlp), maximum vessel diameter (Vdmax) and height (Height)] and five economic traits [leaf dry matter content (LDMC), leaf tissue density (TD), leaf dry mass per area (LMA), Leaf thickness (LT) and maximum net photosynthetic rate (Pmax)] of congeneric species (including common species and endemic species) in Q. wutaishanica forests of QM and LP. We explored whether the congeneric species have different economic and hydraulic traits across regions. And whether the relationship between hydraulic and economic traits was determined by soil water availability, and whether it was related to species distribution and congeneric endemic species composition of the same community. We found that LP species tended to have higher SD, VD, WSGbranch, Al: As, SL, ΨTlp and Vdmax than QM species. There was a significant trade-off between hydraulic efficiency and safety across congeneric species. Also, the relationships between hydraulic and economic traits were closer in LP than in QM. These results suggested that relationships between hydraulic and economic traits, hydraulic efficiency and safety played the role in constraining species distribution across regions. Interestingly, some relationships between traits changed (from significant correlation to non-correlation) in common species across two regions (from LP to QM), but not in endemic species. The change of these seven pairs of relationships might be a reason for common species' wide occurrence in the two Q. wutaishanica forests with different soil water availability. In drought or humid conditions, congeneric species developed different types of adaptation mechanisms. The study helps to understand the environmental adaptive strategies of plant species, and the results improve our understanding of the role of both hydraulic and economic traits during community assembly.
Collapse
Affiliation(s)
- Yuhan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Jiale Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Jinshi Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Peiliang Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Xipin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Cunxia Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, China
- Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi'an, China
- *Correspondence: Ming Yue,
| |
Collapse
|
24
|
Guzmán-Jacob V, Weigelt P, Craven D, Zotz G, Krömer T, Kreft H. Biovera-Epi: A new database on species diversity, community composition and leaf functional traits of vascular epiphytes along gradients of elevation and forest-use intensity in Mexico. Biodivers Data J 2021; 9:e71974. [PMID: 34720637 PMCID: PMC8516827 DOI: 10.3897/bdj.9.e71974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/11/2021] [Indexed: 11/12/2022] Open
Abstract
Background This data paper describes a new, comprehensive database (BIOVERA-Epi) on species distributions and leaf functional traits of vascular epiphytes, a poorly studied plant group, along gradients of elevation and forest-use intensity in the central part of Veracruz State, Mexico. The distribution data include frequencies of 271 vascular epiphyte species belonging to 92 genera and 23 families across 120 20 m × 20 m forest plots at eight study sites along an elevational gradient from sea level to 3500 m a.s.l. In addition, BIOVERA-Epi provides information on 1595 measurements of nine morphological and chemical leaf traits from 474 individuals and 102 species. For morphological leaf traits, we provide data on each sampled leaf. For chemical leaf traits, we provide data at the species level per site and land-use type. We also provide complementary information for each of the sampled plots and host trees. BIOVERA-Epi contributes to an emerging body of synthetic epiphytes studies combining functional traits and community composition. New information BIOVERA-Epi includes data on species frequency and leaf traits from 120 forest plots distributed along an elevational gradient, including six different forest types and three levels of forest-use intensity. It will expand the breadth of studies on epiphyte diversity, conservation and functional plant ecology in the Neotropics and will contribute to future synthetic studies on the ecology and diversity of tropical epiphyte assemblages.
Collapse
Affiliation(s)
- Valeria Guzmán-Jacob
- Biodiversity, Macroecology and Biogeography, University of Göttingen, Göttingen, Germany Biodiversity, Macroecology and Biogeography, University of Göttingen Göttingen Germany
| | - Patrick Weigelt
- Biodiversity, Macroecology and Biogeography, University of Göttingen, Göttingen, Germany Biodiversity, Macroecology and Biogeography, University of Göttingen Göttingen Germany
| | - Dylan Craven
- Universidad Mayor, Santiago, Chile Universidad Mayor Santiago Chile
| | - Gerhard Zotz
- Universität Oldenburg, Oldenburg, Germany Universität Oldenburg Oldenburg Germany
| | - Thorsten Krömer
- Centro de Investigaciones Tropicales, Universidad Veracruzana., Xalapa, Veracruz, Mexico Centro de Investigaciones Tropicales, Universidad Veracruzana. Xalapa, Veracruz Mexico
| | - Holger Kreft
- Biodiversity, Macroecology and Biogeography, University of Göttingen, Göttingen, Germany Biodiversity, Macroecology and Biogeography, University of Göttingen Göttingen Germany
| |
Collapse
|
25
|
Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska‐Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon‐Cochard C, Rose L, Ryser P, Scherer‐Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde‐Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. THE NEW PHYTOLOGIST 2021; 232:973-1122. [PMID: 34608637 PMCID: PMC8518129 DOI: 10.1111/nph.17572] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T. Freschet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
| | - Loïc Pagès
- UR 1115 PSHCentre PACA, site AgroparcINRAE84914Avignon cedex 9France
| | - Colleen M. Iversen
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Louise H. Comas
- USDA‐ARS Water Management Research Unit2150 Centre Avenue, Bldg D, Suite 320Fort CollinsCO80526USA
| | - Boris Rewald
- Department of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Catherine Roumet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Jitka Klimešová
- Department of Functional EcologyInstitute of Botany CASDukelska 13537901TrebonCzech Republic
| | - Marcin Zadworny
- Institute of DendrologyPolish Academy of SciencesParkowa 562‐035KórnikPoland
| | - Hendrik Poorter
- Plant Sciences (IBG‐2)Forschungszentrum Jülich GmbHD‐52425JülichGermany
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | | | - Thomas S. Adams
- Department of Plant SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Agnieszka Bagniewska‐Zadworna
- Department of General BotanyInstitute of Experimental BiologyFaculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznańskiego 661-614PoznańPoland
| | - A. Glyn Bengough
- The James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- School of Science and EngineeringUniversity of DundeeDundee,DD1 4HNUK
| | | | - Ivano Brunner
- Forest Soils and BiogeochemistrySwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
| | - Johannes H. C. Cornelissen
- Department of Ecological ScienceFaculty of ScienceVrije Universiteit AmsterdamDe Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Eric Garnier
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Arthur Gessler
- Forest DynamicsSwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich8092ZurichSwitzerland
| | - Sarah E. Hobbie
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt PaulMN55108USA
| | - Ina C. Meier
- Functional Forest EcologyUniversity of HamburgHaidkrugsweg 122885BarsbütelGermany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation GroupDepartment of Environmental SciencesWageningen University and ResearchPO Box 476700 AAWageningenthe Netherlands
| | | | - Laura Rose
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
- Senckenberg Biodiversity and Climate Research Centre (BiK-F)Senckenberganlage 2560325Frankfurt am MainGermany
| | - Peter Ryser
- Laurentian University935 Ramsey Lake RoadSudburyONP3E 2C6Canada
| | | | - Nadejda A. Soudzilovskaia
- Environmental Biology DepartmentInstitute of Environmental SciencesCMLLeiden UniversityLeiden2300 RAthe Netherlands
| | - Alexia Stokes
- INRAEAMAPCIRAD, IRDCNRSUniversity of MontpellierMontpellier34000France
| | - Tao Sun
- Institute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Oscar J. Valverde‐Barrantes
- International Center for Tropical BotanyDepartment of Biological SciencesFlorida International UniversityMiamiFL33199USA
| | - Monique Weemstra
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Alexandra Weigelt
- Systematic Botany and Functional BiodiversityInstitute of BiologyLeipzig UniversityJohannisallee 21-23Leipzig04103Germany
| | - Nina Wurzburger
- Odum School of EcologyUniversity of Georgia140 E. Green StreetAthensGA30602USA
| | - Larry M. York
- Biosciences Division and Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Sarah A. Batterman
- School of Geography and Priestley International Centre for ClimateUniversity of LeedsLeedsLS2 9JTUK
- Cary Institute of Ecosystem StudiesMillbrookNY12545USA
| | - Moemy Gomes de Moraes
- Department of BotanyInstitute of Biological SciencesFederal University of Goiás1974690-900Goiânia, GoiásBrazil
| | - Štěpán Janeček
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawley (Perth)WA 6009Australia
| | - Hans Lambers
- School of Biological SciencesThe University of Western AustraliaCrawley (Perth)WAAustralia
| | - Verity Salmon
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Nishanth Tharayil
- Department of Plant and Environmental SciencesClemson UniversityClemsonSC29634USA
| | - M. Luke McCormack
- Center for Tree ScienceMorton Arboretum, 4100 Illinois Rt. 53LisleIL60532USA
| |
Collapse
|
26
|
Souza ML, Garcia LE, Lovato MB, Lemos-Filho JP. Leaf trait variation during ontogeny in the endangered Brazilian rosewood tree. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:1109-1117. [PMID: 34532953 DOI: 10.1111/plb.13318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Knowledge of plant responses to environmental heterogeneity during ontogeny is important to elucidate the changes that occur to promote resource capture in tropical forests. We tested the hypothesis that expression changes in leaf metamer traits of Brazilian rosewood (Dalbergia nigra), from seedlings to emergent canopy trees, occur as new microclimate environments are achieved. We also tested the hypothesis that increased light heterogeneity in the understorey leads to higher plasticity in leaf traits of seedlings and saplings than in sun-exposed metamers of emergent trees subject to stressful conditions. We compared leaf metamer traits of 53 individuals including seedlings, saplings and emergent trees. We also evaluated the light heterogeneity in vertical strata and the variations in leaf traits within individuals (among metamers of the same individual). These were associated with height of the individuals. Compared to understorey plants, emergent trees presented larger metamers, with lower specific leaf area (SLA), lower investment in leaf area per total dry mass of metamer (LARm ), lower specific petiole length (SPL) and lower specific internode length (SIL). Higher phenotypic variation within individuals was observed in seedlings, which decreased as the trees grew taller. The results suggest the integration of ontogenetic changes in leaf traits under new microclimate conditions as the plants reach different vertical strata in the forest. Additionally, our results support the hypothesis that increased light heterogeneity in the understorey shaped higher phenotypic variation within individuals in juveniles and that stressful conditions in sun-exposed leaf metamers of emergent trees led to increased phenotypic stability.
Collapse
Affiliation(s)
- M L Souza
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Avenida Antonio Carlos, 6627, Belo Horizonte, Brasil, 31270-901, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará/Campus Acaraú, Acaraú, CEP, 62580-000, Brazil
| | - L E Garcia
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Avenida Antonio Carlos, 6627, Belo Horizonte, Brasil, 31270-901, Brazil
| | - M B Lovato
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais/ICB, Avenida Antonio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
| | - J P Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Avenida Antonio Carlos, 6627, Belo Horizonte, Brasil, 31270-901, Brazil
| |
Collapse
|
27
|
Wang QW, Liu C, Robson TM, Hikosaka K, Kurokawa H. Leaf density and chemical composition explain variation in leaf mass area with spectral composition among 11 widespread forbs in a common garden. PHYSIOLOGIA PLANTARUM 2021; 173:698-708. [PMID: 34309027 DOI: 10.1111/ppl.13512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Leaf mass per area (LMA) is a key leaf functional trait correlated with plant strategies dictating morphology, physiology, and biochemistry. Although sunlight is generally accepted as a dominant factor driving LMA, the contribution of each spectral region of sunlight in shaping LMA is poorly understood. In the present study, we grew 11 widespread forb species in a common garden and dissected the traits underpinning differences in LMA, such as its morphological components (leaf density [LD] and leaf thickness [LT]), macroelement, and metabolite composition under five spectral-attenuation treatments: (1) transmitting c. 95% of the whole solar spectrum (> 280 nm), (2) attenuating ultraviolet-B radiation (UV-B), (3) attenuating both UV-A and UV-B radiation, (4) attenuating UV radiation and blue light, (5) attenuating UV radiation, blue, and green light. We found that LMA, LD, and chemical traits varied significantly across species depending on spectral treatments. LMA was significantly increased by UV-B radiation and green light, while LD was increased by UV-A but decreased by blue light. LMA positively correlated with LD across treatments but was only weakly related to LT, suggesting that LD was a better determinate of LMA for this specific treatment. Regarding leaf elemental and metabolite composition, carbon, nitrogen, and total phenolics were all positively correlated with LMA, whereas lignin, non-structural carbohydrates, and soluble sugars had negative relationships with LMA. These trends imply a tradeoff between biomass allocation to structural and metabolically functional components. In conclusion, sunlight can spectrally drive LMA mainly through modifying functional and structural support.
Collapse
Affiliation(s)
- Qing-Wei Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Chenggang Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, China
| | - Thomas Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroko Kurokawa
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Japan
| |
Collapse
|
28
|
Affiliation(s)
- Marisol Cruz
- Grupo de Ecología y Fisiología Vegetal Departamento de Ciencias Biológicas Universidad de Los Andes Bogotá Colombia
| | - Eloisa Lasso
- Grupo de Ecología y Fisiología Vegetal Departamento de Ciencias Biológicas Universidad de Los Andes Bogotá Colombia
- Smithsonian Tropical Research Institute Panamá Panama
- Coiba‐AIP, Clayton Panamá Panama
| |
Collapse
|
29
|
Wang YQ, Ni MY, Zeng WH, Huang DL, Xiang W, He PC, Ye Q, Cao KF, Zhu SD. Co-ordination between leaf biomechanical resistance and hydraulic safety across 30 sub-tropical woody species. ANNALS OF BOTANY 2021; 128:183-191. [PMID: 33930116 PMCID: PMC8324032 DOI: 10.1093/aob/mcab055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/24/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Leaf biomechanical resistance protects leaves from biotic and abiotic damage. Previous studies have revealed that enhancing leaf biomechanical resistance is costly for plant species and leads to an increase in leaf drought tolerance. We thus predicted that there is a functional correlation between leaf hydraulic safety and biomechanical characteristics. METHODS We measured leaf morphological and anatomical traits, pressure-volume parameters, maximum leaf hydraulic conductance (Kleaf-max), leaf water potential at 50 % loss of hydraulic conductance (P50leaf), leaf hydraulic safety margin (SMleaf), and leaf force to tear (Ft) and punch (Fp) of 30 co-occurring woody species in a sub-tropical evergreen broadleaved forest. Linear regression analysis was performed to examine the relationships between biomechanical resistance and other leaf hydraulic traits. KEY RESULTS We found that higher Ft and Fp values were significantly associated with a lower (more negative) P50leaf and a larger SMleaf, thereby confirming the correlation between leaf biomechanical resistance and hydraulic safety. However, leaf biomechanical resistance showed no correlation with Kleaf-max, although it was significantly and negatively correlated with leaf outside-xylem hydraulic conductance. In addition, we also found that there was a significant correlation between biomechanical resistance and the modulus of elasticity by excluding an outlier. CONCLUSIONS The findings of this study reveal leaf biomechanical-hydraulic safety correlation in sub-tropical woody species.
Collapse
Affiliation(s)
- Yong-Qiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Ming-Yuan Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Wen-Hao Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Dong-Liu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Wei Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Peng-Cheng He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
30
|
Brown A, Heckman RW. Light alters the impacts of nitrogen and foliar pathogens on the performance of early successional tree seedlings. PeerJ 2021; 9:e11587. [PMID: 34285829 PMCID: PMC8272923 DOI: 10.7717/peerj.11587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/20/2021] [Indexed: 11/24/2022] Open
Abstract
Light limitation is a major driver of succession and an important determinant of the performance of shade-intolerant tree seedlings. Shade intolerance may result from a resource allocation strategy characterized by rapid growth and high metabolic costs, which may make shade-intolerant species particularly sensitive to nutrient limitation and pathogen pressure. In this study, we evaluated the degree to which nitrogen availability and fungal pathogen pressure interact to influence plant performance across different light environments. To test this, we manipulated nitrogen availability (high, low) and access by foliar fungal pathogens (sprayed with fungicide, unsprayed) to seedlings of the shade-intolerant tree, Liquidambar styraciflua, growing at low and high light availability, from forest understory to adjacent old field. Foliar fungal damage varied with light and nitrogen availability; in low light, increasing nitrogen availability tripled foliar damage, suggesting that increased nutrient availability in low light makes plants more susceptible to disease. Despite higher foliar damage under low light, spraying fungicide to exclude pathogens promoted 14% greater plant height only under high light conditions. Thus, although nitrogen availability and pathogen pressure each influenced aspects of plant performance, these effects were context dependent and overwhelmed by light limitation. This suggests that failure of shade-intolerant species to invade closed-canopy forest can be explained by light limitation alone.
Collapse
Affiliation(s)
- Alexander Brown
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.,Curriculum for the Environment and Ecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Robert W Heckman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.,Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
31
|
Slot M, Cala D, Aranda J, Virgo A, Michaletz ST, Winter K. Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. PLANT, CELL & ENVIRONMENT 2021; 44:2414-2427. [PMID: 33817813 DOI: 10.1111/pce.14060] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Exceeding thermal thresholds causes irreversible damage and ultimately loss of leaves. The lowland tropics are among the warmest forested biomes, but little is known about heat tolerance of tropical forest plants. We surveyed leaf heat tolerance of sun-exposed leaves from 147 tropical lowland and pre-montane forest species by determining the temperatures at which potential photosystem II efficiency based on chlorophyll a fluorescence started to decrease (TCrit ) and had decreased by 50% (T50 ). TCrit averaged 46.7°C (5th-95th percentile: 43.5°C-49.7°C) and T50 averaged 49.9°C (47.8°C-52.5°C). Heat tolerance partially adjusted to site temperature; TCrit and T50 decreased with elevation by 0.40°C and 0.26°C per 100 m, respectively, while mean annual temperature decreased by 0.63°C per 100 m. The phylogenetic signal in heat tolerance was weak, suggesting that heat tolerance is more strongly controlled by environment than by evolutionary legacies. TCrit increased with the estimated thermal time constant of the leaves, indicating that species with thermally buffered leaves maintain higher heat tolerance. Among lowland species, T50 increased with leaf mass per area, suggesting that in species with structurally more costly leaves the risk of leaf loss during hot spells is reduced. These results provide insight in variation in heat tolerance at local and regional scales.
Collapse
Affiliation(s)
- Martijn Slot
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Daniela Cala
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Paul H. O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Jorge Aranda
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| |
Collapse
|
32
|
Liu Q, Sterck FJ, Zhang JL, Scheire A, Konings E, Cao M, Sha LQ, Poorter L. Traits, strategies, and niches of liana species in a tropical seasonal rainforest. Oecologia 2021; 196:499-514. [PMID: 34023971 PMCID: PMC8241640 DOI: 10.1007/s00442-021-04937-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/05/2021] [Indexed: 11/27/2022]
Abstract
Plant functional traits and strategies hold the promise to explain species distribution, but few studies have linked multiple traits to multiple niche dimensions (i.e., light, water, and nutrients). Here, we analyzed for 29 liana species in a Chinese tropical seasonal rainforest how: (1) trait associations and trade-offs lead to different plant strategies; and (2) how these traits shape species' niche dimensions. Eighteen functional traits related to light, water, and nutrient use were measured and species niche dimensions were quantified using species distribution in a 20-ha plot combined with data on canopy gaps, topographic water availability, and soil nutrients. We found a tissue toughness spectrum ranging from soft to hard tissues along which species also varied from acquisitive to conservative water use, and a resource acquisition spectrum ranging from low to high light capture and nutrient use. Intriguingly, each spectrum partly reflected the conservative-acquisitive paradigm, but at the same time, the tissue toughness and the resource acquisition spectrum were uncoupled. Resource niche dimensions were better predicted by individual traits than by multivariate plant strategies. This suggests that trait components that underlie multivariate strategy axes, rather than the plant strategies themselves determine species distributions. Different traits were important for different niche dimensions. In conclusion, plant functional traits and strategies can indeed explain species distributions, but not in a simple and straight forward way. Although the identification of global plant strategies has significantly advanced the field, this research shows that global, multivariate generalizations are difficult to translate to local conditions, as different components of these strategies are important under different local conditions.
Collapse
Affiliation(s)
- Qi Liu
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Frank J Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China.
| | - Arne Scheire
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Evelien Konings
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Li-Qing Sha
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
33
|
Modolo GS, dos Santos VAHF, Ferreira MJ. Testing for functional significance of traits: Effect of the light environment in tropical tree saplings. Ecol Evol 2021; 11:6480-6492. [PMID: 34141233 PMCID: PMC8207416 DOI: 10.1002/ece3.7499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/15/2023] Open
Abstract
Functional traits have been examined to explain the growth rates of forest communities in different sites. However, weak or nonexistent relations are often found, especially due to the following methodological aspects: 1) lack of an environmental context (e.g., light, water, or nutrient supply), 2) use of nonfunctional traits, 3) an approach that does not contemplate phenotypic integration, and 4) neglect of intraspecific variation.Here we measured relative growth rates, crown, and leaf traits in saplings of six tropical tree species growing in two light environments (Gap and Understory) to test whether contrasting light environments modulates trait-trait and trait-growth relationships. Moreover, we tested whether models that integrate traits of different dimensions of the plant (crown and leaf) improve the strength of trait-growth relations.Light availability changed both trait-trait and trait-growth relationships. Overall, in Understory, crown traits (crown length and total leaf area) have a stronger effect on growth rates, while physiological traits related to nutrient acquisition (nitrogen concentration), photochemical efficiency (chlorophyll pigments and chlorophyll a fluorescence), and biochemical efficiency (potassium use efficiency) are strong in Gap. Models including multiple traits explained growth rates better in Gap (up to 62%) and Understory (up to 47%), but just in Gap the best model comprises traits that are representative of different dimensions of the plant. Synthesis. We advanced the knowledge behind the light effects on tree sapling by posit that trait-trait and trait-growth relationships vary across light environments. Therefore, light availability is a key environmental factor to be considered when choosing the set of traits to be measured in functional approach studies using tropical tree saplings. In compliance with the phenotype integration hypothesis, functional traits are better predictors of growth rates when grouped in a set of traits of different dimensions of the plant that represent different functional mechanisms.
Collapse
|
34
|
Palomo-Kumul J, Valdez-Hernández M, Islebe GA, Cach-Pérez MJ, Andrade JL. El Niño-Southern Oscillation affects the water relations of tree species in the Yucatan Peninsula, Mexico. Sci Rep 2021; 11:10451. [PMID: 34001943 PMCID: PMC8129073 DOI: 10.1038/s41598-021-89835-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
We evaluated the effect of ENSO 2015/16 on the water relations of eight tree species in seasonally dry tropical forests of the Yucatan Peninsula, Mexico. The functional traits: wood density, relative water content in wood, xylem water potential and specific leaf area were recorded during the rainy season and compared in three consecutive years: 2015 (pre-ENSO conditions), 2016 (ENSO conditions) and 2017 (post-ENSO conditions). We analyzed tree size on the capacity to respond to water deficit, considering young and mature trees, and if this response is distinctive in species with different leaf patterns in seasonally dry tropical forests distributed along a precipitation gradient (700–1200 mm year−1). These traits showed a strong decrease in all species in response to water stress in 2016, mainly in the driest site. Deciduous species had lower wood density, higher predawn water potential and higher specific leaf area than evergreen species. In all cases, mature trees were more tolerant to drought. In the driest site, there was a significant reduction in water status, regardless of their leaf phenology, indicating that seasonally dry tropical forests are highly vulnerable to ENSO. Vulnerability of deciduous species is intensified in the driest areas and in the youngest trees.
Collapse
Affiliation(s)
- Jorge Palomo-Kumul
- El Colegio de la Frontera Sur Unidad Chetumal, Herbario, 77014, Chetumal, Q Roo, México
| | - Mirna Valdez-Hernández
- El Colegio de la Frontera Sur Unidad Chetumal, Herbario, 77014, Chetumal, Q Roo, México.
| | - Gerald A Islebe
- El Colegio de la Frontera Sur Unidad Chetumal, Herbario, 77014, Chetumal, Q Roo, México
| | - Manuel J Cach-Pérez
- Departamento de Agricultura, Sociedad y Ambiente, CONACYT-El Colegio de la Frontera Sur Unidad Villahermosa, 86280, Villahermosa, TAB, México
| | - José Luis Andrade
- Centro de Investigación Científica de Yucatán, Unidad de Recursos Naturales A.C., 97205, Mérida, YUC, México
| |
Collapse
|
35
|
Yang J, Song X, Cao M, Deng X, Zhang W, Yang X, Swenson NG. On the modelling of tropical tree growth: the importance of intra-specific trait variation, non-linear functions and phenotypic integration. ANNALS OF BOTANY 2021; 127:533-542. [PMID: 32361752 PMCID: PMC7988515 DOI: 10.1093/aob/mcaa085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/30/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS The composition and dynamics of plant communities arise from individual-level demographic outcomes, which are driven by interactions between phenotypes and the environment. Functional traits that can be measured across plants are frequently used to model plant growth and survival. Perhaps surprisingly, species average trait values are often used in these studies and, in some cases, these trait values come from other regions or averages calculated from global databases. This data aggregation potentially results in a large loss of valuable information that probably results in models of plant performance that are weak or even misleading. METHODS We present individual-level trait and fine-scale growth data from >500 co-occurring individual trees from 20 species in a Chinese tropical rain forest. We construct Bayesian models of growth informed by theory and construct hierarchical Bayesian models that utilize both individual- and species-level trait data, and compare these models with models only using individual-level data. KEY RESULTS We show that trait-growth relationships measured at the individual level vary across species, are often weak using commonly measured traits and do not align with the results of analyses conducted at the species level. However, when we construct individual-level models of growth using leaf area ratio approximations and integrated phenotypes, we generated strong predictive models of tree growth. CONCLUSIONS Here, we have shown that individual-level models of tree growth that are built using integrative traits always outperform individual-level models of tree growth that use commonly measured traits. Furthermore, individual-level models, generally, do not support the findings of trait-growth relationships quantified at the species level. This indicates that aggregating trait and growth data to the species level results in poorer and probably misleading models of how traits are related to tree performance.
Collapse
Affiliation(s)
- Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Xiaobao Deng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Wenfu Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Xiaofei Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Nathan G Swenson
- Department of Biology, University of Maryland, College Park, MD, USA
- For correspondence. E-mail
| |
Collapse
|
36
|
Nolting KM, Prunier R, Midgley GF, Holsinger KE. Intraspecific trait variation influences physiological performance and fitness in the South Africa shrub genus Protea (Proteaceae). ANNALS OF BOTANY 2021; 127:519-531. [PMID: 32249291 PMCID: PMC7988518 DOI: 10.1093/aob/mcaa060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/03/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Global plant trait datasets commonly identify trait relationships that are interpreted to reflect fundamental trade-offs associated with plant strategies, but often these trait relationships are not identified when evaluating them at smaller taxonomic and spatial scales. In this study we evaluate trait relationships measured on individual plants for five widespread Protea species in South Africa to determine whether broad-scale patterns of structural trait (e.g. leaf area) and physiological trait (e.g. photosynthetic rates) relationships can be detected within natural populations, and if these traits are themselves related to plant fitness. METHODS We evaluated the variance structure (i.e. the proportional intraspecific trait variation relative to among-species variation) for nine structural traits and six physiological traits measured in wild populations. We used a multivariate path model to evaluate the relationships between structural traits and physiological traits, and the relationship between these traits and plant size and reproductive effort. KEY RESULTS While intraspecific trait variation is relatively low for structural traits, it accounts for between 50 and 100 % of the variation in physiological traits. Furthermore, we identified few trait associations between any one structural trait and physiological trait, but multivariate regressions revealed clear associations between combinations of structural traits and physiological performance (R2 = 0.37-0.64), and almost all traits had detectable associations with plant fitness. CONCLUSIONS Intraspecific variation in structural traits leads to predictable differences in individual-level physiological performance in a multivariate framework, even though the relationship of any particular structural trait to physiological performance may be weak or undetectable. Furthermore, intraspecific variation in both structural and physiological traits leads to differences in plant size and fitness. These results demonstrate the importance of considering measurements of multivariate phenotypes on individual plants when evaluating trait relationships and how trait variation influences predictions of ecological and evolutionary outcomes.
Collapse
Affiliation(s)
- Kristen M Nolting
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Rachel Prunier
- Department of Biological and Environmental Sciences, Western Connecticut State University, Danbury, CT, USAand
| | - Guy F Midgley
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Kent E Holsinger
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
37
|
Togashi A, Oikawa S. Leaf productivity and persistence have been improved during soybean (Glycine max) domestication and evolution. JOURNAL OF PLANT RESEARCH 2021; 134:223-233. [PMID: 33576933 DOI: 10.1007/s10265-021-01263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Artificial and natural selection improved the leaf photosynthetic rate of soybean (Glycine max (L.) Merr. subsp. max). This change may be accompanied by unconscious, undesired changes in other leaf traits, such as decreased leaf persistence, if a finite resource was shared by two or more leaf traits-i.e., if they were traded off. We investigated leaf traits related to productivity (leaf photosynthetic rate, leaf nitrogen content, and stomatal conductance) and those related to persistence (leaf lifespan, leaf mass per unit area, and leaf bulk density) in one wild soybean line and three domesticated soybean lines (a landrace, an old cultivar, and a modern cultivar) in a three year experiment. Some leaf trait values increased while others did not change significantly during domestication and evolution. These results indicate that productivity-related leaf traits and persistence-related leaf traits are not negatively correlated. It was also found that the changes in productivity-related leaf traits and persistence-related leaf traits occurred at different times. Our results indicate that the productivity-related leaf traits and the persistence-related leaf traits have been independently selected for in soybean, and that they were not traded off. Combination of high leaf productivity and high leaf persistence would lead to higher lifetime leaf carbon gain and increased soybean yield.
Collapse
Affiliation(s)
- Ayaka Togashi
- Graduate School of Science and Engineering, Ibaraki University, Mito, 310-0056, Japan
| | - Shimpei Oikawa
- Graduate School of Science and Engineering, Ibaraki University, Mito, 310-0056, Japan.
| |
Collapse
|
38
|
Cerqueira AF, Rocha-Santos L, Benchimol M, Mielke MS. Habitat loss and canopy openness mediate leaf trait plasticity of an endangered palm in the Brazilian Atlantic Forest. Oecologia 2021; 196:619-631. [PMID: 33630171 DOI: 10.1007/s00442-021-04879-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Forest cover and light availability comprise key factors for plant establishment in tropical forests. In the Brazilian Atlantic Forest (AF), Euterpe edulis (Areacaceae) is an endangered and keystone food resource contributing to forest functionality. We investigated the influence of forest loss and light availability on leaf traits and acclimatization of young individuals of E. edulis in AF fragments. We aimed to understand (i) how canopy openness and transmitted light are affected by forest cover at the landscape scale and the individual palm level; and (ii) how local and landscape features, combined and separately, affect key leaf traits widely known to be related to plant growth. The study was carried out in 15 forest fragments, ranging from 16 to 97% of surrounding forest cover. In each fragment, we sampled 10-20 individuals of E. edulis and analyzed nine leaf traits related to morphological, biochemical and chemical aspects. We also took hemispherical photographs to estimate canopy openness on the top of each E. edulis and also within fragment plots. We found that young plants predominantly occurred in more shaded environments. Additionally, E. edulis succeeded to acclimate in six of the nine traits analyzed, with most traits being affected by local and landscape features. It is likely that the lack of variation in traits related to protection against herbivory are limiting the species establishment in highly deforested landscapes. Our results provide novel evidence that both landscape and local contexts affect the leaf traits of E. edulis young plants leading to biochemical, chemical and morphological adjustments.
Collapse
Affiliation(s)
- Amanda F Cerqueira
- Laboratório de Ecologia Aplicada À Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, Bahia, 42662-900, Brazil.
| | - Larissa Rocha-Santos
- Laboratório de Ecologia Aplicada À Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, Bahia, 42662-900, Brazil
| | - Maíra Benchimol
- Laboratório de Ecologia Aplicada À Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, Bahia, 42662-900, Brazil
| | - Marcelo S Mielke
- Laboratório de Ecologia Aplicada À Conservação, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, Ilhéus, Bahia, 42662-900, Brazil
| |
Collapse
|
39
|
Zang L, Xu H, Li Y, Zang R. Conspecific negative density dependence of trees varies with plant functional traits and environmental conditions across scales in a 60‐ha tropical rainforest dynamics plot. Biotropica 2021. [DOI: 10.1111/btp.12910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lipeng Zang
- Center of Forest Ecology College of Forestry Guizhou University Guiyang China
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration Research Institute of Forest Ecology, Environment and Protection Chinese Academy of Forestry Beijing China
- Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
| | - Han Xu
- Institute of Tropical Forestry Chinese Academy of Forestry Guangzhou China
| | - Yide Li
- Institute of Tropical Forestry Chinese Academy of Forestry Guangzhou China
| | - Runguo Zang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration Research Institute of Forest Ecology, Environment and Protection Chinese Academy of Forestry Beijing China
- Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
| |
Collapse
|
40
|
Lee YT, Jhao YS, Chiang D, Lee S. Mechanical creep of tea leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1111-1118. [PMID: 32785954 DOI: 10.1002/jsfa.10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Tea processing involves fermentation, withering, steaming or pan-firing, rolling, baking, and drying. Some of these steps are performed at a high temperatures. At such temperatures the creep of the tea leaves plays an important role in the quality of tea. In materials science, creep is the tendency of a tea leaf to move slowly or defom permanently under a constant load. There has been much research on the mechanical properties of the outmost cuticular layer of leaves but there are few reports addressing the mechanical properties of whole leaves. RESULTS We cut tea leaf into specimen of dog-bone shape and measure the time-dependent creep deformation using a dynamic mechnical analyzer. Three different tea leaves grown in Taiwan were examined. The nonlinear Burgers model is proposed to describe the creep deformation of the tea leaves. CONCLUSIONS The creep of the tea leaves consists of primary and steady states, and the creep deformation is accurately described by the Kelvin representation of the nonlinear Burgers model. The viscosities in the primary stages satisfied the Arrhenius equation, and the activation energies were determined. The stress exponents for the creep of the tea leaves were less than unity. The Maxwell representation of the Burgers model is mathematically equivalent to the Kelvin representation of the Burgers model and can also be used to explain the creep of tea leaves. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yao-Tsung Lee
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Sheng Jhao
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Donyao Chiang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Sanboh Lee
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
41
|
Wang L, Wang X, Han X, Gao Y, Liu B, Zhang X, Wang G. Potamogeton crispus responses to varying water depth in morphological plasticity and physiological traits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4253-4261. [PMID: 32939652 DOI: 10.1007/s11356-020-10806-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Submerged macrophytes, important primary producers in shallow lakes, play a crucial role in maintaining ecosystem structure and function. By altering a series of environmental factors, especially light intensity, water depth has great influences on growth of submerged macrophytes. Here, by hanging pots statically at water depths of 40, 60, 80, 100, 120, 140, 160, 180, 200, and 220 cm, respectively, we investigated effects of water depths on morphological plasticity and physiological traits of Potamogeton crispus. At 40 and 60 cm water depths versus other water depths, P. crispus showed lower plant height, larger stem diameter, thicker leaves, and smaller leaf area, leaf length, and specific leaf area. With water depth increasing, the plant height, leaf area, and leaf length gradually increased until 160 cm water depth, while the stem diameter and leaf thickness gradually decreased until 200 cm water depth. In comparison, the plant height, leaf length, and leaf number significantly decreased when the water depth further increased to 180-220 cm. The leaves contained lower concentrations of superoxide dismutase and peroxidase at 100-160 cm water depth, and lower catalase concentrations at 40-140 cm water depth, especially at 80-100 cm. In shallow waters, the concentration of chlorophyll a and b in leaves were both lower, while the ratio of chlorophyll a to b was relatively higher. As the water depth of 40-220 cm, the chlorophyll a and b concentrations increased significantly with increasing water depth, while their ratio gradually decreased. The present study provides new insights into the adaptation strategies of submerged macrophytes to the variation in water levels, and our findings are beneficial for ecosystem construction and management.
Collapse
Affiliation(s)
- Lei Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xuan Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaohui Han
- School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yuxuan Gao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Baogui Liu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xinhou Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
42
|
Medina‐Vega JA, Bongers F, Schnitzer SA, Sterck FJ. Lianas explore the forest canopy more effectively than trees under drier conditions. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- José A. Medina‐Vega
- Forest Ecology and Forest Management Group Wageningen University and Research Centre Wageningen The Netherlands
- Smithsonian Tropical Research Institute Balboa Republic of Panama
| | - Frans Bongers
- Forest Ecology and Forest Management Group Wageningen University and Research Centre Wageningen The Netherlands
| | - Stefan A. Schnitzer
- Smithsonian Tropical Research Institute Balboa Republic of Panama
- Department of Biological Sciences Marquette University Milwaukee WI USA
| | - Frank J. Sterck
- Forest Ecology and Forest Management Group Wageningen University and Research Centre Wageningen The Netherlands
| |
Collapse
|
43
|
Iida Y, Swenson NG. Towards linking species traits to demography and assembly in diverse tree communities: Revisiting the importance of size and allocation. Ecol Res 2020. [DOI: 10.1111/1440-1703.12175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshiko Iida
- Forestry and Forest Products Research Institute Tsukuba Japan
| | | |
Collapse
|
44
|
Perez TM, Rodriguez J, Mason Heberling J. Herbarium-based measurements reliably estimate three functional traits. AMERICAN JOURNAL OF BOTANY 2020; 107:1457-1464. [PMID: 32945535 DOI: 10.1002/ajb2.1535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
PREMISE The use of functional traits has surged in recent decades, providing new insights ranging from individual plant fitness to ecosystem processes. Global plant trait databases have advanced our understanding of plant functional diversity, but they remain incomplete because of geographic and taxonomic biases. Herbarium specimens may help fill these gaps by providing trait information across space and time. We tested whether herbarium specimen-derived measurements are reliable estimates of three important, commonly measured functional traits-specific leaf area (SLA), branch wood specific gravity, and leaf thickness. METHODS Leaves and branches were collected from species cultivated at Fairchild Tropical Botanic Garden and Florida International University in Miami, FL, USA. Fresh components of SLA (area), branch wood specific gravity (volume), and leaf thickness were measured following standard trait measurement protocols. We compared these trait values to corresponding measurements using plant tissues dried in a plant press following standard herbarium plant collecting protocols. RESULTS Herbarium-derived trait measurements (dried tissues) were highly correlated with those measured using fresh tissues following standard protocols (SLA: R2 = 0.72-0.97, p < 0.01; wood specific gravity: R2 = 0.74-0.75, p < 0.01; leaf thickness: R2 = 0.96, p < 0.01). However, except for leaf thickness, linear model slope or intercept coefficients differed from 1, indicating herbarium-derived trait measurements may provide biased estimates of fresh traits without the use of correction factors. CONCLUSIONS Herbarium-derived traits cannot always be used interchangeably with those measured from fresh tissues because of tissue shrinkage. However, herbarium-derived trait data still have the potential to drastically expand the temporal, geographic, and taxonomic scope of global trait databases.
Collapse
Affiliation(s)
- Timothy M Perez
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
- Fairchild Tropical Botanic Garden, Coral Gables, FL, 33156, USA
| | - Jessica Rodriguez
- Department of Earth and Environment, Florida International University, Miami, FL, 33199, USA
| | - J Mason Heberling
- Section of Botany, Carnegie Museum of Natural History, Pittsburgh, PA, 15213, USA
| |
Collapse
|
45
|
Bergès SE, Vasseur F, Bediée A, Rolland G, Masclef D, Dauzat M, van Munster M, Vile D. Natural variation of Arabidopsis thaliana responses to Cauliflower mosaic virus infection upon water deficit. PLoS Pathog 2020; 16:e1008557. [PMID: 32413076 PMCID: PMC7255604 DOI: 10.1371/journal.ppat.1008557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/28/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Plant virus pathogenicity is expected to vary with changes in the abiotic environment that affect plant physiology. Conversely, viruses can alter the host plant response to additional stimuli from antagonism to mutualism depending on the virus, the host plant and the environment. Ecological theory, specifically the CSR framework of plant strategies developed by Grime and collaborators, states that plants cannot simultaneously optimize resistance to both water deficit and pathogens. Here, we investigated the vegetative and reproductive performance of 44 natural accessions of A. thaliana originating from the Iberian Peninsula upon simultaneous exposure to soil water deficit and viral infection by the Cauliflower mosaic virus (CaMV). Following the predictions of Grime's CSR theory, we tested the hypothesis that the ruderal character of a plant genotype is positively related to its tolerance to virus infection regardless of soil water availability. Our results showed that CaMV infection decreased plant vegetative performance and annihilated reproductive success of all accessions. In general, water deficit decreased plant performance, but, despite differences in behavior, ranking of accessions tolerance to CaMV was conserved under water deficit. Ruderality, quantified from leaf traits following a previously published procedure, varied significantly among accessions, and was positively correlated with tolerance to viral infection under both well-watered and water deficit conditions, although the latter to a lesser extent. Also, in accordance with the ruderal character of the accession and previous findings, our results suggest that accession tolerance to CaMV infection is positively correlated with early flowering. Finally, plant survival to CaMV infection increased under water deficit. The complex interactions between plant, virus and abiotic environment are discussed in terms of the variation in plant ecological strategies at the intraspecific level.
Collapse
Affiliation(s)
- Sandy E. Bergès
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - François Vasseur
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
- CEFE, CNRS, EPHE, IRD, Univ Montpellier, Univ Paul Valéry Montpellier, Montpellier, France
| | - Alexis Bediée
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Gaëlle Rolland
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Diane Masclef
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Myriam Dauzat
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | | | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
46
|
Armani M, Goodale UM, Charles‐Dominique T, Barton KE, Yao X, Tomlinson KW. Structural defence is coupled with the leaf economic spectrum across saplings of spiny species. OIKOS 2020. [DOI: 10.1111/oik.06960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mohammed Armani
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Menglun, Mengla CN‐666303 Yunnan PR China
- Univ. of Chinese Academy of Science Beijing PR China
| | - Uromi M. Goodale
- Regeneration Ecology, Seed Bio‐physiology and Conservation Laboratory, Plant Ecophysiology and Evolution Group, Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi Univ. Nanning Guangxi PR China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Univ. Nanning Guangxi PR China
| | - Tristan Charles‐Dominique
- Dominique, Inst. of Ecology and Environmental Sciences – Paris, CNRS UMR 7618, Sorbonne Univ. Paris France
| | | | - Xin Yao
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Menglun, Mengla CN‐666303 Yunnan PR China
| | - Kyle W. Tomlinson
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Menglun, Mengla CN‐666303 Yunnan PR China
| |
Collapse
|
47
|
Hua L, He P, Goldstein G, Liu H, Yin D, Zhu S, Ye Q. Linking vein properties to leaf biomechanics across 58 woody species from a subtropical forest. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:212-220. [PMID: 31627255 DOI: 10.1111/plb.13056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Leaf venations have elements with relatively lower elasticity than other leaf tissue components, which are thought to contribute to leaf biomechanics. A better mechanistic understanding of relationships between vein traits and leaf mechanical properties is essential for ecologically relevant interpretation of leaf structural variations. We investigated 13 major (first to third order) and minor (>third order) vein traits, six leaf mechanical properties and other structural traits across 58 woody species from a subtropical forest to elucidate how vein traits contribute to leaf biomechanics. Across species, vein dry mass density (ρv ), total vein dry mass per leaf area (VMA) and minor vein diameter (VDmin ), but not the lower-order vein density (VLA1•2 ), were positively correlated with leaf force to punch (Fp ) and force to tear (Ft ). Structural equation models showed that ρv and VDmin not only contribute to leaf mechanical properties directly (direct pathway), but also had impacts on leaf biomechanics by influencing leaf thickness and leaf dry mass per area (indirect pathway). Our study demonstrated that vein dry mass density and minor vein diameter are the key vein properties for leaf biomechanics. We also suggest that the mechanical characteristics of venations are potential factors influencing leaf mechanical resistance, structure and leaf economics spectrum.
Collapse
Affiliation(s)
- L Hua
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, Gannan Normal University, Ganzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - P He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - G Goldstein
- Instituto de Ecologia Genetica y Evolucion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, República Argentina, Buenos Aires, Argentina
| | - H Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - D Yin
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - S Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Q Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, Gannan Normal University, Ganzhou, China
| |
Collapse
|
48
|
Ntawuhiganayo EB, Uwizeye FK, Zibera E, Dusenge ME, Ziegler C, Ntirugulirwa B, Nsabimana D, Wallin G, Uddling J. Traits controlling shade tolerance in tropical montane trees. TREE PHYSIOLOGY 2020; 40:183-197. [PMID: 31860725 PMCID: PMC7048680 DOI: 10.1093/treephys/tpz119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/24/2019] [Accepted: 10/24/2019] [Indexed: 06/01/2023]
Abstract
Tropical canopies are complex, with multiple canopy layers and pronounced gap dynamics contributing to their high species diversity and productivity. An important reason for this complexity is the large variation in shade tolerance among different tree species. At present, we lack a clear understanding of which plant traits control this variation, e.g., regarding the relative contributions of whole-plant versus leaf traits or structural versus physiological traits. We investigated a broad range of traits in six tropical montane rainforest tree species with different degrees of shade tolerance, grown under three different radiation regimes (under the open sky or beneath sparse or dense canopies). The two distinct shade-tolerant species had higher fractional biomass in leaves and branches while shade-intolerant species invested more into stems, and these differences were greater under low radiation. Leaf respiration and photosynthetic light compensation point did not vary with species shade tolerance, regardless of radiation regime. Leaf temperatures in open plots were markedly higher in shade-tolerant species due to their low transpiration rates and large leaf sizes. Our results suggest that interspecific variation in shade tolerance of tropical montane trees is controlled by species differences in whole-plant biomass allocation strategy rather than by difference in physiological leaf traits determining leaf carbon balance at low radiation.
Collapse
Affiliation(s)
- Elisée Bahati Ntawuhiganayo
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
- World Agroforestry (ICRAF), University Avenue PO Box 227, Huye, Rwanda
| | - Félicien K Uwizeye
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
- BirdLife International, KG 501 St, PO Box 2527, Kigali, Rwanda
| | - Etienne Zibera
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
| | - Mirindi E Dusenge
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
- Department of Biology, University of Western Ontario, 1157 Richmond street, London, Ontario N6A 5B7, Canada
| | - Camille Ziegler
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-405 30 Gothenburg, Sweden
- UMR EcoFoG, INRA, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, BP 709, 97387 Kourou Cedex, France
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 54000 Nancy, France
| | - Bonaventure Ntirugulirwa
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
- Rwanda Agriculture and Animal Resources Development, PO Box 5016, Kigali, Rwanda
| | - Donat Nsabimana
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-405 30 Gothenburg, Sweden
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
49
|
Bin Y, Lin G, Russo SE, Huang Z, Shen Y, Cao H, Lian J, Ye W. Testing the competition-colonization trade-off and its correlations with functional trait variations among subtropical tree species. Sci Rep 2019; 9:14942. [PMID: 31628341 PMCID: PMC6802185 DOI: 10.1038/s41598-019-50604-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/28/2019] [Indexed: 11/09/2022] Open
Abstract
The competition-colonization trade-off, by which species can partition spatial niches, is a potentially important mechanism allowing the maintenance of species diversity in plant communities. We examined whether there was evidence for this trade-off among tree species in a subtropical forest and how it correlated with eight functional traits. We developed and estimated a metric for colonization ability that incorporates both fecundity and seed dispersal based on seed trap data and the sizes and distributions of adult trees. Competitive ability was estimated as survival probability under high crowding conditions based on neighborhood models. Although we found no significant relationship between colonization and competitive abilities, there was a significant negative correlation between long distance dispersal ability and competitive ability at the 5 cm size class. Colonizers had traits associated with faster growth, such as large leaves and low leaf lamina density, whereas competitors had traits associated with higher survival, such as dense wood. Our results imply that any trade-off between competition and colonization may be more determined by dispersal ability than by fecundity, suggesting that seed dispersal is an important contributor to diversity maintenance. Future work should test how competitive ability covaries with the components of colonization ability, as we did here.
Collapse
Affiliation(s)
- Yue Bin
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China.,Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Guojun Lin
- Changjiang Water Resources Protection Institute, Qintai Road 515, Hanyang District, Wuhan, China
| | - Sabrina E Russo
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588-0118, USA
| | - Zhongliang Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Yong Shen
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Honglin Cao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Juyu Lian
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China.,Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Wanhui Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China. .,Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China.
| |
Collapse
|
50
|
Umaña MN, Swenson NG. Intraspecific variation in traits and tree growth along an elevational gradient in a subtropical forest. Oecologia 2019; 191:153-164. [PMID: 31367911 DOI: 10.1007/s00442-019-04453-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
Abstract
A conspicuous feature of natural communities is that individuals within species exhibit broad variation in their phenotype. While the phenotypic differences among species are prominent and have received considerable attention in earlier studies, recent findings suggest that about 40% of the trait variation is found within species. How this intraspecific variation is related to underlying environmental gradients and ultimately linked to performance is an outstanding question in ecology and evolution. Here, we study six broadly distributed species across an elevational gradient in a subtropical forest. We focused on five functional traits reflecting plant functional differentiation in stem transport, leaf architecture, and leaf resource acquisition. We found that leaf thickness, leaf toughness, and specific leaf area generally varied with elevation, while wood density and leaf area exhibited constrained variation. Results on multivariate trait axes also showed mixed evidence with the PC1 values (positively related to leaf toughness and negatively related to specific leaf area) shifting with elevation, while PC2 values (negatively related to wood density) did not change with elevation. We also found that, despite the important variation in some traits along the gradient, growth performance did not follow this same trend. This suggests that strong directional changes in traits along the gradient may result in similar levels of demographic performance. The results, therefore, challenge the simple expectation that a trait will correlate with a demographic rate. More nuanced approaches and additional mechanisms must be considered to advance understanding of the performance-trait relationships.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 48109, USA.
| | - Nathan G Swenson
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|